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INTUITIONISTIC LOGIC WITH A GALOIS CONNECTION

HAS THE FINITE MODEL PROPERTY⋆

WOJCIECH DZIK, JOUNI JÄRVINEN, AND MICHIRO KONDO

Abstract. We show that the intuitionistic propositional logic with a
Galois connection (IntGC), introduced by the authors, has the finite
model property.

1. Introduction

In [1], we introduced the intuitionistic propositional logic with a Galois
connection (IntGC). In addition to the intuitionistic logic axioms and in-
ference rule of modus ponens, IntGC contains just two rules of inference
mimicking the condition defining Galois connections. A Galois connection

between partially ordered sets P and Q consists of two maps f : P → Q and
g : Q → P such that for all a ∈ P and b ∈ Q, we have f(a) ≤ b if and only if
a ≤ g(b). Note that in the literature can be found two ways to define Galois
connections – the one adopted here, in which the maps are order-preserving,
and the other, in which they are reversing the order.

We proved in [1] that IntGC is complete with respect to both Kripke style
and algebraic semantics. Our intention was also to show that IntGC has the
finite model property (FMP), that is, for every formula which is not provable,
there exists a finite counter Kripke model. Together with the other results
presented in the paper, this would imply that the following assertions are
equivalent for every IntGC-formula A:

(i) A is provable.
(ii) A is valid in any finite distributive lattice with an additive and normal

operator f ;
(iii) A is valid in any finite distributive lattice with a multiplicative and

co-normal operator g;
(iv) A is valid in any finite Kripke model for IntGC.

Unfortunately, our proof of FMP presented in [1] is incomplete and has
some faults. For instance, we did not show that the frame on which the
filtration is defined really forms a required Kripke frame. Therefore, here
we present a more complete proof based on improved filtration model.

The paper is organised as follows. In Section 2, we recall the syntax,
Kripke semantics and Kripke completeness of IntGC. Section 3 is devoted
to proving the finite model property of IntGC.

⋆Addendum to the article: Wojciech Dzik, Jouni Järvinen, and Michiro Kondo, Intu-
itionistic propositional logic with Galois connections, Logic Journal of the IGPL 18 (2010),
837–858.
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2. Logic IntGC

The language L of IntGC is constructed from a countable set of proposi-
tional variables P and the connectives ¬, →, ∨, ∧, N, ▽. The constant true
is defined by ⊤ := p → p for some fixed propositional variable p ∈ P , and
the constant false is defined by ⊥ := ¬⊤.

The logic IntGC is the smallest logic in L that contains the intuitionistic
propositional logic Int, and is closed under the rules of substitution, modus

ponens, and the rules:

(GC1) If A → ▽B is provable, then NA → B is provable.
(GC2) If NA → B if provable, then A → ▽B is provable.

It is known that the following rules are admissible in IntGC:

(r1) If A is provable, then ▽A is provable.
(r2) If A → B is provable, then ▽A → ▽B and NA → NB are provable.

In addition, the following formulas are provable:

(f1) A → ▽NA and N▽A → A.
(f2) NA ↔ N▽NA and ▽A ↔ ▽N▽A.
(f3) ▽⊤ and ¬N⊥.
(f4) ▽(A ∧B) ↔ ▽A ∧ ▽B and N(A ∨B) ↔ NA ∨ NB.
(f5) ▽(A → B) → (▽A → ▽B).

A structure F = (X,≤, R) is called a Kripke frame of IntGC, if X is a
non-empty set, ≤ is a preorder on X, and R is a relation on X such that

(⋆) (≥ ◦R ◦ ≥) ⊆ R.

