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This paper from 2008 is the first in a series of three related papers

on modal methods in interpretability logics and applications. In this first

paper the fundaments are laid for later results. These fundaments consist

of a thorough treatment of a construction method to obtain modal models.

This construction method is used to reprove some known results in the

area of interpretability like the modal completeness of the logic IL. Next,

the method is applied to obtain new results: the modal completeness of

the logic ILM0, and modal completeness of ILW∗.

1 Introduction

Interpretability logics are primarily used to describe structural behavior of inter-
pretability between formal mathematical theories. We shall see that the logics
come with a good modal semantics that naturally extends the regular modal
semantics giving it a dynamical flavor. In this introduction we shall informally
describe the project of this paper. Formal definitions are postponed to later
sections.

The notion of interpretability that we are primarily interested in, is the no-
tion of relativized interpretability as studied e.g. by Tarski et al in [26]. Roughly,
a theory U interprets a theory V –we write U ✄ V – if U proves all theorems of
V under some structure preserving translation. We allow for relativization of
quantifiers. It is defendable to say that U is as least as strong as V if U✄V . We
think that it is clear that interpretations are worth to be studied, as they are
omnipresent in both mathematics and meta-mathematics (Langlands Program,
relative consistency proofs, undecidability results, Hilberts Programme and so
forth).

One approach to the study of interpretability is to study general structural
behavior of interpretability. An example of such a structural rule is the transiti-
vity of interpretability. That is, for any U , V and W we have that if U ✄V and
V ✄W , then also U ✄W . As we shall see, modal interpretability logics provide
an informative way to support this structural study. Interpretability logics, in a
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sense, generate all structural rules. Many important questions on interpretabi-
lity logics have been settled. One of the most prominent open questions at this
time is the question of the interpretability logic of all reasonable arithmetical
theories. In this paper we make a significant contribution to a solution of this
problem. However, a modal characterization still remains an open question.

The main aim of this paper is to establish some modal techniques/toolkit
for interpretability logics. Most techniques are aimed at establishing modal
completeness results. As we shall see, in the field of interpretability logics, modal
completeness can be a sticky business compared to unary modal logics. In this
paper we make a first attempt at pulling some (more) thorns out. Significant
progress with this respect has also been made by de Jong and Veltman [8].

We have a feeling that the general modal theory of interpretability logics
is getting more and more mature. For example, fixed point phenomena and
interpolation are quite well understood ([10], [1], [32]).

Experience tells us that our modal semantics is quite informative and perspi-
cuous. It is even the case that new arithmetical principles can be obtained from
modal semantical considerations. An example is our new principle R. We found
this principle primarily by modal investigation. Thus, indeed, there is a close
match between the modal part and the arithmetical part. It is even possible to
embed our modal semantics into some category of models of arithmetic.

Although this paper is mainly a modal investigation, the main questions
are still inspired by the arithmetical meaning of our logics. Thus, our investi-
gations will lead to applications concerning arithmetically informative notions
like, essentially Σ1-sentences, self provers and the interpretability logic of all
reasonable arithmetical theories.

2 Interpretability logics

In this section we will define the basic notions that are needed throughout the
paper. We advise the reader to just skim through this section and use it to look
up definitions whenever they are used in the rest of the paper.

2.1 Syntax and conventions

In this paper we shall be mainly interested in interpretability logics, the formulas
of which, we write FormIL , are defined as follows.

FormIL := ⊥ | Prop | (FormIL → FormIL) | (✷FormIL) | (FormIL ✄ FormIL)

Here Prop is a countable set of propositional variables p, q, r, s, t, p0, p1, . . ..
We employ the usual definitions of the logical operators ¬,∨,∧ and ↔. Also
shall we write ✸ϕ for ¬✷¬ϕ. Formulas that start with a ✷ are called box-
formulas or ✷-formulas. Likewise we talk of ✸-formulas.

From now on we will stay in the realm of interpretability logics. Unless
mentioned otherwise, formulas or sentences are formulas of FormIL . We will
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write p ∈ ϕ to indicate that the proposition variable p does occur in ϕ. A literal
is either a propositional variable or the negation of a propositional variable.

In writing formulas we shall omit brackets that are superfluous according
to the following reading conventions. We say that the operators ✸, ✷ and ¬
bind equally strong. They bind stronger than the equally strong binding ∧ and
∨ which in turn bind stronger than ✄. The weakest (weaker than ✄) binding
connectives are → and ↔. We shall also omit outer brackets. Thus, we shall
write A✄B → A∧✷C✄B∧✷C instead of ((A✄B) → ((A∧(✷C))✄(B∧(✷C)))).

A schema of interpretability logic is syntactically like a formula. They are
used to generate formulae that have a specific form. We will not be specific
about the syntax of schemata as this is similar to that of formulas. Below, one
can think of A, B and C as place holders.

The rule of Modus Ponens allows one to conclude B from premises A → B
and A. The rule of Necessitation allows one to conclude ✷A from the premise
A.

Definition 2.1. The logic IL is the smallest set of formulas being closed under
the rules of Necessitation and of Modus Ponens, that contains all tautological
formulas and all instantiations of the following axiom schemata.

L1 ✷(A→ B) → (✷A→ ✷B)

L2 ✷A→ ✷✷A

L3 ✷(✷A→ A) → ✷A

J1 ✷(A→ B) → A✄B

J2 (A✄B) ∧ (B ✄ C) → A✄ C

J3 (A✄ C) ∧ (B ✄ C) → A ∨B ✄ C

J4 A✄B → (✸A→ ✸B)

J5 ✸A✄A

We will write IL ⊢ ϕ for ϕ ∈ IL. An IL-derivation or IL-proof of ϕ is a finite
sequence of formulae ending on ϕ, each being a logical tautology, an instantiation
of one of the axiom schemata of IL, or the result of applying either Modus
Ponens or Necessitation to formulas earlier in the sequence. Clearly, IL ⊢ ϕ iff
there is an IL-proof of ϕ.

Sometimes we will write IL ⊢ ϕ → ψ → χ as short for IL ⊢ ϕ → ψ & IL ⊢
ψ → χ. Similarly for ✄. We adhere to a similar convention when we employ
binary relations. Thus, xRySxz  B is short for xRy & ySxz & z  B, and so
on.

Sometimes we will consider the part of IL that does not contain the ✄-
modality. This is the well-known provability logic GL, whose axiom schemata
are L1-L3. The axiom schema L3 is often referred to as Löb’s axiom.

Lemma 2.2. 1. IL ⊢ ✷A↔ ¬A✄⊥
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2. IL ⊢ A✄ A ∧ ✷¬A

3. IL ⊢ A ∨✸A✄A

Bewijs. All of these statements have very easy proofs. We give an informal proof
of the second statement. Reason in IL. It is easy to see A✄(A∧✷¬A)∨(A∧✸A).
By L3 we get ✸A→ ✸(A ∧✷¬A). Thus, A ∧✸A✄✸(A ∧✷¬A) and by J5 we
get ✸(A ∧ ✷¬A) ✄ A ∧ ✷¬A. As certainly A ∧ ✷¬A ✄ A ∧ ✷¬A we have that
(A ∧ ✷¬A) ∨ (A ∧ ✸A) ✄ A ∧ ✷¬A and the result follows from transitivity of
✄.

Apart from the axiom schemata exposed in Definition 2.1 we will on occas-
sion consider other axiom schemata too.

M A✄B → A ∧ ✷C ✄B ∧ ✷C

P A✄B → ✷(A✄B)

M0 A✄B → ✸A ∧ ✷C ✄B ∧ ✷C

W A✄B → A✄B ∧✷¬A

W∗ A✄B → B ∧ ✷C ✄B ∧ ✷C ∧✷¬A

P0 A✄✸B → ✷(A✄B)

R A✄B → ¬(A ✄ ¬C)✄B ∧✷C

If X is a set of axiom schemata we will denote by ILX the logic that arises
by adding the axiom schemata in X to IL. Thus, ILX is the smallest set of
formulas being closed under the rules of Modus Ponens and Necessitation and
containing all tautologies and all instantiations of the axiom schemata of IL
(L1-J5) and of the axiom schemata of X. Instead of writing IL{M0,W} we will
write ILM0W and so on.

We write ILX ⊢ ϕ for ϕ ∈ ILX. An ILX-derivation or ILX-proof of ϕ
is a finite sequence of formulae ending on ϕ, each being a logical tautology,
an instantiation of one of the axiom schemata of ILX, or the result of applying
either Modus Ponens or Necessitation to formulas earlier in the sequence. Again,
ILX ⊢ ϕ iff there is an ILX-proof of ϕ. For a schema Y, we write ILX ⊢ Y if
ILX proves every instantiation of Y.

Definition 2.3. Let Γ be a set of formulas. We say that ϕ is provable from
Γ in ILX and write Γ ⊢ILX ϕ, iff there is a finite sequence of formulae ending
on ϕ, each being a theorem of ILX, a formula from Γ, or the result of applying
Modus Ponens to formulas earlier in the sequence.

Clearly we have ∅ ⊢ILX ϕ⇔ ILX ⊢ ϕ. In the sequel we will often write just
Γ ⊢ ϕ instead of Γ ⊢ILX ϕ if the context allows us so. It is well known that we
have a deduction theorem for this notion of derivability.

Lemma 2.4 (Deduction theorem). Γ, A ⊢ILX B ⇔ Γ ⊢ILX A→ B
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Bewijs. “⇐” is obvious and “⇒” goes by induction on the length n of the
ILX-proof σ of B from Γ, A.

If n>1, then σ = τ, B, where B is obtained from some C and C → B
occurring earlier in τ . Thus we can find subsequences τ ′ and τ ′′ of τ such that
τ ′, C and τ ′′, C → B are ILX-proofs from Γ, A. By the induction hypothesis
we find ILX-proofs from Γ of the form σ′, A → C and σ′′, A → (C → B). We
now use the tautology (A → (C → B)) → ((A → C) → (A → B)) to get an
ILX-proof of A→ B from Γ.

Definition 2.5. A set Γ is ILX-consistent iff Γ 6⊢ILX ⊥. An ILX-consistent set
is maximal ILX-consistent if for any ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ.

Lemma 2.6. Every ILX-consistent set can be extended to a maximal ILX-
consistent one.

Bewijs. This is Lindebaums lemma for ILX. We can just do the regular argu-
ment as we have the deduction theorem. Note that there are countably many
different formulas.

We will often abbreviate “maximal consistent set” by MCS and refrain from
explicitly mentioning the logic ILX when the context allows us to do so. We
define three useful relations on MCS’s, the successor relation ≺, the C-critical
successor relation ≺C and the Box-inclusion relation ⊆✷.

Definition 2.7. Let Γ and ∆ denote maximal ILX-consistent sets.

• Γ ≺ ∆ := ✷A ∈ Γ ⇒ A,✷A ∈ ∆

• Γ ≺C ∆ := A✄ C ∈ Γ ⇒ ¬A,✷¬A ∈ ∆

• Γ ⊆✷ ∆ := ✷A ∈ Γ ⇒ ✷A ∈ ∆

It is clear that Γ ≺C ∆ ⇒ Γ ≺ ∆. For, if ✷A ∈ Γ then ¬A ✄ ⊥ ∈ Γ. Also
⊥ ✄ C ∈ Γ, whence ¬A ✄ C ∈ Γ. If now Γ ≺C ∆ then A,✷A ∈ ∆, whence
Γ ≺ ∆. It is also clear that Γ ≺C ∆ ≺ ∆′ ⇒ Γ ≺C ∆′.

Lemma 2.8. Let Γ and ∆ denote maximal ILX-consistent sets. We have Γ ≺ ∆
iff Γ ≺⊥ ∆.

Bewijs. Above we have seen that Γ ≺A ∆ ⇒ Γ ≺ ∆. For the other direction
suppose now that Γ ≺ ∆. If A✄⊥ ∈ Γ then, by Lemma 2.2.1, ✷¬A ∈ Γ whence
¬A,✷¬A ∈ ∆.

2.2 Semantics

Interpretability logics come with a Kripke-like semantics. As the signature of
our language is countable, we shall only consider countable models.

Definition 2.9. An IL-frame is a triple 〈W,R, S〉. Here W is a non-empty
countable universe, R is a binary relation on W and S is a set of binary re-
lations on W , indexed by elements of W . The R and S satisfy the following
requirements.
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1. R is conversely well-founded1

2. xRy & yRz → xRz

3. ySxz → xRy & xRz

4. xRy → ySxy

5. xRyRz → ySxz

6. uSxvSxw → uSxw

IL-frames are sometimes also called Veltman frames. We will on occasion
speak of R or Sx transitions instead of relations. If we write ySz, we shall mean
that ySxz for some x. W is sometimes called the universe, or domain, of the
frame and its elements are referred to as worlds or nodes. With x↾ we shall
denote the set {y ∈ W | xRy}. We will often represent S by a ternary relation
in the canonical way, writing 〈x, y, z〉 for ySxz.

Definition 2.10. An IL-model is a quadruple 〈W,R, S,〉. Here 〈W,R, S, 〉 is
an IL-frame and  is a subset of W × Prop. We write w  p for 〈w, p〉 ∈ . As

usual,  is extended to a subset ̃ of W × FormIL by demanding the following.

• w̃p iff w  p for p ∈ Prop

• w 6 ̃⊥

• w̃A→ B iff w 6 ̃A or w̃B

• w̃✷A iff ∀v (wRv ⇒ ṽA)

• w̃A✄B iff ∀u (wRu ∧ ũA⇒ ∃v (uSwṽB))

Note that ̃ is completely determined by . Thus we will denote ̃ also by
. We call  a forcing relation. The -relation depends on the model M . If
necessary, we will write M,w  ϕ, if not, we will just write w  ϕ. In this case
we say that ϕ holds at w, or that ϕ is forced at w. We say that p is in the
range of  if w  p for some w.

