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Abstract
The Eilenberg–Zilber algorithm is one of the central components of the computer algebra system called Kenzo, devoted to 
computing in Algebraic Topology. In this article we report on a complete formal proof of the underlying Eilenberg–Zilber 
theorem, using the ACL2 theorem prover. As our formalization is executable, we are able to compare the results of the 
certified programme with those of Kenzo on some universal examples. Since the results coincide, the reliability of Kenzo is 
reinforced. This is a new step in our long-term project towards certified programming for Algebraic Topology.
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1 Introduction

Nowadays, computing in Algebraic Topology is having an increasing importance, both in pure and 
in applied mathematics [6]. In this area, the Kenzo system [5] has some particular features. Kenzo 
is a Common Lisp programme, created by F. Sergeraert, that can deal with infinite dimensional 
spaces, and is able to compute results that have not been determined by any other mean (theoretical 
or computational). In [21] a theorem corrected thanks to Kenzo is presented, together with other 
results computed with Kenzo which seem out of reach by other methods. In addition, Kenzo has 
been instrumental in some computations related to the homological processing of biomedical images, 
in an on-going project on drug design against Alzheimer [8].

Due to these features of Kenzo, a project was launched some years ago to formally study its 
correctness, trying to give to Kenzo results an status as close as possible to standard mathematical 
properties. To this aim different methods and tools have been used. A fundamental algorithm imple-
mented in Kenzo (known as Basic Perturbation Lemma) has been formalized in Isabelle/HOL [2, 3]. 
Also the Coq proof assistant has been used, for instance, to model the homology of bicomplexes [4] 
and the computation of homology groups in the finite case [7].
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Both Isabelle/HOL and Coq are very powerful tools (in particular, both are based on higher-order 
logic), but they are far from the Kenzo programming language: Common Lisp. It was therefore 
natural to use ACL2 [10], a theorem prover intimately linked to Common Lisp. Even so, ACL2 is 
not suitable to model all Kenzo characteristics. In particular, the representation of (actual) infinite 
sets is more natural in Isabelle or Coq, because Kenzo uses higher-order functional programming to 
that aim (this explains the role of Isabelle/HOL and Coq in our global project); it is more difficult in 
ACL2, which is rather a first-order tool. Nevertheless, ACL2 is superior to any other tool when 
formalizing the actual Kenzo source code.

In this area of ACL2 application to Algebraic and Simplicial Topology, several objectives has 
been already achieved. In [1] simplicial sets were studied as rewriting systems, producing in a new 
way the canonical decomposition of each simplex. The degeneracy encoding used in Kenzo was 
formalized and proved correct in [16]. Finally, a normalization theorem needed as a preprocessor 
justifying the Kenzo way of working was also proved in ACL2 [12].

The formal proof of the Normalization Theorem was carried out by using a conceptual tool 
called simplicial polynomial [11], which allows us to enhance ACL2 with a kind of algebraic 
rewriting (namely, a simplification strategy for rings), providing a greater automation in the proof. 
This same tool is now applied to the correctness proof of the Eilenberg–Zilber (EZ, for short) 
algorithm. It is not only reused at the conceptual level, but it also provides true proof reuse, as 
illustrated in the following figures. The EZ theorem needed around 13000 lines of ACL2 code [13], 
while the Normalization Theorem needed around 4500 lines [12] (so, EZ can be considered three 
times more difficult than normalization). These data must be, however, be tempered with the 
existence of 6000 lines of ACL2 code devoted to infrastructure (algebraic rewriting, meta-rules, 
macro and theory generating facilities, and so on; see [12] for details). This infrastructure was 
prepared for the Normalization Theorem and then it has been fully reused in the EZ formalization. 
Thus, the learned lesson is that paying attention to a systematic development can be rewarding in 
mechanized theorem proving (as it is in computer programming).

As for the conceptual importance of the EZ theorem, let us explain roughly it establishes the 
bridge between geometry and algebra in Algebraic (Simplicial) Topology. More concretely, it states 
a homological equivalence between (the chain complex of) a Cartesian product (a geometric con-
struction) and the tensor product of two chain complexes (a purely algebraic construction). This 
fundamental aspect of EZ is reflected in its computational counterpart: experimental studies of log 
files for Kenzo showed that most of the running time is devoted to EZ compu-tations (and more 
concretely to the computation of the map which will be called Shih later).

Thus, giving a mechanized proof of this fundamental theorem seems a good challenge to demon-
strate the usability of this kind of hard formal methods in computer algebra verification. It is worth 
mentioning that, although the EZ theorem was first proved in 1953 and no doubt appears about its 
correctness, a complete formalization is mandatory in order to use it in subsequent formal steps 
(without adding it as an axiom, an extremely dangerous resource in mechanized proving). In addi-
tion, such a formal proof is a fruitful test of techniques and infrastructure. We hope that the 
different technical tools introduced in ACL2 to deal with complex combinatorial structures can be 
of help in the area of automated theorem proving.

Another contribution of our article is related to experimental aspects (sometimes neglected in 
formalization works). Namely, we include an operational interpretation of the proof (producing 
executable programmes), its application to a universal example and the comparison with the real 
Kenzo results. From this experimental study, we gained clear evidence that the ACL2 proof is 
implementing exactly the formulas programmed in Kenzo (for other computational issues, see [14]).
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The organization of the article is as follows. The next section states the mathematical problem, 
while Section 3 deals with the description of the formal proof, introducing a generalization of 
simplicial polynomials, some ACL2 enhancements and a short presentation of the ACL2 code (for 
details and the full code, the reader is referred to [13]). Then, in Section 4 the aspects related to 
executability are developed, showing the coherence and usefulness of our approach. The article ends 
with conclusions, further work and the bibliography.

2 Statement of the mathematical problem

In this section, we introduce briefly the notions needed to state the main theorem (for details and 
context about Simplicial Topology, see, for instance, [17]).

DEFINITION 2.1
A simplicial set1 K is a graded set {Kn}n∈N together with functions:

∂n
i :Kn →Kn−1, n>0, i=0,...,n,

ηn
i :Kn →Kn+1, n≥0, i=0,...,n,

subject to the following equations:

(1) ∂n−1
i ∂n

j = ∂n−1
j ∂n

i+1 if i≥ j,
(2) ηn+1

i ηn
j = ηn+1

j+1 ηn
i if i≤ j,

(3) ∂n+1
i ηn

j = ηn−1
j−1 ∂n

i if i< j,
(4) ∂n+1

i ηn
j = ηn−1

j ∂n
i−1 if i> j+1,

(5) ∂n+1
i ηn

i = ∂n+1
i+1 ηn

i = idn,

where idn is the identity map on Kn.

The elements of Kn are called simplices of dimension n, or simply n-simplices. The functions ∂ and
η are called face and degeneracy operators, respectively. A simplex x is called degenerate if it can
be written as x=ηiy for some index i and some simplex y2. Otherwise, it is called non-degenerate.
The set of non-degenerate n-simplices of K is denoted by KND

n .
With any simplicial set K we can associate an algebraic structure C(K), a chain complex, in such

a way that the homology of K is exactly the homology of C(K).

DEFINITION 2.2
A chain complex is a family of pairs C ={(Cn,dn)}n∈Z where each Cn is an abelian group, and each
dn is a homomorphism from Cn to Cn−1 such that the boundary condition holds: dn ◦dn+1 =0.

Given a chain complex C, the boundary condition implies Im dn+1 ⊆Ker dn; then the homology
groups of C: Hn(C)=Ker dn/Im dn+1 are well-defined. These homology groups are the objects
Kenzo finally computes (more specifially, these groups being Abelian and finitely generated, Kenzo
computes the Betti number and torsion coefficients of each group [6]).

1There is an alternative presentation of a simplicial set, as a (contravariant) functor from the category of finite ordinals
with monotone maps to the category of sets (see Section 6 of [12]). This point of view, would allow us a more natural
presentation of simplicial operators (see Subsection 3.1), and also of Cartesian and tensor degeneracies (Subsection 3.2).
Nevertheless, we prefer to skip this formalism, in order to avoid including more (terminological) complexity and because
Definition 2.1 is closer to the simplicial complex notion, well-known in combinatorics.

2Note that, if the context is clear enough, the indices denoting dimension will be skipped.
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Let K be a simplicial set. For each n∈N, let us consider Z[KND
n ], the free abelian group generated

by the non-degenerate n-simplices, denoted by Cn(K). That is, the elements of such a group are formal
linear combinations

∑r
j=1λjxj , where λj ∈Z and xj ∈KND

n ,∀j=1,...,r. These linear combinations are
called chains of simplices or, in short, chains.

Now, given n>0, we introduce a homomorphism dn :Cn(K)→Cn−1(K), first defining it over
each generator, and then extending it by linearity. Given x∈KND

n , define dn(x)=∑n
i=0(−1)i∂i(x),

where a term ∂i(x) is erased when it is degenerate. It can be proved that the equations in the
definition of simplicial set imply that dn ◦dn+1 =0,∀n∈N. That is to say, the family {dn}n∈N defines
a differential (or boundary) homomorphism on the graded group {Cn(K)}n∈N, and then, the family of
pairs {(Cn(K),dn)}n∈N is the chain complex3 associated with the simplicial set K , denoted by C(K).

An alternative definition can be given, by taking as generators all the simplices (degenerate and
non-degenerate ones) in each dimension, and with the same expression for differentials: dn(x)=∑n

i=0(−1)i∂i(x) (in this case, no term is erased). If we call Ĉ(K) this (bigger) chain complex asso-
ciated with a simplicial set K , it is the case that the respective homology groups corresponding

to Ĉ(K) and C(K) are canonically isomorphic; this is exactly the statement of the afore-mentioned

Normalization Theorem [12]. More concretely, in [12] a reduction Ĉ(K)
⇒C(K) was implemented
in ACL2.

