
ar
X

iv
:c

s/
05

10
06

9v
1

 [
cs

.L
O

]
 2

3
O

ct
 2

00
5

Comparing Computational Power

Udi Boker and Nachum Dershowitz

School of Computer Science, Tel Aviv University

Ramat Aviv, Tel Aviv 69978, Israel

E-mail: {udiboker,nachumd}@tau.ac.il

April 2005

All models are wrong but some are useful.

—George E. P. Box,
“Robustness in the strategy of

scientific model building” (1979)

Abstract

It is common practice to compare the computational power of different
models of computation. For example, the recursive functions are strictly
more powerful than the primitive recursive functions, because the latter
are a proper subset of the former (which includes Ackermann’s function).
Side-by-side with this “containment” method of measuring power, it is
standard to use an approach based on “simulation”. For example, one
says that the (untyped) lambda calculus is as powerful—computationally
speaking—as the partial recursive functions, because the lambda calcu-
lus can simulate all partial recursive functions by encoding the natural
numbers as Church numerals.

The problem is that unbridled use of these two ways of comparing
power allows one to show that some computational models are strictly

stronger than themselves! We argue that a better definition is that model
A is strictly stronger than B if A can simulate B via some encoding,
whereas B cannot simulate A under any encoding. We then show that
the recursive functions are strictly stronger in this sense than the primi-
tive recursive. We also prove that the recursive functions, partial recursive
functions, and Turing machines are “complete”, in the sense that no in-
jective encoding can make them equivalent to any “hypercomputational”
model.

1 Introduction

Our overall goal is to formalize the comparison of computational models. We
seek a robust definition of relative power that does not itself depend on the
notion of computability. It should allow one to compare arbitrary models over

1

http://arxiv.org/abs/cs/0510069v1

arbitrary domains via a quasi-ordering that successfully captures the intuitive
concept of computational strength. We want to be able to prove statements
like “analogue machines are strictly more powerful than digital devices”, even
though the two models operate over domains of different cardinalities.

Since we are only interested here in the extensional quality of a compu-
tational model (the set of functions that it computes), not complexity-based
comparison or step-by-step simulation, we use the term “model” for any set of
partial functions, and ignore all the “mechanistic” aspects.

1.1 The Standard Comparison Method

There are basically two standard methods, Approaches C and S below, by which
models have been compared over the years. These two approaches have been
used in the literature in conjunction with each other; thus, they need to work
in harmony. That is, if models A and A′ are deemed equivalent according to
approach C, while A′ is shown to be stronger than B by approach S, we expect
that it is legitimate to infer that A is also stronger than B.

Approach C (Containment). Normally, one would say that a model A is at least
as powerful as B if all (partial) functions computed by B are also computed by
A. If A allows more functions than B, then it is standard to claim that A is
strictly stronger. For example, general recursion (Rec) is more powerful than
primitive recursion (Prim) (e.g. [11, p. 92]), and inductive Turing machines are
more powerful than Turing machines [1, p. 86].

Approach S (Simulation). The above definition does not work, however, when
models use different data structures (representations). Instead, A is deemed
at least as powerful as B if A can simulate every function computable by B.
Specifically, the simulation is obtained by requiring an injective encoding ρ from
the domain of B to that of A, such that for every function g computed by B
we have g = ρ−1 ◦ f ◦ ρ for some function f computed by A, in which case A is
said to be at least as powerful as B. See, for example, [8, p. 27], [3, p. 24], or
[10, p. 30]:

Computability relative to a coding is the basic concept in compar-
ing the power of computation models.. . . The computational power
of the model is represented by the extension of the set of all func-
tions computable according to the model. Thus, we can compare
the power of computation models using the concept ‘incorporation
relative to some suitable coding’.

Equivalence. To show that two models are of equivalent power by the simulation
method, one needs to find two injections, each showing that every function
computed by one can be simulated by the other. For example, Turing machines
(TM), the untyped lambda calculus (Λ), and the partial recursive functions
(PR) were all shown to be of equal computational power, in the seminal work

2

✓✒ ✏✑Prim

✬

✫

✩

✪
Rec ∼ TM

✬

✫

✩

✪

PR ∼ RE

ITM

Recursive

Partial Recursive

✬

✫

✩

✪Hypercomputation

ITM = Inductive Turing Machine

PR = Partial Recursion

RE = Recursive enumerable

Rec = General Recursion

TM = Turing Machine

Prim = Primitive Recursion

Figure 1: Computational Power Hierarchy

of Church [2], Kleene [7] and Turing [12].