If F = 〈W,R, S〉 is an IL-frame, we will write x ∈ F to denote x ∈ W and
similarly for IL-models. Attributes on F will be inherited by its constituent
parts. For example Fi = 〈Wi, Ri, Si〉. Often however we will write Fi |= xRy
instead of Fi |= xRiy and likewise for the S-relation. This notation is consis-
tent with notation in first order logic where the symbol R is interpreted in the
structure Fi as Ri.

If M = 〈W,R, S,〉, we say that M is based on the frame 〈W,R, S〉 and we
call 〈W,R, S〉 its underlying frame.

If Γ is a set of formulas, we will write M,x  Γ as short for ∀ γ∈Γ M,x  γ.
We have similar reading conventions for frames and for validity.

1A relation R on W is called conversely well-founded if every non-empty subset of W has
an R-maximal element.
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Definition 2.11 (Generated Submodel). LetM = 〈W,R, S,〉 be an IL-model
and let m ∈M . We define m↾∗ to be the set {x ∈ W | x=m∨mRx}. By M↾m
we denote the submodel generated by m defined as follows.

M↾m := 〈m↾∗, R ∩ (m↾∗)2,
⋃

x∈m↾∗

Sx ∩ (m↾∗)2, ∩(m↾ ∗ ×Prop)〉

Lemma 2.12 (Generated Submodel Lemma). Let M be an IL-model and let
m ∈M . For all formulas ϕ and all x ∈ m↾∗ we have that

M↾m,x  ϕ iff M,x  ϕ.

Bewijs. By an easy induction on the complexity of ϕ.

We say that an IL-model makes a formula ϕ true, and write M |= ϕ, if ϕ is
forced in all the nodes of M . In a formula we write

M |= ϕ :⇔ ∀w∈M w  ϕ.

If F = 〈W,R, S〉 is an IL-frame and  a subset of W × Prop, we denote by
〈W,〉 the IL-model that is based on F and has forcing relation . We say that
a frame F makes a formula ϕ true, and write F |= ϕ, if any model based on F
makes ϕ true. In a second-order formula:

F |= ϕ :⇔ ∀  〈F,〉 |= ϕ

We say that an IL-model or frame makes a scheme true if it makes all its
instantiations true. If we want to express this by a formula we should have
a means to quantify over all instantiations. For example, we could regard an
instantiation of a scheme X as a substitution σ carried out on X resulting in
Xσ. We do not wish to be very precise here, as it is clear what is meant. Our
definitions thus read

F |= X iff ∀σ F |= Xσ

for frames F , and
M |= X iff ∀σ M |= Xσ

for models M . Sometimes we will also write F |= ILX for F |= X.
It turns out that checking the validity of a scheme on a frame is fairly

easy. If X is some scheme2, let τ be some base substitution that sends different
placeholders to different propositional variables.

Lemma 2.13. Let X be a scheme, and τ be a corresponding base substitution
as described above. Let F be an IL-frame. We have

F |= Xτ ⇔ ∀σ F |= Xσ.

2Or a set of schemata. All of our reasoning generalizes without problems to sets of sche-
mata. We will therefore no longer mention the distinction.
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Bewijs. If ∀σ F |= Xσ, then certainly F |= Xτ , thus we should concentrate on
the other direction. Thus, assuming F |= Xτ we fix some σ and  and set out
to prove 〈F,〉 |= Xσ. We define another forcing relation ′ on F by saying
that for any place holder A in X we have

w ′ τ(A) :⇔ 〈F,〉 |= σ(A)

By induction on the complexity of a subscheme3 Y of X we can now prove

〈F,′〉, w ′ Yτ ⇔ 〈F,〉, w  Yσ.

By our assumption we get that 〈F,〉, w  Xσ.

If χ is some formula in first, or higher, order predicate logic, we will evaluate
F |= χ in the standard way. In this case F is considered as a structure of first
or higher order predicate logic. We will not be too formal about these matters
as the context will always dict us which reading to choose.

Definition 2.14. Let X be a scheme of interpretability logic. We say that a
formula C in first or higher order predicate logic is a frame condition of X if

F |= C iff F |= X.

The C in Definition 2.14 is also called the frame condition of the logic ILX.
A frame satisfying the ILX frame condition is often called an ILX-frame. In
case no such frame condition exists, an ILX-frame resp. model is just a frame
resp. model, validating X.

The semantics for interpretability logics is good in the sense that we have
the necessary soundness results.

Lemma 2.15 (Soundness). IL ⊢ ϕ⇒ ∀F F |= ϕ

Bewijs. By induction on the length of an IL-proof of ϕ. The requirements on
R and S in Definition 2.9 are precisely such that the axiom schemata hold.
Note that all axiom schemata have their semantical counterpart except for the
schema (A✄ C) ∧ (B ✄ C) → A ∨B ✄ C.

Lemma 2.16 (Soundness). Let C be the frame condition of the logic ILX. We
have that

ILX ⊢ ϕ⇒ ∀F (F |= C ⇒ F |= ϕ).

Bewijs. As that of Lemma 2.15, plugging in the definition of the frame condition
at the right places. Note that we only need the direction F |= C ⇒ F |= X in
the proof.

Corollary 2.17. Let M be a model satisfying the ILX frame condition, and let
m ∈M . We have that Γ := {ϕ | M,m  ϕ} is a maximal ILX-consistent set.

3It is clear what this notion should be.
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Bewijs. Clearly ⊥ /∈ Γ. Also A ∈ Γ or ¬A ∈ Γ. By the soundness lemma,
Lemma 2.16, we see that Γ is closed under ILX consequences.

Lemma 2.18. Let M be a model such that ∀w∈M w  ILX then ILX ⊢ ϕ⇒
M |= ϕ.

Bewijs. By induction on the derivation of ϕ.

A modal logic ILX with frame condition C is called complete if we have the
implication the other way round too. That is,

∀F (F |= C ⇒ F |= ϕ) ⇒ ILX ⊢ ϕ.

A major concern of this paper is the question whether a given modal logic
ILX is complete.

Definition 2.19. Γ ILX ϕ iff ∀M M |= ILX ⇒ (∀m∈M [M,m  Γ ⇒M,m 

ϕ])

Lemma 2.20. Let Γ be a finite set of formulas and let ILX be a complete logic.
We have that Γ ⊢ILX ϕ iff Γ ILX ϕ.

Bewijs. Trivial. By the deduction theorem Γ ⊢ILX ϕ ⇔⊢ILX

∧
Γ → ϕ. By our

assumption on completeness we get the result. Note that the requirement that
Γ be finite is necessary, as our modal logics are in general not compact (see also
Section 3.1).

Often we shall need to compare different frames or models. If F = 〈W,R, S〉
and F ′ = 〈W ′, R′, S′〉 are frames, we say that F is a subframe of F ′ and write
F ⊆ F ′, ifW ⊆W ′, R ⊆ R′ and S ⊆ S′. Here S ⊆ S′ is short for ∀w∈W (Sw ⊆
S′
w).

2.3 Arithmetic

As with (almost) all interesting occurrences of modal logic, interpretability logics
are used to study a hard mathematical notion. Interpretability logics, as their
name slightly suggests, are used to study the notion of formal interpretability.
In this subsection we shall very briefly say what this notion is and how modal
logic is used to study it.

We are interested in first order theories in the language of arithmetic. All
theories we will consider will thus be arithmetical theories. Moreover, we want
our theories to have a certain minimal strength. That is, they should contain a
certain core theory, say I∆0 +Ω1 from [13]. This will allow us to do reasonable
coding of syntax. We call these theories reasonable arithmetical theories.

Once we can code syntax, we can write down a decidable predicate ProofT (p, ϕ)
that holds on the standard model precisely when p is a T -proof of ϕ.4 We
get a provability predicate by quantifying existentially, that is, ProvT (ϕ) :=
∃p ProofT (p, ϕ).

4We take the liberty to not make a distinction between a syntactical object and its code.
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We can use these coding techniques to code the notion of formal interpreta-
bility too. Roughly, a theory U interprets a theory V if there is some sort of
translation so that every theorem of V is under that translation also a theorem
of U .

Definition 2.21. Let U and V be reasonable arithmetical theories. An inter-
pretation j from V in U is a pair 〈δ, F 〉. Here, δ is called a domain specifier. It
is a formula with one free variable. The F is a map that sends an n-ary relation
symbol of V to a formula of U with n free variables. (We treat functions and
constants as relations with additional properties.) The interpretation j induces
a translation from formulas ϕ of V to formulas ϕj of U by replacing relation
symbols by their corresponding formulas and by relativizing quantifiers to δ.
We have the following requirements.

• (R(~x))j = F (R)(~x)

• The translation induced by j commutes with the boolean connectives.
Thus, for example, (ϕ ∨ ψ)j = ϕj ∨ ψj . In particular (⊥)j = (∨∅)

j =
∨∅ = ⊥

• (∀x ϕ)j = ∀x (δ(x) → ϕj)

• V ⊢ ϕ⇒ U ⊢ ϕj

We say that V is interpretable in U if there exists an interpretation j of V in
U .

Using the ProvT (ϕ) predicate, it is possible to code the notion of formal
interpretability in arithmetical theories. This gives rise to a formula IntT (ϕ, ψ),
to hold on the standard model precisely when T + ψ is interpretable in T + ϕ.
This formula is related to the modal part by means of arithmetical realizations.

Definition 2.22. An arithmetical realization ∗ is a mapping that assigns to
each propositional variable an arithmetical sentence. This mapping is extended
to all modal formulas in the following way.

- (ϕ∨ψ)∗ = ϕ∗∨ψ∗ and likewise for other boolean connectives. In particular
⊥∗ = (∨∅)

∗ = ∨∅ = ⊥.

- (✷ϕ)∗ = ProvT (ϕ
∗)

- (ϕ✄ ψ)∗ = IntT (ϕ
∗, ψ∗)

From now on, the ∗ will always range over realizations. Often we will write
✷Tϕ instead of ProvT (ϕ) or just even ✷ϕ. The ✷ can thus denote both a modal
symbol and an arithmetical formula. For the ✄-modality we adopt a similar
convention. We are confident that no confusion will arise from this.

Definition 2.23. An interpretability principle of a theory T is a modal formula
ϕ that is provable in T under any realization. That is, ∀ ∗ T ⊢ ϕ∗. The inter-
pretability logic of a theory T , we write IL(T), is the set of all interpretability
principles.
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Likewise, we can talk of the set of all provability principles of a theory T ,
denoted by PL(T). Since the famous result by Solovay, PL(T) is known for a
large class of theories T .

Theorem 2.24 (Solovay [25]). PL(T) = GL for any reasonable arithmetical
theory T .

For two classes of theories, IL(T) is known.

Definition 2.25. A theory T is reflexive if it proves the consistency of any of
its finite subtheories. It is essentially reflexive if any finite extension of it is
reflexive.

Theorem 2.26 (Berarducci [3], Shavrukov [24]). If T is an essentially reflexive
theory, then IL(T) = ILM.

Theorem 2.27 (Visser [29]). If T is finitely axiomatizable, then IL(T) = ILP.

Definition 2.28. The interpretability logic of all reasonable arithmetical the-
ories, we write IL(All), is the set of formulas ϕ such that ∀T ∀ ∗ T ⊢ ϕ∗. Here
the T ranges over all the reasonable arithmetical theories.

For sure IL(All) should be in the intersection of ILM and ILP. Up to now,
IL(All) is unknown. In [19] it is conjectured to be ILP0W

∗. It is one of the major
open problems in the field of interpretability logics, to characterize IL(All) in a
modal way.

We conclude this subsection with a definition of the arithmetical hierarchy.
This definition is needed in Section ??.

Definition 2.29. Inductively the following classes of arithmetical formulae are
defined.

• Arithmetical formulas with only bounded quantifiers in it are called ∆0,
Σ0 or Π0-formulas.

• If ϕ is a Πn or Σn+1-formula, then ∃x ϕ is a Σn+1-formula.

• If ϕ is a Σn or Πn+1-formula, then ∀x ϕ is a Πn+1-formula.

Definition 2.30. Let ϕ be an arithmetical formula.

- ϕ ∈ Πn(T ) iff ∃π∈Πn T ⊢ ϕ↔ π

- ϕ ∈ Σn(T ) iff ∃σ∈Σn T ⊢ ϕ↔ σ

- ϕ ∈ ∆n(T ) iff ∃π∈Πn & ∃σ∈Σn T ⊢ (ϕ↔ π) ∧ (ϕ↔ σ)

Sometimes, if no confusion can arise, we will write Σn!-formulas instead of
Σn-formulas and Σn-formulas instead of Σn(T )-formulas.
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3 General exposition of the construction me-

thod

A central result in this paper is given by a construction method that shall be
worked out in the next section. Most of the applications of this construction
method deal with modal completeness of a certain logic ILX. More precisely,
showing that a logic ILX is modally complete amounts to constructing, or fin-
ding, whenever ILX 6⊢ ϕ, a modelM of ILX and an x ∈M such thatM,x  ¬ϕ.
We will employ our construction method for this particular model construction.

In this section, we shall lay out the basic ideas which are involved in the
construction method. In particular, we will not always give precise definitions
of the notions we work with. All the definitions can be found in Section 4.

3.1 The main ingredients of the construction method

As we mentioned above, a modal completeness proof of a logic ILX amounts to a
uniform model construction to obtain M,x  ¬ϕ for ILX 6⊢ ϕ. If ILX 6⊢ ϕ, then
{¬ϕ} is an ILX-consistent set and thus, by a version of Lindenbaum’s Lemma
(Lemma 2.6), it is extendible to a maximal ILX-consistent set. On the other
hand, once we have an ILX-model M,x  ¬ϕ, we can find, by Corollary 2.17
a maximal ILX-consistent set Γ with ¬ϕ ∈ Γ. This Γ can simply be defined as
the set of all formulas that hold at x.

