
THE CATEGORY OF MV-PAIRS
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Abstract. An MV-pair is a pair (B, G), where B is a Boolean algebra and

G is a subgroup of the automorphism group of B satisfying certain condition.
Recently it was proved by one of the authors that for an MV-pair (B, G), ∼G

is an effect-algebraic congruence and B/ ∼G is an MV-algebra. Moreover,

every MV-algebra M can be represented by an MV-pair in this way.
In this paper we show that one can define a suitable category of MV-pairs in

such a way that there exist a faithful functor from the category of MV-algebras

to the aforementioned category and a functor in the reversed direction.

1. Introduction

MV-algebras stand in relation to the  Lukasiewicz infinite valued logic as Boolean
algebras stand in relation to classical 2-valued logic. Boolean algebras, of course,
have not stayed glued to their origin in logic, their uses showing up in other areas
of mathematics. Moreover, there has been extensive investigations concerning their
structure.

The same can be said about MV-algebras, that is their connections to other
areas of mathematics and investigations of their intrinsic structure. Classical logic,
as is well known, can be analyzed in a great part by algebraic methods using the
Lindenbaum algebra obtained from the formal system. For example the complete-
ness theorem for this logic becomes equivalent to the semisimplicity of the obtained
Lindenbaum algebra.

Since Chang [Ch1, Ch2],  Lukasiewicz logic has also been analyzed algebraically
through the associated Lindenbaum type algebra, that is the algebra of equivalence
classes obtained from the relation of provable equivalence. In this case this algebra
is an MV-algebra [Ch1]. Once again logical notions have an algebraic counterpart,
for example, completeness relates strongly to semisimplicity [Ch1, Ch2]. However,
unlike the classical case where the algebras in question are Boolean and always
semisimple, not all MV-algebras are semisimple. This fact, in a sense, enriches the
theory of MV-algebras.

A key relationship between Boolean algebras and MV-algebras lies on the fact
that the set of all idempotent elements of an MV-algebra M is a Boolean algebra,
actually the greatest Boolean subalgebra of M . From the lattice-theoretical per-
spective, the Boolean algebra of idempotents is just the centre of the distributive
lattice M . From the logical perspective, if we consider the centre as a system of
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classical propositions, the surrounding algebra M can be considered as an extension
of the classical logic by fuzzy (or unsharp) propositions.

This connection between MV-algebras and Boolean algebras is not the only one.
Several classes of MV-algebras are described by means of Boolean algebras as it
can be seen in the papers [24] [5], [23] and [14]. The present paper deals with a
categorical development of the results given in [14], where a representation theorem
for MV-algebras is given in terms of Boolean algebras and their automorphism
group, and looking at the given MV-algebra as an MV-effect algebra. Actually, in
[14] is shown that given a Boolean algebra B and a subgroup G of its automorphism
group satisfying certain conditions, the pair (B,G) can be canonically associated
with an MV-algebra. Such pairs are called MV-pairs. Furthermore, given an MV-
algebra M and a special subgroup G(M) of the automorphism group of B(M), it
turns out that (B(M), G(M)) is an MV-pair.

The notion of an MV-pair was more closely investigated by Pulmannová and
Vinceková in [26]. For a given MV-pair (B,G), they found a certain class of ideals
of B such that (B/I,G/I) is an MV-pair. Independently, a similar study of certain
type of (B,G) pairs such that B/G is an MV-algebra (called ambiguity algebras)
was recently started by Vetterlein in [28].

From a purely mathematical standpoint, this development opens a new connec-
tion between two established mathematical theories.

One of them is the theory of  Lukasiewicz infinite valued logic and its algebraic
counterpart, MV-algebras.

The other one is the long established theory of (B,G) pairs (see, for example, [19]
and [27] and the references therein). For applications of (B,G) pairs in recursive
Boolean algebras that may be interesting for the reader, we refer to papers [21],
[20], [6].

For an additional motivation, let us quote T. Vetterlein [28]:
Now, we will generalize this framework [propositional logic] so as
to model statements with which a certain uncertainty is associated.
Note that this is in contrast to most approaches to interpret fuzzy
logics, where vagueness is the primary notion. What we propose
is to model a fuzzy property by a subset of a Boolean algebra
rather than a single element. Namely, we assume that we have
to do with properties which are perceivable only up to the action
of some group of automorphism acting on the Boolean algebra.
Accordingly, a subset modelling a fuzzy property is required to be
closed under the action of this group.

In this paper we show that one can define a suitable category of MV-pairs in
such a way that there exist a faithful functor from the category of MV-algebras to
the aforementioned category and a functor in the reversed direction.

2. Definitions and basic relationships

An effect algebra is a partial algebra (E;⊕, 0, 1) with a binary partial operation
⊕ and two nullary operations 0, 1 satisfying the following conditions.

(E1) If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a.
(E2) If a ⊕ b and (a ⊕ b) ⊕ c are defined, then b ⊕ c and a ⊕ (b ⊕ c) are defined

and (a⊕ b)⊕ c = a⊕ (b⊕ c).
(E3) For every a ∈ E there is a unique a′ ∈ E such that a⊕ a′ = 1.
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(E4) If a⊕ 1 exists, then a = 0
Effect algebras were introduced by Foulis and Bennett in their paper [8]. In

their papers [15] and [16], Kôpka and Chovanec introduced an essentially equivalent
structure called D-poset. Another equivalent structure, called weak orthoalgebras
was introduced by Giuntini and Greuling in [9]. We refer to the monograph [7] for
more information on effect algebras and similar algebraic structures.