More Powerful. To show that model A is strictly more powerful than model
B, one normally shows that A is at least as powerful as some model A′ that
comprises more functions than B (A′) B). (See, for example, [9].) Figure 1
illustrates this standard conception, according to which Turing machines are
considered strictly more powerful than primitive recursion, since TM is equiv-
alent to Rec—by simulation, and Rec is strictly more powerful than Prim—by
containment.

1.2 The Problem

Unfortunately, it turns out that these two approaches, which form the standard
method of comparing computational power, are actually incompatible. We pro-
vide examples in Section 3 of cases in which a model A is strictly more powerful
than B by the first approach, whereas B is at least as powerful as A by the sec-
ond. It follows that the combination of these two standard approaches allows
for models to be strictly stronger than themselves!

Specifically, in Example 4 below, we describe a model that is a proper sub-
set of the recursive functions, but can, nevertheless, simulate all of them. This
raises the question whether it could possibly also be the case that the primitive
recursive functions are of equivalent power to Turing machines, via some “wild”
simulation. Could it be that the recursive functions are of equivalent computa-
tional power to some proper superset, containing non-recursive functions?

3

1.3 The Suggested Solution

We begin (in Definition 3 below) with the basic comparison notion “as powerful
as” (%), using the simulation approach (Approach S), which naturally extends
containment (Approach C) to models operating over different domains. (If a
model A is as powerful as a B by Approach C, then it is also as powerful
as B by Approach S.) Then the “strictly more powerful” partial ordering (≻)
is derived from the quasi-ordering % by saying that A ≻ B if A % B but not
B % A, in other words, only when there is no injection via which B can simulate
A.

To compare models operating over different domains requires some sort of
mapping between the domains. A possible alternative might be to require a
domain mapping that is not only injective but that also possesses additional
properties, like being surjective. It turns out that bijective mappings not only
cannot provide a sufficiently general comparison notion, but would be limited
to permutations with bounded cycles (Theorem 1).

One is tempted to consider “well-defined” only those computational models
that cannot be shown by simulation to be of equivalent power to any proper
superset of functions. We call such a model “complete” (Definition 8). The ques-
tion then is: Are the classic models, such as Turing machines, well-defined? In
Section 5, we show that general recursive functions, partial recursive functions,
and Turing machines are indeed all complete models in our sense (Theorems 6,
7, and 9). Accordingly, we obtain a criterion by which to verify that a model
operating over a denumerable domain is hypercomputational (Corollary 5).

2 Definitions

We consider only deterministic computational models; hence, we deal with par-
tial functions. To simplify the development, we will assume for now that the
domain and range of functions are identical, except that the range is extended
with ⊥, representing “undefined”.

Two partial functions (f and g) over the same domain (D) are deemed
(semantically or extensionally) equal (and denoted simply f = g) if they are
defined for exactly the same elements of the domain (f(x) = ⊥ iff g(x) = ⊥ for
all x ∈ D) and have the same value whenever they are both defined (f(x) = g(x)
if f(x) 6= ⊥, for all x ∈ D).

Definition 1 (Model of Computation) Let D be an arbitrary domain (any
set of elements). A model of computation over D is any set of functions f :
D → D ∪ {⊥}. We write dom A for the domain over which model A operates.

Since models are sets: When A (B, for models A and B over the same
domain, we say that A is a submodel of B and, likewise, that B is a supermodel
of A. Moreover, whenever we speak of A ⊆ B, we mean to also imply that the
two models operate over the same domain.

4

To deal with models operating over different domains it is incumbent to
map the domain of one model to that of the other. Let ρ : dom B ∪ {⊥} →
dom A ∪ {⊥} be an injective encoding. Then ρ ◦ M = {ρ ◦ f : f ∈ M} and
M ◦ρ = {f ◦ρ : f ∈ M}, for any relation ρ and set of functions M . Additionally,
we insist that ρ(y) = ⊥ iff y = ⊥.