DEFINITION 2.3
Given two chain complexes C1 ={(C1

n ,d
1
n )}n∈Z and C2 ={(C2

n ,d
2
n )}n∈Z, a reduction between them

is a triple (f ,g,h) where f :C1 →C2 and g :C2 →C1 are chain morphisms (that is to say, they are
homomorphisms such that f ◦d1 =d2 ◦f and g◦d2 =d1 ◦g), and h is graded morphism of degree +1
(called homotopy operator), that is to say a family of homomorphisms hn : C1

n →C1
n+1 satisfying

(1) f ◦g = id, (2) d ◦h+h◦d +g◦f = id, (3) f ◦h=0, (4) h◦g =0, and (5) h◦h=0.

We denote a reduction as (f ,g,h) :C1 
⇒C2. The main property of a reduction is that it estab-
lishes a canonical isomorphism between the respective homology groups of C1 and C2. In fact,
the components f and g are enough to functionally define such a canonical isomorphism, but the
homotopy h and the conditions (1)–(2) are necessary to ensure that it is actually an isomorphism.
In addition, the whole structure is required to give stability to the concept allowing one to construct
reductions from other reductions (see the key instrument called Basic Perturbation Lemma in [2]).

We are almost ready to introduce the EZ theorem. We still need the definitions of Cartesian
product (of two simplicial sets) and of tensor product (of two chain complexes).

DEFINITION 2.4
Given two simplicial sets K1 and K2, their Cartesian product is a new simplicial set, denoted by
K1 ×K2, such that (K1 ×K2)n =K1

n ×K2
n and faces and degeneracies, respectively denoted as ∂× and

η×, are defined as: ∂×
i (a,b)= (∂ia,∂ib) and η×

i (a,b)= (ηia,ηib).

In the following definition of tensor product of chain complexes, we restrict ourselves to the
particular case of freely generated chain complexes.

DEFINITION 2.5
Given two freely generated chain complexes C1 ={(C1

n ,d
1
n )}n∈Z and C2 ={(C2

n ,d
2
n )}n∈Z (in other

words, C1
n and C2

n are freely generated Abelian groups for all n∈Z), the tensor product of C1 and
C2, denoted by C1 ⊗C2, is the chain complex defined as follows. The groups (C1 ⊗C2)n are defined
by the formula (C1 ⊗C2)n =⊕

p+q=nC1
p ⊗C2

q , with C1
p ⊗C2

q the free abelian group generated by the

3In our general definition of chain complex, the indices range over Z, so it is necessary to complete this definition with
null groups and differentials in negative degrees.
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pairs (xp,yq) (denoted xp ⊗yq), where xp (yq) ranges over the generators of C1
p (of C2

q , respectively).
Differentials are defined by d⊗

n (xp ⊗yq)=d1
p (xp)⊗yq +(−1)pxp ⊗d2

q (yq) over generators,4 and then
extended linearly over elements of (C1 ⊗C2)n.

And, now, the statement to be formalized in ACL2.

THEOREM 2.6 (Eilenberg–Zilber reduction)
Given two simplicial sets K1 and K2, there exists a reduction C(K1 ×K2)
⇒C(K1)⊗C(K2).

In particular, from the point of view of the explicit calculation of homology groups, the EZ
theorem allows one to replace C(K1 ×K2) by a smaller chain complex C(K1)⊗C(K2).

In fact, there is a much more explicit statement of the theorem, giving rise to an actual algorithm,
because a reduction

(f ,g,h) :C(K1 ×K2)
⇒C(K1)⊗C(K2)

is known, where the maps f , g, and h are defined as:

f (xn,yn)=
n∑

i=0

∂i+1 ...∂nxn ⊗∂0 ...∂i−1yn

g(xp ⊗yq)=
∑

(α,β)∈{(p,q)-shuffles}
(−1)sg(α,β)(ηβq ...ηβ1xp,ηαp ...ηα1yq)

h(xn,yn)=
∑

(−1)n−p−q+sg(α,β)(ηβq+n−p−q ...ηβ1+n−p−qηn−p−q−1∂n−q+1 ...∂nxn,

ηαp+1+n−p−q ...ηα1+n−p−q∂n−p−q ...∂n−q−1yn)

where a (p,q)-shuffle (α,β)= (α1,...,αp,β1,...,βq) is a permutation of the set {0,1,...,p+q−1}
such that αi <αi+1 and βj <βj+1, sg(α,β)=∑p

i=1(αi −i−1), and the third sum (which defines
the homotopy operator h) is taken over all the indices 0≤q≤n−1,0≤p≤n−q−1 and (α,β)∈
{(p+1,q)-shuffles}.

The maps f , g and h are known, respectively, as the Alexander–Whitney (AW for short), Eilenberg–
Mac Lane (EML) and Shih (SH ) operators.

It is worth stressing that the EZ theorem, under its very concrete form of a reduction, holds with

the C(−) chain complex model, but it is no longer true with the bigger model Ĉ(−). Thus, this gives
a new interest to having formalized the Normalization Theorem [12] before dealing with the EZ
result.

The formulas for AW and EML were classically known. The expression for SH was given for
the first time in [22] (it was experimentally found when programming EAT [23], the predecessor
of Kenzo). Then it was formally proved by F. Morace and published as an appendix for a paper by
P. Real [20].

Several comments can be made about the expressions. First, they are essentially unique [18, 19], so
in some sense they are unavoidable. Second, due to the occurrence of the shuffles, their complexity
increases exponentially with the dimension and, in fact, this is one of the reasons why Kenzo
performance is dramatically decreased when dimensions increase.

Although EML and SH have a quite frightening aspect, actually the expressions are very well
structured and of a combinatorial nature, and these features allow us to devise a proof purely based

4The operator ⊗ has been overloaded to denote its linear extension for combinations.



[10:28 17/1/2014 jzt034.tex] Paper Size: a4 paper Job: JIGPAL Page: 44 39–65

on induction and rewriting (inspired at some points by ideas from [20]). This is the proof which has 
been fully formalized by using the proof assistant ACL2 [10], as described in the following sections.

3 ACL2 formalization of the EZ theorem using simplicial polynomials

In this section, we describe the main aspects of the formalization of the EZ theorem in ACL2, in 
the framework of what we call simplicial polynomials. This is a conceptual tool already used to 
prove the Normalization Theorem in Simplicial Topology [12] and now extended to deal with this 
formalization.

ACL2 is a programming language (an extension of an applicative subset of Common Lisp), a 
logic to state and prove properties about the programmes written in the language, and a theorem 
prover assisting in the task of proving the properties. The logic of ACL2 is a first-order logic, 
describing an extension of an applicative subset of Common Lisp. It includes logical axioms as 
well as axioms describing built-in functions in the language. Rules of inference include those of 
propositional logic, equality, instantiation and induction. The theorem prover mechanizes the logic; 
although every proof attempt runs automatically, the role of the user is important: a successful 
formalization requires the construction of a theory by means of definitions and lemmas, that once 
proved are used by the system in subsequent proof attempts.

We only give the main lines of our formalization and therefore many details will be omitted. 
Although the ACL2 syntax is the Common Lisp syntax (and in particular uses parentheses and 
prefix notation), in this article, for the sake of readability, we will use a notation closer to the usual 
mathematical notation, and in particular some functions will be used in infix notation. The complete 
source files containing the ACL2 formalization and proof of the EZ theorem are available at [13]. 
There, we also include a complete index with the correspondence of the functions and theorems 
referenced in this article with those in the formalization.

3.1 Representational issues

This section is devoted to show how the apparent complexity of some algebraic constructors (as the 
tensor product, for instance), or the arrows in the EZ theorem, can be tamed by using a symbolic 
representation, which allows us to model them in the frame of simplicial polynomials developed 
in [12].

The morphisms AW, EML and SH defining the EZ reduction are natural transformations between 
the functors C(−)◦(−×−) and (−⊗−)◦(C(−)×C(−)):

S×S (−×−) ��

C(−)×C(−)

��

S
C(−)

��
CC×CC

(−⊗−)
�� CC

In the above diagram,5 S is the category of simplicial sets and CC is the category of chain
complexes. Then, the functor C(−)◦(−×−) constructs, from a pair of simplicial sets, the chain
complex associated with its product (in S), and the functor (−⊗−)◦(C(−)×C(−)) constructs the
tensor product (in CC) of its chain complexes. (Note that, at this description level, it is unimportant
whether the chain complex is the normalized one; this situation will change at the end of the Section.)

5Be careful when reading that diagram; it is commutative only up to homological equivalence (this is a consequence of
the EZ theorem).



[10:28 17/1/2014 jzt034.tex] Paper Size: a4 paper Job: JIGPAL Page: 45 39–65

b

Thus, a formalization certifying the EZ algorithm requires devising a suitable representation for 
this kind of natural transformations.

As explained in Section 2, the tensor product in CC applied to the particular case of the chain 
complexes associated with two simplicial sets K1 and K2 can e expressed in each dimension n as a
direct sum of n+1 free Abelian groups: (C(K1)⊗C(K2))n =⊕

0≤i≤nZ[K1
n−i ×K2

i ]. Furthermore, the
equivalence between (finite) products and coproducts in the category AG of Abelian groups allows
us to express the tensor product as: (C(K1)⊗C(K2))n

∼=∏
0≤i≤nZ[K1

n−i ×K2
i ].

In addition, the chain complex of a Cartesian product is given by: C(K1 ×K2)n =Z[K1
n ×K2

n ].
Therefore, using suitably both descriptions of the tensor product (as a sum when it is a source

of a morphism, and as a product when it is a target of a morphism) we can conclude that, in
each dimension, all the natural transformations involved in our setting can be represented as linear
combinations of simpler transformations with the pattern t :C(−,−)p,q →C(−,−)p′,q′ , where, for
each pair (r,s), the functor C(−,−)r,s :S×S →AG is defined by C(K1,K2)r,s =Z[K1

r ×K2
s ]. We

should find then a way of representing morphisms between functors with the shape C(−,−)r,s :
S×S →AG.

An argument similar to the one presented in Section 6 of [12] (there applied to morphisms between
functors C(−)r :S →AG), allows representing such a transformation t :C(−,−)p,q →C(−,−)p′,q′

as a linear combination with coefficients over Z of pairs (f 1,f 2) where each component is a
simplicial operator (a consistent composite of face and degeneracy operations). Or symbolically:
t =∑n

α=1λα(f 1
α ,f 2

α ), with λα ∈Z.
The problem is then reduced to deal with transformations which can be written by means of linear

combinations of pairs of simplicial operators. These polynomials are, as it will be shown later, an
extension of the framework of simplicial polynomials described in [12].

