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Abstract

Vaught’s Conjecture states that if Σ is a complete first order theory in a
countable language such that Σ has uncountably many pairwise non-isomorphic
countably infinite models, then Σ has 2ℵ0 many pairwise non-isomorphic
countably infinite models.

Continuing investigations initiated in [17], we apply methods of algebraic
logic to study some variants of Vaught’s conjecture. More concretely, let
S ⊆ ωω be a σ-compact monoid. We prove, among other things, that if a
complete first order theory Σ has at least ℵ1 many countable models which
cannot be elementarily embedded into each other by elements of S, then, in
fact, Σ has continuum many such models. We also study related questions in
the context of equality free logics and obtain similar results.

Our proofs are based on the representation theory of cylindric and quasi-
polyadic algebras (for details see [9] and [10]) and topological properties of
the Stone spaces of these algebras.
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1 Introduction

Let Σ be a complete first order theory in a countable language. Recall that for
any cardinal κ, I(Σ, κ) denotes the number of pairwise non-isomorphic models of Σ
of cardinality κ. The following statement has become known as Vaught’s conjecture:
if, counting up to isomorphism, Σ has at least ℵ1 many countable models, then Σ
has 2ℵ0 many countable models; in symbols:
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(∗) I(Σ,ℵ0) > ℵ0 implies I(Σ,ℵ0) = 2ℵ0 .

This conjecture has become an important open problem, and was mentioned in
practically all monographs on model theory. See, for example Hodges [11], on page
339, (and Shelah [22], Chang-Keisler [6], Buechler [5], and Marker [12]). The origi-
nal conjecture was published in Vaught [23].

Vaught’s conjecture stimulated an intensive research; we recall the following re-
lated results:

• Morley proved in [13] that I(Σ,ℵ0) > ℵ1 implies I(Σ,ℵ0) = 2ℵ0 (see also
Theorem 4.4.16 of [12]);
• Bouscaren and Lascar proved in [3] that (∗) is true for ℵ0-stable Σ of finite

Morley rank;
• Shelah proved in [21] that (∗) is true for ℵ0-stable Σ and
• Buechler proved in [4] that (∗) is true for superstable Σ of finite U -rank.

In the last three results above, Vaught’s conjecture was proven for theories sat-
isfying certain extra conditions. These conditions originate from stability theory.
In the present work, we follow another approach; (particularly, we do not deal with
stability theory).

Section 4 of [17] suggests two intriguing research directions. First off, one could
study Vaught’s conjecture in first order logic without equality. Secondly, instead of
considering models up to isomorphism as in the conjecture, one could consider mod-
els up to elementary embeddability. Thus we have Problems 1-4 below: the original
conjecture, and three possible variants. Here, I ′(Σ, κ) denotes the supremum of car-
dinalities of sets containing pairwise non elementarily embeddable κ-sized models of
Σ. We note that in the case of languages without equality, an elementary mapping,
(ie. a fuction that preserves all ∅-definable relations), is not necessarily injective.
However, throughout the paper, an elementary embedding is defined as an injective
elementary mapping, (and so elementary embeddings are injective in the equality-
free case too). We refer to the fourth paragraph of Section 6 in connection with this
issue.

Open problem 1.1 (What has become known as Vaught’s Conjecture) Let Σ be a
complete theory in a countable language with equality. Is it true that if I (Σ,ℵ0) > ℵ0,
then I (Σ,ℵ0) = 2ℵ0?

Open problem 1.2 Let Σ be a complete theory in a countable language without
equality. Is it true that if I (Σ,ℵ0) > ℵ0, then I (Σ,ℵ0) = 2ℵ0?

Open problem 1.3 Let Σ be a complete theory in a countable language with equal-
ity. Is it true that if I ′(Σ,ℵ0) > ℵ0, then I ′(Σ,ℵ0) = 2ℵ0?
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Open problem 1.4 Let Σ be a complete theory in a countable language without
equality. Is it true that if I ′(Σ,ℵ0) > ℵ0, then I ′(Σ,ℵ0) = 2ℵ0?

Since we are dealing with countable models, we may assume, without loss of gen-
erality, that the universe of these models is always a fixed countably infinite set ω.
More formally, let Σ be a complete theory and define KΣ = {A |= Σ : the universe
of A is ω}. Then isomorphisms between elements of KΣ are permutations of ω, and
the symmetric group Sym(ω) acts on KΣ in the natural way. Similarly, elementary
embeddings between elements of KΣ are injective functions of ω. Vaught’s conjec-
ture can then be rephrased as follows: if the cardinality of orbits of Sym(ω) on KΣ

is uncountable, then this cardinality is the continuum. Problems 1.3 and 1.4 may
be rephrased in a similar, but more complicated way. (The main difference is that
in these cases, we cannot speak about orbits, since the injective functions of ω only
form a monoid.) After making the role of Sym(ω) explicit, it is natural to study
what happens if we replace it with some simpler group or monoid.

For a monoid S ⊆ ωω, we define I(Σ, S) to be the supremum of the cardinalities
of sets containing countable models of Σ which cannot be elementarily embedded
into each other by elements of S; more formally:

I(Σ, S) = sup{|K| : K ⊆ KΣ and no % ∈ S
is an elementary embedding between any two elements of K}.

Endow ω with the discrete topology and ωω with the obtained product topology.
Then a set S ⊆ ωω is defined to be σ-compact iff it is a union of a countable family
of compact subsets of ωω. The main results of this paper are as follows.

Theorems 5.8 and 5.9 In the case of languages both with and without equality,
we have: if S is a σ-compact monoid of injective functions of ω, then

I (Σ, S) > ℵ0, implies I (Σ, S) = 2ℵ0 .

Notice that if S is the monoid of injective functions of ω, then I(Σ, S) = I ′(Σ,ℵ0),
and that I(Σ, Sym(ω)) = I(Σ,ℵ0). Hence, by studying I(Σ, S), one may obtain re-
sults for all the four problems formulated above.

Our approach is similar in spirit to some investigations in [2], but there is the
following essential difference. In [2], the actions of Polish groups on the Borel sub-
sets of certain spaces are investigated. Polish groups are complete metric spaces; we
do not assume that the monoid S occurring in our statements is a group, or that it
is a complete space. Since we assume only that S is a monoid (and not necessarily a
group), classical results of descriptive set theory, (on actions of Polish groups, say,)
are no longer available. In this respect, our approach is different from the traditional
one. However, as we will see, the cylindric algebraic methods initiated in [17] may
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be adapted to this setting too. So our approach at the technical level is also different
from the methods established in [2].

The rest of the paper is organized as follows. At the end of this section, we sum
up our system of notation. Section 2 contains the necessary preliminaries from the
theory of cylindric and quasi-polyadic algebras. This section has a survey character:
all the results in this section are well known, and so, in order to keep this paper
self contained and available to readers not so familiar with algebraic logic, instead
of proofs, we provide explanations that are sometimes more detailed than usual. In
Scection 3, we deal with representations of quasi-polyadic algebras. The cylindric
algebraic analogues of the theorems in this sections are known; here we adapt them
to the context of quasi-polyadic algebras. In Section 4, we characterize elementary
embeddings in terms of algebraic logic. We consider the case without equality in
the first subsection, and the case with equality in the second one. For completeness,
we also examine in the second subsection the cylindric algebraic versions of results
presented in Section 3. Some of them are already known, but based on our results
in Section 3, they may be established quickly. In addition, Lemmas 4.2 and 4.3 are
slightly different from the corresponding results of [17] (see Theorem 2.1 therein).
In Section 5, (after further technical preparation,) we present the main results of
the paper in Theorems 5.8 and 5.9. Finally, in Section 6, we suggest some further
directions of possible investigation where the methods used in the present paper
seem to be applicable.

