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Abstract

Modal logics reason about properties of relational structures, and such
properties are often characterized by axioms of modal logics. This con-
nection between properties of relational structures and axioms of modal
logics are called correspondence, and has been investigated well in the
classical setting.

The problem we consider is an intuitionistic version of this correspon-
dence. In particular, this paper considers which part of the correspondence
results known in classical setting is true for intuitionistic one.

We first define the notion of robustness of axioms so that an axiom
is robust if and only if its corresponding properties in classical and in-
tuitionistic semantics are the same. Next we give a syntactically defined
class of axioms, and prove that all axioms in this class are robust. This
result is an analogue of the classical result by Sahlqvist, and its proof is
partly based on a known proof of his theorem.

1 Introduction

1.1 Background and Main Result

Modal logics describe various properties of relational structures such as reflex-
ivity, transitivity, seriality, etc. These properties are often characterized by
axioms of modal logics. For example, reflexivity is characterized by axiom T
(Op — p) in the sense that a structure is reflexive if and only if it validates
this axiom. Similarly, transitivity and seriality are characterized by axioms 4
(Op — OOp) and D (Op — $p), respectively.

This relationship between properties and axioms is known as correspondence,
and has been investigated in the area of (classical) modal logic [5]. Correspon-
dence theory studies how modal axioms and properties of relational structures
are related to each other. It describes an intuitive meaning of a modal axiom in
terms of relational structures, and as a result we can know what kind of struc-
ture is implied by the modal axiom under consideration. Also, when we have
some property of relational structure we are interested in, from correspondence
theory we can know which axiom characterizes that property.



When reasoning about modal logics, we often find it helpful to move back
and forth between syntactic and semantic entities (modal axioms and relational
properties). An intuitionistic version of the correspondence theory will be use-
ful in understanding and developing intuitionistic modal logics. Unfortunately,
however, it seems that an intuitionistic version of the correspondence theory has
not been extensively studied before.

This paper considers correspondence in intuitionistic setting. In particular,
we consider which part of the existing classical correspondence results is also
true for intuitionistic one. More precisely, the problem we consider is as follows.
First, consider an axiom X we are interested in. Then, on the one hand, we
have a correspondent ¢ of X in classical modal logic. On the other hand, we
have another correspondent ¢, in intuitionistic modal logic. This paper studies
when the two properties ¢ and ) are the same.

For example, correspondence results for T, 4 and D mentioned above apply
to intuitionistic modal logic.> However, for axiom 5 ({p — OOp), it is not the
case. This axiom classically corresponds to Euclidean property,? but intuition-
istically it does not; in intuitionistic modal logic, there exists a non-Euclidean
frame satisfying 5 (such an example will appear in Section 3).

We have two technical contributions in this paper:

1. We introduce the notion of “robustness.” This notion is defined in a fairly
simple way, but still captures the “sameness” of the two correspondents
(one for classical, and the other for intuitionistic).

2. We give a sufficient condition for robustness. We define a class of axioms
in a syntactic way, and prove that all of its members are robust.

Behind this result there is a classical result known as Sahlqvist’s theorem.
This theorem gives a sufficient condition for axioms to correspond to a
first-order property [15]. The idea on which our result is based is similar
to the idea found in this classical result.

1.2 Organization of This Paper

Section 2 gives the foundation of our work. First we take a look at some pre-
vious approaches to Kripke semantics for intuitionistic modal logics, and then
introduce a semantics by Wolter and Zakharyaschev [21]. After that, in the first
part of Section 3, we discuss some examples of classical correspondence results
in intuitionistic semantics introduced in Section 2. The second part introduces
the notion of “robustness,” with justification of its definition. In Section 4,
we state and prove the main theorem, a sufficient condition for the robustness.
Thanks to simplicity of the definition of robustness, combined with algebraic
representation of Kripke semantics, the proof is fairly simple. As an example of

L Actually there are several ways to define Kripke semantics for intuitionistic modal logic,
and corresponding properties depend on the choice of semantics. The results here is the case
of IM-frames, defined in Section 2.

2A binary relation R is said to be Euclidean if it satisfies: if z Ry and = R z, then y R z.



possible application, in Section 5 we consider axioms arising in the application
to security. We show some of them are robust, and using this fact we compare
strength of these axioms. Section 6 gives examples of robust and non-robust
axioms. Section 7 summarizes this paper, and makes some remarks, including
related work.

1.3 Notational Conventions

Through this paper, we use the following notation.

e A binary operator (-;-) denotes the composition of binary relations: if R
and S are binary relations, z (R ;S) y if and only if 3z.(x R 2) A (2 S y).

e For a binary relation R on a set X and an element x € X, its image
{y |z Ry} is denoted by R [x].

e For some notions introduced below, we have both classical and intuition-
istic versions. In such a case, we use annotations ¢l and int to distinguish
these versions.

The symbol * is also used instead of ¢l or int. If * appears in an equality,
equivalence or other statement, it applies to both classical and intuition-
istic versions.

2 Preliminaries

For intuitionistic modal logics, there are more than one way to define seman-
tics, even if we only consider Kripke-style semantics. These variants are often
discussed in the literature.