For brevity, we denote an effect algebra (E;⊕, 0, 1) by E. In an effect algebra E,
we write a ≤ b iff there is c ∈ E such that a⊕ c = b. It is easy to check that every
effect algebra is cancellative, thus ≤ is a partial order on E. In this partial order, 0
is the least and 1 is the greatest element of E. Moreover, it is possible to introduce
a new partial operation 	; b 	 a is defined iff a ≤ b and then a ⊕ (b 	 a) = b. It
can be proved that a⊕ b is defined iff a ≤ b′ iff b ≤ a′. We denote the domain of ⊕
by ⊥.

Let E1, E2 be effect algebras. A mapping φ : E1 7→ E2 is called a morphism of
effect algebras iff φ(1) = 1 and for all a, b ∈ E, the existence of a ⊕ b implies the
existence of φ(a)⊕φ(b) and φ(a⊕b) = φ(a)⊕φ(b). A morphism φ : E1 → E2 is full
iff whenever φ(a) ⊥ φ(b) and φ(a)⊕ φ(b) ∈ φ(E1), then there are a1, b1 ∈ E1 such
that φ(a) = φ(a1), φ(b) = φ(b1) and a1 ⊥ b1. A morphism φ is an isomorphism
iff φ is bijective and full. Note that even if both E1 and E2 are lattice ordered, a
morphism of effect algebras need not preserve joins and meets.

An MV-algebra (c.f. [2], [22]) is a (2, 1, 0)-type algebra (M ; �,¬, 0), such that �
satisfies the identities (x� y) � z = x� (y� z), x� y = y� x, x� 0 = x, ¬¬x = x,
x� ¬0 = ¬0 and

x� ¬(x� ¬y) = y � ¬(y � ¬x).

On every MV-algebra, a partial order ≤ is defined by the rule

x ≤ y ⇐⇒ y = x� ¬(x� ¬y).

In this partial order, every MV-algebra is a distributive lattice bounded by 0 and
¬0.

An MV-effect algebra is a lattice ordered effect algebra M in which, for all a, b ∈
M , (a ∨ b)	 a = b	 (a ∧ b). It is proved in [4] that there is a natural, one-to one
correspondence between MV-effect algebras and MV-algebras given by the following
rules. Let (M,⊕, 0, 1) be an MV-effect algebra. Let � be a total operation given by
x� y = x⊕ (x′ ∧ y). Then (M,�,′ , 0) is an MV-algebra. Similarly, let (M,�,¬, 0)
be an MV-algebra. Restrict the operation � to the pairs (x, y) satisfying x ≤ y′

and call the new partial operation ⊕. Then (M,⊕, 0,¬0) is an MV-effect algebra.
Among lattice ordered effect algebras, MV-effect algebras can be characterized

in a variety of ways. Three of them are given in the following proposition.

Proposition 1. [1], [4] Let E be a lattice ordered effect algebra. The following are
equivalent

(a) E is an MV-effect algebra.
(b) For all a, b ∈ E, a ∧ b = 0 implies a ≤ b′.
(c) For all a, b ∈ E, a	 (a ∧ b) ≤ b′.
(d) For all a, b ∈ E, there exist a1, b1, c ∈ E such that a1 ⊕ b1 ⊕ c exists,

a1 ⊕ c = a and b1 ⊕ c = b.

Notation. In what follows, we will deal with an MV-effect algebra M and a
Boolean algebra B(M) such that M is a 0,1-sublattice of B(M). In this particular
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situation, a small notational problem arises: both M and B(M) are MV-effect
algebras, but the ⊕,	 and ′ operations on B(M) and M differ. To avoid confusion,
we denote the partial operation of disjoint join (the ⊕ of Boolean algebras) on
a Boolean algebra by ∨̇. The partial difference of comparable elements and the
complement in a Boolean algebra are denoted by \ and {, respectively.

LetD be a bounded distributive lattice. Up to isomorphism, there exists a unique
Boolean algebra B(D) such that D is a 0, 1-sublattice of B(D) and D generates
B(D) as a (Boolean) ring. This Boolean algebra is called the Boolean algebra R-
generated by D. We refer to [10], section II.4, for an overview of results concerning
R-generated Boolean algebras. See also [12] and [18]. For every element x of B(D),
there exists a finite chain x1 ≤ . . . ≤ xn in D such that x = x1 + . . .+ xn. Here, +
denotes the symmetric difference, as in Boolean rings. We then say than {xi}ni=1 is
a D-chain representation of x. It is easy to see that every element of B(D) has a
D-chain representation of even length. Note that, for n = 2k we have

x = x1 + · · ·+ x2k = (x2k \ x2k−1)∨̇ . . . ∨̇(x2 \ x1).

If D1, D2 are bounded distributive lattices and ψ : D1 → D2 is a 0, 1-lattice
homomorphism, then ψ uniquely extends to a homomorphism of Boolean algebras
ψ∗ : B(D1) → B(D2). Similarly, if [0, a]D is an interval in a bounded distributive
lattice D, then B([0, a]D) is naturally isomorphic to the interval [0, a]B(D).

Theorem 2. [13] Let M be an MV-effect algebra. The mapping φM : B(M)→M
given by

φM (x) =
n⊕
i=1

(x2i 	 x2i−1),

where {xi}2ni=1 is a M -chain representation of x, is a surjective morphism of effect
algebras.

We note that the value of φM (x) does not depend on the choice of the M -chain
representation of x. Obviously, for all x ∈M , {x, 0} is a M -chain representation of
x. Therefore, φM (x) = x	 0 = x, so every x ∈M is a fixpoint of φM .

Example 3. Let M be an MV-effect algebra, which is totally ordered. By [10],
Corollary II.4.19, B(M) is isomorphic to the Boolean algebra of all subsets of M
of the form [a1, b1)∪̇ . . . ∪̇[an, bn). Here, we denote [a, b) = {x ∈ M : a ≤ x < b}.
The φM : B(M)→M morphism is then given by

φM ([a1, b1)∪̇ . . . ∪̇[an, bn)) = (b1 	 a1)⊕ . . .⊕ (bn 	 an).