Notation

Our system of notation is mostly standard, but the following list may be useful.
Throughout, ω denotes the set of natural numbers, and for every n ∈ ω we have
n = {0, 1, ..., n − 1}. Let A and B be sets. Then AB denotes the set of functions
whose domain is A and whose range is a subset of B. In addition, |A| denotes the
cardinality of A. If κ is a cardinal, then [A]κ denotes the set of subsets of A which
are of cardinality κ, and P(A) denotes the power set of A, that is, the set which
consists of all the subsets of A. For any distinct elements i, j from a given set U ,
[i/j] ∈ UU is the function on U which maps i to j and leaves every other element
fixed. In addition, IdU denotes the identity function on U . Throughout, we use
function composition in such a way that the rightmost factor acts first. That is, for
functions f, g we define f ◦ g(x) = f(g(x)). If f : A −→ B is a fuction and X ⊆ A,
then f ∗(X) = {f(x) : x ∈ X}. Moreover, f−1 : P(B) −→ P(A) acts between the
powersets.
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2 Preliminaries from the theories of cylindric and

quasi-polyadic algebras

This section surveys the basic properties of cylindric and quasi-polyadic algebras
needed in later sections. We do not assume the reader is familiar with these classes
of algebras, hence our presentation may be more detailed than usual. However,
familiarity with cylindric and quasi-polyadic algebras may be an advantage of the
reader in later sections. The definitions and propositions of this section, along with
proofs, can be found in either [9] or [10].

Cylindric algebras emerged in the first half of the twentieth century, due to the
work of Alfred Tarski and his students. Their original intention with this theory was
to provide an algebraic treatment of first order logic (with equality), just as Boolean
algebras do for sentential calculus. In fact, a cylindric algebra is a Boolean algebra
equipped with additional operations ci corresponding to existential quantifiers and
dij corresponding to equality relations. More precisely, Let α be an ordinal. Then
an α-dimensional cylindric algebra is an algebraic structure of the form

A = 〈A,∧,−, ci, dij〉i,j∈α

where the ci are unary operations and the dij are constants and A satisfies cer-
tain equational posulates (see e.g. Definition 1.1.1 of [9]). We do not recall these
postulates, because we do not use their concrete forms below. CA and CAα denote
the class of all cylindric algebras and the class of cylindric algebras of dimension α,
respectively. There are two main methods of constructing cylindric algebras, called
“algebraizing syntax” and “algebraizing semantics”.

We start by describing algebraizing syntax. Suppose L is a first order lan-
guage with equality and let Σ be a theory in L. Two formulas ϕ and ψ are defined
to be equivalent mod Σ, in symbols ϕ ≡Σ ψ, iff Σ |= ∀(ϕ ⇔ ψ), where ∀(ϕ ⇔ ψ)
is the universal closure of ϕ⇔ ψ. Clearly, ≡Σ is an equivalence relation on the set
of formulas FormL. Quotienting the formula algebra (the completely free algebra)
with this equivalence relation, we obtain an ω-dimensional cylindric algebra which
is denoted by CA(Σ) and sometimes called the Lindenbaum algebra of Σ.

Algebraizing semantics may be described as follows. Keeping the nota-
tion of the previous paragraph, let M be a model of Σ and for a formula ϕ let
us denote by ||ϕ||M (or simply, by ||ϕ||) the “relation” defined by ϕ in M, ie.
||ϕ||M = {f ∈ ωM :M |= ϕ[f ]}. Let

A = {||ϕ|| : ϕ ∈ FormL}.

Then A is closed under set theoretic intersection and complementation. Moreover,
A may be expanded to an ω-dimensional cylindric algebra by adding the following
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operations ci, dij(i, j ∈ ω) to its similarity type (under which A is also closed):

ci||ϕ|| = ||∃viϕ|| and dij = ||vi = vj||.

The algebra obtained in this way is denoted by Cs(M) and is called the cylin-
dric set algebra of M.

Suppose ϕ, ψ ∈ FormL and ψ can be obtained from ϕ by substituting the vari-
able vj for vi (where both vi and vj are assumed to be unbound variables in ϕ). Let
sijx be the cylindric term ci(x ∧ dij). Then in CA(Σ) we have ψ/ ≡Σ= sij(ϕ/ ≡Σ)
and in Cs(M) we have ||ψ|| = sij||ϕ||. For i, j ∈ ω, the cylindric algebraic terms sij
are called substitutions.

When one wants to apply the same process to theories in languages do not con-
taining the equality symbol, substitution operations are no longer term definable.
To overcome this difficulty, the sij are defined to be basic operations when algebraiz-
ing equality free logics. More concretely, an α-dimensional quasi-polyadic algebra is
an algebraic structure of the form

A = 〈A,∧,−, ci, sij〉i,j∈α

satisfying certain equational postulates. Here, the ci correspond to existential quan-
tifiers, and the sij correspond to substitution operations. The class of α dimensional
quasi-polyadic algebras is denoted by QPAα. Algebraizing syntax and semantics
may be defined similarly to the cylindric case; the resulting algebras are denoted by
QPA(Σ) and by Qs(M) respectively.

Let A be an α-dimensional cylindric or quasi-polyadic algebra and let x ∈ A.
The dimension set ∆x of x is defined to be ∆x = {i ∈ α : x 6= cix}. Intuitively,
∆x is the set of variables x (as a “formula”) really depends on. A is defined to be
locally finite dimensional iff every element of A has a finite dimension set. Algebras
obtained by the algebraization processes described above are locally finite dimen-
sional, because each formula contains only a finite number of variables. The class of
locally finite dimensional algebras is denoted by Lf in the cylindric case, and LfQPA
in the quasi-polyadic case.

Simultaneous substitutions can also be generalized as follows. Let τ ∈ ωω and
for every i ∈ ω let’s substitute vτ(i) for vi simultaneously. As explained in Definitions
1.11.9 and 1.11.13 of [9], these kind of generalized substitutions can be introduced
in every Lf , the derived function is denoted by s+

τ .
Let U be a set. Then the full cylindric set algebra on U of dimension α is the

structure 〈P(αU),∩,−, Ci, Di,j〉i,j∈α, where ∩ is set theoretical intersection, − is
complementation (w.r.t. αU), and for any X ⊆ αU and i, j ∈ α,

CiX = {s ∈ αU : (∃z ∈ X)(s|α−{i} = z|α−{i})} and
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Di,j = {s ∈ αU : s(i) = s(j)}.

The class Csα of α dimensional cylindric set algebras is defined to be the class of
all subalgebras of α dimensional full cylindric set algebras. Similarly, the full quasi-
polyadic set algebra on U of dimension α is the structure 〈P(αU),∩,−, Ci, Sij〉i,j∈α,
where ∩, − and Ci are as before, and for any X ⊆ αU and i, j ∈ α,

SijX = {s ∈ αU : s ◦ [i/j] ∈ X}.

The class Qsα of α dimensional quasi-polyadic set algebras is defined to be the
class of all subalgebras of α dimensional full quasi-polyadic set algebras. Note that
Cs ⊆ CA and Qs ⊆ QPA, that is, cylindric set algebras are cylindric algebras, and
quasi-polyadic set algebras are quasi-polyadic algebras (of the appropriate dimens-
ion). Also, if M is a model for a language with equality, then Cs(M) is a cylindric
set algebra, and in the equality-free case, Qs(M) is a quasi-polyadic set algebra.