Let v be a function v : P → ℘(X) assigning to each propositional variable
p a subset v(p) of X. Such functions are called valuations and the pair
M = (F , v) is called an IntGC-model. For any x ∈ X and A ∈ Φ, we define
a satisfiability relation in M inductively by the following way:

x |= p ⇐⇒ x ∈ v(p),

x |= A ∧B ⇐⇒ x |= A and x |= A,

x |= A ∨B ⇐⇒ x |= A or x |= A,

x |= A → B ⇐⇒ for all y ≥ x, y |= A implies y |= B,

x |= ¬A ⇐⇒ for no y ≥ x does y |= A,

x |= NA ⇐⇒ exists y such that xR y and y |= A, and

x |= ▽A ⇐⇒ for all y, y R x implies y |= A.

Let x ≤ y. If x |= NA, there exists z such that xR z and z |= A. Now
y ≥ x, xR z, and z ≥ z imply y R z by (⋆). Thus, y |= NA. Similarly, if
y 6|= ▽A, then there exists z such that z Ry and z 6|= A. Now z ≥ z, z R y,
and y ≥ x imply z Rx. This means x 6|= ▽A. Hence, the frame is persistent.

An IntGC-formula A is valid in a Kripke model M, if x |= A for all x ∈ X.
The formula is valid in a Kripke frame F , if A is valid in every model based
on F . The formula A is Kripke valid if A is valid in every frame.

We proved in [1] that every formula is Kripke valid if and only if it is
provable.
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3. IntGC has FMP

Let A be a formula that is not provable. Then, there exists a Kripke
model M = (X,≤, R) such that A is not valid in M. We construct a
counter model for A on a finite frame.

Let Sub(A) be the set of subformulas of A. We define the set

Γ = Sub(A) ∪ {▽NB | NB ∈ Sub(A)} ∪ {N▽B | ▽B ∈ Sub(A)}.

From this set, we can now define the set

Σ = Sub(A) ∪ {(▽N)n▽B | n ≥ 0 and ▽B ∈ Γ}

∪ {N(▽N)n▽B | n ≥ 0 and ▽B ∈ Γ}

∪ {(N▽)nNB | n ≥ 0 and NB ∈ Γ}

∪ {▽(N▽)nNB | n ≥ 0 and NB ∈ Γ}.

Obviously, Sub(A) ⊆ Γ ⊆ Σ.

Lemma 3.1. (a) If ▽B ∈ Σ, then N▽B ∈ Σ.
(b) If NB ∈ Σ, then ▽NB ∈ Σ.

Proof. (a) Suppose that ▽B ∈ Σ. If ▽B is of the form (▽N)n▽C for some
n ≥ 0, where ▽C ∈ Γ, then N▽B = N(▽N)n▽C belongs to Σ by definition.
If ▽B has the form of ▽(N▽)mNC for some m ≥ 0 where NC ∈ Γ, then by
the definition, N▽B = N▽(N▽)mNC = (N▽)m+1

NC is in Σ.
Assertion (b) can be proved analogously. �

A set of IntGC-formulas Σ is said to be closed under subformulas if B ∈ Σ
and C ∈ Sub(B) imply C ∈ Σ.

Lemma 3.2. The set Σ is closed under subformulas.

Proof. Let B ∈ Σ. If B is of the form C ∨D, C ∧D, C → D, or ¬C, then
B must be in Sub(A) by the definition of Σ. Thus, C,D ∈ Sub(A) ⊆ Σ.

If NB ∈ Σ is of the form N(▽N)n▽C for some ▽C ∈ Γ and n ≥ 0, then
B = (▽N)n▽C ∈ Σ.

If NB ∈ Σ has the form (N▽)nNC for some n ≥ 0 and NC ∈ Γ, then
NB = N(▽N)n▽D, since NC ∈ Γ means that C = ▽D ∈ Sub(A). Then,
B = (▽N)n▽D ∈ Σ.