This section gives a brief overview of the existing approaches, and intro-
duces the semantics using IM-frames, which is first considered by Wolter and
Zakharyaschev [21] and our work is based on.

2.1 Syntax of Formulas

First of all, we fix the syntax of formulas used below. Formulas we are going to
consider are generated from a fixed set of atoms, by propositional connectives
A, V, —, necessity operator [J, and possibility operator (). We assume that the
set of atoms contains constants | and T, and as usual we define negation —A
by A — L.

Below p and ¢ range over the set of atoms other than | and T, and A and
B range over formulas.

2.2 Existing Kripke Semantics

As Kripke-style semantics for intuitionistic modal logics, it seems that there are
the following two main approaches in the literature:



1. Interpret intuitionistic modal logic in a model of intuitionistic first-order
logic, by correlating modal operators and first-order quantifiers.

2. Start from Kripke semantics in the classical sense, and augment it with
some structure which represents intuitionistic counterpart.

The first one is an intuitionistic analogue of the well-known relationship
between classical modal logic and classical first-order logic. Accordingly, (J and
& are interpreted in the same way as intuitionistic V and 3. Kripke semantics
based on this idea is studied by Ewald [8] and Simpson [17], for example.

In the second approach, there are some possible choices on an additional
structure to be added. Perhaps the most common approach is to add another
accessibility relation < (taken from the standard Kripke semantics for intuition-
istic logic) to Kripke frames [19, 3, 14, 17, 18, 7, 21, 20]. As a result, Kripke
frames given in this way have two accessibility relations, and are called birela-
tional frames. When doing this, there are some choices in how the intuitionistic
accessibility < should interact with the modal one R, and there are subtle dif-
ferences among them [3].

Instead of adding intuitionistic accessibility relation, changing the set of
truth-values is another way previously considered to introduce intuitionistic
behavior. Namely, we can take truth-values from some Heyting-algebra instead
of {0,1}. This approach is studied by Ono as “modal-type Kripke models” [13].
Also, other variants which use neighborhood frames instead of Kripke frames
are studied by Sotirov [18] and Wijesekera [19].

2.3 Kripke IM-frame and Semantics

In this paper, we consider Kripke semantics using Kripke IM-frame defined by
Wolter and Zakharyaschev [21]. They originally studied not only Kripke frames,
but also general frames. They defined IM-frames as general frames equipped
with an ordering (which expresses intuitionistic counterpart), but in this paper
we simply say IM-frame to mean Kripke IM-frame in their terminology. Since
we do not consider general frames here, no confusion occurs.

Definition 1. 1. A (Kripke) IM-frame is a triple (W, <, R) where W is a
non-empty set, < is a partial order on W, and R is a binary relation on
W satisfying (< ; R; <) = R. We say that X C W is upward-closed if
w < w' and w € X implies w’ € X for all w,w’ € W.

2. A wvaluation V on an IM-frame F = (W, <,R) is a map from the set of
atoms to the powerset of W such that V(L) =0 and V(T) = W. We say
that a valuation V' is intuitionistic if V(p) is upward-closed for all atoms

p.

Below we use F to denote an IM-frame. W, <, R and V are also used in
the same meaning as the definition above.

Next we define classical and intuitionistic interpretations of modal formulas.
We use F, V,w I A to denote that A is classically true at world w in the frame



F under the valuation V. When F and V are clear from context, we simply
write w IF¢" A. For the intuitionistic interpretation, we use I instead of I-°".

Usually the classical interpretation is defined on a pair (W, R) (i.e. a Kripke
frame in the classical sense) rather than a triple, but ignoring the intuitionistic
part < of IM-frame we regard IM-frames as Kripke frames. So, by abuse of
notation, we use the same F for both classical and intuitionistic interpretations.

Definition 2. For an IM-frame F, a valuation V' on F, a possible world w in
F, and a formula A, we define relations IF¢ and IF™ by the following clauses
(we omitted F and V because they are fixed through the definition). For IF™,
we assume that V is an intuitionistic valuation.

e wlt' p < weV(p)
e WIFH"AAB <— wl-"Aandwl-* B
wlF*AVB < wl"AorwlF" B

wlF*0OA < for all v/, if w Rw' then w' IF* A

e wlF'A— B < ifwl A then w - B

e wlF™ A — B <« forallw/, if w < w' and w’' IF"™ A then w' IF™ B
e wiF! OA <« wRw and w' IF A for some w'

wlF™ $A «— for all w/, if w < w’ then w’ R v and v IF™ A for some
v

The usual interpretations of negation are derived as follows.
e wiF!' =4 «— wlpt A

o wiF™ —A «— forall ', if w < w' then w' F™ A
Here are some remarks on the interpretation of {.

Remark 3. 1. Intuitionistic interpretation of <} requires to consider all w’
above x. This comes from heredity condition usually assumed in intu-
itionistic logics.

2. This interpretation of ¢} is the same as the one previously considered
to reject distributivity of ¢ over disjunction ($(AV B) — $AV $B).
This fromula is a theorem in classical modal logic, but sometimes it is
considered intuitionistically unreasonable [19, 3].