An element X of an α dimensional cylindric or quasi-polyadic set algebra A is
defined to be regular iff for every s, z ∈ αU we have

s ∈ X and s|∆(X) = z|∆(X) imply z ∈ X.

A cylindric or quasi-polyadic set algebra is regular iff all of its elements are regular.
The class of α dimensional regular cylindric or quasi-polyadic set algebras is denoted
by CsRegα and QsRegα , respectively. If M is a model for L, then Cs(M) and Qs(M)
are regular, because if ϕ is a formula of L and s ∈ ωU is a valuation (where U is
the universe ofM), then whetherM |= ϕ[s] holds or not depends only on the value
of s at those k for which M |6= ∀(∃vkϕ ⇔ ϕ), (where ∀(∃vkϕ ⇔ ϕ) is the universal
closure of ∃vkϕ⇔ ϕ). Equivalently, s ∈ ‖ϕ‖M depends only on s|∆(‖ϕ‖M).

We conclude this section by recalling some well known properties of dimension
sets, cylindrifications and substitutions (without proofs).

Proposition 2.1 Suppose A ∈ CAα or A ∈ QPAα. For all x, y ∈ A and i < α, we
have

1. ∆0 = ∆1 = ∅,
2. ∆(−x) = ∆x,
3. ∆(x ∨ y) ⊆ ∆x ∪∆y,
4. ∆(x ∧ y) ⊆ ∆(x) ∪∆y,
5. ∆(cix) ⊆ ∆x−{i}.

Proposition 2.2 Suppose A ∈ Lfα or A ∈ LfQPAα. For any x ∈ A, i, j ∈ α and
τ, σ ∈ αα we have:

1. if {n ∈ α : n 6= τ(n)} is finite, then s+
τ is a term function.

2. s+
[i/j] = sij,
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3. s+
Idα

= IdA,
4. s+

τ is a Boolean endomorphism,
5. s+

σ◦τx = s+
σ s

+
τ x,

6. if σ|α−{i} = τ|α−{i}, then s+
σ cix = s+

τ cix,
7. if σ|∆x = τ|∆x, then s+

σ x = s+
τ x,

8. if τ−1{j} = {i}, then cjs
+
τ x = s+

τ cix.
9. ∆(s+

τ x) ⊆ τ ∗∆x.

Proposition 2.3 Let A ∈ Lfα, and τ ∈ αα. Then s+
τ dij = dτ(i)τ(j).

Suppose Σ is a theory in a language L with equality. Then h : CA(Σ) −→
Cs(M), ϕ/≡Σ 7→ ‖ϕ‖ is a surjective homomorphism. Thus, Cs(M) is a homomorphic
image of CA(Σ), and, as we have already mentioned above, Cs(M) is a locally
finite dimensional and regular cylindric set algebra. Conversely, an element A ∈
Lfω ∩ CsRegω , together with a distinguished set of its generators, determines a model
for some language (this fact is well known, but a proof is recalled in Section 2 of [17]).
This model satisfies Σ (and is a model for L) iff there is a homomorphism from CA(Σ)
onto A mapping the distinguished set of generators of CA(Σ) (ie. {R/≡Σ: R ∈ L})
onto the distinguished set of generators of A.

Similarly, if Σ is a theory in a language without equality, there is also the above
one-one corraspondance between models of Σ and surjective homomorphisms from
QPA(Σ) onto elements of LfQPAω ∩ QsRegω . Consequently, the problem of finding all
the possible countable models of Σ is equivalent to finding all homomorphisms from
either CA(Σ) or QPA(Σ) onto some locally finite dimensional and regular set algebra
with a countable base.

3 Representations of certain quasi-polyadic alge-

bras

The representation theory of cylindric and quasi-polyadic algebras has a great
tradition, for more recent investigations we refer to e.g. [7],[8],[14],[15],[16] and [20].

In Remark 3.2.9 of [10] and in [1] (see also [17]), a method of constructing
homomorphisms from an Lfω with a countable universe onto some Lfω ∩ CsRegω is
given. Below, we adapt this method for quasi-polyadic algebras. To do so, we need
some further preperation.

Given a Boolean algebra B, let U(B) denote the set of ultrafilters on B. Recall
that the Stone topology T on U(B) is defined as follows: for each x ∈ B, let Nx

be defined as Nx = {F ∈ U(B) : x ∈ F}; then T is the topology generated by the
basis {Nx : x ∈ B}. This space is denoted by B∗ and sometimes called the dual of
B. Note that the Stone space B∗ = 〈U(B), T 〉 is a compact Hausdorff space, and the
basic sets Nx are clopen. Suppose that for some element x and subset Y of B we
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have x = supY . We will say an ultrafilter F ∈ U(B) preserves Y iff x ∈ F implies
y ∈ F for some y ∈ Y .

Let A be an LfQPAω that has a countable universe. Note that if Σ is a theory
in a language without equality, then QPA(Σ) satisfies these requirements. Following
[17], we denote by Ui,x(A) the set of ultrafilters on A that preserve {sijx : j < ω}.
We note that cix = sup{sijx : j ∈ ω} by Theorem 1.11.6 of [9], and so,

Ui,x(A) = {F ∈ U(A) : cix ∈ F implies sijx ∈ F for some j < ω}

= N−cix ∪
⋃
j<ω

Nsijx
.

Let H(A) denote the set of those ultrafilters of A that preserve {sijx : j < ω} for all
x ∈ A and i < ω, that is

H(A) =
⋂

i<ω,x∈A

Ui,x(A).

For completeness, we note that H(A) is nonempty. This follows from the Baire
category theorem and the fact that for each i and x, the complement of Ui,x(A) is a
nowhere dense subset of A∗. We do not prove this, because our results below imply
immediately that H(A) is nonempty.

Take any F ∈ H(A), and for any x ∈ A define the function repF to be

repF(x) = {τ ∈ ωω : s+
τ x ∈ F}.

In the next two lemmas, we show that repF is a homomorphism from A onto some
locally finite dimensional and regular Qsω, and that the converse is also true: any
such homomorphism can be obtained as a result of this construction. Lemma 3.1 is
the quasi-polyadic analogue of some results presented in Remark 3.2.9 of [10] and
in [1], while Lemma 3.2 is the quasi-polyadic analogue of Lemma 2.1 of [17] (where
it was presented for cylindric algebras in a more complicated form).

Lemma 3.1 For an arbitrary F ∈ H(A), repF is a homomorphism onto some
LfQPAω ∩ QsRegω with base ω. Furthermore, for all F0,F1 ∈ H(A) we have repF0

=
repF1

iff F0 = F1.

Proof. It is easy to see, using Proposition 2.2 that

(i) repF preserves −, ∧ and sij for all i, j ∈ ω, and
(ii) repF(x) is regular for each x ∈ A; (this is because if τ ∈ repF(x) and

τ|∆x = σ|∆x, then, by 7. of Proposition 2.2 we have s+
σ x = s+

τ x ∈ F , whence
σ ∈ repF(x)).