To go from a maximal ILX-consistent set to a model is always the hard
part. This part is carried out in our construction method. In this method, the
maximal consistent set is somehow partly unfolded to a model.

Often in these sort of model constructions, the worlds in the model are
MCS’s. For propositional variables one then defines x  p iff. p ∈ x. In the
setting of interpretability logics it is sometimes inevitable to use the same MCS
in different places in the model.5 Therefore we find it convenient not to identify
a world x with a MCS, but rather label it with a MCS ν(x). However, we will
still write sometimes ϕ ∈ x instead of ϕ ∈ ν(x).

One complication in unfolding a MCS to a model lies in the incompactness
of the modal logics we consider. This, in turn, is due to the fact that some
frame conditions are not expressible in first order logic. As an example we can
consider the following set.6

Γ := {✸p0} ∪ {✷(pi → ✸pi+1) | i ∈ ω}

Clearly, Γ is a GL-consistent set, and any finite part of it is satisfiable in some
world in some model. However, it is not hard to see that in no IL-model all of
Γ can hold simultaneously in some world in it.

5As the truth definition of A✄ B has a ∀∃ character, the corresponding notion of bisimu-
lation is rather involved. As a consequence there is in general no obvious notion of a minimal
bisimular model, contrary to the case of provability logics. This causes the necessity of several
occurrences of MCS’s.

6This example comes from Fine and Rautenberg and is treated in Chapter 7 of [5].
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If M is an ILX-model and x ∈ M , then {ϕ | M,x  ϕ} is a MCS. By
definition (and abuse of notation) we see that

∀x [x  ϕ iff. ϕ ∈ x].

We call this equivalence a truth lemma. (See for example Definition 4.5 for
a more precise formulation.) In all completeness proofs a model is defined or
constructed in which some form of a truth lemma holds. Now, by the observed
incompactness phenomenon, we can not expect that for every MCS, say Γ, we
can find a model “containing” Γ for which a truth lemma holds in full generality.
There are various ways to circumvent this complication. Often one considers
truncated parts of maximal consistent sets which are finite. In choosing how to
truncate, one is driven by two opposite forces.

On the one hand this truncated part should be small. It should be at least
finite so that the incompactness phenomenon is blocked. The finiteness is also
a desideratum if one is interested in the decidability of a logic.

On the other hand, the truncated part should be large. It should be large
enough to admit inductive reasoning to prove a truth lemma. For this, often
closure under subformulas and single negation suffices. Also, the truncated
part should be large enough so that MCS’s contain enough information to do
the required calculation. For this, being closed under subformulas and single
negations does not, in general, suffice. Examples of these sort of calculation are
Lemma ?? and Lemma 6.17.

In our approach we take the best of both opposites. That is, we do not
truncate at all. Like this, calculation becomes uniform, smooth and relatively
easy. However, we demand a truth lemma to hold only for finitely many formu-
las.

The question is now, how to unfold the MCS containing ¬ϕ to a model where
¬ϕ holds in some world. We would have such a model if a truth lemma holds
w.r.t. a finite set D containing ¬ϕ.

Proving that a truth lemma holds is usually done by induction on the com-
plexity of formulas. As such, this is a typical “bottom up” or “inside out”
activity. On the other hand, unfolding, or reading off, the truth value of a
formula is a typical “top down” or “outside in” activity.

Yet, we do want to gradually build up a model so that we get closer and
closer to a truth lemma. But, how could we possibly measure that we come
closer to a truth lemma? Either everything is in place and a truth lemma holds,
or a truth lemma does not hold, in which case it seems unclear how to measure
to what extend it does not hold.

The gradually building up a model will take place by consecutively adding
bits and pieces to the MCS we started out with. Thus somehow, we do want to
measure that we come closer to a truth lemma by doing so. Therefore, we switch
to an alternative forcing relation ‖∼ that follows the “outside in” direction that
is so characteristic to the evaluation of x  ϕ, but at the same time incorporates
the necessary elements of a truth lemma.
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x‖∼p iff. p ∈ x for propositional variables p
x‖∼ϕ ∧ ψ iff. x‖∼ϕ & x‖∼ψ and likewise for

other boolean connectives
x‖∼ϕ✄ ψ iff. ∀y [xRy ∧ ϕ ∈ x→ ∃z (ySxz ∧ ψ ∈ z)]

If D is a set of sentences that is closed under subformulas and single negations,
then it is not hard to see that (see Lemma 4.9)

∀x∀ϕ∈D [x‖∼ϕ iff. ϕ ∈ x] (∗)

is equivalent to
∀x∀ϕ∈D [x  ϕ iff. ϕ ∈ x]. (∗∗)

Thus, if we want to obtain a truth lemma for a finite set D that is closed under
single negations and subformulas, we are done if we can obtain (∗). But now it
is clear how we can at each step measure that we come closer to a truth lemma.
This brings us to the definition of problems and deficiencies.

A problem is some formula ¬(ϕ ✄ ψ) ∈ x ∩ D such that x‖6∼¬(ϕ ✄ ψ). We
define a deficiency to be a configuration such that ϕ✄ψ ∈ x∩D but x‖6∼ϕ✄ψ. It
now becomes clear how we can successively eliminate problems and deficiencies.

A deficiency ϕ✄ψ ∈ x∩D is a deficiency because there is some y (or maybe
more of them) with xRy, and ϕ ∈ y, but for no z with ySxz, we have ψ ∈ z.
This can simply be eliminated by adding a z with ySxz and ψ ∈ z.

A problem ¬(ϕ ✄ ψ) ∈ x ∩ D can be eliminated by adding a completely
isolated y to the model with xRy and ϕ,¬ψ ∈ y. As y is completely isolated,
ySxz ⇒ z = y and thus indeed, it is not possible to reach a world where ψ
holds. Now here is one complication.

We want that a problem or a deficiency, once eliminated, can never re-occur.
For deficiencies this complication is not so severe, as the quantifier complexity
is ∀∃. Thus, any time “a deficiency becomes active”, we can immediately deal
with it.

With the elimination of a problem, things are more subtle. When we in-
troduced y ∋ ϕ,¬ψ to eliminate a problem ¬(ϕ ✄ ψ) ∈ x ∩ D, we did indeed
eliminate it, as for no z with ySxz we have ψ ∈ z. However, this should hold for
any future expansion of the model too. Thus, any time we eliminate a problem
¬(ϕ ✄ ψ) ∈ x ∩ D, we introduce a world y with a promise that in no future
time we will be able to go to a world z containing ψ via an Sx-transition. So-
mehow we should keep track of all these promises throughout the construction
and make sure that all the promises are indeed kept. This is taken care of by
our so called ψ-critical cones (see for example also [6]). As ψ is certainly not
allowed to hold in R-successors of y, it is reasonable to demand that ✷¬ψ ∈ y.
(Where y was introduced to eliminate the problem ¬(ϕ✄ ψ) ∈ x ∩ D.)

Note that problems have quantifier complexity ∃∀. We have chosen to call
them problems due to their prominent existential nature.
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3.2 Some methods to obtain completeness

For modal logics in general, quite an arsenal of methods to obtain completeness
is available. For instance the standard operations on canonical models like path–
coding (unraveling), filtrations and bulldozing (see [4]). Or one can mention
uniform methods like the use of Shalqvist formulas or the David Lewis theorem
[5]. A very secure method is to construct counter models piece by piece. A
nice example can be found in [5], Chapter 10. In [15] and in [14] a step-by-step
method is exposed in the setting of universal algebras. New approximations of
the model are given by moves in an (infinite) game.

For interpretability logics the available methods are rather limited in num-
ber. In the case of the basic logic IL a relatively simple unraveling works.
Although ILM does allow a same treatment, the proof is already much less
clear. (For both proofs, see [6]). However, for logics that contain ILM0 but not
ILM it is completely unclear how to obtain completeness via an unraveling and
we are forced into more secure methods like the above mentioned building of
models piece by piece. And this is precisely what we do in this paper.

Decidability and the finite model property are two related issues that more or
less seem to divide the landscape of interpretability logics into the same classes.
That is, the proof that IL has the finite model property is relatively easy. The
same can be said about ILM. For logics like ILM0 the issue seems much more
involved and a proper proof of the finite model property, if one exists at all,
has not been given yet. Alternatively, one could resort to other methods for
showing decidability like the Mosaic method [4].

4 The construction method

In this section we describe our construction method in full detail. Sections 5-7
are applications of the construction method.

4.1 Preparing the construction

An ILX-labeled frame is just a Veltman frame in which every node is labeled by a
maximal ILX-consistent set and some R-transitions are labeled by a formula. R-
transitions labeled by a formula C indicate that some C-criticallity is essentially
present at this place.

Definition 4.1. An ILX-labeled frame is a quadruple 〈W,R, S, ν〉. Here 〈W,R, S〉
is an IL-frame and ν is a labeling function. The function ν assigns to each x ∈W
a maximal ILX-consistent set of sentences ν(x). To some pairs 〈x, y〉 with xRy,
ν assigns a formula ν(〈x, y〉).

If there is no chance of confusion we will just speak of labeled frames or even
just of frames rather than ILX-labeled frames. Labeled frames inherit all the
terminology and notation from normal frames. Note that an ILX-labeled frame
need not be, and shall in general not be, an ILX-frame. If we speak about a
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labeled ILX-frame we always mean an ILX-labeled ILX-frame. To indicate that
ν(〈x, y〉) = A we will sometimes write xRAy or ν(x, y) = A.

Formally, given F = 〈W,R, S, ν〉, one can see ν as a subset of (W ∪ (W ×
W ))×(FormIL∪{Γ | Γ is a maximal ILX consistent set}) such that the following
properties hold.

- ∀x∈W (〈x, y〉 ∈ ν ⇒ y is a MCS)

- ∀ 〈x, y〉∈W ×W (〈〈x, y〉, z〉 ∈ ν ⇒ z is a formula)

- ∀x∈W∃y 〈x, y〉 ∈ ν

- ∀x, y, y′(〈x, y〉 ∈ ν ∧ 〈x, y′〉 ∈ ν → y = y′)

We will often regard ν as a partial function on W ∪ (W ×W ) which is total on
W and which has its values in FormIL∪{Γ | Γ is a maximal ILX consistent set}

Remark 4.2. Every ILX-labeled frame F = 〈W,R, S, ν〉 can be transformed
to an IL-model F in a uniform way by defining for propositional variables p the
valuation as F , x  p iff. p ∈ ν(x). By Corollary 2.17 we can also regard any
model M satisfying the ILX frame condition7 as an ILX-labeled frame M by
defining ν(m) := {ϕ |M,m  ϕ}.

We sometimes refer to F as the model induced by the frame F . Alternatively
we will speak about the model corresponding to F . Note that for ILX-models

M, we have M =M , but in general F 6= F for ILX-labeled frames F .

Definition 4.3. Let x be a world in some ILX-labeled frame 〈W,R, S, ν〉. The
C-critical cone above x, we write CC

x , is defined inductively as

• ν(〈x, y〉) = C ⇒ y ∈ CC
x

• x′ ∈ CC
x & x′Sxy ⇒ y ∈ CC

x

• x′ ∈ CC
x & x′Ry ⇒ y ∈ CC

x

Definition 4.4. Let x be a world in some ILX-labeled frame 〈W,R, S, ν〉. The
generalized C-cone above x, we write GC

x , is defined inductively as

• y ∈ CC
x ⇒ y ∈ GC

x

• x′ ∈ GC
x & x′Swz ⇒ z ∈ GC

x for arbitrary w

• x′ ∈ GC
x & x′Ry ⇒ y ∈ GC

x

It follows directly from the definition that the C-critical cone above x is
part of the generalized C-cone above x. So, if GB

x ∩ GC
x = ∅, then certainly

CB
x ∩ CC

x = ∅.
We also note that there is some redundancy in Definitions 4.3 and 4.4. The

last clause in the inductive definitions demands closure of the cone under R-
successors. But from Definition 2.9.5 closure of the cone under R follows from

7We could even say, any ILX-model.
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closure of the cone under Sx. We have chosen to explicitly adopt the closure
under the R. In doing so, we obtain a notion that serves us also in the envi-
ronment of so-called quasi frames (see Definition 5.1) in which not necessarily
(x↾)2 ∩R ⊆ Sx.

Definition 4.5. Let F = 〈W,R, S, ν〉 be a labeled frame and let F be the
induced IL-model. Furthermore, let D be some set of sentences. We say that a
truth lemma holds in F with respect to D if ∀A∈D ∀x∈F

F , x  A⇔ A ∈ ν(x).

If there is no chance of confusion we will omit some parameters and just
say “a truth lemma holds at F” or even “a truth lemma holds”. The following
definitions give us a means to measure how far we are away from a truth lemma.

Definition 4.6 (Temporary definition). 8 LetD be some set of sentences and let
F = 〈W,R, S, ν〉 be an ILX-labeled frame. A D-problem is a pair 〈x,¬(A✄B)〉
such that ¬(A✄B) ∈ ν(x) ∩D and for every y with xRy we have [A ∈ ν(y) ⇒
∃z (ySxz ∧B ∈ ν(z))].

Definition 4.7 (Deficiencies). Let D be some set of sentences and let F =
〈W,R, S, ν〉 be an ILX-labeled frame. A D-deficiency is a triple 〈x, y, C ✄ D〉
with xRy, C ✄ D ∈ ν(x) ∩ D, and C ∈ ν(y), but for no z with ySxz we have
D ∈ ν(z).

If the set D is clear or fixed, we will just speak about problems and deficien-
cies.