The remaining two cases are proved analogously. �

We now define for every formula B ∈ Σ, a unique formula B∗ ∈ Γ as
follows:

(i) If B ∈ Sub(A) and B is not of the form ▽C nor NC, then B∗ = B.
(ii) If B is of the form (▽N)n▽C, where ▽C ∈ Γ, then B∗ = ▽C.
(iii) If B is of the form N(▽N)n▽C, where ▽C = ▽ND ∈ Γ for some

ND ∈ Sub(A), then B∗ = ND.
(iv) If B is of the form (N▽)nNC, where NC ∈ Γ, then B∗ = NC.
(v) If B is of the form ▽(N▽)nNC, where NC = N▽D ∈ Γ for some

▽D ∈ Sub(A), then B∗ = ▽D.

Related to the above definitions, we can write the following lemma.

Lemma 3.3. For every B ∈ Σ, there exists a unique B∗ ∈ Γ such that the

formula B ↔ B∗ is provable in IntGC.
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Proof. We consider cases (ii) and (iii) only.
(ii) B = (▽N)n▽C = (▽N)n−1

▽N▽C ↔ (▽N)n−1
▽C ↔ · · · ↔ ▽C = B∗,

because ▽C ↔ ▽N▽C by (f2).
(iii) B = N(▽N)n▽C = N▽N(▽N)n−1

▽C ↔ N(▽N)n−1
▽C ↔ · · · ↔

N▽C = N▽ND = ND = B∗, since NA ↔ N▽NA for any A. �

Lemma 3.3 says that since Γ is finite, also the set Σ can be considered
“finitary”, because it can be divided into classes of provably equivalent for-
mulas such that each class corresponds to one formula of Γ.

Now we define an equivalence ∼ on the set X by setting

x ∼ y ⇐⇒ (∀B ∈ Σ)x |= B iff y |= B.

This means that points x and y are equivalent if they satisfy exactly the
same formulas of Σ. We denote by [x] the ∼-class of x, and X/∼ is the set
of all ∼-classes.

Lemma 3.4. The quotient set X/∼ is finite.

Proof. Let x ∈ X. For all y ∈ X, [x] 6= [y] means that there exists a formula
B ∈ Σ that “separates” x and y, that is, either (i) x |= B and y 6|= B, or
(ii) y |= B and x 6|= B. For instance, in case (i) this means by Lemma 3.3
that x |= B∗, y 6|= B∗, and B∗ ∈ Γ. Because the set Γ is finite, only a finite
number of classes can be “separated” from [x]. Hence, also the quotient set
X/∼ must be finite. �

We denote X/∼ simply by Xf . We define in Xf the relations ≤f and Rf

by setting:

[x] ≤f [y] ⇐⇒ (∀B ∈ Σ)x |= B implies y |= B;

[x]Rf [y] ⇐⇒ (∀B ∈ Σ)▽B ∈ Σ and y |= ▽B imply x |= B.

We can now write the following lemma.

Lemma 3.5. (a) If x ≤ y, then [x] ≤f [y].
(b) If xR y, then [x]Rf [y].

Proof. Claim (a) is obvious, because our Kripke frames are persistent.
(b) Assume xR y, B ∈ Σ, and ▽B ∈ Σ. By Lemma 3.1, also N▽B ∈ Σ.

If y |= ▽B, then xR y gives x |= N▽B. We have x |= B, because N▽B → B
is a valid formula. Hence, |x|Rf |y|. �

Lemma 3.6. The structure Ff = (Xf ,≤f , Rf ) is a Kripke frame.

Proof. It is clear that ≤f is a preorder. Therefore, it is enough to show that

(≥f ◦Rf ◦ ≥f ) ⊆ Rf .

Suppose that [x] ≥f [y], [y]Rf [z], and [z] ≥f [w]. For all B ∈ Σ, if ▽B ∈ Σ
and w |= ▽B, then z |= ▽B because [z] ≥f [w]. Now y |= B by [y]Rf [z].
Finally, [x] ≥f [y] implies x |= B. Thus, [x]Rf [w], �

Our next lemma gives another condition for Rf .