Definition 2 (Simulation) Model A simulates model B via injection ρ :
dom B → dom A, denoted A %ρ B, if ρ ◦B ⊆ A ◦ ρ.
This is the notion of “incorporated” used in [10, p. 29].

As a degenerate case, with the identity encoding ι (λn.n), we have A %ι B
iff A ⊇ B. Approach C of comparison (see the introduction) uses this simple
relation.

Approach S is embodied in the following:

Definition 3 (Computational Power)

1. Model A is (computationally) at least as powerful as model B, denoted
A % B, if there is an injection ρ such that A %ρ B.

2. Model A is (computationally) more powerful than B, denoted A ≻ B, if
A % B but B 6% A.

3. Models A and B are computationally equivalent if A % B % A, in which
case we write A ∼ B.

Proposition 1 The computational power relation % between models is a quasi-
order. Computational equivalence ∼ is an equivalence relation.

Transitivity of % is because the composition of injections is an injection.

Example 1 Turing machines (TM) simulate the recursive functions (Rec) via
a unary representation of the natural numbers.

Example 2 The (untyped) λ-calculus (Λ) is equivalent to the partial recursive
functions (PR) via Church numerals, on the one hand, and via Gödelization,
on the other.

Since the domain encoding ρ implies, by the simulation definition, a function
mapping, we can extend ρ to functions and models, as follows:

Definition 4 (Function Mappings) An encoding ρ : dom B → dom A in-
duces the following mappings:

ρ(g) = ρ ◦ g ◦ ρ−1

ρ〈f〉 = ρ−1 ◦ f ◦ ρ
from B to A and from A to B, respectively. These extend to sets of functions
in the usual manner:

ρ(M) = {ρ(g) : g ∈ M}
ρ〈M〉 = {ρ〈f〉 : f ∈ M} .

5

Note that any function f , such that f ↾rng ρ= ρ(g) ↾rng ρ, simulates g via ρ,
while ρ〈f〉 is the only function simulated by f . The model ρ(M) is minimal (with
respect to the restriction of the domain to rng ρ) among those that simulate M
via ρ, and ρ〈M〉 is the maximal model simulated by M (see Lemma 1 below).

Definition 5 (Strong Equivalence) Model A is strongly equivalent to model
B, denoted A ≃ B, if there are bijections π and τ such that A %π B %τ A.

Definition 6 (Isomorphism) Model A is isomorphic to model B, denoted
A ≡ B, if there is a bijection π such that A %π B %π−1 A.

Example 3 Lisp with only pure lists as data is isomorphic to the partial re-
cursive functions via the Gödel pairing function: π(nil) = 0; π(cons(x, y)) =
2π(x)(2π(y) + 1).

When π is recursive, one may speak of recursively isomorphism: function f
is recursively isomorphic to g if there is a recursive permutation π, such that
f = π−1 ◦ g ◦ π [8, pp. 52–53]. Moreover: “A property of a k-ary relations on N

is recursively invariant if, whenever a relation R possesses the property, so does
g(R) for all g ∈ G∗” [8, p. 52], where G∗ are the recursive permutations of N.
Thus, one may claim: “[Recursion] theory essentially studies . . . those properties
of sets and functions which remain invariant under recursive permutations. For
example, recursiveness, r.e.-ness, m-completeness are such invariants” [11, p.
333].

3 Equivalent Submodels

Unfortunately, the above standard definition of “simulates” (Approach S, Defi-
nition 2) allows for the possibility that a model is equivalent to its supermodel.

Example 4 The set of “even” recursive functions (R2) is of equivalent power
to the set of all recursive functions. Define:

R2 =

{

λn.

{

2f(n/2) n is even
n otherwise

}

: f ∈ Rec

}

We have that R2 %λn.2n Rec.

Furthermore, it leads to situations where A ≻ B ≻ A for models A,B. For
example, the set of “odd” recursive functions (R1, defined analogously) is of
equivalent power to the set of all recursive functions, by the same argument as
above. We have that, R1 % Rec) R2 % Rec) R1, thus R1 ≻ R2 ≻ R1. Thus,
the standard comparison method (Section 1.1) is ill-defined.

It turns out that the equivalence of a model and its supermodel is possible
even when the encoding ρ is a bijection and the model is closed under functional
composition. Hence, a model might be isomorphic to a supermodel of itself.