Definition 4.8. Let A be a formula. We define the single negation of A, we
write ∼A, as follows. If A is of the form ¬B we define ∼A to be B. If A is not
a negated formula we set ∼A := ¬A.

The next lemma shows that a truth lemma w.r.t. D can be reformulated in
the combinatoric terms of deficiencies and problems. (See also the equivalence
of (∗) and (∗∗) in Section 3.)

Lemma 4.9. Let F = 〈W,R, S, ν〉 be a labeled frame, and let D be a set of
sentences closed under single negation and subformulas. A truth lemma holds
in F w.r.t. D iff. there are no D-problems nor D-deficiencies.

Bewijs. The proof is really very simple and precisely shows they interplay bet-
ween all the ingredients.

The labeled frames we will construct are always supposed to satisfy some
minimal reasonable requirements. We summarize these in the notion of ade-
quacy.

Definition 4.10 (Adequate frames). A frame is called adequate if the following
conditions are satisfied.

8We will eventually work with Definition 4.11.
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1. xRy ⇒ ν(x) ≺ ν(y)

2. A 6= B ⇒ GA
x ∩ GB

x = ∅

3. y ∈ CA
x ⇒ ν(x) ≺A ν(y)

If no confusion is possible we will just speak of frames instead of adequate
labeled frames. As a matter of fact, all the labeled frames we will see from now
on will be adequate. In the light of adequacy it seems reasonable to work with
a slightly more elegant definition of a D-problem.

Definition 4.11 (Problems). Let D be some set of sentences. A D-problem is
a pair 〈x,¬(A✄B)〉 such that ¬(A✄B) ∈ ν(x)∩D and for no y ∈ CB

x we have
A ∈ ν(y).

From now on, this will be our working definition. Clearly, on adequate
labeled frames, if 〈x,¬(A ✄ B)〉 is not a problem in the new sense, it is not a
problem in the old sense.

Remark 4.12. It is also easy to see that the we still have the interesting half
of Lemma 4.9. Thus, we still have, that a truth lemma holds if there are no
deficiencies nor problems.

To get a truth lemma we have to somehow get rid of problems and deficien-
cies. This will be done by adding bits and pieces to the original labeled frame.
Thus the notion of an extension comes into play.

Definition 4.13 (Extension). Let F = 〈W,R, S, ν〉 be a labeled frame. We say
that F ′ = 〈W ′, R′, S′, ν′〉 is an extension of F , we write F ⊆ F ′, if W ⊆ W ′

and the relations in F ′ restricted to F yield the corresponding relations in F .

More formally, the requirements on the restrictions in the above definition
amount to saying that for x, y, z ∈ F we have the following.

- xR′y iff. xRy

- yS′
xz iff. ySxz

- ν′(x) = ν(x)

- ν′(〈x, y〉) is defined iff. ν(〈x, y〉) is defined, and in this case ν′(〈x, y〉) =
ν(〈x, y〉).

A problem in F is said to be eliminated by the extension F ′ if it is no longer
a problem in F ′. Likewise we can speak about elimination of deficiencies.

Definition 4.14 (Depth). The depth of a finite frame F , we will write depth(F )
is the maximal length of sequences of the form x0R . . . Rxn. (For convenience
we define max(∅) = 0.)
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Definition 4.15 (Union of Bounded Chains). An indexed set {Fi}i∈ω of labeled
frames is called a chain if for all i, Fi ⊆ Fi+1. It is called a bounded chain if
for some number n, depth(Fi) ≤ n for all i ∈ ω. The union of a bounded chain
{Fi}i∈ω of labeled frames Fi is defined as follows.

∪i∈ωFi := 〈∪i∈ωWi,∪i∈ωRi,∪i∈ωSi,∪i∈ωνi〉

It is clear why we really need the boundedness condition. We want the union
to be an IL-frame. So, certainly R should be conversely well-founded. This can
only be the case if our chain is bounded.

4.2 The main lemma

We now come to the main motor behind many results. It is formulated in rather
general terms so that it has a wide range of applicability. As a draw-back, we
get that any application still requires quite some work.

Lemma 4.16 (Main Lemma). Let ILX be an interpretability logic and let C be
a (first or higher order) frame condition such that for any IL-frame F we have

F |= C ⇒ F |= X.

Let D be a finite set of sentences. Let I be a set of so-called invariants of labeled
frames so that we have the following properties.

• F |= IU ⇒ F |= C, where IU is that part of I that is closed under bounded
unions of labeled frames.

• I contains the following invariant: xRy → ∃A∈(ν(y) \ ν(x)) ∩ {✷¬D | D
a subformula of some B ∈ D}.

• For any adequate labeled frame F , satisfying all the invariants, we have
the following.

– Any D-problem of F can be eliminated by extending F in a way that
conserves all invariants.

– Any D-deficiency of F can be eliminated by extending F in a way
that conserves all invariants.

In case such a set of invariants I exists, we have that any ILX-labeled ade-
quate frame F satisfying all the invariants can be extended to some labeled ade-
quate ILX-frame F̂ on which a truth-lemma with respect to D holds.

Moreover, if for any finite D that is closed under subformulas and single
negations, a corresponding set of invariants I can be found as above and such
that moreover I holds on any one-point labeled frame, we have that ILX is a
complete logic.
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Bewijs. By subsequently eliminating problems and deficiencies by means of ex-
tensions. These elimination processes have to be robust in the sense that every
problem or deficiency that has been dealt with, should not possibly re-emerge.
But, the requirements of the lemma almost immediately imply this.

For the second part of the Main Lemma, we suppose that for any finite set
D closed under subformulas and single negations, we can find a corresponding
set of invariants I. If now, for any such D, all the corresponding invariants I
hold on any one-point labeled frame, we are to see that ILX is a complete logic,
that is, ILX 0 A⇒ ∃M (M |= X & M |= ¬A).

But this just follows from the above. If ILX 0 A, we can find a maximal ILX-
consistent set Γ with ¬A ∈ Γ. Let D be the smallest set that contains ¬A and
is closed under subformulas and single negations and consider the invariants
corresponding to D. The labeled frame F := 〈{x},∅,∅, 〈x,Γ〉〉 can thus be
extended to a labeled adequate ILX-frame F̂ on which a truth lemma with

respect to D holds. Thus certainly F̂ , x  ¬A, that is, A is not valid on the
model induced by F̂ .

The construction method can also be used to obtain decidability via the finite
model property. In such a case, one should re-use worlds that were introduced
earlier in the construction.

The following two lemmata indicate how good labels can be found for the
elimination of problems and deficiencies.

Lemma 4.17. Let Γ be a maximal ILX-consistent set such that ¬(A✄B) ∈ Γ.
Then there exists a maximal ILX-consistent set ∆ such that Γ ≺B ∆ ∋ A,✷¬A.

Bewijs. So, consider ¬(A✄B) ∈ Γ, and suppose that no required ∆ exists. We
can then find a9 formula C for which C ✄B ∈ Γ such that

¬C,✷¬C,A,✷¬A ⊢ILX ⊥.

Consequently
⊢ILX A ∧✷¬A→ C ∨✸C

and thus, by Lemma 2.2, also ⊢ILX A✄ C. But as C ✄B ∈ Γ, also A✄B ∈ Γ.
This clearly contradicts the consistency of Γ.

For deficiencies there is a similar lemma.

Lemma 4.18. Consider C ✄ D ∈ Γ ≺B ∆ ∋ C. There exists ∆′ with Γ ≺B

∆′ ∋ D,✷¬D.

Bewijs. Suppose for a contradiction that C ✄D ∈ Γ ≺B ∆ ∋ C and there does
not exist a ∆′ with Γ ≺B ∆′ ∋ D,✷¬D. Taking the contraposition of Lemma
4.17 we get that ¬(D ✄ B) /∈ Γ, whence D ✄ B ∈ Γ and also C ✄ B ∈ Γ. This
clearly contradicts the consistency of ∆ as Γ ≺B ∆ ∋ C.

9Writing out the definition and by compactness, we get a finite number of formulas
C1, . . . , Cn with Ci ✄ B ∈ Γ, such that ¬C1, . . . ,¬Cn,✷¬C1, . . . ,✷¬Cn, A,✷¬A ⊢ILX ⊥.
We can now take C := C1 ∨ . . . ∨ Cn. Clearly, as all the Ci ✄ B ∈ Γ, also C ✄ B ∈ Γ.
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4.3 Completeness and the main lemma

The main lemma provides a powerful method for proving modal completeness.
In several cases it is actually the only known method available.

Remark 4.19. A modal completeness proof for an interpretability logic ILX

is by the main lemma reduced to the following four ingredients.

• Frame Condition Providing a frame condition C and a proof that

F |= C ⇒ F |= ILX.

• Invariants Given a finite set of sentences D (closed under subformulas
and single negations), providing invariants I that hold for any one-point
labeled frame. Certainly I should contain xRy → ∃A∈(ν(y) \ ν(x)) ∩
{✷D | D ∈ D}.

• elimination

– Problems Providing a procedure of elimination by extension for pro-
blems in labeled frames that satisfy all the invariants. This procedure
should come with a proof that it preserves all the invariants.

– Deficiencies Providing a procedure of elimination by extension for
deficiencies in labeled frames that satisfy all the invariants. Also
this procedure should come with a proof that it preserves all the
invariants.

• Rounding up A proof that for any bounded chain of labeled frames
that satisfy the invariants, automatically, the union satisfies the frame
condition C of the logic.

The completeness proofs that we will present will all have the same struc-
ture, also in their preparations. As we will see, eliminating problems is more
elementary than eliminating deficiencies.

As we already pointed out, we eliminate a problem by adding some new
world plus an adequate label to the model we had. Like this, we get a structure
that need not even be an IL-model. For example, in general, the R relation is
not transitive. To come back to at least an IL-model, we should close off the
new structure under transitivity of R and S et cetera. This closing off is in
its self an easy and elementary process but we do want that the invariants are
preserved under this process. Therefore we should have started already with a
structure that admitted a closure. Actually in this paper we will always want
to obtain a model that satisfies the frame condition of the logic.

The preparations to a completeness proof in this paper thus have the follo-
wing structure.

• Determining a frame condition for ILX and a corresponding notion of an
ILX-frame.
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• Defining a notion of a quasi ILX-frame.

• Defining some notions that remain constant throughout the closing of
quasi ILX-frames, but somehow capture the dynamic features of this pro-
cess.

• Proving that a quasi ILX-frame can be closed off to an adequate labeled
ILX-frame.

• Preparing the elimination of deficiencies.

The most difficult job in a the completeness proofs we present in this paper,
was in finding correct invariants and in preparing the elimination of deficien-
cies. Once this is fixed, the rest follows in a rather mechanical way. Especially
the closure of quasi ILX-frames to adequate ILX-frames is a very laborious
enterprise.

5 The logic IL

The modal logic IL has been proved to be modally complete in [8]. We shall
reprove the completeness here using the main lemma.

The completeness proof of IL can be seen as the mother of all our com-
pleteness proofs in interpretability logics. Not only does it reflect the general
structure of applications of the Main Lemma clearly, also it so that we can use
large parts of the preparations to the completeness proof of IL in other proofs
too. Especially closability proofs are cumulative. Thus, we can use the lemma
that any quasi-frame is closable to an adequate frame, in any other completeness
proof.

5.1 Preparations

Definition 5.1. A quasi-frame G is a quadruple 〈W,R, S, ν〉. Here W is a
non-empty set of worlds, and R a binary relation on W . S is a set of binary
relations on W indexed by elements of W . The ν is a labeling as defined on
labeled frames. Critical cones and generalized cones are defined just in the same
way as in the case of labeled frames. G should posess the following properties.

1. R is conversely well-founded

2. ySxz → xRy & xRz

3. xRy → ν(x) ≺ ν(y)

4. A 6= B → GA
x ∩ GB

x = ∅

5. y∈CA
x → ν(x) ≺A ν(y)

Clearly, adequate labeled frames are special cases of quasi frames. Quasi-
frames inherit all the notations from labeled frames. In particular we can thus
speak of chains and the like.
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Lemma 5.2 (IL-closure). Let G = 〈W,R, S, ν〉 be a quasi-frame. There is an
adequate IL-frame F extending G. That is, F = 〈W,R′, S′, ν〉 with R ⊆ R′ and
S ⊆ S′.

Bewijs. We define an imperfection on a quasi-frame Fn to be a tuple γ having
one of the following forms.

(i) γ = 〈0, a, b, c〉 with Fn |= aRbRc but Fn 6|= aRc

(ii) γ = 〈1, a, b〉 with Fn |= aRb but Fn 6|= bSab

(iii) γ = 〈2, a, b, c, d〉 with Fn |= bSacSad but not Fn |= bSad

(iv) γ = 〈3, a, b, c〉 with Fn |= aRbRc but Fn 6|= bSac

Now let us start with a quasi-frame G = 〈W,R, S, ν〉. We will define a chain of
quasi-frames. Every new element in the chain will have at least one imperfection
less than its predecessor. The union will have no imperfections at all. It will be
our required adequate IL-frame.

Let <0 be the well-ordering on

C := ({0} ×W 3) ∪ ({1} ×W 2) ∪ ({2} ×W 4) ∪ ({3} ×W 3)

induced by the occurrence order in some fixed enumeration of C. We define our
chain to start with

F0 := G. To go from Fn to Fn+1 we proceed as follows. Let γ be the <0-
minimal imperfection on Fn. In case no such γ exists we set Fn+1 := Fn. If
such a γ does exist, Fn+1 is as dicted by the case distinctions.

