
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
6
1
7
8
5

|

d
o
w
n
l
o
a
d
e
d
:

2
5
.
4
.
2
0
2
4

Justifying induction on modal µ-formulae

Luca Alberucci Jürg Krähenbühl Thomas Studer

Abstract

We define a rank function for formulae of the propositional modal
µ-calculus such that the rank of a fixed point is strictly bigger than the
rank of any of its finite approximations. A rank function of this kind is
needed, for instance, to establish the collapse of the modal µ-hierarchy
over transitive transition systems. We show that the range of the
rank function is ωω. Further we establish that the rank is computable
by primitive recursion, which gives us a uniform method to generate
formulae of arbitrary rank below ωω.

1 Introduction

The propositional modal µ-calculus, introduced by Kozen [11], is an exten-
sion of modal logic with least and greatest fixed points for positive formulae.
It subsumes many dynamic and temporal logics like PDL, PLTL, CTL, and
CTL∗, cf. [8, 14, 6, 7].

The least fixed point µx.ϕ of a formula ϕ positive in x can be approxi-
mated from below by the formulae ϕnx(⊥) where

ϕ0
x(ψ) := ψ and ϕn+1

x (ψ) := ϕ[ϕnx(ψ)/x].

Dually, the greatest fixed point νx.ϕ can be approximated from above by
the formulae ϕnx(>).

From this perspective, the approximations ϕnx(⊥) and ϕnx(>) are simpler
than the fixed points µx.ϕ and νx.ϕ. However, so far there is no rank
function f known such that f maps formulae of the µ-calculus to ordinals
with

1. f(ψ) < f(ϕ) if ψ is a proper subformula of ϕ,

2. f(ϕnx(⊥)) < f(µx.ϕ) for all natural numbers n,

3. f(ϕnx(>)) < f(νx.ϕ) for all natural numbers n.

In this paper, we present a rank function for the modal µ-calculus and
establish that its range is ωω. We also introduce a method to compute
the rank of a formula by primitive recursion, which makes it possible to
uniformly generate formulae of arbitrary rank below ωω.

Our rank function has several applications. For instance, it is used

1

1. to show that the modal µ-calculus hierarchy collapses over transitive
transition systems [2];

2. to prove without using the de Jong-Sambin theorem that the µ-calculus
over GL collapses, which explains why provability fixed points are ex-
plicitly definable in the modal language [3];

3. to develop analytical sequent calculi for the propositional modal µ-
calculus over S5 [1];

4. to establish a completeness theorem for the hybrid µ-calculus [15].

Moreover, employing this rank function would simplify the canonical model
construction for the modal µ-calculus presented in [9]. Rank functions are
also needed to study syntactic cut-elimination procedures. So far, results of
this kind are only available for fragments of the modal µ-calculus [4, 5, 13].
The rank function we present here is a step towards a general syntactic
cut-elimination result for the modal µ-calculus.

Acknowledgements. We would like to thank Bahareh Afshari and
Graham Leigh for suggesting the present definition of the rank function.
We also would like to thank the anonymous referees for many valuable com-
ments.

2 Preliminaries

The language of the propositional modal µ-calculus results from adding least
and greatest fixed points for positive formulae to the basic language of modal
logic. More precisely, given a countable set of propositional variables Var,
the collection Lµ of µ-formulae is given by the following grammar

ϕ ::= x | ∼x | > | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ | µx.ϕ | νx.ϕ,

where x ∈ Var and where we require for formulae of the form µx.ϕ and νx.ϕ
that x occurs only positively in ϕ, i.e. ∼x does not occur in ϕ. We set

Atm := Var ∪ {>,⊥} and Lit := Atm ∪ {∼x | x ∈ Var}.

We use the usual notion of subformula where literals do not have proper
subformulae. Hence x is not a subformula of ∼x. We denote the set of all
subformulae of a formula ϕ by sub(ϕ).

The negation ϕ of a formula ϕ is defined in the usual way by using
De Morgan’s laws, the law of double negation, and the duality laws for
modal and fixed point operators.

The fixed point operators µx and νx bind the variable x in the same way
as quantifiers in predicate logic bind variables. Hence we use the standard
terminology of bound and free occurrences of variables. By free(ϕ) we denote

2

the set of all variables that occur free in ϕ, and bound(ϕ) denotes the set of
all variables that have bound occurrences in ϕ. Further we set

var(ϕ) := free(ϕ) ∪ bound(ϕ)

and
atm(ϕ) := var(ϕ) ∪ (sub(ϕ) ∩ {>,⊥}).