To show that CirepF(x) = repF(cix), first suppose that τ ∈ CirepF(x). This means
that for some σ ∈ ωω, we have σ|ω−{i} = τ|ω−{i} and s+

σ x ∈ F . Combining this with
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4. and 6. of Proposition 2.2, we obtain F 3 s+
σ cix = s+

τ cix. Hence τ ∈ repF(cix).
Now, suppose τ ∈ repF(cix). First, take a ρ ∈ ωω such that

ρ(j) =


τ(j) if j ∈ ∆x−{i}
0 if j ∈ ω−(∆x ∪ {i})
l for j = i,

where l ∈ ω−(τ ∗∆x∪{0}). We have ρ|∆x−{i} = τ|∆x−{i}. Also, τ−1{l} = {i}, and so
5. of Proposition 2.1 and 7. and 8. of Proposition 2.2 give us

s+
τ cix = s+

ρ cix = cls
+
ρ x.

Since cls
+
ρ x = s+

τ cix ∈ F and F ∈ H(A), there is a k ∈ ω such that slks
+
ρ x ∈ F ,

that is [l/k] ◦ ρ ∈ repF(x).
Let σ = ([l/k] ◦ ρ)|∆x ∪ Idω−∆x. Notice that ∆repF(x) ⊆ ∆x. (This is because

repF(x) ⊆ CirepF(x) ⊆ repF(cix) for all i ∈ ω. So, if i /∈ ∆(x), then it follows, that
repF(x) = CirepF(x).) Therefore, since repF(x) is regular, σ ∈ repF(x). Hence, we
have

CirepF(x) 3 σ|ω−{i} ∪ Id{i} = τ|∆x−{i} ∪ Id (ω−∆x)∪{i}.

Since repF(x) is regular, so is CirepF(x), and so τ ∈ CirepF(x).
Consequently, repF is a homomorphism from A onto some quasi-polyadic set

algebra B with base ω. B is locally finite dimensional because A is, and is regular,
because each of its elements are. The second statement is easily seen.

Next, we show that every homomorphism from A onto some locally finite dimen-
sional QsRegω with base ω can be obtained as a result of the previous construction.

Lemma 3.2 Let B ∈ LfQPAω ∩ QsRegω with base ω. For any homomorphism h from
A onto B, there is an F ∈ H(A) such that h = repF .

Proof. Consider the following subset of A:

F = {x ∈ A : Idω ∈ h(x)}.

It is not hard to check that F is an ultrafilter. We will show that F ∈ H(A), and
that repF = h.

Let x ∈ A and i ∈ ω. Suppose we have cix ∈ F . This means that Idω ∈ h(cix) =
Cih(x). Therefore [i/k] ∈ h(x) for some k ∈ ω, implying that

Idω ∈ {σ : σ ◦ [i/k] ∈ h(x)} = Sikh(x) = h(sikx)

and so sikx ∈ F . Consequently, F ∈ Ui,x(A). Because the above x and i were chosen
arbitrarily, F ∈ H(A).

Finally, observe that for any x ∈ A and τ ∈ ωω, we have

τ ∈ repF(x) iff s+
τ x ∈ F iff Idω ∈ h(s+

τ x) = S+
τ h(x)

iff Idω ◦ τ ∈ h(x) iff τ ∈ h(x).

10



This means that h = repF , as desired.

4 Elementary embeddings and representations over

a countable base set

In this paper, we are interested in the countable models of a consistent theory
Σ only up to elementary embeddability; that is, we do not want to distinguish
between two modelsM and N – or their corresponding ultrafilters – if either there
is an elementary embedding ρ ofM into N or vice versa. Our goal is to characterize
the ultrafilters that lead to “the same” models; this will be done in Theorem 4.1 in
the equality-free case and in Theorem 4.5 in the case with equality.

4.1 The case without equality

Throughout this subsection, we will suppose A = QPA(Σ) for some consistent
theory Σ in a language L without equality. Recall from Section 1 that

KΣ = {M |= Σ : the universe of M is ω}.

Due to Lemmas 3.1 and 3.2 and the paragraph right after Proposition 2.3, there
is a one-one correspondence between the models in KΣ and the ultrafilters in F ∈
H(A). More specifically, if M ∈ KΣ, then there is an F ∈ H(A) such that repF
is a homomorphism from A onto Qs(M). Conversely, if F ∈ H(A), then repF
is a homomorphism from A onto some B ∈ LfQPAω ∩ QsRegω with base ω, and so
B = Qs(M) for some model M of Σ with universe ω. Note that in both cases,
we have repF(ϕ/≡Σ) = ‖ϕ‖M. Consequently, instead of the models of Σ with base
ω, we can work with H(A). Now, we will determine which of its elements lead to
pairwise non-elementarily embeddable models.

Suppose ρ is a bijection between the sets U and W . For every X ⊆ αU let

f(X) = {ρ ◦ σ : σ ∈ X}.

If B ∈ Qsα with base U , then f|B is clearly an isomorphim onto some Qsα. Isomor-
phisms of this form are called base isomorphisms.

Suppose B and C are α dimensional quasi-polyadic set algebras with bases U and
V , and U ⊇ V . Suppose Φ is an isomorphism between them. If for every X ∈ B we
have

Φ(X) = X ∩ αV

then Φ is called an ext.-isomorphism. We call a function h = f ◦ Φ an ext.-base-
isomorphism iff f is a base isomorphism, and Φ is an ext.-isomorphism. (We note
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that a slightly different, although equivalent definition of ext.-base-isomorphisms is
given in 3.1.41 of [10].) Base isomorphisms and ext.-isomorphisms between cylindric
set algebras are defined similarly to the quasi-polyadic case.

In the case of cylindric algebras (i.e. the case of languages with equality), the
characterization of isomorphism and elementary embeddability with the previous
concepts is well known: supposeM andN are models for a language L that contains
the equality symbol. Then

• M ∼= N iff Cs(M) is base isomorphic to Cs(N ) with the natural generators
preserved, ie. the image of ‖R‖M is ‖R‖N for all R ∈ L.

• M < N iff Cs(M) is ext.-isomorphic to Cs(N ) with the natural generators
preserved, (see 10. of Remark 4.3.86 of [10]). Thus N is elementarily embed-
dable intoM iff Cs(M) and Cs(N ) are ext.-base-isomorphic with the natural
generators preserved.

In Definition 3.1 and Theorem 3.2 of [17], a characterization of ultrafilters that
correspond to isomorphic models is given (although only in the case with equality).
The next theorem is motivated by this characterization, and the above. (A is still
QPA(Σ), where Σ is a theory in an equality-free language L.)

Theorem 4.1 Let M0,M1 ∈ KΣ. Suppose F0,F1 ∈ H(A) are such that repFi is a
homomorphism from A onto Qsω(Mi) (i = 0, 1). Suppose ρ : ω −→ ω is injective,
and let U = Range ρ. For each X ⊆ ωω let fρ(X) = {ρ ◦ σ : σ ∈ X}, and for each
X ∈ Qsω(M1) let Φ(X) = X ∩ ωU . Then, the following are equivalent:

1. ρ :M0 4M1,
2. fρ ◦ repF0

= Φ ◦ repF1
,

3. For each x ∈ A we have x ∈ F0 iff s+
ρ x ∈ F1, (that is, F0 = (s+

ρ )
−1F1).

Proof. To see that 1. and 2. are equivalent, we will first prove the following claim.

Claim 4.1.1 ρ : M0 4 M1 iff for every formula ϕ of L we have fρ(‖ϕ‖M0) =

Φ(‖ϕ‖M1).