6

Definition 7 (Narrow Permutations) A permutation π : D → D is narrow
if there is a constant k ∈ N, such that πk(x) = x, for every x ∈ D.

Theorem 1 For every encoding ρ : D → D, there are models A and B, such
that A (B -ρ A, iff ρ is a non-narrow permutation.

Proof. Suppose that π is a permutation with narrow cycles bounded by k.
Assume A %π B ⊇ A. There is, by assumption, a function f ∈ A, for every
function g ∈ B, such that g = π−1 ◦ f ◦ π. Since f ∈ B, there is, by induction,
a function fk ∈ A, such that g = π−k ◦ fk ◦ πk = fk. Therefore, B = A.

For the other direction, we must consider three cases: (1) non-surjective
encodings; (2) surjective encodings that are not injective; (3) bijections with no
bound on the length of their cycles. We can prove each case by constructing
a computational model that is strongly equivalent to a supermodel of itself via
the given encoding.

We provide here only a specific instance of case (3); the full proof is a
generalization of the argument.

Let K be a set of “basic functions” over N, containing all the constant
functions κk (λn.k), plus the identity, ι. We present two models, A and B, that
both contain the basic functions and are closed under function composition,
such that the smaller one (B) simulates every function of the infinitely larger
one (A).

Imagine the natural numbers arranged in a triangular array:

0 0
1 1 2 3
2 4 5 6 7 8
3 9 10 11 12 13 14 15
4 16 . . .
...

. . .

0 1 2 3 4 5 6 . . .

Now, define the following computable functions:

fi,j(n) =
(⌊√

n
⌋

+ i
)2

+ j mod
(

2
⌊√

n
⌋

+ 2i+ 1
)

gi(n) = fi,0(n) =
(⌊√

n
⌋

+ i
)2
.

If n is located on row m, then fi,j(n) is the number in row n+ i and column j,
while gi(n) is the first number in row n+ i.

Consider the following sets of functions:

F = {fi,j : i, j > 0}
G = {gi : i > 0} .

Note that F and G are disjoint, since for every i, j > 0 and n > j2, fi−1,j(n) <
gi(n) < fi,j(n).

7

Define:

B = K ∪ F

A = K ∪ F ∪G .

Thus, A has functions to jump anywhere in subsequent rows, while B (A is
missing infinitely many functions gi for getting to the first position of subsequent
rows. Since, for i+ k > 0,

fi,j ◦ fk,ℓ = fi+k,j ,

it follows that both F and G are closed under composition, as is their union
F ∪G, from which it follows that A and B are also closed.

There exists a (computable) permutation π of the naturals N, such that
B %π A:

π(n) = f
0,n−⌊√n⌋2

+1

=
⌊√

n
⌋2

+
(

n−
⌊√

n
⌋2

+ 1
)

mod
(

2
⌊√

n
⌋

+ 1
)

,

mapping numbers to their successor n + 1, but wrapping around before each
square. That is, π has the following unbounded cycles:

π = {(0), (1 2 3), (4 5 . . . 8), . . .}.

It remains to show that for all f ∈ A = K∪F∪G, we have π(f) ∈ B = K∪F .
The following can all be verified:

π(ι) = ι ∈ K ⊆ B

π(κk) = κπ(k) ∈ K ⊆ B

π(fi,j) = fi,j+1 ∈ B, for i > 0, j ≥ 0 .

✷

Corollary 1 There are models isomorphic to supermodels of themselves.

4 Comparisons

One can categorize the maximal model that can be simulated, as follows:

Lemma 1 For all models A and B, A %ρ B iff B ⊆ ρ〈A〉.

Proof. We have B ⊆ ρ〈A〉 iff for every g ∈ B there is f ∈ A, such that
g = ρ−1 ◦ f ◦ ρ. This is the same as requiring that for every g ∈ B there is an
f ∈ A, such that ρ ◦ g = ρ ◦ ρ−1 ◦ f ◦ ρ = f ◦ ρ, that is, A %ρ B. ✷

By the same argument:

8

Lemma 2 For all models A and B and bijections π, A %π B iff A ⊇ π(B).