Substitution is defined as usual. We write ϕ[ψ/x] for the result of simul-
taneously replacing all free occurrences of x in ϕ with ψ. Two formulae ϕ
and ψ are equal up to renaming of a bound variable, ϕ ∼1 ψ, if there are for-
mulae α(z), β(z′) and variables x, y 6∈ var(α) such that ϕ ≡ β[σx.α[x/z]/z′]
and ψ ≡ β[σy.α[y/z]/z′] for σ ∈ {µ, ν}. The relation ∼∞ is the transitive
closure of ∼1, that is ϕ ∼∞ ψ holds if ϕ and ψ are equal up to renaming of
bound variables.

We call a formula ϕ safe if bound(ϕ) ∩ free(ϕ) = ∅. Further, we call a
formula ϕ well-bound if

1. ϕ is safe and

2. for each x ∈ bound(ϕ), there is only one single occurrence of either µx
or νx in ϕ.

Note that any formula can be turned into an equivalent well-bound formula
by renaming bound variables. Moreover, subformulae of well-bound formu-
lae are well-bound. This does not hold for safe formulae: x ∧ µx.x is an
unsafe subformula of the safe formula µx.(x ∧ µx.x).

We define iterations by

ϕ0
x(ψ) := ψ and ϕn+1

x (ψ) := ϕ[ϕnx(ψ)/x].

Note that for any safe formula ϕ and any natural number n, the itera-
tion ϕnx(x) is safe, too.

We denote the first uncountable ordinal by Ω. For any set X there is
the set ΩX of all functions f : X → Ω, that is, the set of all sequences of
ordinals from Ω indexed by elements of X. 0 ∈ ΩX is the function which
maps every argument to 0.

A µ-rank is a mapping |·| : Lµ → Ω such that

• if ψ is a proper subformula of ϕ, then |ψ| < |ϕ|;

• if ϕ is safe, then |ϕnx(⊥)| < |σx.ϕ| and |ϕnx(>)| < |σx.ϕ| for all natural
numbers n and σ ∈ {µ, ν}.

3

3 Existence of a µ-rank with range ωω

Before we can introduce our rank function for Lµ-formulae, we need some
preparatory definitions.

Given a sequence s ∈ ΩVar, a variable x, and ξ ∈ Ω, then we define the
sequence s[x:ξ] ∈ ΩVar by

s[x:ξ](y) :=

{
ξ if x ≡ y,
s(y) otherwise.

The composition in x of f, g : ΩVar → Ω is given by

(f ◦xg)(s) := f(s[x:g(s)])

and the iterations of f in x are given by

f0x := 0 and fn+1
x := f ◦xfnx .

Definition 1. For every ϕ ∈ Lµ, we define a function [[ϕ]] : ΩVar → Ω by

[[ϕ]](s) :=



0 ϕ ≡ ⊥,>
s(x) ϕ ≡ x,∼x
[[α]](s) + 1 ϕ ≡ ♦α,�α

max{[[α]](s), [[β]](s)}+ 1 ϕ ≡ α ∧ β, α ∨ β
supn<ω{[[α]]nx(s) + 1} ϕ ≡ µx.α, νx.α.

The function rk : Lµ → Ω is now given by

rk(ϕ) := [[ϕ]](0).

Now we are going to show that the mapping rk is indeed a µ-rank. We
start with the following lemma.

Lemma 2. For all ϕ,ψ ∈ Lµ, x, y ∈ Var, ξ ∈ Ω, and natural numbers n,
we have the following:

1. [[ϕ]] = [[ϕ]]

2. x 6∈ free(ϕ) ⇒ [[ϕ]](s[x:ξ]) = [[ϕ]](s)

3. x 6≡ y, y 6∈ free(ψ) ⇒ ([[ϕ]]◦x [[ψ]])ny = [[ϕ]]ny ◦x [[ψ]]

4. bound(ϕ) ∩ free(ψ) = ∅ ⇒ [[ϕ[ψ/x]]] = [[ϕ]]◦x [[ψ]]

5. ϕ safe ⇒ [[ϕ]]nx = [[ϕnx(⊥)]] = [[ϕnx(>)]]

Proof. 1. By induction on the length of ϕ. This is left to the reader.