Proof of Claim 4.1.1

ρ :M0 4M1 iff

M0 |= ϕ[σ] iff M1 |= ϕ[ρ ◦ σ] for every σ ∈ ωω and ϕ ∈ FormL iff

σ ∈ ‖ϕ‖M0 iff ρ ◦ σ ∈ ‖ϕ‖M1 for every σ ∈ ωω and ϕ ∈ FormL iff

σ ∈ ‖ϕ‖M0 iff ρ ◦ σ ∈ ‖ϕ‖M1 ∩ ωU for every σ ∈ ωω and ϕ ∈ FormL iff

fρ(‖ϕ‖M0) = Φ(‖ϕ‖M1) for every ϕ ∈ FormL.

12



This completes the proof of Claim 4.1.1.
Because we have ‖ϕ‖Mi = repFi(ϕ/≡Σ) (for i = 0, 1) for every formula ϕ, and

because the universe of A is A = {ϕ/≡Σ: ϕ ∈ FormL} we obtain, by Claim 4.1.1,

ρ :M0 4M1 iff

fρ(‖ϕ‖M0) = Φ(‖ϕ‖M1) for every ϕ ∈ FormL iff

fρ(repF0
(ϕ/≡Σ)) = Φ(repF1

(ϕ/≡Σ)) for every ϕ ∈ FormL iff

fρ(repF0
(x)) = Φ(repF1

(x)) for every x ∈ A iff

fρ ◦ repF0
= Φ ◦ repF1

.

Now suppose the second statement holds, that is fρ ◦ repF0
(x) = Φ ◦ repF1

(x) for
every x ∈ A. Then, for all x ∈ A we have,

x ∈ F0 iff

s+
Idω
x ∈ F0 iff

Idω ∈ repF0
(x) iff

ρ ◦ Idω ∈ fρ ◦ repF0
(x) iff

ρ ◦ Idω ∈ Φ ◦ repF1
(x) = repF1

(x) ∩ ωU iff

ρ ∈ repF1
(x) iff

s+
ρ x ∈ F1.

Therefore the second statement implies the third. To see the other direction, suppose
x ∈ F0 iff s+

ρ x ∈ F1 for all x ∈ A. Then, for all τ ∈ ωω we have

τ ∈ repF0
(x) iff

s+
τ x ∈ F0 iff (by 2.2(5))

s+
ρ◦τx ∈ F1 iff

ρ ◦ τ ∈ repF1
(x) iff

ρ ◦ τ ∈ repF1
(x) ∩ ωU = Φ ◦ repF1

(x) iff (since fρ : ωω −→ ωU is a bijection)

τ ∈ fρ−1 ◦ Φ ◦ repF1
(x).

Thus we have repF0
= fρ

−1 ◦ Φ ◦ repF1
, or equivalently, fρ ◦ repF0

= Φ ◦ repF1
.

Note that Claim 4.1.1 implies that, (using the notation of the previous theorem)
ρ :M0 4M1 iff f−1

ρ ◦ Φ is an ext.-base-isomorphism.

4.2 The case with equality

In this subsection, let A be a locally finite dimensional cylindric algebra with a
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countable universe. Recall from universal algebra that an algebra B is a (general-
ized) reduct of A iff their universes coincide and the basic operations of B are term
functions of A.

Suppose F ∈ H(A). Since A has a quasi-polyadic algebra reduct,

repF : x 7→ {τ : s+
τ x ∈ F}

is a quasi-polyadic homomorphism onto some locally finite dimensional B ∈ QsRegω

with base ω, by Lemma 3.1. Below, we show that if F satisfies an additional con-
dition, namely that dij ∈ F iff i = j (iff dij = 1), then repF will be a cylindric
homomorphism (and B will be a cylindric set algebra). Let H′(A) be the set of such
ultrafilters:

H′(A) = H(A)−
⋃

i 6=j∈ω

Ndij = H(A) ∩
⋂

i 6=j∈ω

N−dij .

These results can be considered cylindric algebraic analogs of Lemmas 3.1 and 3.2.

Lemma 4.2 If F ∈ H′(A), then repF is a homomorphism from A onto some Lfω ∩
CsRegω with base ω. In addition, repF0

= repF1
iff F0 = F1 for all F0,F1 ∈ H′(A).

Proof. Due to Lemma 3.1, all that remains to be seen is that repF preserves dij for
all i, j ∈ ω. This is so, because

τ ∈ repF(dij) iff F 3 s+
τ dij

2.3
= dτ(i)τ(j)

iff τ(i) = τ(j)

iff τ ∈ Dij.

Hence Dij ∈ B for all i, j < ω, meaning that B is also a – regular and locally finite
dimensional – cylindric set algebra.

Lemma 4.3 Suppose B ∈ Lfω∩CsRegω with base ω, and suppose h is a homomorphism
from A to B. Then there is an F ∈ H′(A) such that h = repF .

Proof. As we have seen in the proof of Lemma 3.2, for

F = {x ∈ A : Idω ∈ h(x)},

we have F ∈ H(A) and h = repF .
Take any i 6= j ∈ ω. Then we have Idω /∈ Dij = h(dij). Therefore dij /∈ F , or

equivalently, F /∈ Ndij . Because i and j were chosen arbitrarily, F is in H′(A).
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Remark 4.4 The construction of homomorphisms from an A ∈ Lfω with a count-
able universe onto Lfω ∩ CsRegω ’s described in [17] is not exactly the same as our
construction. There, H(A) is defined as the set of those ultrafilters that preserve
{sijx : j ∈ ω − ∆x} for all x ∈ A and i ∈ ω (instead of preserving {sijx : j ∈ ω}).
Given an arbitrary F ∈ H(A), an equivalence relation E = {〈i, j〉 : dij ∈ F} is
defined in [17] and is called the kernel of F . Using this E, repF(x) is defined there
as

repF(x) = {τ/E : s+
τ x ∈ F}.

It is plain to see that if we ignore the differnce in the definitions of H(A), then
H′(A) is the set of ultrafilters of H(A) whose kernel is the identity relation, and
that for these ultrafilters, the definition of repF in [17] coincides with our definition.

Let A = CA(Σ) for some theory Σ in a language L with equality. Due to Lemmas
4.2 and 4.3, there is a one-one correspondence between KΣ and H′(A), just as in
the case without equality. The next theorem tells us that ultrafilters of H′(A) that
lead to pairwise non elementarily embeddable models are characterized exactly as
in the case without equality (see Theorem 4.1). Its proof is no different from that
of Theorem 4.1.

Theorem 4.5 Let M0 and M1 be models in KΣ, and let F0,F1 ∈ H′(A). Suppose
repFi is a homomorphism from A onto Csω(Mi) (i = 0, 1). Let ρ : ω −→ ω be
injective, and let U = Range ρ. For each X ⊆ ωω, define fρ(X) = {ρ ◦ σ : σ ∈ X},
and for each X ∈ Csω(M1) let Φ(X) = X ∩ ωU . Then the following are equivalent:

1. ρ :M0 4M1,
2. fρ ◦ repF0

= Φ ◦ repF1
,

3. F0 = (s+
ρ )
−1F1.

5 Vaught’s conjecture and its variants

In this section, we prove our main results. Here, we will treat the case with
equality and the case without it simultaniously. We therefore suppose Σ is a theory in
a countable language L either with or without the equality symbol. When studying
Vaught’s conjecture, it is usually assumed that Σ is a complete theory. We do not
assume this however, because we will not need it in proving our results. We set
A = QPA(Σ) and H = H(A) if L does not contain the equality symbol. In the case
with equality, we set A = CA(Σ), and H = H′(A). Below, a definition from Section
1 is recalled and made explicit.

