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Abstract

Computability logic is a formal theory of computability. The earlier

article “Introduction to cirquent calculus and abstract resource semantics”

by Japaridze proved soundness and completeness for the basic fragment

CL5 of computability logic. The present article extends that result to the

more expressive cirquent calculus system CL6, which is a conservative

extension of both CL5 and classical propositional logic.
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1 Introduction

Computability logic(CoL), introduced by G. Japaridze [1]-[3], is a semantical
and mathematical platform for redeveloping logic as a formal theory of com-
putability. Formulas in CoL represent interactive computational problems, un-
derstood as games between a machine and its environment (symbolically named
as ⊤ and ⊥, respectively); logical operators stand for operations on such prob-
lems; “truth” of a problem/game means existence of an algorithmic solution, i.e.
⊤’s effective winning strategy; and validity of a logical formula is understood
as such truth under every particular interpretation of atoms. The approach in-
duces a rich collection of (old or new) logical operators. Among those, relevant
to this paper are ¬ (negation), ∨ (parallel disjunction) and ∧ (parallel conjunc-
tion). Intuitively, ¬ is a role switch operator: ¬A is the game A with the roles
of ⊤ and ⊥ interchanged (⊤’s legal moves and wins become those of ⊥, and vice
versa). Both A ∧B and A ∨B are games playing which means playing the two
components A and B simultaneously (in parallel). In A ∧B, ⊤ is the winner if
it wins in both components, while in A ∨ B winning in just one component is
sufficient. The symbols ⊤ and ⊥, together with denoting the two players, are
also used to denote two special (the simplest) sorts of games. Namely, ⊤ is a
moveless (“elementary”) game automatically won by the player ⊤, and ⊥ is a
moveless game automatically won by ⊥.

Cirquent calculus is a refinement of sequent calculus. Unlike the more tra-
ditional proof theories that manipulate tree-like objects (formulas, sequents,
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hypersequents, etc.), cirquent calculus deals with graph-style structures termed
cirquents, with its main characteristic feature thus being allowing to explicitly
account for sharing subcomponents between different subcomponents. The ap-
proach was introduced by Japaridze [4] as a new deductive tool for CoL and
was developed later in [5]-[7]. The paper [4] constructed a cirquent calculus
system CL5 for the basic (¬,∧,∨)-fragment of CoL, and proved its soundness
and completeness with respect to the semantics of CoL.

The atoms of CL5 represent computational problems in general, and are
said to be general atoms. The so called elementary atoms, representing compu-
tational problems of zero degree of interactivity (such as the earlier-mentioned
games ⊤ and ⊥) and studied in other pieces of literature on CoL, are not
among them. Thus, CL5 only describes valid computability principles for gen-
eral problems. This is a significant limitation of expressive power. For example,
the problem A → A∧A is not valid in CoL when A is a general atom, but be-
comes valid (as any classical tautology for that matter) when A is elementary.
So the language of CL5 naturally calls for an extension.

Japaridze [4] claimed without a proof that the soundness and completeness
result for CL5 could be extended to the more expressive cirquent calculus sys-
tem CL6 (reproduced later), which is a conservative extension of both CL5
and classical propositional logic. This article is devoted to a soundness and
completeness proof for system CL6, thus contributing to the task of extending
the cirquent-calculus approach so as to accommodate incrementally expressive
fragments of CoL.

2 Preliminaries

This paper primarily targets readers already familiar with Japaridze [4], and can
essentially be treated as a technical appendix to the latter. However, in order
to make it reasonably self-contained, in this section we reproduce the basic
concepts from [4] on which the later parts of the paper will rely. An interested
reader may consult [4] for additional explanations, illustrations and examples.