Corollary 2 For all models A and injections ρ, A % ρ〈A〉.
Corollary 3 For all models A and bijections π, A ≃ π(A).

Clearly, π〈A〉 = π−1(A).

Lemma 3 For all models A and B and bijections π, A (B implies that π(A) (
π(B) and π〈A〉 (π〈B〉.

Proof. Since π is a bijection, it follows that π(M) is an injection (i.e. every
function of M is simulated by exactly one function via π). Therefore, π(B \A)∩
π(A) = π〈B \A〉 ∩ π〈A〉 = ∅. ✷
Lemma 4 If A ≃ B (C, for models A,B,C, then there is a model D) A,
such that C ≃ D.

Proof. Suppose B %π A for bijection π. Thus, A ⊆ π〈B〉. Let D = π〈C〉, for
which we have C ≃ D. Since B (C, it follows that A ⊆ π〈B〉 (π〈C〉 = D. ✷

Theorem 2 The primitive recursive functions, Prim, are strictly weaker than
the recursive functions.

Proof. Clearly, Rec %ι Prim. So, assume, on the contrary, that Prim %ρ Rec.
Let S ∈ Rec be the successor function. There is, by assumption, a function
S′ ∈ Prim such that S′ ◦ ρ = ρ ◦ S. Since ρ(0) is some constant and ρ(S(n)) =
S′(ρ(n)), we have that ρ ∈ Prim. Since ρ is a recursive injection, it follows that
ρ−1 is partial recursive. Define the recursive function h(n) = ρ(mini{ρ(i) >
ack(n, n)}), where ack is Ackermann’s function. Since λn.ack(n, n) grows faster
than any primitive recursive function and h(n) > ack(n, n), it follows that
h /∈ Prim. Since rng h ⊆ rng ρ, it follows that t = ρ−1 ◦ h ∈ Rec. Thus, there is
a function t′ ∈ Prim, such that t′ ◦ ρ = ρ ◦ t = ρ ◦ ρ−1 ◦ h = h. We have arrived
at a contradiction: on the one hand, t′ ◦ ρ ∈ Prim, while, on the other hand,
h /∈ Prim. ✷

5 Completeness

As shown in Section 3, a model can be of equivalent power to its supermodel.
There are, however, models that are not susceptible to such an anomaly.

Definition 8 (Complete) A model is complete if it is not of equivalent power
to any of its supermodels. That is, A is complete if A % B ⊇ A implies A = B
for all B.

Theorem 3

1. Isomorphism of models implies their strong equivalence.

2. Strong equivalence of complete models implies their isomorphism.

9

Proof. The first statement is trivial. For the second, assume A %π B %τ A for
bijections π, τ . If π〈A〉 (B, then, by Lemma 3, τ〈π〈A〉〉 (A, which contradicts
the completeness of A. Thus B = π〈A〉, and therefore, A = π−1〈B〉. ✷

Lemma 5 If model A is complete and A %ρ B %π A, for model B, injection ρ
and bijection π, then A and B are strongly equivalent models.

Proof. Suppose A is complete, and A %ρ B %π A for injection ρ and bijection
π. It follows that π〈B〉 = A′ ⊇ A. Thus, A %ρ B %π A′ ⊇ A. Therefore, from
the completeness of A, it follows that A′ = A. Hence, A′ %−π B, and A and B
are strongly equivalent models. ✷

Theorem 4 If A and B are strongly equivalent models, then A is complete iff
B is.

Proof. Suppose that A is complete and A ≃ B (C. By Lemma 4, C ≃ D) A
for someD. Were B % C, then A ≃ B % C ≃ D, contradicting the completeness
of A. Hence, B is also complete. ✷

Theorem 5 If model A is complete and A ≃ B (C, for models B,C, then
C ≻ A.

Proof. If A ≃ B (C, then C % B % A. And, by the previous theorem, if A
is complete, then so is B; hence B 6% C and also A 6% C. Hence, C ≻ A. ✷

We turn now to specific computational models.

Definition 9 (Hypercomputational Model) Model M is hypercomputa-
tional if there is an injection ρ, such that ρ〈M〉) Rec.

Theorem 6 The recursive functions Rec are complete. That is, they cannot
simulate any hypercomputational model.