4

2. By induction on the length of ϕ and a case distinction on the outermost
connective. We show only the case ϕ ≡ µy.ψ.

By induction on n, we show

[[ψ]]ny (s[x:ξ]) = [[ψ]]ny (s), (1)

which implies [[ϕ]](s[x:ξ]) = [[ϕ]](s). Because of x 6∈ free(ϕ) we either
have x ≡ y or x 6∈ free(ψ). If n = 0, then [[ψ]]ny = 0 by definition
and (1) trivially holds. For the induction step we find in the case
x 6≡ y that

[[ψ]]n+1
y (s[x:ξ]) = [[ψ]]◦y [[ψ]]ny (s[x:ξ]) = [[ψ]](s[x:ξ][y:[[ψ]]ny (s[x:ξ])])

= [[ψ]](s[x:ξ][y:[[ψ]]ny (s)]) by i.h. for n

= [[ψ]](s[y:[[ψ]]ny (s)][x:ξ]) because x 6≡ y and x /∈ free(ψ)

= [[ψ]](s[y:[[ψ]]ny (s)]) by i.h. for l(ψ)

= [[ψ]]n+1
y (s).

The induction step in the case x ≡ y is similar.

3. By induction on n. For n = 0 we have

([[ϕ]]◦x [[ψ]])ny = 0 = 0◦x [[ψ]] = [[ϕ]]ny ◦x [[ψ]].

For the induction step we have

([[ϕ]]◦x [[ψ]])n+1
y (s)

= ([[ϕ]]◦x [[ψ]])◦y ([[ϕ]]◦x [[ψ]])ny (s)

= ([[ϕ]]◦x [[ψ]])◦y ([[ϕ]]ny ◦x [[ψ]])(s) by i.h.

= ([[ϕ]]◦x [[ψ]])(s[y:ξ]) with ξ = ([[ϕ]]ny ◦x [[ψ]])(s)

= [[ϕ]](s[y:ξ][x:[[ψ]](s[y:ξ])])

= [[ϕ]](s[y:ξ][x:[[ψ]](s)]) by Part 2, y 6∈ free(ψ)

= [[ϕ]](s[x:[[ψ]](s)][y:ξ]) because x 6≡ y
= ([[ϕ]]◦y [[ϕ]]ny)(s[x:[[ψ]](s)]) because ξ = [[ϕ]]ny (s[x:[[ψ]](s)])

= ([[ϕ]]n+1
y ◦x [[ψ]])(s).

4. By induction on the length of ϕ and a case distinction on the outermost
connective. We show only two cases.

Case ϕ ≡ ∼x. We have ϕ[ψ/x] = ψ and thus [[ϕ[ψ/x]]] = [[ψ]]. More-
over

([[∼x]]◦x [[ψ]])(s) = [[∼x]](s[x : [[ψ]](s)]) = [[ψ]](s)

and thus [[ϕ]]◦x[[ψ]] = [[ψ]]. By Part 1 we conclude [[ϕ[ψ/x]]] = [[ϕ]]◦x[[ψ]].

5

Case ϕ ≡ µy.α, subcase x 6≡ y. We have

[[ϕ[ψ/x]]](s)

= supn<ω{[[α[ψ/x]]]ny (s) + 1}
= supn<ω{([[α]]◦x [[ψ]])ny (s) + 1} by i.h.

= supn<ω{([[α]]ny ◦x [[ψ]])(s) + 1} by Part 3, x 6≡ y, y 6∈ free(ψ)

= supn<ω{[[α]]ny (s[x:[[ψ]](s)]) + 1}
= [[ϕ]](s[x:[[ψ]](s)]) = ([[ϕ]]◦x [[ψ]])(s).

Case ϕ ≡ µy.α, subcase x ≡ y. We have x 6∈ free(ϕ), hence using
Part 2 we conclude

[[ϕ[ψ/x]]](s) = [[ϕ]](s) = [[ϕ]](s[x:[[ψ]](s)]) = ([[ϕ]]◦x [[ψ]])(s).

5. We assume bound(ϕ) ∩ free(ϕ) = ∅ and show [[ϕ]]nx = [[ϕnx(⊥)]] by
induction on n.

Case n = 0. We have [[⊥]]0x = 0 by definition. Moreover, also by
definition, ϕ0

x(⊥) = ⊥ and thus [[ϕ0
x(⊥)]] = 0.

Case n+ 1. We find

[[ϕ]]n+1
x = [[ϕ]]◦x [[ϕ]]nx = [[ϕ]]◦x [[ϕnx(⊥)]] by i.h.