Example 4. In this example, [0, 1] denotes the closed real unit interval. Let C[0,1]

be the MV-effect algebra of all real continuous functions f : [0, 1] → [0, 1]. Let B
be the Boolean algebra ∏

x∈[0,1]

B([0, 1]),

where B([0, 1]) is the Boolean algebra generated by semiopen intervals as described
in Example 3. It is obvious that C[0,1], as a bounded lattice, can be embedded into
B by a mapping γ : C[0,1] → B given by γ(f) =

([
0, f(x)

))
x∈[0,1]

. The image of
C[0,1] under γ then generates a Boolean subalgebra of B, which we can identify
with B(C[0,1]). The φC[0,1] : B(C[0,1])→ C[0,1] mapping can then be constructed as
follows.
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Let (Ax)x∈[0,1] ∈ B(C[0,1]). Fix x ∈ [0, 1] and write Ax = [a1, b1)∪̇ . . . ∪̇[an, bn).
The value of the continuous function φC[0,1]((Ax)x∈[0,1]) at x is then equal to (b1 	
a1)⊕ . . .⊕ (bn 	 an).

Let E be an effect algebra. A relation ∼ on E is a weak congruence iff the
following conditions are satisfied.

(C1) ∼ is an equivalence relation.
(C2) If a1 ∼ a2, b1 ∼ b2 and a1 ⊕ b1, a2 ⊕ b2 exist, then a1 ⊕ b1 ∼ a2 ⊕ b2.
If E is an effect algebra and ∼ is a weak congruence on E, the quotient E/ ∼

(⊕ is defined on E/ ∼ in an obvious way) need not to be a partial abelian monoid,
since the associativity condition may fail (c.f. [11]). This fact motivates the study of
sufficient conditions for a weak congruence to preserve associativity. The following
condition was considered in [3].

(C5) If a ∼ b⊕ c, then there are b1, c1 such that b1 ∼ b, c1 ∼ c, b1⊕ c1 exists and
a = b1 ⊕ c1.

In [3], it was proved that for a partial abelian monoid P and a weak congruence∼,
satisfying (C5), the quotient P/ ∼ is again a partial abelian monoid. Moreover, it is
easy to prove that the eventual positivity of P is preserved for such ∼. However, for
an effect algebra E, the (C5) property of ∼ does not guarantee that the ′ operation
is preserved by ∼. If ′ is preserved by ∼, that means, if condition

(C6) If a ∼ b, then a′ ∼ b′.
is satisfied, then E/ ∼ is an effect algebra. A relation on an effect algebra satisfying
(C1),(C2),(C5),(C6) is called an effect algebra congruence. For every effect algebra
congruence ∼ on an effect algebra E, the mapping a → [a]∼ is a full morphism of
effect algebras.

We refer the interested reader to [25] and [11] for further details concerning
congruences on effect algebras and partial abelian monoids.

3. MV-pairs

Let B be a Boolean algebra. We write Aut(B) for the group of all automorphisms
of B. Let G be a subgroup of Aut(B). For a, b ∈ B, we write a ∼G b iff there exists
f ∈ G such that b = f(a). Obviously, ∼G is an equivalence relation. We write [a]G
for the equivalence class of an element a of B.

A pair (B,G), where B is a Boolean algebra and G is a subgroup of Aut(B) is
called a BG-pair. BG-pairs are a well-established topic in the theory of Boolean
algebras, see for example Chapter 15 of the handbook [17].

Let (P,≤) be a poset. Let us write,

max(P ) = {m ∈ P : x ≥ m =⇒ x = m},
that means, max(P ) is the set of all maximal elements of the poset P .

Let B be a Boolean algebra, let G be a subgroup of Aut(B). For all a, b ∈ B,
we write

LG(a, b) = {a ∧ f(b) : f ∈ G} and

L+
G(a, b) = {g(a) ∧ f(b) : f, g ∈ G}.

Note that LG(a, b) ⊆ L+
G(a, b) and that L+

G(a, b) is closed with respect to any h ∈ G;
this implies that L+

G(a, b) is a union of equivalence classes of ∼G.
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Definition 5. Let B be a Boolean algebra, let G be a subgroup of Aut(B). We
say that (B,G) is an MV-pair iff the following two conditions are satisfied.

(MVP1) For all a, b ∈ B, f ∈ G such that a ≤ b and f(a) ≤ b, there is h ∈ G such
that h(a) = f(a) and h(b) = b.

(MVP2) For all a, b ∈ B and x ∈ LG(a, b), there exists m ∈ max(LG(a, b)) with
m ≥ x.

Example 6. For every finite Boolean algebra B, (B,Aut(B)) is an MV-pair.

Example 7. Let B be a Boolean algebra with three atoms a1, a2, a3. The mapping
f given by

x 0 a1 a2 a3 a{
1 a{

2 a{
3 1

f(x) 0 a2 a3 a1 a{
2 a{

3 a{
1 1

is an automorphism of B and G = {id, f, f2} is a subgroup of Aut(B). However,
(B,G) is not an MV-pair. Indeed, we have a1 ≤ a{

3 and f(a1) = a2 ≤ a{
3, but there

is no h ∈ G such that h(a1) = f(a1) and h(a{
3) = a{

3.