(i) Fn+1 := 〈Wn, Rn ∪ {〈a, c〉}, Sn, νn〉

(ii) Fn+1 := 〈Wn, Rn, Sn ∪ {〈a, b, b〉}, νn〉

(iii) Fn+1 := 〈Wn, Rn, Sn ∪ {〈a, b, d〉}, νn〉

(iv) Fn+1 := 〈Wn, Rn ∪ {〈a, c〉}, Sn ∪ {〈a, b, c〉}, νn〉

By an easy but elaborate induction, we can see that each Fn is a quasi-frame.
The induction boils down to checking for each case (i)-(iv) that all the properties
(1)-(5) from Definition 5.1 remain valid.

Instead of proving (4) and (5), it is better to prove something stronger, that
is, that the critical and generalized cones remain unchanged.

4’. ∀n [Fn+1 |= y∈GA
x ⇔ Fn |= y∈GA

x ]

5’. ∀n [Fn+1 |= y∈CA
x ⇔ Fn |= y∈CA

x ]
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Next, it is not hard to prove that F := ∪i∈ωFi is the required adequate IL-frame.
To this extent, the following properties have to be checked. All properties have
easy proofs.

(a.) W is the domain of F (g.) F |= xRy → ySxy
(b.) R0 ⊆ ∪i∈ωRi (h.) F |= xRyRz → ySxz
(c.) S0 ⊆ ∪i∈ωSi (i.) F |= uSxvSxw → uSxw
(d.) R is conv. wellfounded on F (j.) F |= xRy ⇒ ν(x) ≺ ν(y)
(e.) F |= xRyRz → xRz (k.) A 6= B ⇒ F |= GA

x ∩ GB
x = ∅

(f.) F |= ySxz → xRy & xRz (l.) F |= y∈CA
x ⇒ ν(x) ≺A ν(y)

We note that the IL-frame F ⊇ G from above is actually the minimal one
extending G. If in the sequel, if we refer to the closure given by the lemma, we
shall mean this minimal one. Also do we note that the proof is independent on
the enumeration of C and hence the order <0 on C. The lemma can also be
applied to non-labeled structures. If we drop all the requirements on the labels
in Definition 5.1 and in Lemma 5.2 we end up with a true statement about just
the old IL-frames.

Lemma 5.2 also allows a very short proof running as follows. Any intersection
of adequate IL-frames with the same domain is again an adequate IL-frame.
There is an adequate IL-frame extending G. Thus by taking intersections we
find a minimal one. We have chosen to present our explicit proof as they allow
us, now and in the sequel, to see which properties remain invariant.

Corollary 5.3. Let D be a finite set of sentences, closed under subformulas
and single negations. Let G = 〈W,R, S, ν〉 be a quasi-frame on which

xRy → ∃A∈((ν(y) \ νx) ∩ {✷D | D ∈ D}) (∗)

holds. Property (∗) does also hold on the IL-closure F of G.

Bewijs. We can just take the property along in the proof of Lemma 5.2. In Case
(i) and (iv) we note that aRbRc → ν(a) ⊆✷ ν(c). Thus, if A∈((ν(c) \ ν(b)) ∩
{✷D | D ∈ D}), then certainly A 6∈ ν(a).

We have now done all the preparations for the completeness proof. Normally,
also a lemma is needed to deal with deficiencies. But in the case of IL, Lemma
4.18 suffices.

5.2 Modal completeness

Theorem 5.4. IL is a complete logic

Bewijs. We specify the four ingredients mentioned in Remark 4.19.

Frame Condition For IL, the frame condition is empty, that is, every
frame is an IL frame.
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Invariants Given a finite set of sentences D closed under subformulas and
single negation, the only invariant is xRy → ∃A∈(ν(y) \ ν(x))∩{✷D | D ∈ D}.
Clearly this invariant holds on any one-point labeled frame.

Elimination So, let F := 〈W,R, S, ν〉 be a labeled frame satisfying the
invariant. We will see how to eliminate both problems and deficiencies while
conserving the invariant.

Problems Any problem 〈a,¬(A✄B)〉 of F will be eliminated in two steps.

1. With Lemma 4.17 we find ∆ with ν(a) ≺B ∆ ∋ A,✷¬A. We fix some
b /∈W . We now define

G′ := 〈W ∪ {b}, R ∪ {〈a, b〉}, S, ν ∪ {〈b,∆〉, 〈〈a, b〉, B〉}〉.

It is easy to see that G′ is actually a quasi-frame. Note that if G′ |= xRb,
then x must be a and whence ν(x) ≺ ν(b) by definition of ν(b). Also it
is not hard to see that if b ∈ CC

x for x6=a, that then ν(x) ≺C ν(b). For,
b ∈ CC

x implies a ∈ CC
x whence ν(x) ≺C ν(a). By ν(a) ≺ ν(b) we get that

ν(x) ≺C ν(b). In case x=a we see that by definition b ∈ CB
a . But, we have

chosen ∆ so that ν(a) ≺B ν(b). We also see that G′ satisfies the invariant
as ✷¬A ∈ ν(b) \ ν(a) and ∼ A ∈ D.

2. With Lemma 5.2 we extend G′ to an adequate labeled IL-frame G. Corol-
lary 5.3 tells us that the invariant indeed holds at G. Clearly 〈a,¬(A✄B)〉
is no longer a problem in G.

Deficiencies. Again, any deficiency 〈a, b, C ✄D〉 in F will be eliminated in
two steps.

1. We first define B to be the formula such that b ∈ CB
a . If such a B does

not exist, we take B to be ⊥. Note that if such a B does exist, it must be
unique by Property 4 of Definition 5.1. By Lemma 4.18 we can now find
a ∆′ such that ν(a) ≺B ∆′ ∋ D,✷¬D. We fix some c 6∈ W and define

G′ := 〈W,R ∪ {a, c}, S ∪ {a, b, c}, ν ∪ {c,∆′}〉.

Again it is not hard to see that G′ is a quasi-frame that satisfies the
invariant. Clearly R is conversely well-founded. The only new S in G′ is
bSac, but we also defined aRc. We have chosen ∆′ such that ν(a) ≺B ν(c).
Clearly ✷¬D 6∈ ν(a).

2. Again, G′ is closed off under the frame conditions with Lemma 5.2. Again
we note that the invariant is preserved in this process. Clearly 〈a, b, C✄D〉
is not a deficiency in G.

Rounding up Clearly the union of a bounded chain of IL-frames is again
an IL-frame.
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It is well known that IL has the finite model property and whence is deci-
dable. With some more effort however we could have obtained the finite model
property using the Main Lemma. We have chosen not to do so, as for our
purposes the completeness via the construction method is sufficient.

Also, to obtain the finite model property, one has to re-use worlds during
the construction method. The constraints on which worlds can be re-used is
per logic differently. One aim of this section was to prove some results on a
construction that is present in all other completeness proofs too. Therefore we
needed some uniformity and did not want to consider re-using of worlds.

6 The logic ILM0

This section is devoted to showing the following theorem.

Theorem 6.1. ILM0 is a complete logic.

It turns out that the modal frame condition of ILM0 gives rise to a bewil-
dering structure of possible models that seems very hard to tame. As M0 is in
IL(All), it is important that the class of ILM0-frames is well understood. For
a long time ILW∗ has been conjectured ([30]) to be IL(All). A first step in
proving this conjecture would have been a modal completeness proof of ILW∗.

It is well known that ILW∗ is the union of ILW and ILM0, see Lemma 7.3.
The modal completeness of ILW was proved in [9]. So, the missing link was a
modal completeness proof for ILM0. In [18] a proof sketch of this completeness
result was given. In this paper we give for the first time a fully detailed proof.

In the light of Remark 4.19 a proof of Theorem 6.1 boils down to giving
the four ingredients mentioned there. Sections 6.3, 6.4, 6.5, 6.6 and 6.7 below
contain those ingredients. Before these main sections, we have in Section 6.2
some preliminaries. We start in Section 6.1 with an overview of the difficulties
we encounter during the application of the construction method to ILM0.

6.1 Overview of difficulties

In the construction method we repeatedly eliminate problems and deficiencies
by extensions that satisfy all the invariants. During these operations we need
to keep track of two things.

1. If x has been added to solve a problem in w, say ¬(A✄B) ∈ ν(w). Then
for all y such that xSwy we have ν(w) ≺B ν(y).

2. If wRx then ν(w) ≺ ν(x)

Item 1. does not impose any direct difficulties. But some do emerge when
we try to deal with the difficulties concerning Item 2. So let us see why it is
difficult to ensure 2. Suppose we have wRxRySwy

′Rz. The M0–frame condition
(Theorem 6.20) requires that we also have xRz. So, from 2. and the M0–frame
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Figuur 1: A deficiency in w w.r.t. y

condition we obtain wRxRySwy
′Rz → ν(x) ≺ ν(z). A sufficient (and in certain

sense necessary) condition is,

wRxRySwy
′ → ν(x) ⊆✷ ν(y

′).

Let us illustrate some difficulties concerning this condition by some examples.
Consider the left model in Figure 1. That is, we have a deficiency in w w.r.t.
y. Namely, C ✄D ∈ ν(w) and C ∈ ν(y). If we solve this deficiency by adding a
world y′, we thus require that for all x such that wRxRy we have ν(x) ⊆✷ ν(y

′).
This difficulty is partially handled by Lemma 6.2 below. We omit a proof,
but it can easily be given by replacing in the corresponding lemma for ILM,
applications of the M-axiom by applications of the M0-axiom.

Lemma 6.2. Let Γ,∆ be MCS’s such that C ✄D ∈ Γ, Γ ≺A ∆ and ✸C ∈ ∆.
Then there exists some ∆′ with Γ ≺A ∆′, ✷¬D,D ∈ ∆′ and ∆ ⊆✷ ∆′.

Let us now consider the right most model in Figure 1. We have at least for
two different worlds x, say x0 and x1, that wRxRy. Lemma 6.2 is applicable
to ν(x0) and ν(x1) separately but not simultaneously. In other words we find
y′0 and y′1 such that ν(x0) ⊆✷ ν(y

′
0) and ν(x1) ⊆✷ ν(y

′
1). But we actually want

one single y′ such that ν(x0) ⊆✷ ν(y′) and ν(x1) ⊆✷ ν(y′). We shall handle
this difficulty by ensuring that it is enough to consider only one of the worlds in
between w and y. To be precise, we shall ensure ν(x′) ⊆✷ ν(x) or ν(x) ⊆✷ ν(x

′).
But now some difficulties concerning Item 1. occur. In the situations in

Figure 1 we were asked to solve a deficiency in w w.r.t. y. As usual, if w ≺A y
then we should be ably to choose a solution y′ such that w ≺A y′. But Lemma
6.2 takes only criticallity of x w.r.t. w into account. This issue is solved by
ensuring that wRxRy ∈ CA

w implies ν(w) ≺A ν(x).
We are not there yet. Consider the leftmost model in Figure 2. That is, we

have a deficiency in w w.r.t. y′. Namely, C✄D ∈ ν(w) and C ∈ ν(y′). If we add
a world y′′ to solve this deficiency, as in the middle model, then by transitivity
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of Sw we have ySwy
′′, as shown in the rightmost model. So, we require that

ν(x) ⊆✷ ν(y′′). But we might very well have ✸C 6∈ ν(x). So the Lemma 6.2 is
not applicable.

In Lemma 6.17 we formulate and prove a more complicated version of the
Lemma 6.2 which basically says that if we have chosen ν(y′) appropriately, then
we can choose ν(y′′) such that ν(x) ⊆✷ ν(y′′). And moreover, Lemma 6.17
ensures us that we can, indeed, choose ν(y′) appropriate.

6.2 Preliminaries

Definition 6.3 (T tr, T ∗, T ;T ′, T 1, T≥2, T ∪ T ′). Let T and T ′ be binary
relations on a set W . We fix the following fairly standard notations. T tr is
the transitive closure of T ; T ∗ is the transitive reflexive closure of T ; xT ;T ′y ⇔
∃t xT tT ′y; xT 1y ⇔ xTy∧¬∃t xT tT y; xT≥2y ⇔ xTy∧¬(xT 1y) and xT ∪T ′y ⇔
xTy ∨ xT ′y.

Definition 6.4 (Sw). Let F = 〈W,R, S, ν〉 be a quasi–frame. For each w ∈W
we define the relation Sw, of pure Sw transitions, as follows.

xSwy ⇔ xSwy ∧ ¬(x = y) ∧ ¬(x(Sw ∪R)∗;R; (Sw ∪R)∗y)

Definition 6.5 (Adequate ILM0–frame). Let F = 〈W,R, S, ν〉 be an adequate
frame. We say that F is an adequate ILM0–frame iff. the following additional
properties hold.10

4. wRxRySwy
′Rz → xRz

5. wRxRySwy
′ → ν(x) ⊆✷ ν(y

′)

10One might think that 6. is superfluous. In finite frame this is indeed the case, but in the
general case we need it as an requirement.
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6. xSwy → x(Sw ∪R)∗y

7. xRy → x(R1)
tr
y

As usual, when we speak of ILM0–frames we shall actually mean an adequate
ILM0–frame. Below we will construct ILM0–frames out of frames belonging to a
certain subclass of the class of quasi–frames. (Namely the quasi–ILM0–frames,
see Definition 6.10 below.) We would like to predict on forehand which extra R
relations will be added during this construction. The following definition does
just that.

Definition 6.6 (K(F ), K). Let F = 〈W,R, S, ν〉 be a quasi–frame. We define
K = K(F ) to be the smallest binary relation on W such that

1. R ⊆ K,

2. K = Ktr,

3. wKxK1y(Sw)
try′K1z → xKz.

Note that for ILM0–frames we have K = R. The following lemma shows
that K satisfies some stability conditions. The lemma will mainly be used to
show that whenever we extend R within K, then K does not change.