As an example, let us consider the case of differential morphisms. The differential operator in
the Cartesian product can be understood as a transformation d×

n :C(−,−)n,n →C(−,−)n−1,n−1. It is
defined, in each dimension n≥1, by d×

n =∑n
i=0(−1)i ·(∂i,∂i).

As for the differential in the tensor product, it is convenient to interpret it as d⊗
n :C(−,−)n,0 ⊕ ...⊕

C(−,−)0,n →C(−,−)0,n−1 × ...×C(−,−)n−1,0. Thus, d⊗
1 = (

∑1
i=0 (−1)i(I ,∂i)

∑1
i=0 (−1)i(∂i,I )) has

two components (in the previous expression, the identity transformation is denoted by I ). And d⊗
n

has n×(n+1) components, such that the (i,j)-component, when 0≤ i<n and 0≤ j<n, is given by:

d⊗
n (i,j)=

⎧⎨
⎩

0̄ if i> jor j> i+1
(−1)i

∑n−i
α=0 (−1)α(I ,∂α) if i= j∑i+1

α=0 (−1)α(∂α,I ) if i= j−1
(1)

Analogously, the maps AWn and EMLn have (n+1) components and SHn is a single component.
Another important aspect to take into account is the normalization process. In fact, the statement

of the EZ theorem describes a reduction between the normalized chain complexes (where elements
are linear combinations of non-degenerate simplices). In the Cartesian product case, C(K1 ×K2)
consists, in each dimension n, of linear combinations of non-degenerate n-simplices from K1 ×K2;
in other words, simplices which are pairs (x,y) such that they cannot be expressed as (x,y)=η×

i (x̄,ȳ),
for some 0≤ i≤n−1 and (x̄,ȳ)∈K1

n−1 ×K2
n−1. It can be then considered as a quotient: C(K1 ×

K2)∼= ̂C(K1 ×K2)/D(K1 ×K2), being D(K1 ×K2) the subcomplex generated by the combinations of
degenerate simplices in K1 ×K2.

The case of the tensor product is a bit more complicated, but also admits a description in terms of
Abelian groups quotients. Let us recall the complex C(K1)⊗C(K2), in each dimension n, is given
by (C(K1)⊗C(K2))n =⊕

0≤i≤n(Cn−i(K1)⊗Ci(K2)). By applying properties of free Abelian groups,
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we can get (here KD
i denotes the set of degenerate i-simplices from K):

(C(K1)⊗C(K2))n
∼=

⊕
0≤i≤n

(Z[K1,ND
n−i ]⊗Z[K2,ND

i ])∼=
⊕

0≤i≤n

Z[K1,ND
n−i ×K2,ND

i ]∼=
⊕

0≤i≤n

Z[(K1
n−i \K1,D

n−i )×(K2
i \K2,D

i )]∼=
⊕

0≤i≤n

Z[K1
n−i ×K2

i ]/(Z[(K1
n−i ×K2,D

i )∪(K1,D
n−i ×K2

i )]).

In summary, each term in the tensor product of two normalized chain complexes can be also written
as a quotient of free Abelian groups. Based on the previous considerations, we say that a generator
x⊗y is degenerate if some of its components (x or y) is degenerate. Therefore, the elements of the
normalized tensor product are tuples of linear combinations of pairs of non-degenerate simplices.

Therefore, both the Cartesian product and the tensor product allow us to ignore the normalization
along the computing process (when dealing with morphisms), and it will be enough to apply the
corresponding equality relation (pass to the quotient) at the end of the mentioned process.

3.2 Generalizing simplicial polynomials

From the discussion in the previous Section 3.1, we know that the basic components of the reduction
morphisms in the EZ theorem are mappings from Z[K1

p ×K2
q ] to Z[K1

p′ ×K2
q′ ]. More concretely, these

morphisms can be expressed as linear combinations of pairs of maps which are coherent composites
of faces and degeneracies. To have a faithful formalization of the standard presentation of the
theorem, these morphisms will have to be defined as functions in the ACL2 logic (and in fact that
will be our approach in the next section). Nevertheless, it turns out that most of the reasoning applied
to prove the EZ theorem is carried out viewing those compositions of simplicial operators (and its
linear combinations) as symbolic expressions, and operating on them following certain rules derived
from the simplicial identities. This is the point of view we adopt in this section, where we present
what we call bivariate (or pair) simplicial polynomials; they are a representation of morphisms
as symbolic expressions, built using lists and natural numbers. In this polynomial framework, we
can prove, in essence, the properties stated by the EZ theorem. This approach is similar to the one
presented in [12], where we used simplicial polynomials to represent morphisms from Z[Kn] to
Z[Km]. Now we generalize them to represent morphisms acting on linear combinations of pairs of
simplices.

Let us start with an example. Consider ∂6
2η5

3∂
6
2η5

5η
4
2∂

5
1 , a composition of simplicial operators,

defined on simplices of dimension 5. This defines a map from K5 to K5. First note that once we
know the dimension on which it is applied, the superindexes are completely determined, so we can
omit them. Second, note that if we see the simplicial identities as rewriting rules, applied from left
to right, we can write this composition in canonical form: η4η2∂1∂3. In general, every composition
of simplicial operators can be written as an equivalent expression consisting of a strictly decreasing
sequence (w.r.t its subindexes) of degeneracies followed by a strictly increasing sequence of faces.
This canonical form is what we call a simplicial term and we represent it in ACL2 as a list of
two lists of natural numbers, the first strictly decreasing and the second strictly increasing (in our
example, ((4 2) (1 3))). In our ACL2 formalization, the function st-p6 recognizes those
ACL2 objects representing simplicial terms.

6It is a Lisp convention that predicates are given names ending with p.
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Since the morphisms we want to represent act on linear combinations of pairs of simplices, we first 
extend the notion of simplicial term to consider pairs of simplicial terms, represented in ACL2 as lists 
of two st-p objects. Linear combinations of pairs of simplicial terms are represented as lists whose 
elements are, in turn, lists with an integer coefficient as its first element and a pair of simplicial terms 
as its second element. We restrict our representation to those linear combinations in some canonical 
form: we do not allow neither zero coefficients nor different addends with the same pair of terms, 
and the addends are increasingly ordered with respect to a strict total ordering on pairs of terms.7 For 
example, the linear combination of pairs of simplicial terms q1 =3·(η3∂1∂2,η1∂0)−2·(η4η2∂3,∂0∂1) 
is represented by the list ((3 (((3) (1 2)) ((1) (0)))) (-2 (((4 2) (3)) (() (0 1))))). We  
call bivariate simplicial polynomials (or polynomials for short) to these linear combinations in 
canonical form. In our ACL2 formalization, we defined the function psp-p to recognize those 
ACL2 objects representing bivariate (pair) simplicial polynomials; we will denote psp-p(p) as  
p ∈P× (in general, we will use boldface to denote polynomials).

A basic operation defined on simplicial terms is composition. Given two simplicial terms, its 
composition is the simplicial term representing its functional composition. We emphasize that the 
result of a composition is returned in canonical form; for example, the composition of η4η1∂2∂5 and 
η1∂2∂3 returns η4η1∂2∂3∂6. Composition is extended componentwise to pairs of simplicial terms.

We can also define on polynomials the operations of addition, composition and scalar (integer) 
product, representing the corresponding operations on the functions they represent. For example, the 
composition of q1 above and q2 =2·(η2∂1,η0∂1)−(η4η2,∂0∂1) is the polynomial 6 ·(η3∂1∂2,η1∂1)−3· 
(η3η2∂1,η1∂0∂1∂2)−4·(η4η2∂1,∂0∂1)+2·(η5η4η2,∂0∂1∂2∂3), a result we obtain applying composition 
of pair of simplicial terms, distributing with respect to the sums and obtaining again a linear com-
bination in canonical form. We defined in ACL2 three functions add-psp-psp, cmp-psp-psp 
and scl-prd-psp, respectively implementing addition, composition and scalar product on poly-
nomials. We will denote these operations as p1 +p2, p1 ·p2 and k ·p, respectively. We also denote 0 
the zero polynomial (represented by nil in ACL2); id the identity polynomial (i.e. a polynomial 
with only one pair of terms and coefficient 1; each of these terms has empty lists of faces and 
degeneracies); and −p the scalar product of −1 and the polynomial p.

We proved in ACL2 that (P×,+,·) is a ring, with 0 being its identity with respect to addition 
and id the identity with respect to composition. For example, this is one of the properties proved, 
establishing right distributivity:

Theorem: cmp-psp-psp-add-psp-psp-distributive-r
(p1 ∈P× ∧ p2 ∈P× ∧ p3 ∈P×) → p1 ·(p2 +p3)= (p1 ·p2)+(p1 ·p3)

Some of these ring properties are not trivial to prove due to the fact that these operations return
their results in canonical form (see details in [13]). Nevertheless, note that the main advantage of
requiring canonical forms is that we can easily check if two given polynomials represent the same
function: just check if they are syntactically equal.

An interesting point about formalizing polynomials in ACL2 is that the ring operations can be
executed, and thus we can obtain the polynomial that represents any combination of compositions
and sums of morphisms represented by polynomials, simply computing it in the ACL2 command
interpreter. The advantages of this executability and its impact on the proof development will be
commented later.

7We compare pairs of terms using the ACL2 function lexorder, a total ordering on ACL2 objects; but any total
ordering on pairs of simplicial terms would do for our purposes.
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It is also noteworthy that we can recognize syntactically polynomials that, when evaluated, always 
return degenerate elements (in the Cartesian product or in the tensor product), regardless of the chains 
on which they were applied. For example, consider the pair of simplicial terms (η6η3∂0∂2,η5η4η3∂1). 
Then η6η3 =η3η5 and η5η4η3 =η3η4η3, using the simplicial identities, and therefore that pair of 
simplicial terms acting on a pair of simplices (x,y) is degenerate because it is equal to η×(u,v) for

3

some pair of simplices (u,v). In general, it can be proved that this will happen to every pair of 
simplicial terms (t1,t2) such that the degeneracies lists of t1 and t2 are not disjoint. We call such 
pairs Cartesian degenerate. We extend this property to polynomials, and consider that it is Cartesian 
degenerate when all its pairs hold this property. Note that every Cartesian degenerate polynomial 
represents a morphism that acting on a chain of the Cartesian product C(K1 ×K2) will always return 
the 0 chain (recall that degenerate pairs are erased). In ACL2, we defined a function cdpsp-p 
recognizing those ACL2 objects representing Cartesian degenerate polynomials.