The language ofCL6 is more expressive than that ofCL5 in that, along with
the old atoms of CL5 called general, it has an additional sort of atoms called
elementary, including non-logical elementary atoms and logical atoms⊤ and
⊥. On the other hand, all general atoms are non-logical. We use the uppercase
letters P,Q,R, S as metavariables for general atoms, and the lowercase p, q, r, s
as metavariables for non-logical elementary atoms. A CL6-formula is built
from atoms in the standard way using the connectives ¬,∨,∧, with F → G

understood as an abbreviation for ¬F ∨ G and ¬ limited only to non-logical
atoms, where ¬¬F is understood as F , ¬(F ∧ G) as ¬F ∨ ¬G, ¬(F ∨ G) as
¬F ∧ ¬G, ¬⊤ as ⊥, and ¬⊥ as ⊤. An atom P (resp. p) and its negation ¬P
(resp. ¬p) is called a literal, and the two literals are said to be opposite. A
CL6-formula is said to be elementary iff it does not contain general atoms.
Throughout the rest of this paper, unless otherwise specified, by an “atom” or
a “formula” we mean one of the language of CL6.
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Where k ≥ 0, a k−ary pool is a sequence 〈F1, F2, . . . , Fk〉 of k formulas.
Since we may have Fi = Fj for some i 6= j in such a sequence, we use the term
oformula to refer to a formula together with a particular occurrence of it in the
pool. For example, the pool 〈E,F,G,E〉 has three formulas but four oformulas.
Similarly, the terms “oliteral”,“oatom”, etc. will be used in this paper to refer
to the corresponding entities together with particular occurrences. A k−ary
structure is a finite sequence St= 〈Γ1, . . . ,Γm〉, where m ≥ 0 and each Γi, said
to be a group of St, is a subset of {1, . . . , k}. Again, to differentiate between a
group as such and a particular occurrence of a group in the structure, we use the
term ogroup for the latter. For example, the structure 〈{2, 3}, {2, 3}, {1, 4}, ∅〉
has three groups but four ogroups.

A k-ary (k ≥ 0) cirquent is a pair C = (StC ,PlC), where StC , called the
structure of C, is a k-ary structure, and PlC , called the pool of C, is a k-ary
pool. An ogroup of such a C will mean an ogroup of StC , and an oformula of C
will mean an oformula of PlC . Usually, we understand the groups of a cirquent
as sets of its oformulas rather than sets of the corresponding ordinal numbers.
Thus, if PlC = 〈E,F,G,E〉 and Γ = {2, 4}, we would think of Γ simply as the
set {F,E}, and say that Γ contains F and E. When both the pool and the
structure of a cirquent C are empty, i.e. C = (〈〉, 〈〉), we call it the empty
cirquent.

Rather than writing cirquents as ordered tuples in the above-described style,
we prefer to represent them through (and identify them with) diagrams. Below
is such a representation for the cirquent whose pool is 〈E,F,G,H〉 and whose
structure is 〈{1, 2}, {2}, {3, 4}〉.

E F G H

❅❅ ��•
❅❅ ❅❅•

��•

The top level of a diagram thus indicates the oformulas of the cirquent, and the
bottom level gives its ogroups. An ogroup Γ is represented by a •, and the lines
connecting Γ with oformulas, called arcs, are pointing to the oformulas that Γ
contains. Finally, we put a horizontal line at the top of the diagram to indicate
that this is one cirquent rather than two or more cirquents put together.

A model is a function M that assigns a truth value — true (1) or false (0)
— to each atom, with ⊤ being always assigned true and ⊥ false, and extends
to compound formulas in the standard classical way. Let M be a model, and
C a cirquent. We say that a group Γ of C is true in M iff at least one of its
oformulas is so. And C is true in M if every group of C is so. Otherwise, C is
false. Finally, C or a group Γ of it is a tautology iff it is true in every model.

A substitution is a function σ that sends every general atom P to some
formula σ(P ), and sends every elementary atom to itself. If, (for every gen-
eral atom P ), such a σ(P ) is an atom, then σ is said to be an atomic-level
substitution.
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Let A and B be cirquents. We say that B is an instance of A iff B = σ(A)
for some substitution σ, where σ(A) is the result of replacing in all oformulas
of A every (general or elementary) atom α by σ(α); and B is an atomic-level
instance of A iff B = σ(A) for some atomic-level substitution σ.