3. Intuitionistic interpretation of <{» derives the duality of the two modality
Op = ~U-p.

Definition 4. We write F I A and say that A is classically valid in F
(or F classically validates A) if for all V' and w it holds that F,V,w et A.
Intuitionistic version of validity F IF" A is defined in the same way.



2.4 Algebraic Representation

As usual, we can extend a valuation to the set of all formulas. Since there are
two versions of semantics, we have two extensions of a valuation. We denote
these extensions by V¢ and V. The precise definition is:

V*(A) = {w ‘]—",V,wll—*A}.

Below we introduce auxiliary notations and list some properties of V¢ and
Vit for later use.

Definition 5. 1. For each X C W, we write k(X) for the greatest upward-
closed subset of X. In other words, k(X) = {w | <[w] C X }.

2. For a valuation V', we define V,, = ko V. This is the greatest intuition-
istic valuation less than or equal to V (with respect to the pointwise
set-inclusion).

3. For each X C W, we define [g(X) = {w |R[w] C X }. Also, we use — for
the set-theoretic complement, and mp(X) as a shorthand for —{r(—X).

It is easy to see that the following two hold for each valuation V: (1) V, is
intuitionistic, and (2) V, = V if V is intuitionistic. So by abuse of notation we
just write V" to denote (V;)"" for non-intuitionistic valuation V.

It is easy to see that the following equalities hold for each valuation V.

V*(AAB) = V*( )N V*(B) V*(Av B)=V*(A)UV*(B)
V*(OA) = [r(V*(A)) VA= B) = (-=VI(A) uV(B)
V(OA) = mp(V(A)) V™ (p) = Vi (p)
V(A = B) =k ((=V™(A)uV™(B))  V™(OA) = k(mr(V™(A)))

Additionally, we would like to mention the two facts which play an important
role in Section 4. First, a formula A is valid in F if and only if V*(A) = W for
all valuations V on F. This is clear from the definition. Second, the equality
lr ok = lg holds. This follows from the condition (< ; R; <) = R assumed in
the definition of IM-frames.

3 Axioms and Correspondents

Having defined the semantics for intuitionistic modal logic, we are going to
observe how well-known modal axioms can be characterized in terms of Kripke
semantics. For some of them, their intuitionistic correspondents coincide with
the classical ones, but for others they do not. After this observation, we discuss
how this coincidence can be expressed formally, and introduce the notions of
robustness.



axiom classical correspondent

5 Op — OOp Euclidean (if ¢ Ry and = R z, then y R 2)

B p — OOp symmetric (if R y, then y R x)

Ty p—Op reflexive (z R )

45 OOp— Op transitive (if z Ry and y R z, then = R 2)
CD Op—0Op unique (if ¢ Ry and = R z, then y = 2)

C &$Op — OOp | confluent (if © Ry and x R z, then Ju. (y Ru and z R u))

Table 1: Examples of axioms whose classical and intuitionistic correspondent
are not the same.

3.1 Some Modal Axioms in IM-frames

Some of the well-known axioms intuitionistically correspond to exactly the same
property as the classical one. Typical examples of such axioms are T and 4,
as mentioned in the introduction. For these two axioms, the classical method
of deriving correspondents works perfectly in the intuitionistic case; take any
possible world w and consider V(p) = R(w). This attempt works because there
exists such an intuitionistic valuation V.

Also, D (Op — ¢p) and C4 (O0p — Op) have the same property, that is,
their correspondents in the classical setting also apply to the intuitionistic case.
D corresponds to seriality and C4 corresponds to density. These correspon-
dences can be verified in similar ways to the cases of T and 4.

However, not all axioms necessarily correspond to the same property as
the classical one. This can be observed in the work by Plotkin and Stirling in
1986 [14], although it is not mentioned explicitly. They considered a birelational
Kripke semantics (different from ours), and gave a correspondent of Lemmon-
Scott axiom schema FO'p — ™™, According to their result, to express
the correspondent of this schema we need to use both R and <. Therefore we
can see that (most of) the instances of Lemmon-Scott schema intuitionistically
correspond to different properties from the classical case.

Although their result does not directly apply to our setting (because we are
considering a different semantics from theirs), the situation is similar. Indeed, it
is not difficult to find an axiom whose classical and intuitionistic correspondents
are different. Some of them are listed in Table 1. All of these are instances
of Lemmon-Scott axiom schema. In Figure 1 we list examples of IM-frames
which intuitionistically validate these axioms but classically do not (the specified
properties in Table 1 do not hold at a of each frame). In this figure, solid and
dotted arrows represent accessibility relations R and <, respectively.

3.2 Defining Robustness

The series of examples above motivates the following question: which axiom
corresponds to the same property in both classical and intuitionistic modal
logics? This question will be discussed in the next section. In this subsection
we are going to make a preparatory discussion on how to formalize the “sameness
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Figure 1: Examples of IM-frames which intuitionistically validate axioms, but
not classically

of the classical and intuitionistic correspondents.”