Example 8. Let B be the Boolean algebra of all Borel subsets of the real unit
interval [0, 1]R that are unions of a finite number of intervals. (as usual, we identify
the Borel sets that differ by a set of measure 0.) Let W the subgroup of the
permutation group of [0, 1]R that is generated by the set of all bijections pa,b given
by

pa,b(x) =


x if x ∈ [0, a],
a+ b− x if x ∈ (a, b),
x if x ∈ [b, 1],

where 0 ≤ a ≤ b ≤ 1. For every p ∈ W , let fp be the mapping fp : B → B
given by fp(X) = p(X) and let G = {fp : p ∈ W}. Obviously, G is a subgroup
of Aut(B). Then (B,G) is an MV-pair; the proof of this fact is a bit longer, but
straightforward. Note that every fp ∈ G preserves measure.

Example 9. Let 2Z be the Boolean algebra of all subsets of Z. Then (2Z,Aut(2Z))
is not an MV-pair. Indeed, let f ∈ Aut(2Z) be the automorphism of 2Z associated
with the permutation f(n) = n+ 1. Let A = B = N. We see that f(A) = A \ {0},
A ⊆ B and f(A) ⊆ B. However, there is no h ∈ Aut(2Z) such that h(A) = f(A)
and h(B) = B, simply because A = B implies that h(A) = h(B), but f(A) 6= B.

Let us summarize the main results from the paper [14] we shall need.

Theorem 10. Let (B,G) be an MV-pair. Then
(a) ∼G is an effect algebra congruence,
(b) B/ ∼G is an MV-effect algebra,
(c) for all a, b ∈ B,

[a]G ∧ [b]G = max(L+
G(a, b)),

where the = is a set equality,
(d) max(LG(a, b)) ⊆ max(L+

G(a, b)).

For an MV-algebra M , we write

G(M) = {f ∈ Aut(B(M)) : for all x ∈ B(M), φM (x) = φM (f(x))}.
Theorem 11. Let M be an MV-algebra.
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(a) (B(M), G(M)) is an MV-pair.
(b) For all x, y ∈ B(M), x ∼G(M) y iff φM (x) = φM (y).
(c) B(M)/G(M) is isomorphic to M , where the isomorphism is given by

βM ([x]G(M)) = φM (x).

4. Premorphisms of MV-pairs

Definition 12. Let (B1, G1), (B2, G2) be MV-pairs. A mapping ψB : B1 → B2 is
called a premorphism of MV-pairs iff the following conditions are satisfied.

(1) ψB is a morphism of Boolean algebras.
(2) For every f1 ∈ G1 and x ∈ B1, ψB(x) = 0 implies that ψB(f1(x)) = 0.

Proposition 13. Let (B1, G1), (B2, G2) be MV-pairs and let ψB : B1 → B2

be a premorphism of MV-pairs. Then for every f1 ∈ G1, the mapping ψG(f1) :
ψB(B1)→ ψB(B1) given by

ψG(f1)
(
ψB(x)

)
= ψB

(
f1(x)

)
is an automorphism of the Boolean algebra ψB(B1).

Proof. Let us first prove that ψG(f1) is well-defined, that means, that the value of
ψG(f) at an element ψB(x) of the set ψB(B1) does not depend on the choice of x.

Let x, y ∈ B1 be such that ψB(x) = ψB(y). Since ψB(x)+ψB(y) = 0, ψB(x+y) =
0. By condition (2), ψB(f1(x+ y)) = 0 and we see that

ψB
(
f1(x+ y)

)
= ψB

(
f1(x) + f1(y)

)
= ψB

(
f1(x)

)
+ ψB

(
f1(y)

)
= 0.

Therefore, ψB(f1(x)) = ψB(f1(y)) and the value of ψG(f1) is well defined.
Let us prove that every ψG(f1) is injective. Let ψB(x), ψB(y) ∈ ψB(B1) be

such that ψG(f1)(ψB(x)) = ψG(f1)(ψB(y)), that means, ψB(f1(x)) = ψB(f1(y)).
Similarly as in the previous part of the proof, this implies that ψB(f1(x+ y)) = 0.
Therefore, by condition (2),

ψB
(
f−1

1

(
f1(x+ y)

))
= ψB(x+ y) = ψB(x) + ψB(y) = 0

and we see that ψB(x) = ψB(y).
Let us prove that every ψG(f1) is surjective. Let u ∈ ψB(B1). Then u = ψB(x)

for some x ∈ B1 and we see that

ψG(f1)
(
f−1

1 (x)
)

= ψB
(
f1

(
f−1

1 (x)
))

= ψB(x) = u.

It remains to prove that every ψG(f1) is an endomorphism of the Boolean algebra
ψB(B1). This requires only a simple diagram chasing, let us prove (for example)
that for every f1 ∈ G1, ψG(f1) is a ∨-endomorphism. Let x, y ∈ B1. Then

ψG(f1)
(
ψB(x) ∨ ψB(y)

)
= ψG(f1)

(
ψB(x ∨ y)

)
= ψB

(
f1(x ∨ y)

)
=

=ψB
(
f1(x)

) ∨ ψB(f1(y)
)

= ψG(f)
(
ψB(x)

) ∨ ψG(f)
(
ψB(y)

)
The proof that ψG(f1) preserves all the other Boolean operations is very similar. �

Proposition 14. Let (B1, G1), (B2, G2) be MV-pairs and let ψB : B1 → B2 be a
premorphism of MV-pairs. Then ψG : G1 → Aut(ψB(B1)) is a group morphism
and

Ker(ψG) = {f1 ∈ G1 : f1(x) + x ∈ Ker(ψB), for all x ∈ B1}.
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Proof. Let f1, g1 ∈ G1. We need to prove that ψG(f1 ◦ g1) = ψG(f1) ◦ ψG(g1).
For all x ∈ B1,

ψG(f1 ◦ g1)
(
ψB(x)

)
= ψB

(
(f1 ◦ g1)(x)

)
= ψB

(
f1

(
g1(x)

))
=

=ψG(f1)
(
ψB
(
g1(x)

))
= ψG(f1)

(
ψG(g1)

(
ψB(x)

))
=

=
(
ψG(f1) ◦ ψG(g1)

)(
ψB(x)

)
,

hence ψG is a group morphism.
Let f1 ∈ Ker(ψG), that means, ψG(f1) = idψB(B1). For all x ∈ B1, ψG(f1)(ψB(x)) =

ψB(x). This is equivalent to ψB(f1(x)) = ψB(x) and, since ψB is a morphism of
Boolean algebras, ψB(f1(x) + x) = 0.