A cirquent is said to be binary iff no general atom has more than two
occurrences in it. A binary cirquent is said to be normal iff, whenever it has
two occurrences of a general atom, one occurrence is negative and the other is
positive. A binary tautology (resp. normal binary tautology) is a binary
(resp. normal binary) cirquent that is a tautology.

The set of rules of CL6 is obtained from that of CL5 by adding to it ⊤
as an additional axiom, plus the rule of contraction limited only to elementary
formulas. Below we reproduce those rules from [4], followed by illustrations.

Axioms (A): Axioms are “rules” with no premises. There are three sorts
of axioms in CL6. The first one is the empty cirquent. The second one is any
cirquent that has exactly two oformulas F and ¬F , for some arbitrary formula
F , and an ogroup that contains F and ¬F . In other words, this is the cirquent
(〈{1, 2}〉, 〈F,¬F 〉). The third one is a cirquent that has exactly one oformula ⊤
and one ogroup that contains ⊤, i.e. the cirquent (〈{1}〉, 〈⊤〉).

Mix (M): According to this rule, the conclusion can be obtained by simply
putting any two cirquents (premises) together, thus creating one cirquent out
of two.

Exchange (E): This rule comes in two versions: oformula exchange
and ogroup exchange. The conclusion of oformula exchange is obtained by
interchanging in the premise two adjacent oformulas E and F , and redirecting
to E (resp. F ) all arcs that were originally pointing to E (resp. F ). Ogroup
exchange is the same, with the only difference that the objects interchanged are
ogroups.

Weakening (W): This rule also comes in two versions: ogroup weak-
ening and pool weakening. A conclusion of ogroup weakening is obtained by
adding in the premise a new arc between an existing ogroup and an existing
oformula. As for pool weakening, a conclusion is obtained through inserting a
new oformula anywhere in the pool of the premise.

Duplication (D): A conclusion of this rule is obtained by replacing in the
premise some ogroup Γ by two adjacent ogroups that, as groups, are identical
with Γ.

Contraction (C): According to this rule, if a cirquent (a premise) has two
adjacent elementary oformulas F (the first), F (the second) that are identical,
then a conclusion can be obtained by merging F ,F into F and redirecting to
the latter all arcs that were originally pointing to the first or the second F .

∨−introduction (∨): For the convenience of description, we explain this
rule in the bottom-up view. According to this rule, if a cirquent (the conclusion)
has an oformula E∨F that is contained by at least one ogroup, then the premise
can be obtained by splitting the original E ∨ F into two adjacent oformulas E
and F , and redirecting to both E and F all arcs that were originally pointing to
A ∨B.

∧−introduction (∧): This rule, again, is more conveniently described in
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the bottom-up view. According to this rule, if a cirquent (the conclusion) has
an oformula E ∧ F that is contained by at least one ogroup, then the premise
can be obtained by splitting the original E ∧ F into two adjacent oformulas
E and F , and splitting every ogroup Γ that originally contained E ∧ F into
two adjacent ogroups ΓE and ΓF , where ΓE contains E (but not F ), and ΓF

contains F (but not E), with all other (6= E ∧ F ) oformulas of Γ contained by
both ΓE and ΓF .

Below we provide illustrations for all rules, in each case an abbreviated
name of the rule standing next to the horizontal line separating the premises
from the conclusions. Our illustrations for the axioms (the “A” labeled rules)
are specific cirquents or schemate of such; our illustrations for all other rules
are merely examples chosen arbitrarily. Unfortunately, no systematic ways for
schematically representing cirquent calculus rules have been elaborated so far.
This explains why we appeal to examples instead.