Definition 5.1 Let Inj (ω) denote the set of injective functions of ωω. Given a sub-
monoid S of Inj (ω), we define
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I (Σ, S) = sup{|M | : M ⊆ KΣ and no ρ ∈ S is an elementary embedding between
any two models in M}.

By Theorem 4.1 and its counterpart Theorem 4.5, we have

I (Σ, S) = sup{|R| : R ⊆ H and

for every ρ ∈ S and F0,F1 ∈ R we have F0 6= (s+
ρ )
−1F1}.

As pointed out in Section 1, the variant of Vaught’s conjecture concerning elementary
embeddings can be rephrased as follows:

if I (Σ, Inj (ω)) > ℵ0, then I (Σ, Inj (ω)) = 2ℵ0 .

Finally, we recall that we endowed ω with the discrete topology and ωω with the
resulting product topology. Our goal in this section is to prove that I (Σ, S) > ℵ0

implies I (Σ, S) = 2ℵ0 for any σ-compact submonoid S of Inj (ω) (see Theorems
5.8 and 5.9 below). A subset X ⊆ ωω is defined to be σ-compact iff there exists
a countable family {Xi ⊆ ωω : i < ω} of compact subsets of ωω such that X =⋃
i<ωXi.

When stating Lemmas 5.2 to 5.7, we assume S ⊆ Inj (ω) is a fixed σ-compact
monoid, and we let RΣ denote a fixed subset of H such that for every F0,F1 ∈ RΣ

and every ρ ∈ S we have F0 6= (s+
ρ )
−1F1. Lemmas 5.2 to 5.6 were adapted from

an earlier version of Section 3 of [17]; they are the technical cornerstones of our
construction.

Lemma 5.2 Suppose N ⊆ U(A) is a clopen set of A∗ such that |N ∩RΣ| ≥ ℵ1. For
every x ∈ A and every i < ω there exists a clopen N ′ ⊆ N such that N ′ ⊆ Ui,x(A)
and |N ′ ∩RΣ| ≥ ℵ1.

Proof. For each j ∈ ω let Mj = {F ∈ N ∩ RΣ : sijx ∈ F} and let M−1 = {F ∈
N ∩RΣ : cix 6∈ F}. Since RΣ ⊆ H, it follows that

(∗) N ∩RΣ =
⋃
j∈{−1}∪ωMj.

Since the cardinality of the left hand side of (∗) is at least ℵ1, it follows that there
is a j ∈ {−1} ∪ ω for which |Mj| ≥ ℵ1. If j = −1, then let N ′ = N ∩N−cix= {F ∈
N : −cix ∈ F}; if j ∈ ω, then let N ′ = N ∩ Nsijx

= {F ∈ N : sijx ∈ F}. In both

cases, N ′ satisfies the requirements of the lemma.

Lemma 5.3 Suppose N is a clopen set of A∗ and |N ∩RΣ| ≥ ℵ1. Then there exist
disjoint clopen sets N ′, N ′′ ⊆ N such that |N ′ ∩RΣ| ≥ ℵ1 and |N ′′ ∩RΣ| ≥ ℵ1.
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Proof. Suppose, seeking a contradiction that there does not exist suitable N ′ and
N ′′. It follows that if N ′ ⊆ N is clopen with |N ′ ∩ RΣ| ≥ ℵ1, then for any clopen
set M either

(a) |N ′ ∩RΣ ∩M | ≥ ℵ1 and |(N ′ ∩RΣ)−M | < ℵ1 or
(b) |(N ′ ∩RΣ)−M | ≥ ℵ1 and |N ′ ∩RΣ ∩M | < ℵ1.

Let 〈ai : i ∈ ω〉 be an enumeration of the elements of A. Let N0 = N . By re-
cursion, we will construct a decreasing sequence 〈Ni : i ∈ ω〉 of clopen sets such that
for every i ∈ ω we have

(i) |Ni ∩RΣ| ≥ ℵ1 and (ii) Nai−1
∩Ni 6= ∅ implies Ni ⊆ Nai−1

.

Suppose i < ω and Nj have been defined for every j < i such that (i), (ii) hold. If
|Ni−1∩RΣ∩Nai−1

| ≥ ℵ1, then let Ni = Ni−1∩Nai−1
; otherwise let Ni = Ni−1−Nai−1

.
By (a) and (b) above, Ni still satisfies (i); in addition (ii) holds by construction. In
this way 〈Ni : i ∈ ω〉 can be completely built up.

Observe that for any i ∈ ω we have |(N −Ni) ∩RΣ| < ℵ1 (otherwise by (i), Ni

and N −Ni would witness a contradiction to our indirect assumption). Hence,

H =
⋃
i∈ω((N −Ni) ∩RΣ)

is countable. Consequently, (N ∩ RΣ)−H is uncountable; particularly, there exist
two different elements F ,G ∈ (N ∩RΣ)−H. Since F 6= G, there exists ai ∈ A with
ai ∈ F − G.

Since ai ∈ F , it follows that F ∈ Nai . In addition, since F 6∈ H, it follows that
F ∈ Ni+1. So F ∈ Nai ∩Ni+1 6= ∅, whence, by (ii) we have Ni+1 ⊆ Nai . Similarly,
G 6∈ H implies G ∈ Ni+1. Hence G ∈ Nai and thus ai ∈ G, contradicting the choice
of ai.

Lemma 5.4 Suppose S0 ⊆ S is a compact subset of ωω. Then for every distinct
F ,G ∈ RΣ there exist a, b ∈ A such that

1. a ∈ F and b ∈ G,
2. for every ρ ∈ S0 we have s+

ρ a ≤ −b.

Proof. Suppose F 6= G ∈ RΣ. Then, by the definition of RΣ, for any ρ ∈ S0 we
have F 6= (s+

ρ )
−1G. That is, for any ρ ∈ S0 there exists an aρ ∈ A such that aρ ∈ F

iff s+
ρ aρ /∈ G. Taking the complement of aρ if necessary, we may assume aρ ∈ F and

s+
ρ aρ /∈ G.

For every ρ ∈ S0, we let Uρ = {σ ∈ ωω : σ|∆aρ = ρ|∆aρ}. Because A is locally
finite dimensional, Uρ is an open subset of ωω. In addition, ρ ∈ Uρ. Therefore
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{Uρ : ρ ∈ S0} is an open covering of S0. Since S0 is compact, there exists n < ω and
ρ0, . . . ρn−1 ∈ S0 such that S0 ⊆

⋃
i<n Uρi .

Let
a =

∧
i<n

aρi and b =
∧
i<n

−s+
ρi
aρi .

Obviously, a and b satisfy 1. To see that 2. is satisfied, note that for any ρ ∈ S0 we
have ρ ∈ Uρi for some i < n. Therefore using this i we have s+

ρ a ≤ s+
ρ aρi = s+

ρi
aρi ≤∨

j<n s
+
ρj
aρj = −b, as desired.

Lemma 5.5 Suppose S0 ⊆ S is a compact subset of ωω. Let N and M be disjoint
clopen sets of A∗ such that |N ∩ RΣ| ≥ ℵ1 and |M ∩ RΣ| ≥ ℵ1. Then there exist
a, b ∈ A such that

1. |N ∩Na ∩RΣ| ≥ ℵ1 and |M ∩Nb ∩RΣ| ≥ ℵ1,
2. for every ρ ∈ S0 we have s+

ρ a ≤ −b.