Let f1 ∈ G1 be such that, for all x ∈ B1, f1(x)+x ∈ Ker(ψB). We need to prove
that f1 ∈ Ker(ψG), that is, ψG(f1) = idψB(B1). Let u ∈ ψB(B1). There is x ∈ B1

such that ψB(x) = u and

ψG(f1)(u) = ψG(f1)
(
ψB(x)

)
= ψB

(
f1(x)

)
.

As ψB(f1(x)) + ψB(x) = ψB(f1(x) + x) = 0, ψB(f1(x)) = ψB(x) = u. Therefore,
ψG(f1)(u) = u and we see that ψG(f1) = idψB(B1). �

5. Weak morphisms of MV-pairs

Since we want to develop a proper notion of morphism of MV-pairs, we need
to strengthen the notion of premorphism in order to be able to associate a map
∆(ψB) : B1/G1 → B2/G2 with ψB . The condition is defined in a natural way, as
follows.

Definition 15. Let (B1, G1), (B2, G2) be MV-pairs. A mapping ψB : B1 → B2 is
called a weak morphism of MV-pairs iff the following conditions are satisfied.

(1) ψB is a morphism of Boolean algebras.
(3) For all x, y ∈ B1, x ∼G1 y implies that ψB(x) ∼G2 ψB(y).

If ψB is a weak morphism, then ∆(ψB) : B1/G1 → B2/G2 is given by

∆(ψB)([x]G1) = [ψB(x)]G2 .

Obviously, condition (3) ensures that the mapping ∆(ψB) is well defined.

Proposition 16. Every weak morphism of MV-pairs is a premorphism of MV-
pairs.

Proof. We need to prove condition (2) of Definition 12. Let ψB be a weak morphism
of MV-pairs (B1, G1), (B2, G2). Let f1 ∈ G1, x ∈ B1 and suppose that ψB(x) =
0. Put y = f1(x), we have x ∼G1 y and hence, by condition (3), ψB(x) ∼G2

ψB(f1(x)). Since ψB(x) = 0, 0 ∼G2 ψB(f1(x)). Thus, there is a f2 ∈ G2 such that
f2(ψB(f1(x))) = 0. Since f2 is an automorphism of B2, ψB(f1(x)) = 0. �

Proposition 17. Let (B1, G1), (B2, G2) be MV-pairs and let ψB : B1 → B2 be a
weak morphism of MV-pairs. Then ∆(ψB) is a morphism of effect algebras.

Proof. Let x, y ∈ B1 be such that [x]G1 ⊥ [y]G1 . Without loss of generality, we
may assume that x ⊥ y in B1 and we may compute

∆(ψB)([x]G1 ⊕ [y]G1) = ∆(ψB)([x⊕ y]G1) = [ψB(x⊕ y)]G2 =

=[ψB(x)⊕ ψB(y)]G2 = [ψB(x)]G2 ⊕ [ψB(y)]G2 = ∆(ψB)([x]G1)⊕∆(ψB)([y]G1).

It is easy to see that ∆(ψB) preserves the unit. �
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Let ψ : M1 → M2 be a morphism of MV-algebras. Since ψ is a bounded lattice
morphism, it uniquely extends to a morphism of Boolean algebras ∇(ψ) : B(M1)→
B(M2).

The following lemma is a generalization of Lemma 18 from [26], where only the
case of surjective ψ is considered. However, it is easy to observe that this restriction
is not necessary, so the proof here is essentially the same as in [26].

Lemma 18. For every morphism ψ : M1 →M2 of MV-algebras, the diagram

M1 B(M1)

M2 B(M2)

φM1

φM2

ψ ∇(ψ)

commutes.

Proof. Let x ∈ B(M1), let (xi)2n
i=1 be its M1-chain representation:

x = (x2 \ x1)∨̇ . . . ∨̇(x2n \ x2n−1).

Then, by the definition of φM1 ,

φM1(x) = φM1

(
(x2 \ x1)∨̇ . . . ∨̇(x2n \ x2n−1)

)
=

=(x2 	 x1)⊕ · · · ⊕ (x2n 	 x2n−1) =
n⊕
i=1

(x2i 	 x2i−1)

where the latter term is in M1.
Since ψ is a morphism of MV-algebras,

ψ
(
φM1(x)

)
= ψ

( n⊕
i=1

(x2i 	 x2i−1)
)

=
n⊕
i=1

(
ψ(x2i)	 ψ(x2i−1)

)
.

On the other hand, since ∇(ψ) is a morphism of Boolean algebras,

∇(ψ)(x) =
(∇(ψ)(x2) \ ∇(ψ)(x1)

)∨̇ . . . ∨̇(∇(ψ)(x2n) \ ∇(ψ)(x2n−1)
)
.

Since∇(ψ) is an extension of the mapping ψ, for all y ∈M1 we have∇(ψ)(y) = ψ(y)
and hence

∇(ψ)(x) =
(
ψ(x2) \ ψ(x1)

)∨̇ . . . ∨̇(ψ(x2n) \ ψ(x2n−1)
)
.