A
F ¬F

A

❅❅ ��•

⊤
A

•

E

•
M

F G

❅❅��
•

E

•

F G

❅❅��
•

oformula exchange

E F G

•

◗
◗•

◗
◗•

E
F E G

• • •

✑
✑
◗
◗

PPPP

ogroup exchange

E F G

•

◗
◗•

◗
◗•

E
E F G

• • •

✑
✑
◗
◗

◗
◗

ogroup weakening

F G H

• •

✑
✑ •

W
F G H

• •

✑
✑

•

◗
◗

pool weakening

F H

•

PPPP•
W

F G H

•

PPPP•

E F G
◗
◗• •

D
E F G

• • •

✑
✑
◗
◗

F required to be

elementary

E F F

•

✑
✑

◗
◗•

C
E F

• •

✏✏✏✏

H E F H

•
��

✟✟✟
❍❍❍❅❅•

∨
H E ∨ F H

•

✟✟✟
❍❍

•

F E F G
✑✑❏❏

✟✟✟❆❆
✟✟✟��

• • • • •
∧

F E ∧ F G

• •

✑
✑•

✟✟✟
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The above are all eight rules of CL6. As a warm-up exercise, the reader
may try to verify that CL6 proves p → p ∧ p but does not prove P → P ∧ P .

As an aside, the earlier mentioned system CL5 differs from CL6 in that
the ⊤−axiom and the contraction rules are absent there. Also, as noted, the
language of CL5 does not allow elementary atoms. In next section we will see
that our proofs are carried out purely syntactically, based on the soundness and
completeness of system CL2 (introduced in Japaridze [8]) with respect to the
semantics of CoL. That is to say we do not directly use the semantics of CoL.
So, below we only explain what the language of CL2 and its rules are, without
providing any formal definitions (on top of the brief informal explanations given
in Section 1) of the underlying CoL semantics. If necessary, such definitions can
be found in [3].

The language of CL2 is more expressive than the one in which formulas of
CL6 are written because, on top of ¬,∨,∧, it has the binary connectives ⊓ and
⊔, called choice operators. The CL2-formulas are built from atoms (including
general atoms and elementary atoms) in the standard way using the connectives
¬,∨,∧,⊓,⊔. As in the case of CL6-formulas, the operator ¬ is only allowed to
be applied to non-logical atoms. A CL2-formula is said to be elementary
iff it contains neither general atoms nor ⊓,⊔. A positive occurrence (resp.
negative occurrence) of an atom is one that is not (resp. is) in the scope of ¬.
A surface occurrence of a subformula of a CL2-formula is an occurrence that
is not in the scope of ⊓,⊔. A general literal is P or ¬P , where P is a general
atom. The elementarization of a CL2-formula A is the result of replacing in
A every positive surface occurrence of each general literal by ⊥, every surface
occurrence of each ⊔−subformula by ⊥, and every surface occurrence of each
⊓−subformula by ⊤. A CL2-formula is said to be stable iff its elementarization
is a tautology of classical logic.

CL2 has the following three inference rules.
Rule (a):

−→
H 7→ F , where F is stable and

−→
H is the smallest set of formulas

such that, whenever F has a surface occurrence of a subformula G1 ⊓ G2, for
both i∈ {1,2},

−→
H contains the result of replacing that occurrence in F by Gi.

Rule (b): H 7→ F , where H is the result of replacing in F a surface
occurrence of a subformula G1 ⊔G2 by G1 or G2.

Rule (c): H 7→ F , where H is the result of replacing in F two — one
positive and one negative — surface occurrences of some general atom by a
non-logical elementary atom that does not occur in F .

The set
−→
H of the premises of Rule (a) may be empty, in which case the

rule (its conclusion, that is) acts like an axiom. Otherwise, the system has no
(other) axioms.

3 Soundness and completeness of CL6

In what follows, we may use names such as (AME) to refer to the subsystem of
CL6 consisting only of the rules whose names are listed between the parentheses.
So, (AME) refers to the system that only has axioms, exchange and mix. The
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same notation can be used next to the horizontal line separating two cirquents to
indicate that the lower cirquent (“conclusion”) can be obtained from the upper
cirquent (“premise”) by whatever number of applications of the corresponding
rules. The following Lemmas 1, 2, 3, 4 are precisely Lemmas 4, 5, 10 and 11 of
[4], so we state them without proofs (such proofs are given in [4]).

Lemma 1 All of the rules of CL6 preserve truth in the top-down direction.
Taking no premises, (the conclusion of) axioms are thus tautologies.

Lemma 2 The rules of mix, exchange, duplication, contraction, ∨-introduction
and ∧-introduction preserve truth in the bottom-up direction as well.