Let A be an axiom, and assume that A classically corresponds to a property
¢, and intuitionistically corresponds to 1.3 If we write F = x to mean that F
satisfies a property y, this assumption means that

FIF'A &= FEp, and FIF" A «— FEq

for any IM-frame F. In this setting, what does it mean for frame conditions
@ and 1 to be the same? Here ¢ and v are properties of IM-frames, so it is
natural to regard them as the same if and only if they are satisfied by exactly
the same IM-frames. That is, ¢ and ¢ are “the same” if and only if

Flry = FEy¢

holds for any IM-frame F.
From the three equivalences above, we can see that the classical and intu-
itionistic correspondents for A are the same if and only if

FIF A — FIFM A

is the case for any F.
Now we have arrived at the following definition.

3Formally, ¢ and v can be written as (second-order) sentences in an appropriate signature.
The argument below can be written more formally by using this representation, but here we
do not need the details.
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Definition 6. Let A be a formula.
1. Ais said to be Cl-stable if, for any IM-frame F, if F IF°! A then F IF™ A.
2. A is said to be IC-stable if, for any IM-frame F, if F IF" A then F IF¢ A.
3. A is said to be robust if it is both Cl-stable and IC-stable.

The intended meanings of these notions are explained as follows. Suppose
that a formula A classically corresponds to a certain property ¢. Then, CI-
stability of A means that if an IM-frame F satisfies ¢, then A is intuitionistically
valid in F. On the other hand, IC-stability of A means that if an IM-frame F
does mot satisfy ¢, then A is not intuitionistically valid in F. Accordingly,
robustness of A means that A has the same correspondent ¢ in classical and
intuitionistic modal logics, as discussed above.

Example 7. 1. Azioms T, 4, D, and C4 are all robust.

2. 5,B, Ty, 4, CD, and C are not robust. These azioms are all CI-stable,
but not IC-stable.

Robustness of axioms in 1 follows from Theorem 12, and Cl-stability in 2
follows from Proposition 14, clause 1.

Incidentally, the robustness is also characterized in terms of correspondents
as follows.

Proposition 8. A formula A is robust if and only if its intuitionistic corre-
spondent for A can be expressed without using <.

Proof. If A is robust, then its intuitionistic correspondent is the same as the
classical one, so “if” part is clear. We prove the other direction. For an IM-
frame F = (W, <, R), define F* := (W, A, R), where A= {(x,z) |z € W} is
the identity relation. Since A is an ordering and (A ; R; A) = R, this defines
another IM-frame. It is easy to see that

1. if a property ¢ can be expressed without <, then F | ¢ <= F* | ¢,
and

2. FIFY A = F* |- A.

The assertion follows from these two facts. O

4 A Sufficient Condition for Robustness

In this section, we give a sufficient condition for robustness. First we describe
the main idea by considering a simple case, and next we extend this result to
a more general form. There is an analogy between our result and a classical
result by Sahlqvist [15], and the proof presented below is partly based on the
algebraic proof of Sahlqvist’s theorem [16, 5].



4.1 Basic Idea

Sahlqvist showed that an implication A — B corresponds to a first-order prop-
erty, if B is positive and A satisfies a certain condition. This condition mentions
positions of occurrences of — and [J; it restricts places in which these two con-
nectives can occur.

Our result on robustness states, similar to Sahlqvist’s theorem, an implica-
tion A — B is robust if A and B are positive and satisfies some conditions.
These conditions are, again similar to Sahlqvist’s one, phrased as conditions on
occurrences of —, [, and <.

Here we consider axioms of the form A — B only. For an axiom of this form,
we have F IF* A — B if and only if

YWw.(F,V,wlF* A = F,V,wl* B)

holds. Using the notation V*, we can identify the validity of implication with
the set inclusion, as shown in the following lemma.

Lemma 9. Let A and B be formulas. Then F IF* A — B if and only if V*(A) C
V*(B) for any valuation V on F.

So the robustness of A — B is equivalent to: V¢ (A) C V(B) for all V,
if and only if V" (A) C V(B) for all V. This representation of robustness
is convenient for our purpose, and it is the reason why we introduced algebraic
representation.

To sketch the main idea, here we consider the simplest case. If we have
Vel(A) = Vt(A) and V¢(B) = V"*(B) for every V, then A — B is clearly
robust. When do these equalities hold? If we attempt to prove V°¢(A) =
Vit (A) by induction on A, obviously there are problems in three cases: p, <,
and —. In these cases V' and V™ do not agree, because k is applied in clauses
for Vint,

Here is a key observation: [ absorbs k, that is, [g o k = [r holds, as
mentioned at the end of Section 2. So, although in general we do not have

VEA) = VI (A) = VI(OA) = VM(0.A),
instead we can say that
VE(A) =VIM(A) = VHOOA) = V(OGS A)
holds, and similarly for p and —. This fact motivates the following definition.

Definition 10. An occurrence of an atom or a connective in a formula is said
to be protected if it is immediately preceded by [J.

For example, in Op A [0<$q, the occurrences of p and <> are protected, but ¢
is not.

From the argument above, we can conclude that if all occurrences of atoms,
$, and — in A and B are protected, then A — B is robust. 4 is an example
of such an axiom. In the next subsection, we are going to discuss how far this
condition can be relaxed.