Finally, by the definition of φM2

φM2

(∇(ψ)(x)
)

=
n⊕
i=1

(
ψ(x2i)	 ψ(x2i−1)

)
.

�

Proposition 19. For every morphism ψ : M1 → M2 of MV-algebras, ∇(ψ) :
B(M1)→ B(M2) is a weak morphism of MV-pairs (B(M1), G(M1)), (B(M2), G(M2)).

Proof. The condition (1) of Definition 15 is automatically satisfied.
To prove condition (3) of Definition 15, let x, y ∈ B1 be such that x ∼G(M1) y.

By the definition of G(M1), this is equivalent with φM1(x) = φM1(y). We need to
prove that ∇(ψ)(x) ∼G2 ∇(ψ)(y), that means,

φM2

(∇(ψ)(x)
)

= φM2

(∇(ψ)(y)
)
.
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Clearly, this follows from φM1(x) = φM1(y) by Lemma 18:

φM2

(∇(ψ)(x)
)

= ψ
(
φM1(x)

)
= ψ

(
φM2(x)

)
= φM2

(∇(ψ)(y)
)
.

�

There exists a premorphism of MV-pairs that is not a weak morphism, as the
following example shows.

Example 20. Consider the MV-pairs (22,Aut(22)) and (23,Aut(23)). Let ψB be
any injective morphism of Boolean algebras ψB : 22 → 23. Since Ker(ψB) = {0},
ψB is a premorphism of MV-pairs.

Suppose that ψB is a weak morphism. By Proposition 19, ∆(ψB) : 22/Aut(22)→
23/Aut(23) is then a morphism of effect algebras. However, 22/Aut(22) is a 3-
element chain and 23/Aut(23) is a 4-element chain, and it is easy to check that
there is no such morphism of effect algebras.

6. Morphisms of MV-pairs

In this section, we will define a notion of morphism of MV-pairs. A morphism
of MV-pairs is a premorphism of MV-pairs satisfying an additional condition; we
need this condition to prove that ∆(ψB) is a morphism of MV-algebras. We also
prove that for every morphism ψ of MV-algebras, ∇(ψ) is a morphism of MV-pairs.

Definition 21. Let ψB be a weak morphism of MV-pairs (B1, G1), (B2, G2). We
say that ψB is a morphism of MV-pairs iff

(4) For all x, y ∈ B1 and f2 ∈ G2 there exists f1 ∈ G1 such that

[ψB(x) ∧ f2(ψB(y))]G2 ≤ [ψB(x ∧ f1(y))]G2

Lemma 22. Let M1,M2 be MV-algebras, let α : M1 →M2 be a morphism of effect
algebras. Suppose that, for all x, y ∈ M1, α(u) ∧ α(v) ≤ α(u ∧ v). Then α is a
morphism of MV-algebras.

Proof. It suffices to prove that α preserves ∧. Since α is a morphism of effect
algebras, α is isotone. Therefore, α(u) ∧ α(v) ≥ α(u ∧ v) and α(u) ∧ α(v) =
α(u ∧ v). �

Theorem 23. Let ψB be a morphism of MV-pairs (B1, G1), (B2, G2). Then ∆(ψB)
is a morphism of MV-algebras.

Proof. By Proposition 17, ∆(ψB) is a morphism of effect algebras. By Lemma 22,
it suffices to prove that for all x, y ∈ B1,

∆(ψB)([x]G1) ∧∆(ψB)([y]G1) ≤ ∆(ψB)([x]G1 ∧ [y]G1).

By definition of ∆(ψB),

∆(ψB)([x]G1) ∧∆(ψB)([y]G1) = [ψB(x)]G2 ∧ [ψB(y)]G2 .

By Theorem 10 (c) and (d), there is m ∈ max(LG2(ψB(x), ψB(y))) such that

[ψB(x)]G2 ∧ [ψB(y)]G2 = [m]G2 .

As m ∈ LG2(ψB(x), ψB(y)), there is f2 ∈ G2 such that

m = ψB(x) ∧ f2(ψB(y)).

By condition (4), there is f1 ∈ G1 such that

[m]G2 ≤ [ψB(x ∧ f1(y))]G2 .
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By definition of ∆(ψB),

[ψB(x ∧ f1(y))]G2 = ∆(ψB)([x ∧ f1(y)]G1).

Since [x]G1 , [y]G1 ≥ [x ∧ f1(y)]G1 ,

[x]G1 ∧ [y]G1 ≥ [x ∧ f1(y)]G1 .

Since ∆(ψB) is isotone,

∆(ψB)([x]G1 ∧ [y]G1) ≥ ∆(ψB)([x ∧ f1(y)]G1).

Moreover, as
∆(ψB)([x ∧ f1(y)]G1) ≥ [m]G2

and
[m]G2 = [ψB(x)]G2 ∧ [ψB(y)]G2 = ∆(ψB)([x]G1) ∧∆(ψB)([y]G1),

we see that

∆(ψB)([x]G1 ∧ [y]G1) ≥ ∆(ψB)([x]G1) ∧∆(ψB)([y]G1).

By Lemma 22 and Theorem 23, this is implies that ∆(ψB) is a morphism of MV-
algebras. �

We need to prove that for a morphism ψ of MV-algebras, ∇(ψ) is a morphism of
MV-pairs. The proof is divided to a sequence of lemmas that will be useful later.

Let ψ : M1 → M2 be a morphism of effect algebras. Let us define a mapping
ψ̂ : B(M1)/G(M1)→ B(M2)/G(M2) by

ψ̂([a]G(M1)) = [ψ(φM1(a))]G(M2)

Lemma 24. Let ψ : M1 → M2 be a morphism of MV-algebras. Consider (see
Theorem 11) the pair of isomorphisms of MV-algebras βM1 , βM2 , where each βMi :
B(Mi)/G(Mi)→Mi is given by

βMi
([a]G(Mi)) = φMi

(a).