Lemma 6.7. Let F0 = 〈W,R0, S, ν〉 and F1 = 〈W,R1, S, ν〉 be quasi–frames. If
R1 ⊆ K(F0) and R0 ⊆ K(F1). Then K(F0) = K(F1).

In a great deal of situations we have a particular interest inK1. To determine
some of its properties the following lemma comes in handy. It basically shows
that we can compute K by first closing of under the M0–condition and then
take the transitive closure.

Lemma 6.8 (Calculation of K). Let F = 〈W,R, S, ν〉 be a quasi–frame. Let
K = K(F ) and suppose K conversely well–founded. Let T be a binary relation
on W such that

1. R ⊆ T tr ⊆ K,

2. wT trxT 1y(Sw)
tr
y′T 1z → xT trz.

Then we have the following.

(a) K = T tr

(b) xK1y → xTy

Bewijs. To see (a), it is enough to see that T tr satisfies the three properties of
the definition of K (Definition 6.6). Item (b) follows from (a).

Another entity that changes during the construction of an ILM0–frame out
of a quasi–frame is the critical cone In accordance with the above definition of
K(F ), we also like to predict what eventually becomes the critical cone.
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Definition 6.9 (NC
w ). For any quasi–frame F we define NC

w to be the smallest
set such that

1. ν(w, x) = C ⇒ x ∈ NC
w ,

2. x ∈ NC
w ∧ x(K ∪ Sw)y ⇒ y ∈ NC

w .

In accordance with the notion of a quasi–frame we introduce the notion
of a quasi–ILM0–frame. This gives sufficient conditions for a quasi–frame to
be closeable, not only under the IL–frameconditions, but under all the ILM0–
frameconditions.

Definition 6.10 (Quasi–ILM0–frame). A quasi–ILM0–frame is a quasi–frame
that satisfies the following additional properties.

6. K is conversely well–founded.

7. xKy → ν(x) ≺ ν(y)

8. x ∈ NA
w → ν(w) ≺A ν(x)

9. wKxKy(Sw ∪K)∗y′ → ν(x) ⊆✷ ν(y
′)

10. xSwy → x(Sw ∪R)∗y

11. wKxK1y(Sw)
tr
y′K1z → x(K1)

tr
z

12. xRy → x(R1)
tr
y

Lemma 6.11. If F is a quasi–ILM0–frame, then K = (K1)
tr
.

Bewijs. Using Lemma 6.8.

Lemma 6.12. Suppose that F is a quasi–ILM0–frame. Let K = K(F ). Let
K ′, K ′′ and K ′′′ the smallest binary relations on W satifying 1. and 2. of 6.6
and additionaly we have the following.

3′. wK ′xK ′1y(Sw ∪K ′)∗y′K ′1z → xK ′z

3′′. wK ′′xK ′′y(Sw)
try′K ′′z → xK ′′z

3′′′. wK ′′′xK ′′′y(Sw ∪K ′′′)∗y′K ′′′z → xK ′′′z

Then K = K ′ = K ′′ = K ′′′.

Bewijs. Using Lemma 6.11.

Before we move on, let us first sum up a few comments.

Corollary 6.13. If F = 〈W,R, S, ν〉 is an adequate ILM0–frame. Then we
have the following.

1. K(F ) = R
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2. F |= x ∈ NA
w ⇔ F |= x ∈ CA

w

3. F is a quasi–ILM0–frame

Lemma 6.14 (ILM0–closure). Any quasi–ILM0–frame can be extended to an
adequate ILM0–frame.

Bewijs. Given a quasi–ILM0–frame F we construct a sequence

F = F0 ⊆ F1 ⊆ · · ·

very similar to the sequence constructed for the IL closure of a quasi–frame
(Lemma 5.2). The only difference is that we add a fifth entry to the list of
imperfections.

(v) γ = 〈4, w, a, b, b′, c〉 with Fn |= wRaRbSwb
′Rc but Fn 6|= aRc

In this case we set, of course, Fn+1 := 〈Wn, Rn ∪ 〈a, c〉, Sn, νn〉. First we will
show by induction that each Fn is a quasi–ILM0–frame. Then we show that the
union F̂ =

⋃
n≥0 Fn, is quasi and satisfies all the ILM0 frame conditions.

We assume that Fn is a quasi-ILM0-frame and define Kn := K(Fn), R
n :=

RFn and Sn := SFn . Quasi-ness of Fn+1 will follow from Claim 1, and from
Claim 2 we may conlude that Fn+1 is indeed a quasi-ILM0-frame.

Claim 1. For all w, x, y and A we have the following.

(a) Rn+1 ⊆ Kn

(b) x(Sn+1
w ∪Rn+1)∗y ⇒ x(Sn

w ∪Kn)∗y

(c) Fn+1 |= x ∈ CA
w ⇒ Fn |= x ∈ NA

w .

Bewijs. We distinguish cases according to which imperfection is dealt with in
the step from Fn to Fn+1. The only interesting case is the new imperfection
which is dealt with by Lemma 6.12, Item 3′′.

Claim 2. For all w, x and A we have the following.

1. Kn+1 ⊆ Kn.

2. x(Sn+1
w ∪Kn+1)∗y ⇒ x(Sn

w ∪Kn)∗y

3. Fn+1 |= x ∈ NA
w ⇒ Fn |= x ∈ NA

w .

Bewijs. Item 1. follows by Claim 1 and Lemma 6.7. Item 2. follows from Item
1. and Claim 1-(b). Item 3. is an immediate corollary of item 2.

Again, it is not hard to see that F̂ =
⋃

n≥0 Fn is an adequate ILM0-frame.

Lemma 6.15. Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame and K = K(F ).
Then

xKy → ∃z (ν(x) ⊆✷ ν(z) ∧ x(R ∪ S)∗zRy).
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Bewijs. We define T := {(x, y) | ∃z (ν(x) ⊆✷ ν(z) ∧ x(R ∪ S)∗zRy)}. It is not
hard to see that T is transitive and that {(x, y) | ∃t (ν(x) ⊆✷ ν(t) ∧ xT ; (S ∪
K)∗tT y)} ⊆ T . We now define K ′ = K ∩ T . We have to show that K ′ = K.
As K ′ ⊆ K is trivial, we will show K ⊆ K ′.

It is easy to see that K ′ satisfies properties 1., 2. and 3. of Definition 6.6;
It follows on the two observations on T we just made. Since K is the smallest
binary relation that satisfies these properties we conclude K ⊆ K ′.

The next lemma shows that K is a rather stable relation. We show that if
we extend a frame G to a frame F such that from worlds in F − G we cannot
reach worlds in G, then K on G does not change.

Lemma 6.16. Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame. And let G =
〈W−, R−, S−, ν−〉 be a subframe of F (which means W− ⊆W , R− ⊆ R, S− ⊆
S and ν− ⊆ ν). If

(a) for each f ∈ W −W− and g ∈W− not f(R ∪ S)g and

(b) R↾W− ⊆ K(G).

Then K(G) = K(F )↾W− .

Bewijs. Clearly K(F )↾W− satisfies the properties 1., 2. and 3. of the definition
of K(G) (Definition 6.6). Thus, since KG is the smallest such relation, we get
that K(G) ⊆ K(F )↾W− .

Let K ′ = K(F ) − (K(F )↾W− − K(G)). Using Lemma 6.15 one can show
that K(F ) ⊆ K ′. From this it immediately follows that K(F )↾W− ⊆ K(G).

We finish the basic preliminaries with a somewhat complicated variation of
Lemma 4.18.

Lemma 6.17. Let Γ and ∆ be MCS’s. Γ ≺C ∆.

P ✄Q,S1 ✄ T1, . . . , Sn ✄ Tn ∈ Γ and ✸P ∈ ∆.

There exist k ≤ n. MCS’s ∆0,∆1, . . . ,∆k such that

• Each ∆i lies C-critical above Γ,

• Each ∆i lies ⊆✷ above ∆ (i.e. ∆ ⊆✷ ∆i),

• Q ∈ ∆0,

• For all 1 ≤ j ≤ n, Sj ∈ ∆h ⇒ for some i ≤ k, Tj ∈ ∆i.

Bewijs. First a definition. For each I ⊆ {1, . . . , n} put

SI :⇔
∧

{¬Si | i ∈ I}.

The lemma can now be formulated as follows. There exists I ⊆ {1, . . . , n} such
that

{Q,SI} ∪ {¬B,✷¬B | B ✄ C ∈ Γ} ∪ {✷A | ✷A ∈ ∆} 6⊢ ⊥
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and, for all i 6∈ I,

{Ti, SI} ∪ {¬B,✷¬B | B ✄ C ∈ Γ} ∪ {✷A | ✷A ∈ ∆} 6⊢ ⊥.

So let us assume, for a contradiction, that this is false. Then there exist
finite sets A ⊆ {A | ✷A ∈ ∆} and B ⊆ {B | B ✄ C ∈ Γ} such that, if we put

A :⇔
∧

A, and B :⇔
∨

B,

then, for all I ⊆ {1, . . . , n},

Q,SI ,✷A,¬B ∧✷¬B ⊢ ⊥ (1)

or,
for some i 6∈ I, Ti, SI ,✷A,¬B ∧✷¬B ⊢ ⊥. (2)

We are going to define a permutation i1, . . . , in of {1, . . . , n} such that if we
put Ik = {ij | j < k} then

Tik , SIk ,✷A,¬B ∧ ✷¬B ⊢ ⊥. (3)

Additionally, we will verify that for each k

(1) does not hold with Ik for I.

We will define ik with induction on k. We define I1 = ∅. And by Lemma 4.18,
(1) does not hold with I = ∅. Moreover, because of this, (2) must be true with
I = ∅. So, there exists some i ∈ {1, . . . , n} such that

Ti,✷A,¬B ∧ ✷¬B ⊢ ⊥.

It is thus sufficient to take for i1, for example, the least such i.
Now suppose ik has been defined. We will first show that

Q,SIk+1
,✷A,¬B ∧ ✷¬B 6⊢ ⊥. (4)

Let us suppose that this is not so. Then

⊢ ✷(Q→ ✸¬A ∨B ∨✸B ∨ Si1 ∨ · · · ∨ Sik). (5)

So,

Γ ⊢ P ✄Q

✄✸¬A ∨B ∨✸B ∨ Si1 ∨ · · · ∨ Sik−1
∨ Sik by (5)

✄✸¬A ∨B ∨✸B ∨ Si1 ∨ · · · ∨ Sik−1
∨ Tik

✄✸¬A ∨B ∨✸B ∨ Si1 ∨ · · · ∨ Sik−1
∨ (Tik ∧ ✷A ∧ ¬B ∧ ✷¬B ∧ SIk)

✄✸¬A ∨B ∨✸B ∨ Si1 ∨ · · · ∨ Sik−1
by (3)

...

✄✸¬A ∨B ∨✸B ∨ Si1

✄✸¬A ∨B ∨✸B ∨ Ti1
✄✸¬A ∨B ∨✸B ∨ (Ti1 ∧ ✷A ∧ ¬B ∧ ✷¬B)

✄✸¬A ∨B ∨✸B. by (3), with k = 1.
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So by M0,
✸P ∧ ✷A✄ (✸¬A ∨B ∨✸B) ∧ ✷A ∈ Γ.

But ✸P ∧✷A ∈ ∆. So, by Lemma 4.18 there exists some MCS ∆ with Γ ≺C ∆
that contains B ∨✸B. This is a contradiction, so we have shown (4).

But now, since (4) is indeed true, and thus (1) with Ik+1 for I is false, (2)
must hold. Thus there must exist some i 6∈ Ik+1 such that

Ti, SIk+1
,✷A,¬B ∧ ✷¬B ⊢ ⊥.

So we can take for ik+1, for example, the smallest such i.
It is clear that for I = {1, 2, . . . , n}, (2) cannot be true. Thus, for I =

{1, 2, . . . , n}, (1) must be true. This implies

⊢ ✷(Q→ ✸¬A ∨B ∨✸B ∨ Si1 ∨ · · · ∨ Sin).

Now exactly as above we can show Γ ⊢ P ✄✸¬A∨B∨✸B. And again as above,
this leads to a contradiction.

In order to formulate the invariants needed in the main lemma applied to
ILM0, we need one more definition and a corollary.

Definition 6.18 (⊂1, ⊂). Let F = 〈W,R, S, ν〉 be a quasi–frame. Let K =
K(F ). We define ⊂1 and ⊂ as follows.

1. x ⊂1 y ⇔ ∃wy′wKxK1y′(Sw)
tr
y

2. x ⊂ y ⇔ x(⊂1 ∪K)∗y

Corollary 6.19. Let F = 〈W,R, S, ν〉 be a quasi–frame. And let K = K(F ).

1. x ⊂ y ∧ yKz → xKz

2. If F is a quasi–ILM0–frame, then x ⊂ y ⇒ ν(x) ⊆✷ ν(y).

6.3 Frame condition

The following theorem is well known.

Theorem 6.20. For an IL-frame F = 〈W,R, S, ν〉 we have

∀wxyy′z (wRxRySwy
′Rz → xRz) ⇔ F |= M0.

6.4 Invariants

Let D be some finite set of formulas, closed under subformulas and single nega-
tion.

During the construction we will keep track of the following main–invariants.