Proof. Assume Rec %ρ M ⊇ Rec and let S ∈ M be the successor function.
Analogously to the proof of Theorem 2, ρ ∈ Rec and ρ−1 ∈ PR. For every
f ∈ M , there is an f ′ ∈ Rec, such that f = ρ−1 ◦ f ′ ◦ ρ; thus f ∈ PR. Actually,
f is total, since rng (f ′ ◦ ρ) = rng (ρ ◦ f) ⊆ rng ρ. Therefore, M = Rec. ✷

By the same token:

Theorem 7 The partial recursive functions PR are complete.

Corollary 4 The general recursive functions (Rec) and partial recursive func-
tions (PR) are not strongly equivalent to any of their submodels or supermodels.

10

Proof. Non-equivalence to supermodels is just Theorems 6 and 7. Non-
equivalence to submodels follows from Lemma 3. ✷

As a corollary of Theorems 5 and 6, we obtain a criterion for hypercompu-
tation:

Corollary 5 A model M , operating over a denumerable domain, is hypercom-
putational if there is any bijection under which a proper subset of M simulates
Rec.

This justifies the use of the standard comparison method (Section 1.1) in
the particular case of the recursive functions.

Theorem 8 Turing machines, TM, and the recursive functions, Rec, are
strongly equivalent.

Proof. Since Rec is complete, it is sufficient, by Lemma 5, to show that Rec %
TM %π Rec, for some bijection π. Since it is well-known that Rec % TM via
Gödelization (e.g. [6, pp. 208–109]), it remains to show that TM %π Rec, for
some bijection π. Define (as in [6, p. 131]) the bijection π : N → {0, 1}∗, by

π(n) =

ǫ n = 0
d s.t. 1d is the shortest binary
representation of n+ 1

otherwise

For example, π(0, 1, 2, 3, 4, 5, 6, 7, . . .) is ǫ, 0, 1, 00, 01, 10, 11, 000,
TM %π RAM(Random Access Machine), by [6, pp. 131–133]; RAM ⊇ CM

(Counter Machine), by [6, pp. 116–118]; and CM %ι Rec by [6, pp. 207–208].
We have that Rec % TM %π RAM %ι CM %ι Rec, thus TM and Rec are
strongly equivalent. ✷

Note that the exact definitions of RAM and CM are of no importance, as
they are only intermediates for Rec % TM %π RAM %ι CM %ι Rec.

Theorem 9 Turing machines, TM, are complete.

Proof. By Theorem 8, TM and Rec are strongly equivalent. Since Rec is
complete, it follows, by Theorem 4, that TM is complete. ✷

6 Discussion

There are various directions in which one can extend the work described above:

Inductive Domains. The completeness of the (general and partial) recursive
functions is due to several properties, among which is the inclusion of a suc-
cessor function (Theorem 6). The results herein can be extended to show that

11

computational models operating over other inductively-defined domains are also
complete.

Intensional Properties of Completeness. Intuitively, a properly defined compu-
tational model should be complete. What is, however, “properly defined”? One
can look for the intensional properties of a model that guarantee completeness.
That is, what internal definitions that constitute a model (e.g. a finite set of
instructions, over a finite alphabet, . . .) guarantee completeness.

Different Domain and Range. The simulation definition (Definition 2) naturally
extends to models M : Dk → D with multiple inputs, by using the same
encoding ρ for each input component. See, for example, [10, p. 29].

A more general definition is required for models with distinct input and
output domains. This can be problematic as the following example illustrates:

Example 5 Let RE be the recursively enumerable sets of naturals. We define
infinitely many non-r.e. partial predicates {hi}, which can be simulated by RE.
Let

h(n) =

{

0 program n halts uniformly
1 otherwise

hi(n) =

{

0 n < i ∨ h(n) = 0
⊥ otherwise .

We have that RE %ρ RE ∪ {hi}, where

ρ(n) = 2n+ h(n)

h′
i(n) =

{

0 ⌊n/2⌋ < i ∨ n mod 2 = 0
⊥ otherwise

ρ(f) =

{

f(⌊n/2⌋) f ∈ RE
h′
i(n) f = hi .

Without loss of generality, we are supposing that ρ(0) = h(0) = 0.