As for the tensor product, the situation is a little bit different. Recall from Section 3.1, that any 
pair of simplices in which at least one of them is degenerate, is considered degenerate in the tensor 
product. Then, let (t1,t2) be a pair of simplicial terms such that at least the degeneracies list of t1 or 
the degeneracies list of t2 is non-empty; we call such pairs of simplicial terms tensor degenerate. It  
is clear that every tensor degenerate pair of simplicial terms represents a function that applied to any 
pair of simplices, obtains a pair of simplices degenerate in the tensor product. Again extending this 
property, we say that a polynomial is tensor degenerate if all its pairs of terms are tensor degenerate. 
From the previous considerations, the function represented by a tensor degenerate polynomial, will 
always obtain linear combinations of tensor degenerate pair of simplices, and thus they will be 
discarded in the tensor product. In ACL2, the function tdpsp-p recognizes those ACL2 objects 
representing tensor degenerate polynomials.

3.3 The formal proof

The ring of pair (bivariate) simplicial polynomials we have just presented provides us a framework 
where we can prove most of the main results needed in the proof of the EZ theorem. In this section, 
we define polynomials that represent the basic components of the morphisms involved in the proof of 
the EZ theorem, and we show the main theorems needed to stablish the reduction properties. These 
theorems will be expressed as properties on expressions in the ring of pair simplicial polynomials.First, let ∂×

i , ∂L
i and ∂R

i respectively denote the pairs of simplicial terms (∂i,∂i), (∂i,I ) and
(I ,∂i), considered as particular cases of polynomials. Then, we can introduce the following function
cartesian-diff that recursively defines d×

n , the polynomial representing the differential in the
Cartesian product8:

Definition: [d×
n ]

cartesian-diff(n) :=
if n �∈N+ then ∂×

0

else (−1)n ·∂×
n + cartesian-diff(n−1)

For example, d×
3 is the polynomial (∂0,∂0)−(∂1,∂1)+(∂2,∂2)−(∂3,∂3), and in general

d×
n =∑n

i=0(−1)i ·(∂i,∂i). In a similar way, we define functions left-diff and right-diff
returning the polynomials representing respectively the left differential and the right differential:
dL

n =∑n
i=0(−1)i∂L

i and dR
n =∑n

i=0(−1)i∂R
i .

8Note the expression between square brackets in the first line of the definition; in general, this will be the way we will
show how a function will be denoted subsequently.
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As for the AW morphism, recall that it is a function from the Cartesian product to the tensor 
product, so according to Section 3.1, for each dimension n we have to specify n+1 functions, 
one for each of the components of the tuple of the tensor product that AW returns. The following 
function AW-pol(n,i) builds the corresponding polynomial (denoted as AW n,i) that represents the 
i-th component of the AW morphism.

Definition: [AW n,i]
AW-pol(n,i) :=

if n �∈N+ then id
elseif i<n then AW-pol(n−1,i) · ∂L

n

else AW-pol(n−1,i) · ∂R
n−1

The previous definition is a recursive version of the formula given for the AW morphism in
Section 2 (recursion is the only way we have in ACL2 to define an iteration). For example, AW 5,3

returns the polynomial (∂4∂5,∂0∂1∂2), and in general AW n,i returns (∂i+1 ···∂n,∂0 ···∂i−1). Note that
each AW n,i represents a function from dimension (n,n) to dimension (i,n−i).

Let us now define the polynomial counterparts of the EML morphism. Since EML is a morphism
from the tensor product to the Cartesian product, according to what was explained in Section 3.1,
for each dimension n, we have to specify n+1 components, one for each i,j such that i+j=n (the
result of the EML morphism on an n-dimensional tuple of the tensor product is obtained summing
the respective results of each of these components). The function EML-pol(i,j) (denoted as EMLi,j)
builds the polynomial representing the component of the EML morphism corresponding to dimension
(j,i).

Definition: [EMLi,j]
EML-pol(i,j) :=

if i �∈N+∧j �∈N+ then id
elseif i �∈N+ then ηR

j−1 · EML-pol(i,j−1)
elseif j �∈N+ then ηL

i−1 · EML-pol(i−1,j)
else ηL

i+j−1 · EML-pol(i−1,j) + (−1)i ·ηR
i+j−1· EML-pol(i,j−1)

This definition is a recursive version of the formula of the EML morphism given in Section 2. For
example, EML1,2 returns the polynomial (η0,η2η1)−(η1,η2η0)+(η2,η1η0), and in general EMLi,j

has an addend for every (i,j)-shuffle. The above definition is based on how (i,j)-shuffles can be
obtained recursively from (i−1,j)-shuffles and (i,j−1) shuffles.

Finally, let us define the polynomial version of the SH morphism. In this case, we have only
one component for each dimension n, since it is a function from the chains of dimension n in the
Cartesian product to chains of dimension n+1 also in the Cartesian product.

Before defining the polynomial representing SH , we have to define an operation on polynomials
called derivative [20]. Given a simplicial term ηi1 ...ηik ∂j1 ...∂jl , its derivative is the simplicial term
obtained increasing by one the indexes of its operators, i.e. ηi1+1 ...ηik+1∂j1+1 ...∂jl+1. This operation
is extended componentwise to pairs of simplicial terms, and by linearity, to polynomials. In our
formalization, derivative-psp(p) implements the derivative of a polynomial p (we will denote
it as p′).

The following function SH-pol(n), inspired by [20], obtains the corresponding polynomial rep-
resenting the SH homomorphism in dimension n.9

9The summatory in the definition is defined recursively by an auxiliary function.
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 Definition: [SH n]

SH-pol(n) :=
if n �∈N+ then 0
else −1·((SH-pol(n−1))′ + (

∑n
i=0EMLn−i,i ·AW n,i)′ ·η×

0 )

Once defined all the polynomial counterparts of the morphisms that appear in the reduction version
of the EZ theorem, we can establish the main properties required. These theorems are formalized
as properties of expressions in the ring of pair simplicial polynomials. First, the following are the
identities corresponding to the properties stating that AW and EML are chain morphisms.

Theorem: AW-pol-chain-complex-morphism
n∈N∧i∈N∧i<n

→ AW n−1,i ·d×
n =dL

i+1 ·AW n,i+1 +(−1)i ·dR
n−i ·AW n,i

Theorem: EML-pol-chain-complex-morphism
i∈N+∧j∈N+

→ d×
i+j ·EMLi,j =EMLi,j−1 ·dL

j +(−1)j ·EMLi−1,j ·dR
i

Second, the following ACL2 theorems establish properties (1) to (5) required in the definition of
reduction (Definition 2.3), for AW , EML and SH . To understand the statement of these properties,
recall that, as commented at the end of Section 3.2, if a polynomial p is cartesian degenerate (i.e. if
cdpsp-p(p)), then the function that the polynomial represents would always return the 0 chain of
the Cartesian product; as a particular case, if cdpsp-p(q−id), then the function represented by q is
the identity function on the cartesian product. Analogously for polynomials representing functions
that return tuple components of the tensor product, but in this case, we need the tensor degenerate
property tdpsp-p.

Theorem (1): tdpsp-AW-pol-EML-pol-id
i∈N∧j∈N → tdpsp-p(AW i+j,j ·EMLi,j −id)

Theorem (1): tdpsp-AW-pol-EML-pol
i∈N∧j∈N ∧ k ∈N∧j �=k ∧k ≤ i+j → tdpsp-p(AW i+j,k ·EMLi,j)

Theorem (2): cdpsp-diff-SH-pol-SH-pol-diff-EML-AW-id
n∈N+

→ cdpsp-p(d×
n+1 ·SH n +SH n−1 ·d×

n +∑n
i=0EMLn−i,i ·AW n,i −id)

Theorem (3): tdpsp-AW-pol-SH-pol
n∈N∧p∈N∧p≤n+1 → tdpsp-p(AW n+1,p ·SH n)

Theorem (4): cdpsp-SH-pol-EML-pol
i∈N∧j∈N → cdpsp-p(SH i+j ·EMLi,j)

Theorem (5): cdpsp-SH-pol-SH-pol
n∈N → cdpsp-p(SH n+1 ·SH n)

The formalization of property (1) by the two first ACL2 theorems above needs some explanation.
They establish, in the polynomial setting, that the composition of AW n,j with each of the components
EMLn−k,k (0≤ j,k ≤n) returns, in the tensor product, the zero chain, except for k = j, which is
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the identity. Note that when applying the composition of AWn and EMLn to a tuple of the tensor 
product, each component of the result is a sum obtained by composing the corresponding component 
of AWn with the sum of the respective applications of each component of EMLn to the components 
of the tuple. Combining the two first theorems, we have that in that sum, only one addend is the 
identity and the rest are null. Thus, the composition of AWn and EMLn is the identity in the tensor 
product.

The ACL2 theorems presented in this section establish the Eilenberg–Zilber theorem, expressed in 
our polynomial framework. These properties are non-trivial but, roughly speaking, they all are proved 
by induction on natural numbers and applying algebraic properties in the ring of pair simplicial 
polynomials. In the next section, we will explain in some detail the proof of one of these properties.

3.4 A detailed example: the main lemma in a reduction

We illustrate the kind of reasoning carried out, presenting a sketch of the proof of the property 
cdpsp-diff-SH-pol-SH-pol-diff-EML-AW-id (property (2) of reductions). That is, we
will prove that d×

n+1 ·SH n +SH n−1 ·d×
n +∑n

i=0EMLn−i,i ·AW n,i −id is a cartesian degenerate poly-
nomial, for every n≥1. In particular, we will prove that this expression is equal to the cartesian
degenerate polynomial −η×

n−1 ·∂×
n . It is worth pointing out that we first conjectured the general

expression of this cartesian degenerate polynomial by computing the polynomial expression in
ACL2, for several values of n. This is possible due to the executability of the polynomial ring
operations in ACL2.