Lemma 3 The rules of mix, exchange, duplication, ∨-introduction and ∧-introduction
preserve binarity and normal binarity in both top-down and bottom-up direc-
tions.

Lemma 4 Weakening preserves binarity and normal binarity in the bottom-up
direction.

Lemma 5 If CL6 proves a cirquent C, then it also proves every instance of C.

Proof. Let T be a proof tree of an arbitrary cirquent C, C′ be an arbitrary
instance of C, and σ be a substitution with σ(C) = C′. Replace every oformula
F of every cirquent of T by σ(F ). It is not hard to see that the resulting tree
T ′, which uses exactly the same rules as T does, is a proof of C′.

Lemma 6 Contraction preserves binarity and normal binarity in both top-down
and bottom-up directions.

Proof. This is so because contraction limited to elementary formulas can
never affect what general atoms occur in a cirquent and how many times they
occur.

Lemma 7 A cirquent is provable in CL6 iff it is an instance of a binary tau-
tology.

Proof. (⇒) Consider an arbitrary cirquent A provable in CL6. By induction
on the height of its proof tree, we want to show that A is an instance of a binary
tautology.

The above is obvious when A is an axiom.
Suppose now A is derived by exchange from B. Let us just consider oformula

exchange, with ogroup exchange being similar. By the induction hypothesis, B
is an instance of a binary tautologyB′. Let A′ be the result of applying exchange
to B′ “at the same place” as it was applied to B when deriving A from it, as
illustrated in the following example:
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P s ¬P P ∨ r ¬P ∧ ¬r

✔
✔✔

✚
✚

✚✚

❝
❝
❝

✧
✧

✧✧
s s

E
P ¬P s P ∨ r ¬P ∧ ¬r

✔
✔✔

✑
✑

✑✑

❍❍❍❍❍

✧
✧

✧✧s s

B :

A :

E s ¬E R ∨ r ¬R ∧ ¬r

✔
✔✔

✚
✚

✚✚

❝
❝
❝

✧
✧

✧✧
s s

E
E ¬E s R ∨ r ¬R ∧ ¬r

✔
✔✔

✑
✑

✑✑

❍❍❍❍❍

✧
✧

✧✧s s

B′ :

A′ :

Obviously A will be an instance of A′. It remains to note that, by Lemmas 1
and 3, A′ is a binary tautology.

The rules of duplication, ∨-introduction and ∧-introduction can be handled
in a similar way.

Next, suppose A is derived from B and C by mix. By the induction hypoth-
esis, B and C are instances of some binary tautologies B′ and C′, respectively.
We may assume that no general atom P occurs in both B′ and C′, for otherwise,
in one of the cirquents, rename P into another general atom Q different from
everything else. Let A′ be the result of applying mix to B′ and C′. By Lemmas
1 and 3, A′ is a binary tautology. And, as in the cases of the other rules, it is
evident that A is an instance of A′.

Suppose A is derived from B by weakening. If this is ogroup weakening,
A is an instance of a binary tautology for the same reason as in the case of
exchange, duplication, ∨-introduction or ∧-introduction. Assume now we are
dealing with pool weakening, so that A is the result of inserting a new oformula
F into B. By the induction hypothesis, B is an instance of a binary tautology
B′. Let P be a general atom not occurring in B′. And let A′ be the result
of applying weakening to B′ that inserts P “at the same place” into B′ as the
above application of weakening inserted F into B when deriving A. Obviously
A′ inherits binarity from B′; by Lemma 1, it inherits from B′ tautologicity as
well. And, for the same reason as in all previous cases, A is an instance of A′.