= [[ϕ[ϕnx(⊥)/x]]] by Part 4, bound(ϕ) ∩ free(ϕnx(⊥)) = ∅
= [[ϕn+1

x (⊥)]].

[[ϕ]]nx = [[ϕnx(>)]] is shown similarly.

Corollary 3. The mapping rk is a µ-rank.

Proof. First observe that if ψ is a proper subformula of ϕ, then rk(ψ) < rk(ϕ)
follows easily from Definition 1. It remains to show rk(ϕnx(⊥)) < rk(σx.ϕ)
for safe formulae ϕ, which we obtain as follows.

rk(ϕnx(⊥)) = [[ϕnx(⊥)]](0)

= [[ϕ]]nx(0)

< supm<ω{[[ϕ]]mx (0) + 1}
= [[σx.ϕ]](0) = rk(σx.ϕ).

rk(ϕnx(>)) < rk(σx.ϕ) is established similarly.

Next we show rk(ξ) < ωω for any Lµ-formula ξ, that means ωω is an
upper bound for the range of rk. We first need to establish that renaming
bound variables does not change the rank of a formula.

6

Lemma 4. For all ϕ,ψ ∈ Lµ we have

ϕ ∼∞ ψ ⇒ [[ϕ]] = [[ψ]]. (2)

Proof. We first show ([[α]]◦z [[x]])nx = [[α]]nz for x 6∈ free(α) by induction on n.
For n = 0 this is 0 = 0, and for the induction step we have

([[α]]◦z [[x]])n+1
x (s) = ([[α]]◦z [[x]])◦x([[α]]◦z [[x]])nx(s)

= ([[α]]◦z [[x]])◦x [[α]]nz (s) by i.h.

= ([[α]]◦z [[x]])(s[x:ξ]) with ξ = [[α]]nz (s)

= [[α]](s[x:ξ][z:[[x]](s[x:ξ])])

= [[α]](s[x:ξ][z:ξ])

= [[α]](s[z:ξ][x:ξ])

= [[α]](s[z:ξ]) by Lemma 2 part 2, x 6∈ free(α)

= [[α]]◦z [[α]]nz (s) = [[α]]n+1
z (s).

From this we get [[µx.α[x/z]]] = [[µz.α]] for x 6∈ var(α) as follows:

[[µx.α[x/z]]](s)

= supn<ω{[[α[x/z]]]nx(s) + 1}
= supn<ω{([[α]]◦z [[x]])nx(s) + 1} by Lemma 2 part 4, z 6∈ bound(α)

= supn<ω{[[α]]nz (s) + 1} because x 6∈ free(α)

= [[µz.α]].

For formulae ϕ ∼1 ψ such that ϕ ≡ β[µx.α[x/z]/z′] and ψ ≡ β[µy.α[y/z]/z′]
and x, y 6∈ var(α), we can easily show [[ϕ]] = [[ψ]] by induction on the length
of β. Now (2) immediately follows since ∼∞ is the transitive closure of ∼1.

Theorem 5. For all ϕ,ψ ∈ Lµ, x ∈ Var and n < ω we have:

1. bound(ϕ) ∩ free(ψ) = ∅, x 6∈ free(ψ) implies

[[ϕ[ψ/x]]](s) ≤ [[ψ]](s) + [[ϕ]](s)

2. [[ϕ]]nx(s) ≤ [[ϕ]](s) · n

3. rk(ϕ) < ωω

Proof. 1. By induction on the µ-rank rk(ϕ). We only show the case
ϕ ≡ µy.α and x 6≡ y. We distinguish two cases. If ϕ is well-bound,

7

then α is safe and we have

[[ϕ[ψ/x]]](s)

= supn<ω{[[α[ψ/x]]]ny (s) + 1}
= supn<ω{([[α]]◦x [[ψ]])ny (s) + 1} by 2.4, bound(α) ∩ free(ψ) = ∅
= supn<ω{([[α]]ny ◦x [[ψ]])(s) + 1} by 2.3, x 6≡ y, x 6∈ free(ψ)

= supn<ω{([[αny (⊥)]]◦x [[ψ]])(s) + 1} by 2.5, α safe

= supn<ω{[[αny (⊥)[ψ/x]]](s) + 1} by 2.4

≤ supn<ω{[[ψ]](s) + [[αny (⊥)]](s) + 1} i.h. for rk(αny (⊥))

= [[ψ]](s) + supn<ω{[[α]]ny (s) + 1} = [[ψ]](s) + [[ϕ]](s) by 2.5, α safe.