In the following, let EnAn be an abbreviation to denote the polynomial
∑n

i=0EMLn−i,i ·AW n,i.
Precisely, what we prove by induction on the natural numbers is the following equivalent property:

d×
n+1 ·SH n =−SH n−1 ·d×

n −EnAn +id −η×
n−1 ·∂×

n

For n=1, we can compute the expressions: E1A1 = (η0∂1,I )+(I ,η0∂0), d×
2 ·SH 1 = id −η×

0 ·∂×
1 −

(η0∂1,I )−(I ,η0∂0) and SH 0 ·d×
1 =0. Therefore, the property holds in this case.

Let us now prove the property for n>1, assuming the property for n−1. For that we will need a
number of lemmas, that we list here, omitting their proof:

(a) The derivative operation distributes over addition, composition and scalar product of polyno-
mials.

(b) d×
n+1 =∂×

0 −(d×
n )′.

(c) ∂×
0 ·(p)′ =p ·∂×

0 , for every polynomial p.
(d) d×

n ·EnAn =En−1An−1 ·d×
n (i.e. EnAn represents a differential morphism).

(e) (d×
n )′ ·η×

0 +η×
0 ·∂×

0 −id =η×
0 ·d×

n

To prove the intended property, we will see that the expressions d×
n+1 ·SH n and −SH n−1 ·d×

n −
EnAn +id −η×

n−1 ·∂×
n are equal, rewriting both to a common expression.

• Rewriting d×
n+1 ·SH n:

If we apply lemma (b) and the definition of SH n, and then apply lemma (a), we have:

−∂×
0 ·(SH n−1)

′−∂×
0 ·(EnAn)

′ ·η×
0 +(d×

n ·SH n−1)
′+(d×

n ·EnAn)
′ ·η×

0

We now apply lemma (c) (twice), lemma (d) and the equality ∂×
0 ·η×

0 = id (which is a direct
consequence of the fifth simplicial identity), rewriting the expression to:

−SH n−1 ·∂×
0 −EnAn +(d×

n ·SH n−1)
′+(En−1An−1 ·d×

n )′ ·η×
0
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We replace the first occurrence of SH n−1 by its definition, we also apply the induction hypothesis
to d×

n ·SH n−1 and distribute the derivative over addition, and we also distribute in some addends
the derivative over composition, obtaining:

(SH n−2)
′ ·∂×

0 +(En−1An−1)
′ ·η×

0 ·∂×
0 −EnAn+

−(SH n−2)
′ ·(d×

n−1)
′−(En−1An−1)

′+id −η×
n−1 ·∂×

n +(En−1An−1)
′ ·(d×

n )′ ·η×
0

Factoring out (En−1An−1)′ and applying lemma (e), we finally have:

(SH n−2)
′ ·∂×

0 −EnAn −(SH n−2)
′ ·(d×

n−1)
′+id −η×

n−1 ·∂×
n +(En−1An−1)

′ ·η×
0 ·d×

n

• Rewriting −SH n−1 ·d×
n −EnAn +id −η×

n−1 ·∂×
n :

Expanding the definition of SH n−1 and distributing composition over addition, we have:

(SH n−2)
′ ·d×

n +(En−1An−1)
′ ·η×

0 ·d×
n −EnAn +id −η×

n−1 ·∂×
n

And applying lemma (b) to the first occurrence of d×
n , and distributivity we have:

(SH n−2)
′ ·∂×

0 −(SH n−2)
′ ·(d×

n−1)
′+(En−1An−1)

′ ·η×
0 ·d×

n −EnAn +id −η×
n−1 ·∂×

n

It is now clear (applying commutativity of addition of polynomials) that both expressions rewrite
to the same expression. Therefore they are equal and we have the property proved. Note that the
proof is done only applying induction and symbolic rewriting using definitions, previously proved
lemmas and the ring properties of simplicial polynomials.

3.5 Main simplification strategies

As we have just seen in Section 3.4, the proof of the polynomial properties needed to establish the
EZ theorem uses a great amount of simplification mechanisms, crucial for a successful mechanical
proof. These simplification mechanisms are programmed as rewriting rules. In our formalization,
these rules are essentially of four types: (i) rules stating that under certain conditions, a polynomial
expression has properties cdpsp-p or tdpsp-p; (ii) rules stating properties derived from the
simplicial identities (as e.g. some of the lemmas used in Section 3.4); (iii) ring properties of the ring
of polynomials; and (iv) meta-rules, implementing algebraic rewriting that cannot be expressed as
single rewriting rules.

Let us comment more on this last type of rule, illustrating how we used meta rules, by an example.
Consider the following situation: if we previously prove x=y, then we could conclude x ·z=y ·z.
Of course, this can be formalized by means of a rewriting rule; however, there are many situations
where this rule is not applicable although an analogous simplification could be done; for example
x1 ·z=y1 ·z+y2 ·z when x1 =y1 +y2 or x1 ·z+x2 ·z=y1 ·z+y2 ·z when x1 +x2 =y1 +y2.

In these cases we could think in a rule that would extract the right common factor, and then apply
the previous rule. But ‘extract the right common factor’ cannot be expressed as a single rewriting
rule, since it should manage as many situations as addends could appear in an expression, and that
cannot be expressed as a single pattern. Of course we could define as many rewriting rules as needed
in the formalization, but this is expensive in terms of user’s labour to develop the set of rules and
of system’s labour in sorting through such a number of rules.

In situations like the one described, ACL2 meta functions [9] are a convenient tool. A meta
function is a piece of ACL2 code that performs a syntactic transformation on the data structures
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representing ACL2 terms. It is possible to formulate in ACL2 what it means for such a transformation 
to be correct. If ACL2 can prove a such a transformation correct, then it can build the transformation 
directly into its simplifier.

We have defined several meta functions to cope with usual simplification processes in the general 
context of polynomials. Continuing with the example, let us consider a generic associative operator
+ with identity (e.g. addition of polynomials) and a generic associative operator · with identity
(e.g. composition of polynomials) and right-distributive over +. The right common factor meta 
rule has two cases depending on whether the common factor has an inverse element or not. Given 
an expression of the form x1 ·z + ...+xn ·z =y1 ·z + ...+ym ·z, this rule extracts the common factor 
z and, if there exists z′ such that z ·z′ =1, the expression is replaced with the equivalent one x1 + 
...+xn =y1 + ...+ym. Otherwise, the expression is reduced to true, provided it can be proved that 
x1 + ...+xn =y1 + ...+ym. In a similar way, we have defined a left common factor meta rule.

More meta rules has been introduced, implementing several useful algebraic simplification mech-
anisms in the presence of associativity, commutativity and distributivity of the operators. These rules 
have been proved correct in a generic setting, for generic operators having those properties. Then, 
they have been instantiated to the particular case of simplicial polynomials. See details in [13].

4 Proof computational content and experimental aspects

This section is devoted to explore the computational content of the proof, handling it to get a 
statement of the theorem near the standard mathematical presentation.

Being ACL2 also a programming language, it is clear that the functions defined to implement 
the proof are executable, because they are completely defined, i.e. they do not depend on any 
function introduced by the encapsulation principle. Then, we can produce simplicial polynomials 
representing the EZ morphisms, for each dimension. Nevertheless, this formalization is missing the 
functional interpretation of polynomials: we should be able to apply and execute them on concrete 
chains of simplices of concrete simplicial sets. For that, we need a presentation of the EZ theorem 
where the notions of simplicial sets, chains, cartesian product and tensor product are made explicit, 
and where the morphisms are defined as ACL2 functions. This is what we call the functional (or 
standard) formalization of the theorem, and we will present it in Section 4.1. As we will see, the main 
theorems in this standard formalization are obtained translating from the corresponding theorems of 
the polynomial formalization of the previous section.

Once proved, the functional or standard formalization of the EZ theorem can be instantiated on 
concrete simplicial sets, where we can execute the morphisms. In Section 4.2, it is particularized on 
�, the standard simplex. In this simplicial set, the simplicial equalities are the only constraints, and 
so any simplicial formula is expressed generically on it. Then, in Section 4.3, the results obtained 
with our certified ACL2 programs are compared with the actual Kenzo results.

4.1 Operational interpretation of the proof

4.1.1 Formalizing simplicial sets and chain complexes
We represent a simplicial set and its associated chain complex in the same way as we did it in the 
formalization of the Normalization Theorem [12]. We now give a brief overview to the main ideas. 

Let us first deal with how we represent simplicial sets. Note that a simplicial set is characterized 
by a set K and a family of functions (faces and degeneracies) having certain properties. Since the EZ 
theorem is about any two simplicial sets, we have to introduce them in a completely generic way.
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Although in ACL2 the usual way to introduce functions in the logic is by the definition principle 
(using defun), it also provides the encapsulation principle (using encapsulate), which allows 
to introduce functions in the logic without defining them completely, only stating about them some 
assumed properties [10].

In our formalization, a generic simplicial set is defined by means of three functions K, d and n. 
The function K is a predicate of two arguments, with the intended meaning that K(n,x) holds when
x ∈Kn. Faces and degeneracies are represented, respectively, by functions d and n, both with three
arguments. The idea is that d(m,i,x) and n(m,i,x), respectively, represent ∂m

i (x) and ηm
i (x). These three

functions are introduced using encapsulate, only assuming about them well-definedness and the
simplicial identities. For example, the following are the assumptions corresponding respectively to
the well-definedness of d and the first simplicial identity.

Assumption: d-well-defined
(x∈Km ∧ m∈N+ ∧ i∈N ∧ i≤m) → ∂m

i (x)∈Km−1

Assumption: simplicial-id1
(x∈Km ∧ m∈N ∧ i∈N ∧ j∈N ∧ j≤ i ∧ i<m ∧ 1<m)

→ ∂m−1
i (∂m

j (x))=∂m−1
j (∂m

i+1(x))

We omit here the rest of the assumptions (i.e. well-definedness of n and the rest of the simplicial
identities), since they are stated in an analogous way.