Firm comparison. Comparison by an injective mapping between domains might
be too permissive, as shown in Example 5 above. Accordingly, one may add
other constraints on top of the mapping. For example, adding the requirement
that the “stronger” model can distinguish the range of the mapping. That is,
requiring a total function in the “stronger” model, whose range is exactly the
range of the comparison mapping.

Multivalued Representations. It may be useful to allow several encodings of the
same element, as long as there are no two elements sharing one representation,
something injective encodings disallow. Consider, for example, representing
rationals as strings, where “1/2”, “2/4”, “3/6”, . . . , could encode the same
number. See, for example, [13, p. 13]. To extend the notion of computational
power (Definition 3) to handle multivalued representations, we would say that

12

model A % B if there is a partial surjective function η : dom A → dom B
(η(y) = ⊥ iff y = ⊥), such that there is a function f ∈ A for every function
g ∈ B, with η(f(x)) = g(η(x)) for every x ∈ dom η. This follows along the lines
suggested in [13, p. 16]. The corresponding definitions and results need to be
extended accordingly.

Different Cardinalities. It may sometimes be unreasonable to insist that the
encoding be injective, since the domain may have elements that are distinct, but
virtually indistinguishable by the programs. For example, a model may operate
over the reals, but treat all numbers [n : n+ 1) as representations of n ∈ N.

Effectivity. A different approach to comparing models over different domains
is to require some manner of effectiveness of the encoding; see [4, p. 21] and [5,
p. 290], for example. There are basically two approaches:

1. One can demand an informal effectiveness: “The coding is chosen so that
it is itself given by an informal algorithm in the unrestricted sense” [8, p.
27].

2. One can require effectiveness of the encoding function via a specific model,
usually Turing machines: “The Turing-machine characterization is espe-
cially convenient for this purpose. It requires only that the expressions of
the wider classes be expressible as finite strings in a fixed finite alphabet
of basic symbols” [8, p. 28].

Effectivity is a useful notion; however, it is unsuitable for our purposes. The
first, informal approach is too vague, while the second can add computational
power when dealing with subrecursive models and is inappropriate when dealing
with non-recursive models.

Nondeterministic Models. The computational models we have investigated are
deterministic (Definition 1). The corresponding definitions and results should
be extended to nondeterministic models, as well.

References

[1] Mark Burgin. How we know what technology can do. Communications of
the ACM, 44:82–88, Nov. 2001.

[2] Alonzo Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58:345–363, 1936.

[3] Nigel Cutland. Computability: An Introduction to Recursive Function The-
ory. Cambridge University Press, Cambridge, 1980.

[4] Erwin Engeler. Formal Languages: Automata and Structures. Lectures
in Advanced Mathematics. Markham Publishing Company, Chicago, IL,
1968.

13

[5] Fred Hennie. Introduction to Computability. Addison-Wesley, Reading,
MA, 1977.

[6] Neil D. Jones. Computability and Complexity From a Programming Per-
spective. The MIT Press, Cambridge, Massachusetts, 1997.

[7] Stephen Kleene. Lambda-definability and recursiveness. Duke Mathemati-
cal Journal, 2:340–353, 1936.

[8] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, New York, 1966.

[9] Hava T. Siegelmann. Neural Networks and Analog Computation: Beyond
the Turing Limit. Birkhäuser, Boston, 1998.

[10] Rudolph Sommerhalder and S. C. van Westrhenen. The Theory of Com-
putability: Programs, Machines, Effectiveness and Feasibility. Addison-
Wesley, Workingham, England, 1988.

[11] George J. Tourlakis. Computability. Reston Publishing Company, Reston,
VA, 1984.

[12] Alan Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–
265, 1936–37. Corrections in vol. 43 (1937), pp. 544-546. Reprinted in M.
Davis (ed.), “The Undecidable,” Raven Press, Hewlett, NY, 1965. Available
at: http://www.abelard.org/turpap2/tp2-ie.asp.

[13] Klaus Weihrauch. A Simple Introduction to Computable Analysis. Fern
Universität, Hagen, Germany, July 1995. Available at ftp://ftp.eccc.uni-
trier.de/pub/eccc/books/Weihrauch/book.ps.

14

	Introduction
	The Standard Comparison Method
	The Problem
	The Suggested Solution

	Definitions
	Equivalent Submodels
	Comparisons
	Completeness
	Discussion