10



4.2 A Class of Robust Axioms
Definition 11. A formula A is said to be

1. positive if A does not contain —;
2. {-protected if all occurrencees of <> in A are protected;

3. atom-protected if all occurrences of atoms, 1 and T excepted, in A are
protected;

4. protected if A is both {-protected and atom-protected.
Using these terminologies, we can state the main theorem as follows.

Theorem 12. Let A be a protected positive formula, and B a {-protected pos-
itive formula. Then, A — B and A — B are robust.

Below we are going to prove this theorem.
Lemma 13. Let A be a formula and V' a valuation.
1. If A is positive, then V™ (A) C V;°(A) C Vel(A).A

2. If A is positive and {-protected, then V™ (A) =V, (A) and V™ (HA) =
E(V(0A)).

3. If A is atom-protected, then V,°/(A) = V< (A).

Proof. By induction on the construction of A, using the following facts:
1. positive formulas are constructed from atoms by A, Vv, [0, and <;

2. positive $-protected formulas are constructed from atoms by A, V, J, and

0o

3. atom-protected formulas are constructed from protected atoms, T and L
by freely applying any connectives.

In induction steps for 2, we use the equality lg o k = lg. O
Proposition 14. Let A and B be positive formulas.
1. If B is {-protected, then A — B and A — OB are Cl-stable.

2. If A is protected, then A — B is I1C-stable.

41, stands for (), not (V), .

11



Proof. Check that

th(A) C ‘/bCl(A) C ‘/bCl(B) — th(B)

and
ver(a) <k (KA) Sk (KAOB)) = VI (OB)
for 1, and . ‘
Vcl(A) _ th(A) C th(B) C Vcl(B)
for 2, using Lemma 9. O

From this proposition, it is clear that Theorem 12 holds. In the same way
as Sahlqvist’s theorem, we can extend this theorem.

Proposition 15. 1. If A and B are robust, then so is AN B.

2. If A and B are robust and they do not share any atom, then AV B is also
robust.

8. If A is robust, then so is (A.

Proof. 1 and 2 are easy. For 3, take any IM-frame F and let F’ be the subframe
of F generated by all R-successors (that is, all w € W such that for some
w’ € W it holds that w’ R w). Then we can prove that F I-* OA if and only if
F'IF* A, from which robustness of (JA follows. O

Remark 16. Above we assumed that A and B are positive. Actually, in some
ways this assumption can be relaxed a little. For example, if all occurrences
of atoms, <>, and — in A are protected, then the same result holds for non-
positive A, because for such A it holds that V¢(A) = V" (A), as discussed
in the previous subsection. There would be some similar ways to extend our
result.

However, this looks ad-hoc and makes things complicated, so here we do not
investigate them further.

5 Axioms from Access Control Logics

In this section, we are going to consider some of the modal axioms appearing in
security, and compare their strength using their correspondents. Although sim-
ilar results have already been mentioned in recent literature [2, 6], the approach
presented here is more systematic. This would be an example showing that
a general theory on correspondence can be a useful foundation for comparing
various modal axioms.

12



5.1 Modality and Access Control

In the context of access control, modal logic has been considered as a basic
framework to express access control policies, which determine whether a prin-
cipal (user, program, machine, or other entity) may access a resource. Logics
which express a policy as a formula is called access control logic, and have been
studied recently.

In access control logics, a special operator, called says operator, plays a
central role in expressing policies. This operator is used in the form A says s,
where A is a principal and s is a formula, and the whole expression is again
a formula. Intuitively this formula means that “A supports the statement s”
(although there seems to be some variations in exact interpretation of the says
operator). Regarding A says as a modality indexed by A, we can formalize an
access control logic as a kind of multimodal logic.

As a logic for representing policies, access control logics usually require addi-
tional axioms concerning says operator other than necessitation and normality.
For example, one may want to assume (admin says s) — s as an additional
axiom on says operator. When s represents an operation of deleting or modi-
fying files, this axiom allows administrators to delete or modify files when they
request.

Since different access control logics may interpret the says operator differ-
ently, there are several options in axiomatization of access control logics. To
investigate room for choice, Abadi studied the consequence relation between
some axioms in classical and intuitionistic modal logics [2]. His result implies
that some intuitively natural principles derive an undesirable axiom (in par-
ticular, in classical setting) which make the logic degenerate. He also proved
that some axioms do not prove such an axiom in intuitionistic setting, using
proof-theoretic technique. What we are going to do is to obtain similar results
more systematically, using results we have seen in the previous section.

5.2 Axioms and their Robustness

In what follows, we will write (4 instead of A says, and suppress the principal
annotation A when it is not significant. We consider C4 having appeared before
and the following axioms previously considered in relation to access control
logics [2, 10, 6].

e Unit: p — Up

e Bind: (p — Og) — (Op — o)

e Hand-off: O4(B = A) — (B= A)
e Escalation: Op — (pVv OLl)

It is easy to see that, under the presence of Unit, axioms Bind and C4
are (intuitionistically) equivalent. These three axioms come from lax logic,
which is a version of intuitionistic modal logic [9]. Lax logic is known to be a

13



logical foundation of computational lambda calculus [12, 11, 4], and recently a
calculus for access control, called CDD [1], has been proposed as a variant of
computational lambda calculus.