We can now formalize the notions of degenerate and non-degenerate simplices. First, the predicate
Kd(n,x) defines the property of being a degenerate n-simplex.

Definition: [x∈KD
n ]

Kd(n,x) := ∃y,i (i∈N ∧ i<n ∧ y∈Kn−1 ∧ ηn−1
i (y)=x)

The existential quantification in the definition is introduced in ACL2 using the defun-sk con-
struct (this construct is the way in which ACL2 offers (limited) support for existential quantification).
Having defined degenerate simplices, non-degenerate simplices can be easily defined.

Definition: [x∈KND
n ]

Kn(n,x) := x∈Kn ∧ x �∈KD
n

As for the formalization of chains of simplices, since they are formal linear combinations of non-
degenerate simplices, it is quite natural to represent them as lists of pairs of an integer coefficient
and a non-degenerate simplex. As with polynomials, we consider chains in canonical form: we do
not allow zero coefficients and we require the pairs to be increasingly ordered with respect to a strict
ordering on simplices. The following function scn-p defines chains in a given dimension n. It uses
the auxiliary function ssn-p which recognizes two-element lists whose elements are a non-null
integer and a non-degenerate simplex; it also uses the auxiliary function ssn-< which defines a
strict ordering between such pairs.

Definition: [c∈Cn(K)]
scn-p(n,c) :=

if endp(c) then c = nil
elseif endp(rest(c))

then ssn-p(n,first(c)) ∧ rest(c) = nil
else ssn-p(n,first(c)) ∧ ssn-<(n,first(c),second(c)) ∧

scn-p(n,rest(c))
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We also define addition of chains, and the scalar product of an integer and a chain. In this article,
we will denote these operations, respectively, as c1 +c2 and k ·c (omitting the dimension, for the
sake of readability).10 These operations act on chains in the canonical form described above, and
return chains also in canonical form. We proved that the set of chains of a given dimension is an
Abelian group with respect to addition, where the identity is represented by the empty list (denoted
here as 0).

To complete the definition of the chain complex associated with a simplicial set, we need to
define the differential homomorphism and prove that the boundary condition holds. First, face and
degeneracy maps are defined to act on chains, easily extending them by linearity; in this article,
we will use the same notation (i.e. ∂n

i and ηn
i ) regardless whether these operations are acting on

simplices or on chains. Now, as we said in Section 2, the differential of a chain c∈Cn(K) is defined
as dn(c)=∑n

i=0(−1)i∂n
i (c), but taking into account that in the resulting chain, any degenerate addend

has to be erased. The following functions implement it.

Definition:
F-norm(n,c) :=

if endp(c) then 0
elseif ssn-p(n,first(c))

then first(c) + F-norm(n,rest(c))
else F-norm(n,rest(c))

Definition:
diff-aux(n,i,c) :=

if i �∈N+ then ∂n
0 (c)

else (−1)i ·∂n
i (c) + diff-aux(n,i−1,c)

Definition: [dn(c)]
diff(n,c) := F-norm(n−1,diff-aux(n,n,c))

The function F-norm above takes a linear combination of simplices, in which there are possibly
some degenerate addends and returns the chain with those addends erased. The function diff(n,c),
denoted as dn(c), defines the differential homomorphism. Note that it uses an auxiliary recursive
function diff-aux.

We prove the boundary condition for the differential function just defined, completing the formal-
ization of the chain complex associated with a simplicial set. The following theorem establishes it.

Theorem: diff-diff-null
n∈N+ ∧ c∈Cn+1(K) → dn(dn+1(c))=0

The EZ theorem establishes a result about any two simplicial sets and the relation between their
Cartesian and tensor products. This means that, to formally state the premises of the theorem in
ACL2, we have to define two generic simplicial sets (say K1 and K2) and their associated chain
complexes. Thus we introduce functions K1, d1 and n1 (by means of the encapsulation principle),
assuming the corresponding simplicial identities, and the same for K2, d2 and n2. Then we replay
all the definitions and theorems needed to formalize the respective chain complexes, in an analogous
way as we have just shown. That is, we define for K1 the predicates K1n and sc1n (respectively
recognizing non-degenerate simplices and chains in C(K1)), the differential function diff1 and

10We are overloading the symbols, using the same notation for the operation on chains and on polynomials, but the
distinction will be clear from the context.
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prove the corresponding boundary condition, among other useful lemmas. We do it for K2 in an 
analogous way. In the following, we will denote as dn

1 and dn
2 the corresponding differentials for 

C(K1) and C(K2). For the sake of readability, we will denote in the same way (∂n and ηi
n) the facesi 

and degeneracies of both simplicial sets, although it has to be clear that in the formalization they 
are different families of functions.

A technical comment is worth pointing out here. In principle, to obtain the theories (definitions 
and theorems) corresponding to the chain complexes C(K1) and C(K2), we would have to duplicate 
the proof effort carried out. Fortunately, a rule of inference in ACL2, called functional instantiation, 
allows us to infer theorems that can be obtained by instantiating the function symbols of a previ-
ously proved theorem, replacing them with other function symbols, provided it can be proved that 
the new functions satisfy the constraints assumed on the replaced functions. So, we can define one 
generic simplicial set and its associated chain complex, and obtain other generic simplicial sets by 
functional instantiation. Moreover, in our case, this instantiation is done in a completely automatic 
way: although ACL2 offers no native support for functionally instantiate a whole theory (i.e. a col-
lection of definitions and theorems about them), we used a tool called definstance, that allows 
us to automatically generate functional instantiations of a theory, simply giving the corresponding 
‘names substitution’. See [15] for details on definstance, a user-written and mechanically ver-
ified extension of ACL2 that does not impose additional logical assumptions to our formalization, 
preserving then our goal of have a fully formal development.

4.1.2 Cartesian product of simplicial sets
The Cartesian product of the simplicial sets K1 and K2 is easily defined. First, we define the functions
Kx2(p,q,x) recognizing pairs x∈K1

p ×K2
q ; as a particular case, we define the function Kx formalizing

(K1 ×K2)n.

Definition: [x∈K1
p ×K2

q ]
Kx2(p,q,x) := consp(x) ∧ first(x) ∈K1

p ∧
consp(rest(x)) ∧ second(x) ∈K2

q ∧ rest(rest(x)) = ()

Definition: [x∈ (K1 ×K2)n]
Kx(n,x) := Kx2(n,n,x)

The face and degeneracy operators for the Cartesian product of K1 ×K2 are defined component-
wise from the corresponding operators of K1 and K2.

Definition: [∂×,n
i (x)]

dx(n,i,x) := (∂n
i (first(x)), ∂n

i (second(x)))

Definition: [η×,n
i (x)]

nx(n,i,x) := (ηn
i (first(x)), ηn

i (second(x)))

It is straightforward to prove that ∂
×,n
i (x) and η

×,n
i (x) hold the simplicial identities, and thus we

can define, by functional instantiation (and again in an automatic way using definstance), all
the definitions and theorems corresponding to the associated complex chain. In particular, we define
a recognizer for chains of Cn(K1 ×K2) (function SCxn-p(n,x)), and a function Fx-norm(n,c) that
erases the degenerate addends (w.r.t. the cartesian product) of linear combinations of pairs of n-
simplices. Also we define the differential homomorphism d×

n (function Cx-diff(n,c)) and prove
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the corresponding boundary condition, thus completing the formalization of the Cartesian product 
C(K1 ×K2).

4.1.3 Tensor product
Since the tensor product of two simplicial chain complexes cannot be obtained as the chain complex 
associated with a simplicial set, in order with formalize it in ACL2, we cannot use the same technique
used to define the Cartesian product. In this case, we have to directly define the sets (C(K1)⊗C(K2))n 
and the corresponding differential homomorphism.

As discussed in Section 3.1, the elements of (C(K1)⊗C(K2))n can be identified with (n+1)-
tuples (lists in our case) (c0,c1,...,cn), where for each 0≤ i≤n, ci ∈Z[K1,ND

n−i ×K2,ND
i ]. The following

function Cn+ formalizes this, from the auxiliary recursive function Cn+-seq, which deals with the
iteration (here, the function SCx2n-p(p, q, c) recognizes linear combinations in Z[K1,ND

p ×K2,ND
q ]):

Definition:
Cn+-seq(n,p,l) :=

if endp(l) then nil
elseif p �∈N+ then SCx2n-p(0,n,first(l)) ∧ rest(l) = nil
else SCx2n-p(p,n−p,first(l)) ∧ Cn+-seq(n,p−1,rest(l))

Definition: [c∈ (C(K1)⊗C(K2))n]
Cn+(n,c) := Cn+-seq(n,n,c)

To define the differential homomorphism in the tensor product, first we introduce some notation.
Let dL

p and dR
q denote the functions defined on K1,ND

p ×K2,ND
q such that dL

p (x,y)= (d1
p (x),y) and

dR
q (x,y)= (x,d2

q (y)). Now, for every generator (x,y) in K1,ND
p ×K2,ND

q (with p+q=n), the differential
in the tensor product (see Definition 2.5) can be written as: d⊗

n (x,y)=dL
p (x,y)+(−1)pdR

q (x,y). As
usual, dL

p , dR
q and d⊗

n are extended by linearity to Z[K1,ND
p ×K2,ND

q ].
Let c= (c0,c1,...,cn) in (C(K1)⊗C(K2))n and e= (e0,...,en−1) in (C(K1)⊗C(K2))n−1, such that

d⊗
n (c)=e. Then from the above considerations we have that ej =dL

n−j(cj)+(−1)n−j−1dR
j+1(cj+1) (for

all 0≤ j≤n−1). Our definition of d⊗
n is based on this last formula.