Finally, suppose A is derived from B by contraction. Then the contracted
formula F should be elementary. By the induction hypothesis, B is an instance
of a binary tautology B′. Let σ be a substitution such that B = σ(B′). And
let F ′

1, F
′

2 be two oformulas in B′ “at the same place” as F , F are in B, with
σ(F ′

1) = F and σ(F ′

2) = F . Let δ be the substitution such that, for any general
atom P , δ(P ) = σ(P ) if P occurs in F ′

1 or F ′

2, and δ(P ) = P otherwise. Thus,
δ(F ′

1) = δ(F ′

2) = F . And let B′′ = δ(B′). Obviously — for the same reasons
as in classical logic — substitution does not destroy tautologicity, so B′′ is
a tautology because B′ is so. Further, the substitution δ does not introduce
any new occurrences of general atoms, so it does not destroy the binarity of B′,
either. To summarize, B′′ is a binary tautology. Also, of course, B is an instance
of B′′. Notice that B′′ has F and F where B has the contracted oformulas F
and F . So, let A′ be the result of applying contraction to B′′ “at the same
place” as it was applied to B when deriving A from it, as illustrated in the
following example:
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P r ∧ s r ∧ s ¬P P ∨ q ¬P ∧ ¬q
❍❍❍❍

❅
❅

✑
✑

✑✑

◗
◗
◗◗

✧
✧

✧✧s s

C
P r ∧ s ¬P P ∨ q ¬P ∧ ¬q
❍❍❍❍

✑
✑

✑✑

◗
◗
◗◗

✧
✧

✧✧s s

B :

A :

R r ∧ s r ∧ s ¬R Q ∨ q ¬Q ∧ ¬q
❍❍❍❍

❅
❅

✑
✑

✑✑

◗
◗
◗◗

✧
✧

✧✧s s

C
R r ∧ s ¬R Q ∨ q ¬Q ∧ ¬q
❍❍❍❍

✑
✑

✑✑

◗
◗
◗◗

✧
✧

✧✧s s

B′′ :

A′ :

Obviously A will be an instance of A′. And, by Lemma 1 and Lemma 6, A′ is
a binary tautology.

(⇐) Consider an arbitrary cirquent A that is an instance of a binary tautol-
ogy A′. In view of Lemma 5, it would suffice to show that CL6 proves A′. We
construct a proof of A′, in the bottom-up fashion, as follows. Starting from A′,
we keep applying ∨-introduction and ∧-introduction until we hit an essentially
literal cirquent1 B. As in the proof of Theorem 6 of [4], such a cirquent B is
guaranteed to be a tautology, and A′ follows from it in (∨∧). Furthermore, in
view of Lemma 3, B is in fact a binary tautology. The tautologicity of B means
that every ogroup of it contains either a ⊤, or at least one pair of opposite (gen-
eral or elementary) non-logical oliterals. For each ogroup of B that contains
a ⊤, pick one occurrence of ⊤ and apply to B a series of weakenings to first
delete all arcs but the arc pointing to the chosen occurrence, and next delete all
homeless oformulas if any such oformulas are present. For each ogroup of the
resulting cirquent that contains a pair of opposite non-logical oliterals, pick one
such pair, and continue applying a series of weakenings, as in the proof of The-
orem 6 of [4], until a tautological cirquent C is hit with no homeless oformulas,
where every ogroup only has either a ⊤ or a pair of opposite non-logical oliter-
als. By Lemma 4, C remains binary. Our target cirquent A′ is thus derivable
from C in (W∨∧). Apply a series of contractions to C to separate all shared ⊤
and all shared elementary non-logical oliterals p or ¬p, as illustrated below; as a
result, we get a cirquent D which is still a binary tautology, but whose ogroups
no longer share any elementary oformulas.

P ¬P r ¬r ¬r r r ¬Q ¬r ¬s ¬s Q s s ⊤ ⊤ ⊤

❆
❆❆
✁

✁✁
❅
❅❅s s

❆
❆
✁
✁

s

✟✟✟✟✟s

✟✟✟✟
s

✑
✑

✑✑ s

✟✟✟✟✟ s s s

(C)

�
�� s

❅
❅❅s

P ¬P r ¬r r ¬Q ¬r ¬s Q s ⊤ ⊤

�
�� s

❅
❅❅

❅
❅❅s s

❆
❆
✁

✁
❆
❆
✁

✁
ss

✑
✑

✑✑s

✑
✑

✑

✑
✑

✑✑s s

◗
◗
◗◗ s

✁
✁
❆
❆

s s

D :

C :

It is easy to see that the binarity of D implies that there are no shared general
oliterals P or ¬P in it except the cases when they are shared by identical-content
ogroups. Applying to D a series of duplications, as illustrated below, yields a

1An essentially literal cirquent, defined in [4], is one every oformula of whose pool either
is an oliteral or is homeless.
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cirquent E that no longer has identical-content ogroups and hence no longer has
any shared oformulas.