In Hand-off axiom, a new connective = appears. The formula B = A
means that “B speaks for A,” and = is called “speaks for” operator. If we
allow universal quantification over formulas, = is defined by

B = A=Vp.((Upp) — (Oap)).

Hand-off axiom states that if a principal A says that some principal B speaks
for A, then B actually speaks for A. This axiom formalizes the delegation of
authority.

Escalation is considered as an undesirable axiom, since a modality satisfying
this axiom is considered degenerate; if we read [J as “says,” Escalation on [J4
implies that either everything a principal A says is true, or A says anything [2].

Below we are going to compare the strength of these axioms, based on se-
mantic method using robustness result. In particular, we consider which axiom
does not imply which.

Before doing that, we adjust the definition of Kripke semantics so that it
can interpret 04 and =-. To interpret (4, instead of a single accessibility
relation R, we employ a family of relations R4 indexed by principals. Each
R4 is assumed to satisfy the same constraint as R of IM-frames. Then, [y is
naturally interpreted, as the necessity with respect to R4 in the new setting.
We regard B = A as a propositional constant, and thus it is interpreted as a
fixed set of possible worlds. We define its classical interpretation by

[B= A] :=={x|Ralz] C Rplx]}.

In other words, B = A is true at x if and only if x Rp y implies R4 y for
all y. This is consistent with the “definition” B = A = Vp.((Opp) — (Oap)).
Intuitionistic interpretation is just k([B = A]).

Proposition 17. Escalation, C4 and Hand-off are robust, whereas Unit and
Bind are not.

Proof. The robustness of these three axioms follows from Theorem 12 (note that
B = A can be treated as an atom).

Non-robustness of Unit and Bind are easily seen from the next proposition,
in which we will see that the classical and intuitionistic correspondents for these
axioms are distinct. O

5.3 Comparing Strength of Axioms

It is not difficult to see the following correspondence in classical and intuitionistic
modal logics.

Proposition 18. 1. C4 corresponds to: R C R2.
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Unit classically corresponds to R C A, where A is a diagonal relation,
and intuitionistically corresponds to R C <.

Classically Bind is equivalent to Escalation, and therefore they have the
same correspondence in classical setting. Intuitionistically Bind corre-
sponds to:

Rlz] C R[<[z]NR[z]].

. Escalation corresponds to: Rlz] #0 — z R .

Hand-off corresponds to the following condition:

(Vy € Ra[z].(Ralyl € Rplyl)) = Ralz] C Rpla].

Since Escalation, C4, and Hand-off are robust, we do not distinguish classi-
cal and intuitionistic setting when considering their their correspondents. Sim-
ilar results in a slightly different setting are also mentioned by Boella, Gabbay,
Genovese and Torre [6].

From these results, the non-derivability of some axioms from other axioms
in intuitionistic modal logic follows. For example:

6

C4 does not imply Bind, and Bind does not imply Escalation.

Hand-off does not imply C4 nor Unit. This is easily checked from the fact
that a frame with R4 = Rp for any principals A and B admits Hand-off,
but not necessarily C4, nor Unit.

Escalation does not imply Unit. This is also an easy consequence of
the correspondence result. If we consider the following frame, it satis-
fies Escalation but not Unit, since R [a] = {a,b} € {a}.

Cot

Unit does not imply C4 nor Hand-off. To see this, consider the following
frame.

b
)
a

This satisfies Unit, but not C4. For Hand-off, regard the solid arrow
as R4 and let Rg = (). Then this frame satisfies Unit, but it falsifies
Hand-off.

Some More Examples

In this section, we are going to discuss some more examples of modal axioms.
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6.1 Limitation of Our Method

The class of formulas covered by Theorem 12 and Proposition 15 contains all
robust formulas listed in Section 3. However, there exists a robust formula
outside the scope of the theorem, even if we consider axioms of the form A — B
for positive A, B only. For example, let A = Op and B = p V {p, and consider
the axiom D’ = A — B. Theorem 12 does not apply to D’ since p on the right-
hand side of — is not protected. However, this axiom is robust, because D’ is
valid in (W, <, R) if and only if R is serial (in both classical and intuitionistic
interpretations).

For this axiom, our method used above does not seem to work. This is
because, if A — B can be proved to be robust in our method, it actually
means a little more than robustness; for such A and B, it holds that V;“(A4) C
V,(B) <= V™ (A) C V""*(B). However, for the choice of A and B above,
this equivalence does not hold. Indeed, take the frame

C‘LHC

and consider V (p) = {b,c}. Then, after a little calculation we obtain V¢ (A) =
Vint(A) = VYB) = {a,b,c} but V" (B) = {b,c}.

D’ is not an axiom motivated from some meaningful application. It is con-
structed as a counterexpmale, and does not seem a natural axiom since p on the
right-hand side is redundant. There could be more meaningful counterexpmale,
but at the time of writing we do not have such an example.