Otherwise, ϕ is not well-bound but we can find a well-bound for-
mula ϕ∗ with ϕ∗ ∼∞ ϕ and bound(ϕ∗) ∩ free(ψ) = ∅. Hence we have
ϕ∗[ψ/x] ∼∞ ϕ[ψ/x]. Using Lemma 4 twice, we conclude

[[ϕ[ψ/x]]](s) = [[ϕ∗[ψ/x]]](s) ≤ [[ψ]](s) + [[ϕ∗]](s) = [[ψ]](s) + [[ϕ]](s).

2. By induction on n. Again, we assume that ϕ is well-bound. For n = 0
we trivially have 0(s) ≤ 0. For the induction step we have:

[[ϕ]]n+1
x (s) = [[ϕn+1

x (⊥)]](s) by 2.5

= [[ϕ[ϕnx(⊥)/x]]](s)

≤ [[ϕnx(⊥)]](s) + [[ϕ]](s) by Part 1,
x 6∈ free(ϕnx(⊥)) and
bound(ϕ) ∩ free(ϕnx) = ∅

= [[ϕ]]nx(s) + [[ϕ]](s) ≤ [[ϕ]](s) · (n+ 1). by i.h.

For any formula ϕ there is a well-bound formula ϕ∗ with ϕ∗ ∼∞ ϕ.
By Lemma 4 we have [[ϕ∗]] = [[ϕ]] and the full claim easily follows.

3. By induction on the length of ϕ. We only show the case for ϕ ≡ µx.α.
By part 2 we find

rk(µx.α) = supn<ω{[[α]]nx(0) + 1} ≤ rk(α) · ω + 1.

By i.h. we get rk(α) < ωω. Hence rk(α) · ω + 1 < ωω, which finishes
the proof.

4 Effective computation of the µ-rank

In this section, we show that the rank of a modal µ-formula can be computed
by primitive recursion.

8

Definition 6. 1. For each ϕ ∈ Lµ we define 〈ϕ〉 ∈ ΩAtm by 〈ϕ〉u := 0 if
u 6∈ atm(ϕ) and otherwise

〈ϕ〉u :=


0 ϕ ∈ Lit,

〈α〉u + 1 ϕ ≡ �α,♦α,

max{〈α〉u, 〈β〉u}+ 1 ϕ ≡ α ∧ β, α ∨ β,
〈α〉u + 1 + 〈α〉x · ω ϕ ≡ µx.α, νx.α.

2. We fix a mapping ϕ 7→ ϕ∗ on Lµ such that

ϕ∗ is well-bound with ϕ∗ ∼∞ ϕ

and
ϕ∗ ≡ ϕ if ϕ is well-bound.

Now we define the mappings fe, rke : Lµ → Ω by

fe(ϕ) := max
u∈Atm

{〈ϕ〉u} and rke(ϕ) := fe(ϕ∗).

Remark 7. We have
fe(ϕ) = max

u∈atm(ϕ)
{〈ϕ〉u}

because of 〈ϕ〉u = 0 for u 6∈ atm(ϕ).

The following lemmas can be shown by simple but longish calculations,
which we omit here. We refer to Krähenbühl’s thesis [12] for more details
about the proofs.

Lemma 8. Let ϕ be well-bound and bound(ϕ) ∩ var(ψ) = ∅ then

x ∈ free(ϕ) ⇒ fe(ϕ[ψ/x]) = max{fe(ϕ), fe(ψ) + 〈ϕ〉x}.

Lemma 9. Let x0, . . . , xn ∈ free(ϕ) be pairwise distinct variables.

1. If ϕ is well-bound, y 6∈ bound(ϕ) and xi 6≡ y for i ≤ n then

〈ϕ[y/x0] . . . [y/xn]〉y = max{〈ϕ〉y,maxi≤n{〈ϕ〉xi}}.

2. If ϕ[ψ0/x0] . . . [ψn/xn] is well-bound, xj 6∈ var(ψi) for i < j ≤ n and
bound(ϕ) ∩ var(ψi) = bound(ψi) ∩ var(ψj) = ∅ for i < j ≤ n then

fe(ϕ[ψ0/x0] . . . [ψn/xn]) = max{fe(ϕ),maxi≤n{fe(ψi) + 〈ϕ〉xi}}.

Lemma 10. Assume that ϕ,ψ are well-bound formulae with ϕ ∼∞ ψ and
x ∈ free(ϕ). Then we have 〈ϕ〉x = 〈ψ〉x.