P ¬P r ¬r ¬r r r ¬Q ¬r ¬s ¬s Q s s ⊤ ⊤ ⊤

❆
❆❆
✁

✁✁
❅
❅❅s s

❆
❆
✁
✁

s

✟✟✟✟✟s

✟✟✟✟
s

✑
✑

✑✑ s

✟✟✟✟✟ s ss

(D)

�
��s

E :

P ¬P r ¬r ¬r r r ¬Q ¬r ¬s ¬s Q s s ⊤ ⊤ ⊤

❆
❆❆
✁

✁✁
❅
❅❅s s

❆
❆
✁
✁

s

✟✟✟✟✟s

✟✟✟✟
s

✑
✑

✑✑ s

✟✟✟✟✟ s

�
�� s

❅
❅❅s s s

D :

A′ is thus derivable from E in (DCW∨∧). In turn, E is obviously provable in
(AME). So, CL6 proves A′.

Lemma 8 A cirquent is an instance of a binary tautology iff it is an atomic-
level instance of some normal binary tautology.

Proof. Our proof here almost literally follows the proof of Lemma 9 of [4].
The “if” part is trivial. For the “only if” part, assume A is an instance of a

binary tautology B. Let P1, . . . , Pn be all of the general atoms of B that have
two positive or two negative occurrences in B. Let Q1, . . . , Qn be any pairwise
distinct general atoms not occurring in B. Let C be the result of replacing in
B one of the two occurrences of Pi by Qi, for each i = 1, . . . , n. Then obviously
C is a normal binary cirquent, and B an instance of it. By transitivity, A (as
an instance of B) is also an instance of C.

We want to see that C is a tautology. Deny this. Then there is a classical
model M in which C is false. Let M ′ be the model such that:

• M ′ agrees with M on all atoms that are not among P1, . . . , Pn, Q1, . . . , Qn;

• for each i ∈ {1, . . . , n}, M ′(Pi) = M ′(Qi) =false if Pi and Qi are positive
in C; and M ′(Pi) = M ′(Qi) =true if Pi and Qi are negative in C.

By induction on complexity, it can be easily seen that, for every subformula
F of a formula of C, whenever F is false in M , so is it in M ′. This extends
from (sub)formulas to groups of C and hence C itself. Thus C is false in M ′

because it is false in M . But M ′ does not distinguish between Pi and Qi (any
1 ≤ i ≤ n). This clearly implies that C and B have the same truth value in M ′.
That is, B is false in M ′, which is however impossible because B is a tautology.
From this contradiction we conclude that C is a (normal binary) tautology.

Let σ be a substitution such that A = σ(C). Let σ′ be a substitution such
that, for each general atom P of C, σ′(P ) is the result of replacing in σ(P )
each occurrence of each general atom by a new general atom in such a way
that: no general atom occurs more than once in σ′(P ), and whenever P 6= Q,
no general atom occurs in both σ′(P ) and σ′(Q). Since C is a binary tautology
and is its own instance, by Lemma 7, CL6 proves C. Then, by Lemma 5,
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CL6 proves σ′(C) (an instance of C). In view of Lemma 1, we immediately get
that σ′(C) is a tautology. σ′(C) can also be easily seen to be a normal binary
cirquent, because C is so. Finally, with a little thought, A can be seen to be an
atomic-level instance of σ′(C).

Lemma 9 A CL6-formula F is provable in CL2 iff it is an instance of a binary
tautology.

Proof. Again, it should be acknowledged that the present proof very closely
follows the proof of Lemma 27 of [4], even though there are certain differences.