6.2 IC-Stable, but not Cl-stable Axioms

The examples of non-robust axioms that appeared above are all Cl-stable, but
not IC-stable. It is a natural question whether there exists an axiom which is
IC-stable, but not Cl-stable.

Perhaps the simplest example is Op — $Op. It is easy to check that this
axiom is classically valid in a frame (W, R) if and only if R N R? is serial (in
other words, R has the property that for all w € W there exists v € W such that
both w R v and w R* v holds). On the other hand, there exists an IM-frame in
which R N R? is serial, but the said axiom is not valid. For example, consider
the frame

and a valuation V(p) = {b,c}. Then we have a IF"™ Op, but a "™ $Op. To
check the latter, note that ¢ has no successor satisfying p. So ¢ ™ $p, and
from heredity we also have b I {p. This means that a has no successor
satisfying {p, so a does not satisfy $Op.
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6.3 Lob axiom

Above we considered axioms of the form A — B where A and B are positive.
As an example of robust formulas which does not have this form, we consider
L6b axiom (GL), which takes the form O(Op — p) — Op. In classical modal
logic, this axiom is known to correspond to the conjunction of transitivity and
non-existence of infinite path [5]. Let us take a look at the sketch of the proof.

For transitivity, assume v R v R w and let V be a valuation such that
x € V(p) if and only if neither x = v nor x = w holds. Then, from the
contrapositive of GL there exists some R-successor of v at which CIp — p does
not hold. On the other hand we can show that, at any world other than w we
have Op — p. Therefore u R w needs to hold.

For non-existence of infinite path, define V by: w € V(p) if and only if there
is no infinite path starting from w. Then under this valuation Op — p is true
everywhere, so applying GL we obtain V(p) = W. This means that there is no
infinite path.

This proof is done in the classical setting, but almost the same method
works for IM-frame, too. We only need to fix the definition of V' in the first
part. Instead of “neither x = v nor z = w” we need to consider “neither z < v
nor z < w” because otherwise V' may fail to be an intuitionistic valuation.

Interestingly, we can also use algebraic argument to prove the same result.
A little calculation shows that GL is classically valid if and only if all valuations
V' satisfy

IR((=Lr(V () UV (p)) € Ir(V(p));

and intuitionistically
Lr((=lr(V(P))) UE(V(p)) € Lr(V(P))-
Therefore, to see GL is robust it is sufficient to show that
E(XUY)=kXUE®Y)),

where X = —Ir(V(p)) and Y = V(p). The right-to-left inclusion is obvious.
For the converse, take z € k(X UY), and let U be the set of all upper bounds
of z. Then we have U C X UY, hence U\ X C Y. Actually we can say
U\ X Ck(Y), because the left-hand side is the intersection of the two upward-
closed sets, namely U and —X = [r(V(p)). Therefore we have

U=UNnX)u(U\X)CXUkY),

and hence x € k(X Uk(Y)).

6.4 Grzegorczyk axiom

As another famous example of an axiom of a compilcated form, we have Grze-
gorczyk axiom (Grz) O(O(p — Op) — p) — p. Classically, Grz is known
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to correspond to reflexive and transitive frames in which there is no nontrivial
infinite path [5] (by “nontrivial” infinite path we mean a path 3 R 22 R ---
such that x,, # z,1 for any n). This condition resembles to that for GL, but
unlike GL, Grz is not robust.

It holds that if an IM-frame F is reflexive, transitive, and has no nontrivial
infinite R-path, then F validates Grz. However, the converse does not hold;
there exists an IM-frame with nontrivial infinite R-path, in which Grz is valid.
For example, let W be the set of all natural numbers and both < and R be
the usual ordering on natural numbers. Then we can easily check that, from
heredity, p and [p are equivalent at each world in this frame. So in this peculiar
frame Grz is valid, although it contains nontrivial infinite path (1,2,3,---, for
example).

Actually, in IM-frame, Grz corresponds to the conjunction of reflexivity,
transitivity and the following condition: there exists no pair of an upward-
closed (with respect to <) set X and an infinite path 1 R 29 R - -, such that
xy, € X if and only if n is even. By transitivity, this fact means that Grz is valid
if and only if there is no infinite path on which truth of p can alter infinitely
many times.

7 Concluding Remarks

7.1 Summary

We studied correspondence of axiom and properties of frames in intuitionistic
modal logic, and there are two main observations. First, the sameness of classical
and intuitionistic correspondents can be captured by the equivalence in classical
and intuitionistic semantics. Second, there exists a syntactically defined class of
axioms, for whose members the correspondents in the classical and intuitionistic
settings are the same.

The semantics considered in this work is the one defined by Wolter and
Zakharyaschev [21]. Tt seems that the condition (< ; R; <) = R plays an
important role. In particular, we used the equality g o £ = [g in the proof of
Lemma 13, which is a consequence of this condition.

To give a class of robust axioms syntactically, the main strategy we took is
to restrict occurrences of “problematic” constructs (atoms, — and <), which
requires intuitionistic counterpart < to interpret. A similar method is used in
Sahlqvist’s theorem, in which mainly — and [ are restricted.