The diagram

M1 B(M1)/G(M1)

M2 B(M2)/G(M2)

βM1

βM2

ψ ψ̂

commutes.

Proof. We see that
ψ(βM1([a]G(M1))) = ψ(φM1(a))

and that

βM2(ψ̂([a]G(M1))) = βM2([ψ(φM1(a))]G(M2)) = φM2(ψ(φM1(a))).

However, ψ(φM1(a)) ∈M2 and φM2 is the identity on M2, so

φM2(ψ(φM1(a))) = ψ(φM1(a)).

�

Corollary 25. ψ̂ is a morphism of MV-algebras.
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Proof. ψ̂ = β−1
M2
◦ ψ ◦ βM1 . �

Lemma 26. Let ψ : M1 →M2 be a morphism of MV-algebras. For all a ∈ B(M1),

[∇(ψ)(a)]G(M2) = ψ̂([a]G(M1)).

Proof. We need to prove

[∇(ψ)(a)]G(M2) = [ψ(φM1(a))]G(M2).

By definition of G(M2), this is equivalent to

φM2

(∇(ψ)(a)
)

= φM2

(
ψ
(
φM1(a)

))
.

Since φM2 is the identity on M2,

φM2

(
ψ
(
φM1(a)

))
= ψ

(
φM1(a)

)
.

It remains to prove
φM2

(∇(ψ)(a)
)

= ψ
(
φM1(a)

)
,

but this is clear by Lemma 18. �

Corollary 27. For every morphism of MV-algebras ψ : M1 →M2, ψ̂ = ∆(∇(ψ)).

Proof. Let [a] ∈ B(M1)/G(M1). By definition of ∆,

∆(∇(ψ))([a]G(M1)) = [∇(ψ)(a)]G(M2).

By Lemma 26,
[∇(ψ)(a)]G(M2) = ψ̂([a]G(M1)).

�

Theorem 28. For every morphism of MV-algebras ψ : M1 → M2, ∇(ψ) is a
morphism of MV-pairs (B(M1), G(M1)), (B(M2), G(M2)).

Proof. We have already proved (Proposition 19) that ∇(ψ) is a weak morphism. It
remains to prove the condition (4) of Definition 21.

Let x, y ∈ B(M1), let f2 ∈ G(M2). Take x ∧ f1(y) ∈ max(L(x, y)). By Theo-
rem 10,

[x ∧ f1(y)]G(M1) = [x]G(M1) ∧ [y]G(M1).

Applying Lemma 26 and Corollary 25, we obtain

[∇(ψ)(x ∧ f1(y))]G(M2) = ψ̂([x ∧ f1(y)]G(M1)) = ψ̂([x]G(M1) ∧ [y]G(M1)) =

ψ̂([x]G(M1)) ∧ ψ̂([y]G(M1)) = [∇(ψ)(x)]G(M2) ∧ [∇(ψ)(y)]G(M2)

Obviously,
[∇(ψ)(x)]G(M2) ≥ [∇(ψ)(x) ∧ f2(∇(ψ)(y))]G(M2)

and

[∇(ψ)(y)]G(M2) = [f2(∇(ψ)(y))]G(M2) ≥ [∇(ψ)(x) ∧ f2(∇(ψ)(y))]G(M2).

Therefore,

[∇(ψ)(x)]G(M2) ∧ [∇(ψ)(y)]G(M2) ≥ [∇(ψ)(x) ∧ f2(∇(ψ)(y))]G(M2).

�
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7. Categorical topics

In this section, we prove that the class of MV-pairs equipped with morphisms of
MV-pairs in the sense of 21 forms a category and that ∆ and ∇ are functors.

Lemma 29. Let ψB be a morphism of MV-pairs (B1, G1)→ (B2, G2). Let y ∈ B1,
f2 ∈ G2. There exists f1 ∈ G1 such that

[f2(ψB(y))]G2 ≤ [ψB(f1(y))]G2

Proof. Put x = 1 in condition (4). �

Proposition 30. The class of MV-pairs, equipped with morphisms of MV-pairs,
forms a category.

Proof. We need to prove that a composition of morphisms of MV-pairs is a mor-
phism of MV-pairs.

Let

ψ1
B : (B1, G1)→ (B2, G2)

ψ2
B : (B2, G2)→ (B3, G3)

be morphisms of MV-pairs. Clearly, ψ2
B ◦ ψ1

B satisfies the condition (1).
For the proof of condition (3), let x, y ∈ B1. We need to prove that x ∼G1 y

implies that
ψ2
B(ψ1

B(x)) ∼G3 ψ
2
B(ψ1

B(y)).
This follows easily from the fact that ψ1

B , ψ
2
B satisfy the condition (3).

To prove condition (4), let x, y ∈ B1 and let f3 ∈ G3. We need to prove that
there exists an f1 ∈ G1 such that

[ψ2
B(ψ1

B(x)) ∧ f3(ψ2
B(ψ1

B(y)))]G3 ≤ [ψ2
B(ψ1

B(x ∧ f1(y)))]G3 .

Since ψ2
B satisfies the condition (4), ψ1

B(x), ψ1
B(y) ∈ B2 and f3 ∈ G3 imply that

there is f2 ∈ G2 such that

[ψ2
B(ψ1

B(x)) ∧ f3(ψ2
B(ψ1

B(y)))]G3 ≤ [ψ2
B(ψ1

B(x) ∧ f2(ψ1
B(y)))]G3 .