Definition:
diff+-seq(n,p,l) :=

if p �∈N+ then nil
else cons(dL

p (first(l))+(−1)p−1 ·dR
n−p+1(second(l)),

diff+-seq(n,p−1,rest(l)))

Definition: [d⊗
n (c)]

diff+(n,c) := F+-norm(n−1,diff+-seq(n,n,c))

Note the normalization applied in the definition of diff+. This is needed because in our ACL2
formalization, dL

p and dR
q are defined applying the corresponding differential, but without erasing

the degenerate addends (as in the function diff-aux above). Therefore, in each component of
the final result obtained by diff+-seq(n,n,c) we have to delete all the addends corresponding to
degenerate pair of simplices in the tensor product. This is precisely what the function F+-norm
does.
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From the corresponding boundary conditions of d1
n and d2

n , we prove the boundary condition for
d⊗

n , as established by the following theorem (note that zero in the tensor product, denoted as 0⊗, is
the tuple with all its components equal to the zero chain).

Theorem: diff+-diff+-null
n∈N+ ∧ l ∈ (C(K1)⊗C(K2))n+1 → d⊗

n (d⊗
n+1(l))=0⊗

This completes the formalization of the tensor product C(K1)⊗C(K2). In the following, we
explain the formalization and proof of the EZ theorem in this standard framework. For that, we
have first to define the morphisms AW , EML and SH . Not surprisingly, this will be done using the
corresponding polynomial versions.

4.1.4 Evaluation of bivariate simplicial polynomials
Before defining the morphisms involved in the EZ theorem, we have to formally specify the func-
tional interpretation of a polynomial. That is, we define an ACL2 function such that given a polyno-
mial and a chain of pairs of simplices of a given dimension, it computes the result of evaluating the
function that the polynomial is supposed to represent, on the given chain. This is done in a similar
way to what was presented in [12].

First, we have to define some well-formedness conditions on polynomials. Think for example
in the following simplicial term: η5η1∂3. This term cannot be interpreted as a function on C4(K),
regardless of the simplicial set, because in such case, η5 would have to be applied to a simplex in
C4(K), which is not possible. Nevertheless, it makes sense to apply it to any chain of dimension
n≥5. We will say that a simplicial term is valid for dimension m, when interpreted as composition
of simplicial operators, can be applied to any simplex of dimension m. Another notion to take into
account is what we call the degree of a term: if a term is valid for n and it represents a function from
Kn to Km, its degree is m−n (e.g. the degree of the previous term is 1). Extending these concepts to
pairs, we will say that a pair of simplicial terms (t1,t2) is valid for dimension (m1,m2) with degree
(j1,j2) if ti is valid for mi and with degree ji (i=1,2). We say that a polynomial is valid for dimension
(m1,m2) if all its terms are valid for that dimension, and we say that it is uniform if all its terms have
the same degree. If a polynomial is uniform and valid for a dimension we say that it is well-formed
for that dimension and its degree is the common degree of its terms.

Well-formed polynomials for dimension (m1,m2) represent morphisms whose evaluation can be
defined on Z[K1

m1
×K2

m2
]. We defined in ACL2 a function eval-psp(p,m1,m2,c) that computes the

result of evaluating p on a linear combination c of pairs of simplices of dimension (m1,m2). We also
proved that eval-psp is a homomorphism on the ring of polynomials. For example, under the
corresponding well-formedness conditions, the evaluation of the composition of two polynomials
is equal to the composition of the evaluations of the polynomials, and analogously for addition
and scalar product. This is proved in a similar way as it is described in [12] for simple simplicial
polynomials. See [13] for details.

4.1.5 Defining AW , EML and SH
We now define the morphisms that form the reduction in the EZ theorem, as combinations of
evaluations of the polynomials defined in Section 3.3. The way we combine these evaluations
depend on their intended domain and range (the Cartesian product or the tensor product).

Let us first start with the AW morphism. Recall that for each dimension n, AWn defines a
function from Cn(K1 ×K2) to (C(K1)⊗C(K2))n. First we define the function AW-aux(p,q,n,i,c)
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as the evaluation of the polynomial AW n,i on a linear combination c of pairs of simplices of 
dimension (p,q). We can prove that AW n,i is a well-formed polynomial for dimension (n,n), with 
degree (i−n,−i), so it makes sense to define AW on Cn(K1 ×K2) as the result of iteratively apply 
AW-aux(n,n,n,i,c) (for 0≤ i ≤n) and collect each result in a tuple; in each component of this tuple 
we finally erase (using F+-norm) the possible degenerate addends (in the tensor product) that could 
appear. As usual, note the auxiliary recursive function AW-seq implementing the iteration.

Definition:
AW-aux(p,q,n,i,c) := eval-psp(AW n,i,p,q,c)

Definition:

AW-seq(n,p,c) :=
if p �∈N+ then list(AW-aux(n,n,n,0,c))
else cons(AW-aux(n,n,n,p,c),AW-seq(n,p−1,c))

Definition: [AWn(c)]
AW(n,c) := F+-norm(n,AW-seq(n,n,c))

We now define the EML morphism. In this case, EMLn is defined on elements of (C(K1)⊗C(K2))n,
returning its result in Cn(K1 ×K2). Recall that, as discussed in Section 3.1, the elements of (C(K1)⊗
C(K2))n are tuples of linear combinations in Z[K1,ND

p ×K2,ND
q ], where we have a component for each

dimension (p,q) such that p+q=n.
Taking this into account, we first define EML-aux(p,q,i,j,c) as the evaluation of the polynomial

EMLi,j on a linear combination c∈Z[K1,ND
p ×K2,ND

q ]. It can be proved that EMLi,j is well-formed for
dimension (j,i) and its degree is (i,j). Therefore it is valid to define EMLn on a tuple l as the result
of iteratively applying EML-aux(i,n−i,n−i,i,li) (where 0≤ i≤n) and sum each result to obtain
a single chain in dimension (n,n); as with AW , we finally erase (using Fx-norm) the possible
degenerate addends, now in the Cartesian product. Again, we need an auxiliary recursive function
EML-seq implementing the iteration.

Definition:
EML-aux(p,q,i,j,c) := eval-psp(EMLi,j ,p,q,c)

Definition:
EML-seq(n,p,l) :=

if p �∈N+ then EML-aux(0,n,n,0,first(l))
else EML-aux(p,n−p,n−p,p,first(l)) + EML-seq(n,p−1,rest(l))

Definition: [EMLn(c)]
EML(n,c) := Fx-norm(n,EML-seq(n,n,c))

Finally the definition of the SH function from the corresponding polynomial is simpler, since we
do not have to deal with tuple components (SHn is a function from Cn(K1 ×K2) to Cn+1(K1 ×K2).
We can prove that the polynomial SH n is well-formed for dimension (n,n), with degree (1,1). So
it is valid to define SHn on a given chain, as first evaluating SH n on the chain and then eliminate
degenerate addends with respect to Cartesian product.

Definition: [SHn(c)]
SH(n,c) := Fx-norm(n+1,eval-psp(SH n,n,n,c))
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4.1.6 The main properties
In Section 3.3, we established, in the polynomial framework, the main properties showing that AW , 
EML and SH form a reduction from C(K1 ×K2) to C(K1)⊗C(K2). We are almost ready to translate 
those properties to this more standard presentation of the theorem. Before that, recall that some of 
those properties stated that some operations on polynomials returned tensor degenerate (tdpsp-p) 
or cartesian degenerate (cdpsp-p) polynomials. As we anticipated, those properties have a direct 
translation in this standard framework.

Theorem: Fx-norm-eval-psp-cdpsp
n∈N+∧i∈N∧j∈N ∧ SCx2-p(i,j,c) ∧ cdpsp-p(p) ∧ uniform-psp(p) ∧
valid-psp(p,i,j) ∧ degree-psp(p) = (n−i,n−j)

→ Fx-norm(n,eval-psp(p,i,j,c)) =0×

Theorem: Fx2-norm-eval-psp-tdpsp
i∈N∧j∈N ∧ SCx2-p(i,j,c) ∧ tdpsp-p(p) ∧ uniform-psp(p) ∧
valid-psp(p,i,j) ∧ degree-psp(p) = (k,l)

→ Fx2-norm(i+k ,j+l,eval-psp(p,i,j,c)) =0×

That is, if we evaluate a cartesian degenerate polynomial on a linear combination of pair of sim-
plices (under the corresponding well-formedness condition) and then we erase the addends that are
degenerate in the Cartesian product, we obtain the zero chain 0×. And an analogous result is also
obtained for tensor degenerate polynomials in the tensor product; here the function SCx2-p(i,j,c)
recognizes (non-normalized) linear combinations in Z[K1

i ×K2
j ]; 0× is the zero chain in Z[K1

i ×K2
j ]

for every i,j; and Fx2-norm is the function that in such linear combinations erases addends corre-
sponding to degenerate pairs in the tensor product (by the way, the function F+-norm previously
mentioned, is defined applying Fx2-norm in each component of the tuple).

We now present the main properties11 establishing the EZ theorem. The following are the theorems
showing that AW and EML are chain homomorphisms.

Theorem: AW-chain-morphism
n∈N+ ∧ c∈Cn(K1 ×K2) → AWn−1(d×

n (c))=d⊗
n (AWn(c))

Theorem: EML-chain-morphism
n∈N+ ∧ c∈ (C(K1)⊗C(K2))n → EMLn−1(d⊗

n (c))=d×
n (EMLn(c))

And the following are the theorems establishing that (AW ,EML,SH ) is a reduction from C(K1 ×
K2) to C(K1)⊗C(K2) (properties (1) to (5) in Definition 2.3):

Theorem (1): AW-EML-id
n∈N ∧ c∈ (C(K1)⊗C(K2))n → AWn(EMLn(c))=c

Theorem (2): Cx-diff-SH-SH-Cx-diff-EML-AW-id
n∈N+ ∧ c∈Cn(K1 ×K2)

→ EMLn(AWn(c))+d×
n+1(SHn(c))+SHn−1(d×

n (c))=c

11We only omit here the theorems establishing that AW , EML and SH are well-defined, which can be deduced from the
well-formedness properties of the corresponding polynomial.
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Theorem (3): AW-SH-null
n∈N ∧ c∈Cn(K1 ×K2) → AWn+1(SHn(c))=0⊗

Theorem (4): SH-EML-null
n∈N ∧ c∈ (C(K1)⊗C(K2))n → SHn(EMLn(c))=0×

Theorem (5): SH-SH-null
n∈N ∧ c∈Cn(K1 ×K2) → SHn+1(SHn(c))=0×

All these properties are obtained directly from the corresponding polynomial properties in
Section 3.3, applying the well-formedness properties of the polynomials AW n,i, EMLi,j and SH n,
the ring homomorphism properties of eval-psp and the above properties about the behaviour
of eval-psp on Cartesian and tensor degenerate polynomials. In the case of the chain mor-
phism properties, we also need theorems relating the differentials defined in both
frameworks.