Proof. Given any F ∈ N ∩ RΣ and G ∈ M ∩ RΣ we can find aF ,G, bF ,G ∈ A such
that aF ,G ∈ F , bF ,G ∈ G and s+

ρ aF ,G ≤ −bF ,G for every ρ ∈ S0, by Lemma 5.4.
Because |M ∩RΣ| ≥ ℵ1 and A has a countable universe, for any F ∈ N ∩RΣ there
exist aF , bF ∈ A such that for at least ℵ1 many G ∈M ∩RΣ we have both aF ,G = aF
and bF ,G = bF . For similar reasons, we can find a, b ∈ A such that for at least ℵ1

many F ∈ N ∩ RΣ we have both aF = a and bF = b. These a and b clearly satisfy
the lemma.

Lemma 5.6 Suppose S0 ⊆ S is compact. Let 2 ≤ n < ω and {Ni : i < n} be
disjoint clopen sets of A∗ such that |Ni ∩ RΣ| ≥ ℵ1 for all i < n. Then there exist
a0, . . . , an−1 ∈ A such that

1. |Ni ∩Nai ∩RΣ| ≥ ℵ1 for all i < n,
2. for all i < j < n there exists an aij ∈ A such that Ni ∩ Nai ⊆ Naij and for

every ρ ∈ S0 we have Nj ∩Naj ⊆ N−s+ρ aij .

Proof. We prove this theorem by iterating the application of Lemma 5.5. In more
detail, first suppose n = 2. Then, due to Lemma 5.5, there exist a, b ∈ A such
that |N0 ∩ Na ∩ RΣ| ≥ ℵ1 and |N1 ∩ Nb ∩ RΣ| ≥ ℵ1, and for every ρ ∈ S0 we have
s+
ρ a ≤ −b. Then a0 = a, a1 = b and a01 = a clearly satisfy 1. and 2.

Now, suppose n > 2. Let W = {〈i, j〉 : i < j < n}. We will show that the
following holds for every J ⊆ P(W ), by induction on |J |:

for every i < n there exists ai ∈ A such that |Ni ∩Nai ∩RΣ| ≥ ℵ1, and

if 〈i, j〉 ∈ J , then there exists an aij ∈ A such that Ni ∩Nai ⊆ Naij and (∗)
for every ρ ∈ S0 we have Nj ∩Naj ⊆ N−s+ρ aij .
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This is enough, because J = W implies the conclusion of the lemma. First, if J = ∅,
then a0 = a1 = · · · = an−1 = 1 is suitable. Now, suppose |J | = k and (∗) holds for
all J ′ ⊆ W such that |J ′| < k. Take an arbitrary 〈i, j〉 ∈ J , and let J ′ = J−{〈i, j〉}.
Then |J ′| = k − 1; consequently, there exist c0, . . . , cn−1 such that for every l < n
we have |Nl ∩Ncl ∩RΣ| ≥ ℵ1, and if 〈l,m〉 ∈ J , then there exists an alm such that
Nl ∩Ncl ⊆ Nalm and for every ρ ∈ S0 we have Nm ∩Ncm ⊆ N−s+ρ alm . If l 6= i, j, then
let al = cl. Applying the case n = 2 to Ni ∩Nci and Nj ∩Ncj , there exist di, dj ∈ A
such that both

|Ni ∩Nci ∩Ndi ∩RΣ| ≥ ℵ1 and |Nj ∩Ncj ∩Ndj ∩RΣ| ≥ ℵ1.

Let ai = ci ∧ di and aj = cj ∧ dj. This choice of al and alm (for all l,m < n) satisfies
(∗) for J , hence the induction is complete.

Lemma 5.7 Suppose S0 ⊆ S is compact. Let 2 ≤ n < ω and {Ni : i ∈ n} be
disjoint clopen sets of A∗ such that |Ni ∩ RΣ| ≥ ℵ1 for all i ∈ n. Then there exist
N ′i ⊆ Ni such that

1. |N ′i ∩RΣ| ≥ ℵ1 for all i ∈ n,
2. for all i 6= j ∈ n there exists an a′ij ∈ A such that N ′i ⊆ Na′ij

and for every

ρ ∈ S0 we have N ′j ⊆ N−s+ρ a′ij .

Proof. We prove this lemma by applying the previous one twice. In more detail, if
Ni are as in the lemma, then, by Lemma 5.6, there exist a0, . . . , an−1 ∈ A such that
|Ni ∩ Nai ∩ RΣ| ≥ ℵ1 for all i < n, and for all i < j < n there exist aij ∈ A such
that Ni ∩Nai ⊆ Naij and Nj ∩Naj ⊆ N−s+ρ aij for all ρ ∈ S0.

For each i < n, let Mi = Nn−(i+1) ∩Nan−(i+1)
. Again by Lemma 5.6, there exist

b0, . . . bn−1 ∈ A such that |Mi ∩Nbi | ≥ ℵ1, and for all i < j < n there exist bij ∈ A
such that Mi ∩Nbi ⊆ Nbij and Mj ∩Nbj ⊆ N−s+ρ bij for all ρ ∈ S0.

For each i < n, let N ′i = Mn−(i+1) ∩Nbn−(i+1)
. If i < j, then let a′ij = aij, and if

j < i, then let a′ij = bn−(i+1),n−(j+1). This choice of Ni and a′ij satisfies the conclusion
of the lemma.

We are now ready to prove the main results of the paper.

Theorem 5.8 (Main theorem of the paper for the case without equality.)
Let Σ be a theory in a countable language without equality, and let S ⊆ Inj (ω) be a
σ-compact monoid.

If I (Σ, S) > ℵ0, then I (Σ, S) = 2ℵ0 .
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Proof. The idea behind this proof is the same as the one behind the proof of
Theorem 3.6 of [17]. Let A = QPA(Σ) and H = H(A). Suppose that for RΣ ⊆ H we
have |RΣ| > ℵ0 and for every F0,F1 ∈ RΣ and every ρ ∈ S we have F0 6= (s+

ρ )
−1F1.

Suppose {Si ⊆ ωω : i < ω} is a countable collection of compact subsets of ωω
such that S =

⋃
i<ω Si, and let r = 〈ri : i < ω〉 be an enumeration of ω in which for

each j < ω we have ri = j infinitely many times. Furthermore, let s = 〈si : i < ω〉
be an enumeration of {〈i, x〉 : i < ω, x ∈ A}.

We show that a tree {tp : p ∈ <ω2} can be constructed such that the following
hold for all p, q ∈ <ω2:

1. tp is a clopen set of A∗,
2. |tp ∩RΣ| ≥ ℵ1,
3. if p ⊆ q, then tp ⊇ tq,
4. tp_0 and tp_1 are disjoint,
5. tp ⊆ Us|p|−1

(A),
6. if |p| = |q| and p 6= q, then there is an a ∈ A such that for every ρ ∈ Sr|p|−1

we
have tp ⊆ Na and tq ⊆ N−s+ρ a.

Let t〈〉 = U(A). Now suppose tp has been defined for all p ∈ i−12 so that 1.-6. hold.
Due to Lemma 5.3, for any p ∈ <i2 there exist zp_0, zp_1 ⊆ tp that are disjoint
clopen subsets of tp such that |zp_i ∩ RΣ| ≥ ℵ1 for i = 0, 1. Next, by Lemma 5.7,
we can find for all p ∈ i2 a z′p ⊆ zp such that the following (i) and (ii) are satisfied:

(i) |z′p ∩RΣ| ≥ ℵ1, and
(ii) if p 6= q, then there exists an a ∈ A such that z′p ⊆ Na and z′q ⊆ N−s+ρ a for

all ρ ∈ Sr|p|−1
.