(⇒) Consider an arbitrary CL6-formula F provable in CL2. Fix a CL2-
proof of F in the form of a sequence 〈Fn, Fn−1, . . . , F1〉 of formulas, with F1 = F .
We may assume that this sequence has no repetitions or other redundancies. We
claim that, for each i with 1 ≤ i ≤ n, the following conditions are satisfied:

Condition 1: Fi does not contain ⊓,⊔.
Condition 2: Whenever Fi contains an elementary atom not occurring in

F , that atom is non-logical, and has exactly two — one positive and one negative
— occurrences in Fi.

Condition 3: If i < n, then Fi is derived from Fi+1 by Rule (c).
Condition 4: Fn is derived (from the empty set of premises) by Rule (a).
Condition 4 is obvious, because it is only Rule (a) that may take no premises.

That Conditions 1-3 are also satisfied can be verified by induction on i. For the
basis case of i = 1, Conditions 1 and 2 are immediate. F1 can not be derived
by Rule (b) because, by Condition 1, F1 does not contain any ⊔. Nor can it be
derived by Rule (a) unless n = 1, for otherwise either F1 would have to contain
a ⊓ (which is not the case according to Condition 1), or the proof of F would
have redundancies as F1 would not really need any premises. Thus, if 1 < n, the
only possibility for F1 is to be derived from F2 by Rule (c). For the induction
step, assume i < n and the above conditions are satisfied for Fi. According to
Condition 3, Fi is derived by Rule (c) from Fi+1 . This obviously implies that
Fi+1 inherits Conditions 1 and 2 from Fi. And that Condition 3 also holds for
Fi+1 can be shown in the same way as we did for F1.

As the conclusion of Rule (a) (Condition 4), Fn is stable. Let G be the
elementarization of Fn. The stability of Fn means that G is a tautology. Let
H be the result of replacing in G every occurrence of ⊤ and ⊥ (except those
inherited from F ) by a general atom, in such a way that different occurrences of
⊤, ⊥ are replaced by different atoms. In view of Condition 2 (applied to Fn), we
see that, on top of these new general atoms and the elementary atoms inherited
from F , the only additional atoms that H contains are elementary atoms with
exactly two — one positive and one negative — occurrences. Let H ′ be the
result of replacing in H every occurrence of every such elementary atom by a
general atom not occurring in H , in such a way that different elementary atoms
are replaced by different general atoms. Then it is not hard to see that H ′ is
binary and Fn is an instance of H ′. With Condition 3 in mind, by induction,
one can further see that the formulas Fn−1, Fn−2, . . . are also instances of
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H ′. Thus, F is an instance of H ′. It remains to show that H ′ is a tautology.
But this is indeed so because H ′ results from the tautological G by replacing
positive occurrences of ⊥ and replacing two — one positive and one negative —
occurrences of elementary atoms by general atoms. It is known from classical
logic that such replacements do not destroy truth and hence tautologicity of
formulas.

(⇐) Assume F is a CL6-formula which is an instance of a binary tautology
T . In view of Lemma 8, we may assume that T is normal and F is an atomic-
level instance of it. Let us call the general atoms that only have one occurrence
in T single, and the general atoms that have two occurrences married. Let σ
be the substitution with σ(T ) = F . Let G be the formula resulting from T by
the following steps: substituting each single atom P by σ(P ); substituting each
married atom Q by σ(Q) if σ(Q) is elementary; substituting each married atom
R by a non-logical elementary atom r not occurring in F if σ(R) is general. It
is clear that then F can be derived from G by a series of applications of Rule
(c), with each such application replacing two — a positive and a negative —
occurrences of some non-logical elementary atom r by σ(R). So, in order to
show that CL2 proves F , it would suffice to verify that G is stable and hence
it can be derived from the empty set of premises by Rule (a). But G is indeed
stable. To see this, consider the elementarization G′ of G. It results from T by
replacing the only occurrence of each single general atom by some elementary
atom, and doing the same with both occurrences of each married general atom.
In other words, G′ is an instance of T . Hence, as T is a tautology, so is G′,
meaning that G is stable.

Theorem 10 A formula is provable in CL6 iff it is valid in computability logic.

Proof. This theorem is an immediate corollary of Lemma 9, Lemma 7 and
the known fact (proven in [8]) that CL2 is sound and complete with respect to
the semantics of computability logic.
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