I✷ for all y, {ν(x) | xK1y} is linearly ordered by ⊆✷
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Id wK1x∧wK≥2x′(Sw∪K)∗x→ ‘there does not exists a deficiency in w w.r.t. x’

IS wKxKy(Sw ∪K)∗y′ →
‘the ⊆✷-max of {ν(t) | wKtK1y′}, if it exists, is ⊆✷-larger than ν(x)’

IN wKxKy ∧ y ∈ NA
w → x ∈ NA

w

ID xRy → ∃A∈(ν(y) \ ν(x)) ∩ {✷D | D ∈ D}

IM0
All conditions for an adequate ILM0–frame hold

In order to ensure that the main–invariants are preserved during the con-
struction we need to consider the following sub–invariants.11

Ju wK≥2x(Sw)
tr
y ∧ wK≥2x′(Sw)

tr
y → x = x′

JK1 wKxK1y(Sw)
tr
y′K1z → xK1z

J⊂ y ⊂ x ∧ x ⊂ y → y = x

JN1
x(Sv)

try ∧ wKy ∧ x ∈ NA
w → y ∈ NA

w

JN2
x(Sw)

tr
y ∧ y ∈ NA

w → x ∈ NA
w

Jν1 ‘ν(w, y) is defined’ ∧ vKy → v ⊂ w

Jν2 ‘ν(w, y) is defined’ → wK1y

Jν4 If x(Sw)
try, then ν(w, y) is defined

Jν3 If ν(v, y) and ν(w, y) are defined then w = v

What can we say about these invariants? I✷, IS , IN and Id were discussed in
Section 6.1. IM0

is there to ensure that our final frame is an ILM0–frame. About
the sub–invariants there is not much to say. They are merely technicalities that
ensure that the main–invariants are invariant.

Let us first show that if we have a quasi–ILM0–frame that satisfies all the
invariants, possibly IM0

excluded, then we can assume, nevertheless, that IM0

holds as well.

Corollary 6.21. Any quasi–ILM0–frame that satisfies all of the above invari-
ants, except possibly IM0

, can be extended to an ILM0–frame that satisfies all
the invariants.

Bewijs. Only ID and Id need some attention. All the other invariants are given
in terms of relations that do not change during the construction of the ILM0-
closure (Lemma 6.14).

Lemma 6.22. Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame. Then F |= x ∈
NA

w iff. one of the following cases applies.

11We call them sub–invariants since they merely serve the purpose of showing that the
main-invariants are, indeed, invariant.
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1. ν(w, x) = A

2. There exists t ∈ NA
w such that tKx

3. There exists t ∈ NA
w such that tSwx

Corollary 6.23. Let F be a quasi–ILM0–frame that satisfies Jν4 . Let w, x ∈ F
and let A be a formula. Then x ∈ NA

w implies ν(w, x) = A or there exists some
t ∈ NA

w such that tKx.

Lemma 6.24. Let F be a quasi–frame which satisfies JN2
, Jν1 , Jν3 and Jν4 .

Then xSvy, y ∈ NA
w ⇒ x ∈ NA

w .

Bewijs. Suppose xSvy and y ∈ NA
w . Then, by Corollary 6.23, ν(w, y) = A or,

for some t ∈ NA
w , tKy. In the first case we obtain w = v by Jν3 and Jν4 . And

thus by JN2
, x ∈ NA

w . In the second case we have, by Jν4 and Jν1 that t ⊂ v.
Which implies, by Lemma 6.19–1., tKx.

6.5 Solving problems

Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame that satisfies all the invariants.
Let (a,¬(A ✄ B)) be a D-problem in F . We fix some b 6∈ W . Using Lemma
4.17 we find a MCS ∆b, such that ν(a) ≺B ∆b and A,✷¬A ∈ ∆b. We put

F̂ = 〈Ŵ , R̂, Ŝ, ν̂〉

= 〈W ∪ {b}, R ∪ {〈a,b〉}, S, ν ∪ {〈b,∆b〉, 〈〈a,b〉, B〉}〉,

and define K̂ = K(F̂ ). The frames F and F̂ satisfy the conditions of Lemma
6.16. Thus we have

∀xy∈F xKy ⇔ xK̂y. (6)

Since Ŝ=S, this implies that all simple enough properties expressed in K̂ and Ŝ
using only parameters from F are true if they are true with K̂ replaced by K.

Claim 3. F̂ is a quasi–ILM0–frame.

Bewijs. A simple check of Properties (1.–5.) of Definition 5.1 (quasi–frames) and
Properties (6.–10.) of Definition 6.10 (quasi–ILM0–frames) and the remaining
ones in Definition 5.1 (quasi–frames). Let us comment on two of them.

xK̂y → ν̂(x) ≺ ν̂(y) follows from Lemma 6.15 and (6).
Let us show F̂ |= x ∈ NC

w ⇒ ν̂(w) ≺C ν̂(x). We have ∀xw∈F F |= x ∈
NC

w ⇔ F̂ |= x ∈ NC
w . So we only have to consider the case F̂ |= b ∈ NC

w . If
w = a then we are done by choice of ν̂(b). Otherwise, by Lemma 6.24, we have
for some x ∈ F , F |= x ∈ NC

w and xK̂b. By the first property we proved, we
get ν̂(x) ≺ ν̂(b). So, since ν̂(w) ≺C ν̂(x) we have ν̂(w) ≺C ν̂(b).

Before we show that F̂ satisfies all the invariants we prove some lemmata.

Lemma 6.25. If for some x 6= a, xK̂1b. Then there exist unique u and w
(independent of x) such that wK≥2u(Sw)

tr
a.
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Bewijs. If such w and u do not exists then T = K∪{a,b} satisfies the conditions
of Lemma 6.8. In which case xK1b gives xTb which implies x = a. The
uniqueness of w follows from Jν3 and Jν4 . The uniqueness of u follows from Ju

and the uniqueness of w.

In what follows we will denote these w and u, if they exist, by w and u.

Lemma 6.26. For all x. If xK̂1b then x ⊂ a.

Bewijs. Let K ′ = K ∪ {(x,b) | xK̂b ∧ x ⊂ a}. It is not hard to show that K ′

satisfies the conditions of T in Lemma 6.8.

Lemma 6.27. Suppose the conditions of Lemma 6.25 are satisfied and let u be
the u asserted to exist. Then for all x 6= a, if xK̂1b, then xK1u.

Bewijs. By Lemma 6.26 we have x ⊂ a. Let

x = x0(⊂1 ∪K)x1(⊂1 ∪K) · · · (⊂1 ∪K)xn = a.

First we show x = x0 ⊂1 x1 ⊂1 · · · ⊂1 xn = a. Suppose, for a contradiction,
that for some i < n, xiKxi+1. Then, by Lemma 6.19, xKxi+1Kb. So, xK≥2b.
A contradiction. The lemma now follows by showing, with induction on i and
using F |= JK1 , that for all i ≥ 0, xn−(i+1)K

1u.

Lemma 6.28. F̂ satisfies all the sub-invariants.

Bewijs. We only comment on JK1 and Jν1 . Let K = K(F̂ ).

Jν1 follows from Lemma 6.26, so let us treat JK1 . Suppose wK̂xK̂1y(Ŝw)
tr
y′K̂1z.

We can assume that at least one of w, x, y, y′, z is not in F and the only candi-
date for this is z. So we have z = b. We can assume that x 6= y′ (otherwise we
are done at once), so the conditions of Lemma 6.25 are fulfilled and thus w and
u as stated there exist.

Suppose now, for a contradiction, that for some t, xK̂tK̂1b. Then by Lemma
6.27, t = a or tK̂1u. Suppose we are in the case t = a. Since ν(w, a) is defined
and xK̂a we obtain by Jν1 , that x ⊂ w. Since wK̂≥2u we obtain by Lemma
6.19 that xK̂≥2u. In the case tK̂1u we have xK̂≥2u trivially. So in any case
we have

xK̂≥2u.

However, by Lemma 6.27 and since y′K̂1z we have y′K̂1u or y′ = a. In the
first case, since F |= JK1 , we have xK̂1u. In the second case we obtain, by the
uniqueness of u, that y = u and thus xK̂1u. So in any case we have

xK̂1u.

A contradiction.
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Lemma 6.29. Possibly with the exception of IM0
, F̂ satisfies all the main-

invariants.

Bewijs. Let K = K(F̂ ). We only comment on I✷ and IN .
First we treat I✷. So we have to show that for all y, {ν̂(x) | xK̂1y} is linearly

ordered by ⊆✷. We only need to consider the case y = b. If {a} = {x | xK̂1b}
then the claim is obvious. So we can assume that the condition of Lemma 6.25
is fulfilled and we fix u as stated. The claim now follows by F |= I✷ (with
y = u) and noting that, by Lemma 6.15, xK̂1b ⇒ x ⊆✷ a.

Now we look at IN : wK̂xK̂y ∧ F̂ |= y ∈ NA
w → F̂ |= x ∈ NA

w . Suppose
wK̂xK̂y and F̂ |= y ∈ NA

w . We only have to consider the case y = b. Then, by
Lemma 6.22, ν̂(w,b) = A or for some t ∈ NA

w we have tŜwb or tK̂1b. The first
case is impossible by Jν2 . The second is also clearly not so. Thus we have

tK̂1b. (7)

We suppose that the conditions of Lemma 6.25 are fulfilled (the other case
is easy). If tK̂1u and xK̂∗u then we are done simmilarly as the case above.
So assume tK̂1a or xK̂∗a. Since wRt and wRx in any case we have wK̂a.
Now by Lemma 6.24 and JN1

we have u ∈ NA
w ⇔ a ∈ NA

w . Also, by (7),
u ∈ NA

w ∨ a ∈ NA
w . So since xK̂u or x = a or xK̂a we obtain x ∈ NA

w by
F |= IN .

To finish this subsection we note that by Lemma 6.14 and Corollary 6.21 we
can extend F̂ to an adequate ILM0–frame that satisfies all invariants.

6.6 Solving deficiencies

Let F = 〈W,R, S, ν〉 be an ILM0–frame satisfing all the invariants. Let (a,b, C ✄D)
be a D-deficiency in F .

Suppose aR≥2b (the case aR1b is easy). Let x be the ⊆✷-maximum of
{x | aKxK1b}. This maximum exists by I✷. Pick some A such that b ∈ NA

a
.

(If such an A exists, then by adequacy of F , it is unique. If no such A exists,
take A = ⊥.) By IN and adequacy we have ν(a) ≺A ν(x). So we have C✄D ∈
ν(a) ≺A ν(x) ∋ ✸C. We apply Lemma 6.17 to obtain, for some set Y , disjoint
from W , a set {∆y | y ∈ Y } of MCS’s with all the properties as stated in that
lemma. We define

F̂ = 〈W ∪ Y,R ∪ {〈a, y〉 | y ∈ Y },

S ∪ {〈a,b, y〉 | y ∈ Y } ∪ {〈a, y, y′〉 | y, y′ ∈ Y, y 6= y′},

ν ∪ {〈y,∆y〉, 〈〈a, y〉, A〉 | y ∈ Y }〉.

Claim 4. F̂ is a quasi–ILM0–frame.

Bewijs. An easy check of Properties (1.–5.) of Definition 5.1 (quasi–frames) and
Properties (6.–10.) of Definition 6.10 (quasi–ILM0–frames). Let us comment
on two cases.
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First we see that xK̂y → ν̂(x) ≺ ν̂(y). We can assume y ∈ Y . By Lemma
6.15 we obtain some z with ν̂(x) ⊆✷ ν̂(z) and x(R̂ ∪ Ŝ)∗zR̂y. This z can only
be a. By choice of ν̂(y) we have ν̂(a) ≺ ν̂(y). And thus ν̂(x) ≺ ν̂(y).

We now see that wK̂xK̂y(Ŝw ∪ K̂)∗y′ → ν̂(x) ⊆✷ ν̂(y′). We can assume at
least one of w, x, y, y′ is in Y . The only candidates for this are y and y′. If both
are in Y then w = a and an x as stated does not exists. So only y′ ∈ Y and
thus in particular y 6= y′. Now there are two cases to consider.

The first case is that for some t, wK̂xK̂y(Ŝw ∪ K̂)∗tK̂y′. But, ν̂(y′) is ⊆✷-
larger than ν̂(t) by xK̂y → ν̂(x) ≺ ν̂(y). Also we have wKxKy(Sw ∪K)∗t. So,
ν̂(x) = ν(x) ⊆✷ ν(t) = ν̂(t).

The second case is wK̂xK̂y(Ŝw ∪ K̂)∗bŜwy
′. In this case we have w = a.

y′ is chosen to be ⊆✷–larger than the ⊆✷-maximum of {ν(r) | aKrK1b}. We
have wKxKy(Sw ∪K)∗b So, by F |= IS , this ⊆✷–maximum is ⊆✷–larger than
ν(x).

Lemma 6.30. For any x ∈ F̂ and y ∈ Y we have xK̂1y → x ⊂ a.

Bewijs. We put K ′ = K ∪ {(x, y) | y ∈ Y, xK̂y, x ⊂ a}. By showing that
K ′ satisfies the conditions of T in Lemma 6.8. we obtain xK̂1y → xK ′y. So
if xK̂1y then xK ′y. But if y ∈ Y then xKy does not hold. Thus we have
x ⊂ a.

Lemma 6.31. Suppose y ∈ Y and aK̂1z. Then for all x, xK̂1y → xK̂1z.

Bewijs. Suppose xK1y. By Lemma 6.30 we have x ⊂ a. There exist x0, x1, x2, . . . , xn
such that x = x0(⊂1 ∪K)x1(⊂1 ∪K) · · · (⊂1 ∪K)xn = a. First we show that
x = x0 ⊂1 x1 ⊂1 · · · ⊂1 a. Suppose, for a contradiction that for some i < n,
we have xiKxi+1. Then xKxi+1Ky and thus xK≥2y. A contradiction. The
lemma now follows by showing, with induction on i, using JK1 , that for all
i ≤ n, xn−iK

1z.

Lemma 6.32. F̂ satisfies all the sub-invariants.

Bewijs. The proofs are rather straightforward. We give two examples.