Lastly, by Lemma 5.2, for all p ∈ i2 there exist tp ⊆ z′p such that tp ⊆ Us|p|−1
(A) and

|tp ∩RΣ| ≥ ℵ1. It is easy to see that these tp’s satisfy 1.-6.
Thus a tree 〈tp : p ∈ <i2〉 can be constructed so that statements 1.-6. are

satisfied.
Take any f ∈ ω2. Then 〈tf|n : n < ω〉 is a decreasing sequence of nonempty

clopen sets ofA∗ by 1., 2., and 3., and therefore it has the finite intersection property.
Because A∗ is a compact space, this implies that

⋂
i<ω tf|n 6= ∅. For every f ∈ ω2,

take an arbitrary F(f) ∈
⋂
i<ω tf|n . By 5., we have F(f) ∈ H.

Suppose f 6= g and for some ρ ∈ S we have

F(f) = (s+
ρ )
−1F(g). (∗)

Let n < ω be such that f(n) 6= g(n). Then for some i > n we have ρ ∈ Sri−1
. By

construction, tf|i 6= tg|i , so 6. implies that for some a ∈ A we have F(f) ∈ tf|i ⊆ Na

and also F(g) ∈ tg|i ⊆ N−s+ρ a. That is, a ∈ F(f) and −s+
ρ a ∈ F(g). But because of

(∗), we also have s+
ρ a ∈ F(g), an obvious contradiction.

ThusH contains 2ℵ0 many ultrafilters corresponding to pairwise non S-elementarily
embeddable models, and so I (Σ, S) = 2ℵ0 .
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Theorem 5.9 (Main theorem of the paper for the case with equality.)
Suppose Σ is a theory in a countable language containing the equality symbol, and
let S ⊆ Inj (ω) be a σ-compact monoid.

If I (Σ, S) > ℵ0, then I (Σ, S) = 2ℵ0 .

Proof. This proof differs from the previous one only in that we have to make sure
that the ultrafilters obtained from the previous construction are in H′(A); that is,
for all i 6= j ∈ ω they are in N−dij .

Let A = CA(Σ) and H = H′(A). Suppose that for RΣ ⊆ H we have |RΣ| > ℵ0

and for every F0,F1 ∈ RΣ and every ρ ∈ S we have F0 6= (s+
ρ )
−1F1. Let r, s and

{Si : i < ω} be as in the previous proof, and let q = 〈qk : k < ω〉 be an enumeration
of {−dij : i 6= j ∈ ω}.

We will show that a tree 〈tp : p ∈ <ω2〉 can be constructed, which satisfies the
stipulations 1.-6. of the previous proof, as well as the following stipulation for all
p ∈ <ω2:

7. tp ⊆ Nq|p|−1
.

As before, let t〈〉 = U(A). Next suppose {tp : p ∈ <i2} have all been defined
so that 1.-7. are satisfied. Then as in the previous proof, we can define for all
p ∈ i2 sets t′p that satisfy 1.-6. Now for any p ∈ i2 let tp = t′p ∩ Nq|p|−1

. It
is immediate that 7. is satisfied, and that 1. and 3.-6. remain true. Further-
more, 2. is satisfied, because for all i 6= j ∈ ω we have RΣ ⊆ H ⊆ N−dij and so
|tp ∩RΣ| = |t′p ∩Nq|p|−1

∩RΣ| = |t′p ∩RΣ| ≥ ℵ1 for all p ∈ i2.
Thus we can build a tree 〈tp : p ∈ <ω2〉 that satisfies statements 1.-7. With

its help, we obtain for each f ∈ ω2 the ultrafilter F(f) ∈
⋂
n<ω tf|n as in the proof

above. F(f) ∈ H(A) and different f, g ∈ ω2 lead ultrafilters corresponding to pair-
wise non S-elementarily embeddable models for the same reasons as in the previous
proof. Furthermore, by 7., F(f) ∈ H′(A) = H. Thus I (Σ, S) = 2ℵ0 .

We conclude this section by a corollary concerning pairwise non-isomorphic
countable models of Σ.

Corollary 5.10 Let Σ be a theory either in a language with or without equality. Let
S ⊆ ωω be a σ-compact group. Then

I(Σ, S) > ℵ0 implies I(Σ, S) = 2ℵ0.

In more detail: suppose there exists a set {Ai : i < ℵ1} of countable models of
Σ such that for each i < ℵ1, the universe of Ai is ω, moreover, if i 6= j < ℵ1, then
for any % ∈ S, % is not an isomorphism between Ai and Aj (that is, S has at least
ℵ1 many orbits on models of Σ whose universe is ω). Then Σ has continuum many
such models (i.e., S has 2ℵ0 many orbits on models of Σ whose universe is ω).
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Proof. Let A,B be two models of Σ whose universes are ω. Since S is a group, its
elements are permutations of ω. Therefore the following are equivalent:
•% ∈ S is an elementary embedding between A and B;
•% ∈ S is an isomorphism between A and B.

Hence the corollary follows from Theorem 5.8 and Theorem 5.9.

6 Concluding remarks

In this section, we present some further questions and research directions which
remain open. We believe that the methods of this paper may be further developed
to handle them.

Let Σ be a first order theory. When one investgates the number of noniso-
morphic models of Σ, one usually assumes that Σ is complete. This is because
distinguishing models of Σ by first order formulas is well understood and “easy” in
some sense. We note, however, that in the present paper we did not use that Σ is
complete (particularly, the proofs of Sections 4 and 5 work for noncomplete theories
as well).

Suppose Σ is not a complete theory. Instead of taking countably infinite models
of Σ, one can then take finite models as well. It would also be interesting to say
something about the number of pairwise non-isomorphic models of Σ of a fixed finite
cardinality. Our methods seem to be applicable here as well. For completeness, we
mention that with a completely different technique we have already started to study
some extensions of Morley’s categoricity theorem to the finite: if Σ is ℵ1-categorical
(but not necessarily ℵ0-categorical), then, under some further technical conditions,
large enough finite portions of Σ have unique n-element models for any large enough
finite n ∈ ω. For more details we refer to [18].

Turning back to the original problem, it would be intriguing to know whether
or not the σ-compactness of S may be removed from the conditions of Theorems
5.8 and 5.9. This question seems to be difficult, because, similarly to the proof of
Corollary 5.10, an affirmative answer would imply Vaught’s original conjecture.

An elementary mapping is a fuction that preserves all ∅-definable relations. In
the context of languages without equality, an elementary mapping is not necessarily
injective. By an elementary function between the structures A and B, we mean an
elementary mapping whose domain is the universe of A. We can consider models up
to elementary functions instead of elementary embeddings. It would be interesting
to know if our methods may be adapted to this case; (we believe that this can be
done).

We believe that the approach presented in this paper can be further developed to
study the number of non-isomorphic κ sized models of a theory (where κ is a fixed,
possibly uncountable cardinal). In fact, related investigations on Vaught’s conjec-
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ture based on algebraic logic may also be found in [19]. There, among other results,
we give a cylindric algebraic proof of Morley’s celebrated theorem: I(Σ,ℵ0) > ℵ1

implies I(Σ,ℵ0) = 2ℵ0 . In addition, using dimension complemented cylindric alge-
bras instead of locally finite dimensonal ones, we extend our approach to certain
first order logics with infinitary predicates (which is beyond the usual first order
logic).
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