4.2 Functional instantiation on a universal simplicial set

The formalization we have just presented has been done for a pair of generic simplicial sets K1

and K2. As defined for the formalization, the morphisms AW , EML and SH cannot be executed,
since they depend on K1 and K2, which were introduced by the encapsulation principle. But we can
instantiate the whole construction for two concrete simplicial sets, and obtain executable versions of
the morphisms. In particular, we have considered the standard simplex � [17]. This simplicial set has
some universal properties, since the simplicial identities are the unique constraints on it. In particular,
any generic formula relating simplicial equalities will be faithfully drawn on �. This simplicial set
is defined as follows: n-simplices in � are non-decreasing lists of n+1 natural numbers; a face of
index i consists in erasing the element at position i; and a degeneracy of index i consists in repeating
the element at position i in the list. In this way, a list is a degenerate simplex in �n if it contains
two consecutive repeated elements.

To make the instantiation we have considered � as the concrete version of both generic simplicial
sets K1 and K2, showing the correspondence between the functions of the generic formaliza-
tion and those of the concrete instance. Then, the recognizer functions K1 and K2 are instanti-
ated with the recognizer function of the set �, Delta-K; the simplicial operators d1 and d2
(respectively n1 y n2) are instantiated with the face operator on �, Delta-d (respectively the
degeneracy operator Delta-n); and the recognizer functions for degenerate simplices K1d and
K2d are instantiated with the recognizer function for degenerate simplices on �, Delta-Kd.
Finally, we also need to define how to instantiate the function Kxd, that checks if a simplex
is degenerate in the Cartesian product K1 ×K2. In this case, that is �×�, this happens when
both components of a Cartesian simplex have consecutive repeated elements in the same
position.

Once given the functional substitution relating the generic functions and the concrete ones, the
functional instantiation process builds (in an automatic way using definstance) concrete ver-
sions of all the remaining functions presented in the previous Section 4 and prove their proper-
ties. In this way, we have an instantiated version of the EZ theorem for the standard simplicial
set �.
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4.3 Certified programmes and Kenzo running programmes

Once the proof of the EZ theorem has been instantiated on the standard simplex �, we can evaluate 
the different morphisms. We concentrate on the SH operator, being the more complex. Furthermore, 
we can make Kenzo compute the same examples, and then compare both results.

The test is running over the Cartesian product �×�, and then applied over the chain with only 
one monomial, with coefficient 1 and generator ((0,1,...,n),(0,1,...,n)) (constructed by a function 
Delta1), belonging to Cn(�×�). You can find next the respective results obtained by ACL2 and 
by Kenzo, in the case n=3.

ACL2 !>(Delta-SH 3 (Delta1 3))
((-1 ((0 0 0 0 1) (0 1 2 3  3)))
(1 ((0 0 0 1 1) (0 1 2 2 3)))
(-1 ((0 0 0 1 2) (0 2 3 3 3)))
(-1 ((0 0 1 1 1) (0 1 1 2 3)))
(1 ((0 0 1 1 2) (0 2 2 3 3)))
(-1 ((0 0 1 2 2) (0 2 2 2 3)))
(-1 ((0 0 1 2 3) (0 3 3 3 3)))
(-1 ((0 1 1 1 2) (0 1 2 3 3)))
(1 ((0 1 1 2 2) (0 1 2 2 3)))
(1 ((0 1 1 2 3) (0 1 3 3 3)))
(-1 ((0 1 2 2 3) (0 1 2 3 3))))

>(? shi 3 d3)
--------------------------------------------------{CMBN 4}

<-1 * <CrPr 0 15 3-2-1 9>>
<1 * <CrPr 1 15 3-2 11>>
<-1 * <CrPr 1-0 7 3-2 13>>
<-1 * <CrPr 2 15 3 15>>
<1 * <CrPr 2-0 7 3-1 13>>
<-1 * <CrPr 2-1 7 3 15>>
<-1 * <CrPr 2-1-0 3 3 15>>
<-1 * <CrPr 3-0 7 2-1 13>>
<1 * <CrPr 3-1 7 2 15>>
<1 * <CrPr 3-1-0 3 2 15>>
<-1 * <CrPr 3-2-0 3 1 15>>

----------------------------------------------------------

Several remarks are worth mentioning. First, note the different representations used. In ACL2 a
format purely list-based is employed. In Kenzo, the internal representation of simplices in the Carte-
sian product is by means of a record (struct); the degeneracies are displayed explicitly (the string
3-2-1 stands for η3η2η1), while the simplices of � are encoded arithmetically. For instance, the
number 9 is representing the simplex (0,3), because 20 +23 =9 (in general, a non-degenerate simplex
(a0,a1,...,ar) in �r is represented in Kenzo by

∑r
j=02aj ). Thus, in the Kenzo term

<-1 * <CrPr 0 15 3-2-1 9>> the first 0 is η0 in the first factor, the number 15 (=20 +
21 +22 +23) is representing the (0,1,2,3) simplex, so the first factor corresponds in ACL2 to
(0 0 1 2 3); therefore, the first monomial in the Kenzo expression is denoting the term at
position 7 in the ACL2 list.
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The reader can check that, up to representation, both programmes are computing the same element 
of C4(�×�). Clearly we can do better than a visual inspection; we can programme an automated 
testing. To this aim, it is necessary to apply a domain transformation strategy to translate from 
Kenzo format to ACL2’s one. This is not difficult, and in fact the harder part was programmed (and 
verified) in [16], where the way of internally encoding lists of degeneracies in Kenzo was analysed. 
It turns out that that encoding is exactly the same as for simplices in �, and so it is already solved.

Once Kenzo combinations are translated to ACL2’s format, we can subtract one from another 
and if we get the zero combination, we ensure that ACL2 and Kenzo are computing exactly the 
same. In that way, we have automatically tested that all the results around EZ (that is to say, all 
the computations with Alexander–Whitney, Eilenberg–Mac Lane and Shih morphisms) that can be 
computed by ACL2 coincide with those obtained from Kenzo. Let us remark that this validation 
(testing against Kenzo results) is complementary to the formal verification of the ACL2 programmes 
with respect to their formal specifications.

With respect to performance, it is remarkable that the executable proof can get results up to 
dimension n=8, in a standard laptop, before exhausting memory. On the same computer, Kenzo 
reaches dimension n=20. It is necessary to point out that our ACL2 proof was not devised with 
efficiency in mind: it is simply the translation of the most natural mathematical ideas. In particular, 
Kenzo benefits from the compact (arithmetic) representation of degeneracies lists and of � simplices. 
This idea could be integrated in our ACL2 proof (as it was done in [16]), together with many other 
possible technical ACL2 improvements (compilation, guards, single-threaded objects, and so on; 
see [10]), getting a better ACL2 performance. We have not pursued this way, because our objective 
is not to compete with Kenzo, but building a verified counterpart that increases confidence in Kenzo 
results.

As a summary, from this experimental study we obtained clear evidence that the ACL2 proof is 
implementing exactly the same formulas appearing in Section 2, after the EZ theorem statement, 
and that the formulas are exactly the ones programmed in Kenzo.

5 Conclusions and future work

The EZ theorem is a central result in Simplicial Algebraic Topology, establishing a link between 
geometrical (Cartesian product) and algebraic (tensor product) concepts. The EZ theorem, when 
expressed in terms of reductions, has a companion algorithm that has been implemented in the 
computer algebra system Kenzo. In this article, we have given a complete formal proof of the EZ 
theorem using the ACL2 theorem prover. Even if the formulas implemented in Kenzo cannot be 
directly translated to ACL2 (ACL2 is lacking of explicit iteration, and we are so forced to give 
recursive variants of the formula), experimental evidence has been provided showing that the ACL2 
and the Kenzo implementations are behaviourally equivalent. Since the ACL2 programmes are 
verified, trusting Kenzo results is now reinforced.

From a conceptual point of view, the notion of bivariate simplicial polynomial is the key of 
our approach. The simplicial polynomials machinery was also instrumental in the ACL2 proof of 
the Normalization Theorem [12], and it is now generalized to deal with pairs of natural transfor-
mations. The main contributions of simplicial polynomials are emulating symbolically higher-order 
notions (i.e. natural transformation between functors) and enhancing ACL2 with a kind of algebraic 
rewriting, that helps greatly the automation of proofs. Furthermore, executability allows unfolding 
recursive definitions of polynomials, and this was useful for conjecturing some lemmas which guided 
the proof of the main theorems.
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From a technical point of view, some meta-rules have been included to deal with symbolic 
simplifying (so covering a potentially infinite number of simplification rules). In addition, some 
macros to generating instances of generic theories have been built. We hope this ACL2 technical 
achievements could be useful and inspiring for other developers of certified symbolic manipulation 
programmes.

As for future work, a clear line is to apply the simplicial polynomials infrastructure to tackle other 
open problems in Computation Algebraic Topology, like the verification of Szczarba’s twisting 
cochain [24] or the algorithmic solution of Adams problem on loop spaces [22]. Another research 
path could be to launch a project to get an efficient verified computing software for Topology; 
our ACL2 approach is mature enough to undertake this task. The first candidate would be the 
implementation of an algorithm computing the homology groups of finite simplicial sets, following 
ideas presented in [7].
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[19] A. Prouté. Sur la diagonale d’Alexander–Whitney. Comptes Rendus Académie Sciences Paris,

Série I, 299, 391–392, 1984.
[20] P. Real. Homological perturbation theory and associativity. Homology Homotopy and Appli-

cations, 2, 51–88, 2000.
[21] A. Romero and J. Rubio. Homotopy groups of suspended classifying spaces: an experimental

approach. Mathematics of Computation, 82, 2237–2244, 2013.
[22] J. Rubio. Homologie effective des espaces de lacets itérés : un logiciel, Thèse, Institut Fourier,
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