Lemma 3.7. [x]Rf [y] ⇐⇒ (∀B ∈ Σ)NB ∈ Σ and y |= B imply x |= NB.
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Proof. Let B ∈ Σ. Assume [x]Rf [y], NB ∈ Σ and y |= B. Since B → ▽NB
is a provable formula, we have y |= B → ▽NB and so y |= ▽NB. Because
NB ∈ Σ, Lemma 3.1 gives ▽N ∈ Σ. Since [x]Rf [y], we get x |= NB.

Conversely, assume that the right-side of the condition holds. If ▽B ∈ Σ
and y |= ▽B, then by Lemma 3.1, N▽B ∈ Σ, from which we get x |= N▽B
by the assumption. Because N▽B → B is a provable formula, we have
x |= B. Thus, [x]Rf [y]. �

We define the valuation vf in such a way that for all proposition variables
p ∈ Σ:

vf (p) = {[x] | x |= p}.

Then, Mf = (Xf ,≤f , Rf , vf ) is called filtration of M through Σ.

Lemma 3.8. For any B ∈ Σ and x ∈ X, x |= B iff [x] |= B.

Proof. By induction on B. This can be done, because Σ is closed under
subformulas. The base case follows immediately from the definition of vf ,
and with respect to ∨ and ∧ the proof is obvious.

(i) Let B of the form ¬C ∈ Γ. Assume [x] |= ¬C. If x 6|= ¬C, then there
exists y ≥ x such that y |= C. Since Γ is closed under subformulas, also
C ∈ Γ and [y] |= C by the induction hypothesis. Because y ≥ x, we have
[y] ≥f [x] by Lemma 3.5. This gives that [x] 6|= ¬C, a contradiction. So,
x |= ¬C.

Conversely, suppose that x |= ¬C. Because C ∈ Γ, then by the definition,
[y] ≥f [x] implies y |= ¬C and y 6|= C. By the induction hypothesis, we have
that [y] ≥f [x] implies [y] 6|= C, that is, [x] |= ¬C.

(ii) Let B of the form C → D ∈ Γ. Assume x |= C → D and [x] 6|=
C → D. Then, there exists [y] ≥f [x] such that [y] |= C, but [y] 6|= D. By
induction hypothesis, y |= C and y 6|= D. Therefore, y 6|= C → D, which is
impossible because [y] ≥f [x]. Thus, [x] |= C → D.

On the other hand, if [x] |= C → D, then for all [y] ≥f [x], [y] |= C
implies [y] |= D. If x 6|= C → D, there exists y ≥ x such that y |= C and
y 6|= D. Now y ≥ x gives [y] ≥f [x], and [y] |= C and [y] 6|= D by the
induction hypothesis. But this is impossible. So, x |= C → D.

(iii) Let B be of the form ▽C ∈ Γ. Assume that x |= ▽C. If [y]Rf [x],
then y |= C, and [y] |= C follows from the induction hypothesis. Hence,
[x] |= ▽C.

Conversely, assume that [x] |= ▽C and y Rx. Then, [y]Rf [x] by
Lemma 3.5, which gives [y] |= C. We obtain y |= C by the induction
hypothesis, and so x |= ▽C.

(iv) Let B be of the form NC ∈ Γ. If x |= NC, then there exists y such
that xRy and y |= C. By the induction hypothesis, [y] |= C. Since xRy,
we have [x]Rf [y] and [x] |= NC.

On the other hand, if [x] |= NC, then there exists y such that [x]Rf [y] and
[y] |= C. This implies y |= C by the induction hypothesis. By Lemma 3.7,
we get x |= NC. �

Finally, we may write the following proposition.

Proposition 3.9. IntGC has the finite model property and is decidable.
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Proof. Suppose that a formula A is not provable. Then, there exists a model
M = (X,≤, R) such that A is not valid in M. This means that there exists
x ∈ X such that x 6|= A. We may define the set Σ and the filtration of M
through Σ as above. Because A ∈ Σ, then [x] 6|= A by Lemma 3.8, and hence
A is not valid in the finite model Mf .

In addition, it is well known that if a logic is finitely axiomatised with the
finite model property, then the logic is decidable. �
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