First we show Ju: wK̂
≥2x(Ŝw)

tr
y∧wK̂≥2x′(Ŝw)

tr
y → x = x′. Suppose that

wK̂≥2x(Ŝw)
tr
y and wK̂≥2x′(Ŝw)

tr
y. We can assume that y ∈ Y . (Otherwise

all of w, x, x′, y are in F and we are done by F |= Ju.) We clearly have w ∈ F .
If x ∈ Y then w = a and thus wK̂1x. So, x 6∈ Y . Next we show that both
x, x′ 6= b.

Assume, for a contradiction, that at least one of them equals b. W.l.o.g. we
assume it is x. But then wK≥2b and wK≥2x′(Sw)

tr
b. By F |= Jν4 we now

obtain that ν(w,b) is defined. And thus by F |= Jν2 , wK
1b. A contradiction.

So, both x, x′ 6= b. But now wK≥2x(Sw)
tr
b and wK≥2x′(Sw)

tr
b. So, by

F |= Ju, we obtain x = x′.

Now let us see that JK1 holds, that is wK̂xK̂1y(Ŝw)
tr
y′K̂1z → xK̂1z.

Suppose wK̂xK̂1y(Ŝw)
tr
y′K̂1z. We can assume that z ∈ Y . (Otherwise all of

w, x, y, y′, z are in F and we are done by F |= JK1 .) Fix some a1 ∈ F for which
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aK1a1. By Lemma 6.31 we have y′K1a1 and thus, since F |= JK1 , xK1a1.
By definition of K̂ we have xK̂z. Now, if for some t, we have xK̂tK̂1z, then
similarly as above,tK1a1. So, this implies xK≥2a1. A contradiction, conclusion:
xK1z.

Lemma 6.33. Except for IM0
, F̂ satisfies all main-invariants.

Bewijs. We only comment on I✷ and IN .
First we show I✷: For all y, {ν̂(x) | xK̂1y} is linearly ordered by ⊆✷. Let

y ∈ F̂ and consider the set {x | xK1y}. Since K̂ ↾F= K and for all y ∈ Y there
does not exists z with yK̂1z we only have to consider the case y ∈ Y . Fix some
a1 such that aK1a1K

∗b. By Lemma 6.30 for any such y we have

{x | xK1y} ⊆ {x | xK1a1}.

And by F |= I✷ with a1 for y, we know that {ν(x) | xK1a1} is linearly ordered
by ⊆✷.

Now let us see IN : wK̂xK̂y ∧ F̂ |= y ∈ NA
w → F̂ |= x ∈ NA

w . Suppose
wK̂xK̂y F̂ |= y ∈ NA

w . We can assume y ∈ Y . By Lemma 6.30, x ⊂ a. So,
wKxKb. By Lemma 6.24, F |= b ∈ NA

w and thus F̂ |= x ∈ NA
w .

To finish this section we noting that by Lemma 6.14 and Corollary 6.21 we
can extend F̂ to an adequate ILM0–frame that satisfies all invariants.

6.7 Rounding up

It is clear that the union of a bounded chain of ILM0–frames is itself an ILM0–
frame.

7 The logic ILW∗

In this section we are going to prove the following theorem.

Theorem 7.1. ILW∗ is a complete logic.

For a long time ILW∗ has been conjectured ([30]) to be IL(All). A first
step in proving this conjecture would have been a modal completeness result.
However, the modal completeness of ILW∗ resisted many attempts as the modal
completeness of ILM0, which is an essential part of ILW∗, was so hard and
involved. (In [9] a completeness proof for ILW was given.)

Finally, now that all the machinery has been developed, a modal complete-
ness proof for ILW∗ can be given. The completeness proof of ILW∗ lifts almost
completely along with the completeness proof for ILM0. We only need some
minor adaptations.
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7.1 Preliminaries

The frame condition of W is well known.

Theorem 7.2. For any IL-frame F we have that F |= W ⇔ ∀w (Sw;R) is
conversely well-founded.

We can define a new principle M∗
0
that is equivalent to W∗, as follows.

M∗
0 : A✄B → ✸A ∧ ✷C ✄B ∧ ✷C ∧ ✷¬A

Lemma 7.3. ILM0W = ILW∗ = ILM∗
0

Bewijs. The proof we give consists of four natural parts.
First we see ILW∗ ⊢ M0. We reason in ILW∗ and assume A✄B. Thus, also

A ✄ (B ∨ ✸A). Applying the W∗ axiom to the latter yields (B ∨ ✸A) ∧ ✷C ✄

(B ∨✸A) ∧ ✷C ∧✷¬A. From this we may conclude

✸A ∧✷C ✄ (B ∨✸A) ∧✷C
✄ (B ∨✸A) ∧✷C ∧ ✷¬A
✄ B ∧ ✷C

Secondly, we see that ILW∗ ⊢ W. Again, we reason in ILW∗. We assume
A✄B and take the C in the W∗ axiom to be ⊤. Then we immediately see that
A✄B ✄B ∧✷⊤ ✄B ∧ ✷⊤ ∧ ✷¬A✄B ∧ ✷¬A.

We now easily see that ILM0W ⊢ M∗
0
. For, reason in ILM0W as follows.

By W∗, A✄B ✄B ∧ ✷¬A. Now an application of M0 on A✄B ∧ ✷¬A yields
✸A ∧ ✷C ✄B ∧ ✷C ∧ ✷¬A.

Finally we see that ILM∗
0
⊢ W∗. So, we reason in ILM∗

0
and assume A✄B.

Thus, we have also✸A∧✷C✄B∧✷C∧✷¬A. We now conclude B∧✷C✄B∧✷C∧
✷¬A easily as follows. B∧✷C✄(B∧✷C∧✷¬A)∨(✷C∧✸A)✄B∧✷C∧✷¬A.

Corollary 7.4. For any IL-frame we have that F |= W∗ iff. both (for each
w, (Sw;R) is conversely well-founded) and (∀w, x, y, y′, z (wRxRySwy

′Rz →
xRz)).

The frame condition of W∗ tells us how to correctly define the notions of
adequate ILW∗-frames and quasi-ILW∗-frames.

Definition 7.5 ((D
✷
). Let D be a finite set of formulas. Let (D

✷
be a binary

relation on MCS’s defined as follows. ∆ (D
✷
∆′ iff.

1. ∆ ⊆✷ ∆′,

2. For some ✷A ∈ D we have ✷A ∈ ∆′ −∆.

Lemma 7.6. Let F be a quasi-frame and D be a finite set of formulas. If
wRxRySwy

′ → ν(x) (D
✷
ν(y′) then (R;Sw) is conversely well-founded.

Bewijs. By the finiteness of D.
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Lemma 7.7. Let F be a quasi-ILM0-frame. If wRxRySwy
′ → ν(x) (D

✷
ν(y′)

then wRxRy(Sw ∪R)∗y′ → ν(x) (D
✷
ν(y′)

Bewijs. Suppose wRxRy(Sw ∪ R)∗y′. ν(x) (D
✷
ν(y′) follows with induction on

the minimal number of R-steps in the path from y to y′.

Definition 7.8 (Adequate ILW∗-frame). Let D be a set of formulas. We say
that an adequate ILM0-frame is an adequate ILW∗-frame (w.r.t. D) iff. the
following additional property holds.

8. wRxRy(Sw)
tr
y′ → x (D

✷
y′

Definition 7.9 (Quasi-ILW∗-frame). Let D be a set of formulas. We say that a
quasi-ILM0-frame is a quasi-ILW∗-frame (w.r.t. D) iff. the following additional
property holds.

13. wKxKy(Sw)
tr
y′ → x (D

✷
y′

In what follows we might simply talk of adequate ILW∗-frames and quasi-
ILW∗ In these cases D is clear from context.

Lemma 7.10. Any quasi-ILW∗-frame can be extended to an adequate ILW∗-
frame. (Both w.r.t. the same set of formulas D.)

Bewijs. Let F be a quasi-ILW∗-frame. Then in particular F is a quasi-ILM0-
frame. So consider the proof of Lemma 6.14. There we constructed a sequence
of quasi-ILM0-frames F = F0 ⊆ F1 ⊆

⋃
i<ω Fi = F̂ . What we have to do,

is to show that if F0(= F ) is a quasi-ILW∗-frame, then each Fi is as well.
Additionally we have to show that F̂ is an adequate ILW∗-frame.

But this is rather trivial. As noted in the proof of Lemma 6.14, The relation
K and the relations (Sw)

tr
are constant throughout the whole process. So

clearly each Fi is a quasi-ILW∗-frame.
Also the extra property of quasi-ILW∗-frames is preserved under unions of

bounded chains. So, F̂ is an adequate ILW∗-frame.

Lemma 7.11. Let Γ and ∆ be MCS’s with Γ ≺C ∆,

P ✄Q,S1 ✄ T1, . . . , Sn ✄ Tn ∈ Γ and ✸P ∈ ∆.

There exist k ≤ n. MCS’s ∆0,∆1, . . . ,∆k such that

• Each ∆i lies C-critical above Γ,

• Each ∆i lies ⊆✷ above ∆,

• Q ∈ ∆0,

• For each i ≥ 0, ✷¬P ∈ ∆i,

• For all 1 ≤ j ≤ n, Sj ∈ ∆h ⇒ for some i ≤ k, Tj ∈ ∆i.

Bewijs. The proof is a straightforward adaptation of the proof of Lemma 6.17.
In that proof, a trick was to postpone an application of M0 as long as possible.
We do the same here but let an application of M0 on P ✄✸P ∨ ψ be preceded
by an application of W to obtain P ✄ ψ.
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7.2 Completeness

Again, we specify the four ingredients from Remark 4.19. The Frame condi-

tion is contained in Corollary 7.4.
The Invariants are all those of ILM0 and additionally

Iw∗ wKxKy(Sw)
tr
y′ → x (D

✷
y′

Here, D is some finite set of formulas closed under subformulas and single ne-
gation.

Problems. We have to show that we can solve problems in an adequate
ILW∗-frame in such a way that we end up with a quasi-ILW∗-frame. If we have
such a frame then in particular it is an ILM0-frame. So, as we have seen we
can extend this frame to a quasi-ILM0-frame. It is easy to see that whenever
we started with an adequate ILW∗-frame we end up with a quasi ILW∗-frame.
(This is basically Lemma 7.10.)

Deficiencies. We have to show that we can solve any deficiency in an
adequate ILW∗-frame such that we end up with an quasi-ILW∗-frame. It is
easily seen that the process as described in the case of ILM0 works if we use
Lemma 7.11 instead of Lemma 6.17.

Rounding up. We have to show that the union of a bounded chain of
quasi-ILW∗-frames that satisfy all the invariants is an ILW∗-frame. The only
novelty is that we have to show that in this union for each w we have that
(R;Sw) is conversely well-founded. But this is ensured by Iw∗ and Lemma 7.6.
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[13] P. Hájek and P. Pudlák. Metamathematics of First Order Arithmetic.
Springer-Verlag, Berlin, Heidelberg, New York, 1993.

[14] R. Hirsch and I. Hodkinson. Relation Algebras by Games, volume 147 of
Studies in Logic. Elsevier, North-Holland, 2002.

[15] I. Hodkinson, S. Mikulás, and Y. Venema. Axiomatizing complex algebras
by games. Algebra Universalis, 46:455–478, 2001.

[16] K.N. Ignatiev. The provability logic of Σ1-interpolability. Annals of Pure
and Applied Logic, 64:1–25, 1993.

[17] G.K. Japaridze. The logic of the arithmetical hiearchy. Annals of Pure
and Applied Logic, 66:89–112, 1994.

[18] J.J. Joosten. Towards the interpretability logic of all reasonable arithme-
tical theories. Master’s thesis, University of Amsterdam, 1998.

[19] J.J. Joosten and A. Visser. The interpretability logic of all reasonable
arithmetical theories. Erkenntnis, 53(1–2):3–26, 2000.

44



[20] E. Goris. Modal Matters for Interpretability Logic. Logic Journal of the
Interest Group in Pure and Applied Logics, 16: 371 - 412, August 2008.

[21] C.F Kent. The relation of A to Provp!Aq in the Lindenbaum sentence
algebra. Journal of Symbolic Logic, 38:359–367, 1973.

[22] P.P. Petkov, editor. Mathematical logic, Proceedings of the Heyting 1988
summer school in Varna, Bulgaria. Plenum Press, Boston, 1990.

[23] P. Pudlák. Cuts, consistency statements and interpretations. Journal of
Symbolic Logic, 50:423–441, 1985.

[24] V. Shavrukov. The logic of relative interpretability over Peano arithme-
tic (in Russian). Technical Report Report No.5, Steklov Mathematical
Institute, Moscow, 1988.

[25] R.M. Solovay. Provability interpretations of modal logic. Israel Journal
of Mathematics, 28:33–71, 1976.

[26] A. Tarski, A. Mostowski, and R. Robinson. Undecidable theories. North–
Holland, Amsterdam, 1953.

[27] V. S̆vejdar. Some independence results in interpretability logic. Studia
Logica, 50:29–38, 1991.

[28] A. Visser. Preliminary notes on interpretability logic. Technical Report
LGPS 29, Department of Philosophy, Utrecht University, 1988.

[29] A. Visser. Interpretability logic. In [22], pages 175–209, 1990.

[30] A. Visser. The formalization of interpretability. Studia Logica, 50(1):81–
106, 1991.

[31] A. Visser. A course on bimodal provability logic. Annals of Pure and
Applied Logic, pages 109–142, 1995.

[32] A. Visser. An overview of interpretability logic. In M. Kracht, M. de
Rijke, and H. Wansing, editors, Advances in modal logic ’96, pages 307–
359. CSLI Publications, Stanford, CA, 1997.

[33] A. Visser. Faith & Falsity: a study of faithful interpretations and false
Σ0

1-sentences. Logic Group Preprint Series 216, Department of Philosophy,
Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, October 2002.
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