At first sight the class we gave may seem to be small because it strongly
restricts occurrences of an atom and <. However, it contains most part of
standard robust axioms. At the time of writing, we could find only a few
examples of robust formulas outside this class. To make significant improvement
in the current result, some new idea would be required.

Also, as a possible application, we have considered modal axioms from secu-
rity. Using model theoretic argument together with robustness results, we have
compared strength of these axioms. This demonstrates that the result presented
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in this paper can be a tool for investigating modal logic in the intuitionistic set-
ting.

7.2 Similar Result for Other Semantics

Our argument above is based on IM-frame, and depends on the choice of seman-
tics. Here we briefly discuss how to develop a similar result for other semantics.

Besides the clause in Definition 2, there is another standard interpretation
of CA:

wlF™ 0A < if w <w and w’ Rw”, then w" IF™ A.

In this case, we do not need any constraint on < and R (like (<; R; <) =R
assumed in IM-frames). This version is also found in the literature [8, 17, 19,
3, 14]. If we define w IF* OA in this way, we need to use < as well as R to
express correspondents concerning [J (the situation is the same as the problem
we found in Section 4, where occurrences of <) caused a problem). As a result,
it seems that most part of the classical correspondence results are not true for
this semantics; even T and 4 are excluded. So, if the notion of robustness is left
unchanged, the same problem for this semantics would not be interesting.

One possible approach in this setting is to use the result on IM-frames indi-
rectly, by giving a translation from non-IM-frames to IM-frames. If we do not
consider ¢, or we admit duality $p = -O-p (which is a theorem in IM-frame
semantics), it is not difficult to translate the semantics defined on non-IM-frame
into IM-frame semantics. This is because, from heredity, we have w I A in
this semantics if and only if “if w(<; R;<)w’, then w’ IF™ A” holds. Therefore
what we actually need to focus on is not R, but the composite R’ = (<; R; <).
Regarding R’ as new R, we obtain IM-frame semantics. Therefore, if an axiom
X corresponds to some property ¢(R) in IM-frame semantics, then the same
axiom corresponds in non-IM-frame semantics to p(<; R; <). So we can say
that if X is robust, then its intuitionistic correspondent in non-IM-frames can
be obtained by replacing all occurrences of R in the classical correspondent with
(<3 R; ).

7.3 Local Version of Robustness
In Section 3 we have defined robustness of an axiom A by
VF(FIF' A < FIF™ A).

This is a global notion in the sense that it concerns global validity only. We
could also consider its local version like

VF,w.(wlF A < wlF™ A)

(w ranges over the set of possible worlds of F), which seems to be a natural
definition of local robustness. However, axioms satisfying this condition would
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be rare. This is because the intuitionistic interpretation has heredity, while the
classical one does not. For example, consider an IM-frame consisting of two com-
parable points a < b, and assume a is reflexive and b is not (R= {(a, a), (a,b)}).
Then, classically T, 4 and D are locally valid at a, but intuitionistically they
are not.

One possibility to adjust the definition of local robustness is to consider the
following condition:

VF,’U}.((VMI,’UJS’U}’ _— U}/ ”_cl A) — wH_znt A)

If we define local robustness of A by this condition, then the same result as
Theorem 12 is proved by a similar argument.

7.4 Related Work

It seems that the problem considered in this paper has not been studied before.
However, there are a few studies concerning correspondence for concrete modal
axioms in intuitionistic settings.

One of such studies has been done by Sotirov [18]. He introduced two modal
accessibilities R and R* independently to interpret [ and <>, and gave corre-
sponding properties for various axioms in terms of three accessibility relations
<, R and R*. These axioms include T, T, 4, 4, B, and D.

In his result, because of the existence of independent R*, occurrences of <) do
not introduce extra < in expressing the corresponding properties. As a result,
in contrast with ours, it would be the case that the occurrences of {» does not
interfere robustness (but an appropriate definition of robustness in his setting
is not obvious because of the independence of R and R*).

He also considered a lot of axioms containing nested — (and —), which we
did not handle. In his setting, as well as ours, nested implications cause non-
robustness of axioms (that is, we need to mention < to express the correspon-
dents). For example, JA — ——A, which classically corresponds to reflexivity,
corresponds to the following property: if < y, then there exists z such that
y<zandz R z.

The work by Plotkin and Stirling [14] mentioned in Section 3 is another
example. They defined a birelational Kripke semantics, discussed some concrete
axioms, and identified their correspondents.

According to their result, the Lemmon-Scott axiom schema {*0lp — O™ O™p
corresponds to the following property:

if w RF uw and w R™ v, then there exists v’ and z
such that u < o/, ' R' z, and v R™ x.

From this result we can see that, in their setting, as well as ours, many axioms
would correspond to properties different from the classical case.

They also considered the axiom Op A $g — O(p A $gq) V O(g A Op), which,
when added to S4, results in S4.3. The correspondent of this axiom they gave
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is also different from the classical one previously known (if « R y and z R z,
then either y R z or z R y holds).

Also, it would be worth noting that they pointed out that it is unlikely

that classically equivalent axioms (Op — p and p — {p, for example) always
correspond to the same property. Their result shows that this is indeed the case.
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