By Lemma 29, there is f1 ∈ G1 such that

[f2(ψ1
B(y))]G2 ≤ [ψ1

B(f1(y))]G2 .

By Theorem 23, ∆(ψ2
B) : B2/G2 → B3/G3 is a morphism of MV-algebras. In

particular, ∆(ψ2
B) is an isotone mapping, hence

∆(ψ2
B)([f2(ψ1

B(y))]G2) ≤ ∆(ψ2
B)([ψ1

B(f1(y))]G2),

that means,
[ψ2
B(f2(ψ1

B(y)))]G3 ≤ [ψ2
B(ψ1

B(f1(y)))]G3 .

This implies that

[ψ2
B(ψ1

B(x)) ∧ ψ2
B(f2(ψ1

B(y)))]G3 ≤ [ψ2
B(ψ1

B(x)) ∧ ψ2
B(ψ1

B(f1(y)))]G3 .

Since ψ1
B and ψ2

B are morphisms of Boolean algebras, we see that

[ψ2
B(ψ1

B(x)) ∧ ψ2
B(ψ1

B(f1(y)))]G3 = [ψ2
B(ψ1

B(x ∧ f1(y)))]G3 .

�

For an MV-algebra M , let us write ∇(M) = (B(M), G(M)). For an MV-pair
(B,G) let us write ∆(B,G) = B/G.
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Theorem 31. ∆ is a functor.

Proof. Obviously, the identity morphisms are preserved.
Let

ψ1
B : (B1, G1)→ (B2, G2),

ψ2
B : (B2, G2)→ (B3, G3)

be morphisms of MV-pairs.
By Proposition 30, ψ2

B ◦ ψ1
B is a morphism of MV-pairs. Moreover, by Theo-

rem 23,

∆(ψ1
B) : ∆(B1, G1)→ ∆(B2, G2),

∆(ψ2
B) : ∆(B2, G2)→ ∆(B3, G3) and

∆(ψ2
B ◦ ψ1

B) : ∆(B1, G1)→ ∆(B3, G3)

are morphisms in the category of MV-algebras.
We need to prove that ∆(ψ2

B ◦ ψ1
B) = ∆(ψ2

B) ◦∆(ψ1
B).

Let [x]G1 ∈ ∆(B1, G1) = B1/G1. Then

∆(ψ2
B ◦ ψ1

B)([x]G1) = [ψ2
B(ψ1

B(x))]G3

and

(∆(ψ2
B) ◦∆(ψ1

B))([x]G1) = ∆(ψ2
B)(∆(ψ1

B)([x]G1)) =

= ∆(ψ2
B)([ψ1

B(x)]G2) = [ψ2
B(ψ1

B(x))]G3 .

�

Theorem 32. ∇ is a faithful functor.

Proof. Obviously, the identity morphisms are preserved. Let

ψ1 : M1 →M2,

ψ2 : M2 →M3

be morphisms of MV-algebras. Then ψ2 ◦ ψ1 : M1 → M3 is a morphism of MV-
algebras. Moreover, by Theorem 28,

∇(ψ1) : ∇(M1)→ ∇(M2),

∇(ψ2) : ∇(M2)→ ∇(M3) and

∇(ψ2 ◦ ψ1) : ∇(M1)→ ∇(M3)

are morphisms of MV-pairs.
We need to prove that ∇(ψ2 ◦ ψ1) = ∇(ψ2) ◦ ∇(ψ1). Essentially, this follows

from the fact that B is a functor from the category of bounded distributive lattices
to the category of Boolean algebras. This is a well-known fact. We include the
simple proof just for the convenience of the reader.

Let x ∈ B(M1), let (xi)2n
i=1 be its M1-chain representation:

x = (x2 \ x1)∨̇ · · · ∨ (x2n \ x2n−1).

Then

∇(ψ2 ◦ ψ1) =
(
ψ2

(
ψ1(x2)

) \ ψ2

(
ψ1(x1)

))∨̇ . . . ∨̇(ψ2

(
ψ1(x2n)

) \ ψ2

(
ψ1(x2n−1)

))
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and (∇(ψ2) ◦ ∇(ψ1)
)
(x) = ∇(ψ2)

(∇(ψ1)(x)
)

=

=∇(ψ2)
(∇(ψ1)

(
(x2 \ x1)∨̇ . . . ∨̇(x2n \ x2n−1)

))
=

=∇(ψ2)
((
ψ1(x2) \ ψ1(x1)

)∨̇ . . . ∨̇(ψ1(x2n) \ ψ1(x2n−1)
))

=

=
(
ψ2

(
ψ1(x2)

) \ ψ2

(
ψ1(x1)

))∨̇ . . . ∨̇(ψ2

(
ψ1(x2n)

) \ ψ2

(
ψ1(x2n−1)

))
To prove that ∇ is faithful, let M1,M2 be MV-algebras. We need to prove

that the mapping ∇M1,M2 : Hom(M1,M2) → Hom(∇(M1),∇(M2)) is injective.
Let ψ1, ψ2 ∈ Hom(M1,M2) be such that ∇(ψ1) = ∇(ψ2). Since, for every ψ ∈
Hom(M1,M2), ∇(ψ) is an extension of ψ from M1 to B(M1), ψ1 = ψ2. �

Theorem 33. For every MV-algebra M , write ηM : M → B(M)/G(M), ηM =
β−1
M . Then

η : 1MV ≈ ∆∇
is a natural equivalence, where 1MV is the identity functor on the category of MV-
algebras.

Proof. ηM is an isomorphism of MV-algebras. By Lemma 24 and Corollary 27, the
diagram

M1 ∆(∇(M1))

M2 ∆(∇(M2))

ηM1

ηM2

ψ ∆(∇(ψ))

commutes. �
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