9

The next theorem shows the equivalence of rk and rke. Therefore, it
provides a method to compute the µ-rank rk by primitive recursion.

Theorem 11. For all ϕ ∈ Lµ we have rk(ϕ) = rke(ϕ).

Proof. We show
rk(ϕ) = fe(ϕ) (3)

for all well-bound formulae ϕ. The full claim of the theorem then follows by
Lemma 4 because for any ϕ ∈ Lµ we have that

rk(ϕ) = rk(ϕ∗) = fe(ϕ∗) = rke(ϕ)

where ∗ is the mapping introduced in Definition 6.
We establish (3) by induction on rk(ϕ). Let us only show the case ϕ ≡

µx.α. By Lemma 2 part 5 and because α is well-bound we get

rk(ϕ) = supn<ω{[[α]]nx(0) + 1} = supn<ω{rk(αnx(⊥)) + 1}.

For each natural number n the formula αnx(⊥)∗ is well-bound and thus
αnx(⊥)∗ ∼∞ αnx(⊥). By Lemma 4 and i.h. we get

rk(ϕ) = supn<ω{rk(αnx(⊥)∗) + 1} = supn<ω{fe(αnx(⊥)∗) + 1}.

In order to compute fe(αnx(⊥)∗) we distinguish two cases. In the first case
we assume 〈α〉x = 0. Thus we have x 6∈ free(α) or α ≡ x, both of which
imply αnx(⊥) ≡ α for n > 0. Hence we find

rk(ϕ) = supn<ω{fe(αnx(⊥)∗) + 1} = fe(α∗) + 1 = fe(α) + 1 since α∗ ≡ α
= max

u∈Atm
{〈α〉u}+ 1 = max

u∈Atm
{〈α〉u + 1 + 〈α〉x · ω} = fe(ϕ).

In the second case we assume 〈α〉x > 0, which implies x ∈ free(α). First,
we show by induction on n that for n > 0

fe(αnx(⊥)∗) = fe(α) + 〈α〉x · (n− 1). (4)

For n = 1 we have 〈αnx(⊥)∗〉u = 〈α[⊥/x]∗〉u = 〈α∗〉u = 〈α〉u for each u as
well as n− 1 = 0. Thus we get (4) for n = 1.

For n > 1 we have αnx(⊥) ≡ α[αn−1x (⊥)/x]. Moreover, there are distinct
variables x0, . . . , xk and well-bound formulae α̂ and ψ0, . . . , ψk such that

1. α ∼∞ α̂[x/x0] . . . [x/xk] and α̂[x/x0] . . . [x/xk] is well-bound,

2. αn−1x (⊥)
∗ ∼∞ ψi for each i ≤ k,

3. αnx(⊥)∗ ∼∞ α̂[ψ0/x0] . . . [ψk/xk] and α̂[ψ0/x0] . . . [ψk/xk] is well-bound,

4. xi ∈ free(α̂) and xj 6∈ var(ψi) and xi 6≡ x for i < j ≤ k.

10

Hence we have x 6∈ var(α̂) and bound(α̂)∩ var(ψi) = bound(ψi)∩ var(ψj) = ∅
for i < j ≤ k. We obtain

fe(α) = fe(α̂[x/x0] . . . [x/xk]) by i.h. for rk(α) and L. 4

= max{fe(α̂),maxi≤k{fe(x) + 〈α̂〉xi}} by L. 9 part 2

= max{fe(α̂),maxi≤k{〈α̂〉xi}} = fe(α̂).

(5)

Now we can establish (4) for n > 1 as follows.

fe(αnx(⊥)∗)

= fe(α̂[ψ0/x0] . . . [ψk/xk]) by i.h. for rk(αnx(⊥)∗) and L. 4

= max{fe(α̂),max
i≤k
{fe(ψi) + 〈α̂〉xi}} by L. 9 part 2

= max{fe(α̂), fe(αn−1x (⊥)
∗
) + max

i≤k
{〈α̂〉xi}} i.h. for rk(αn−1x (⊥))

= max{fe(α̂), fe(αn−1x (⊥)
∗
) + 〈α̂[x/x0] . . . [x/xk]〉x} by L. 9 part 1

= max{fe(α̂), fe(αn−1x (⊥)
∗
) + 〈α〉x} by L. 10

= max{fe(α̂), fe(α) + 〈α〉x · (n− 2) + 〈α〉x} by i.h. for n− 1

= fe(α) + 〈α〉x · (n− 1) by (5).

Because of (4) and our assumption that 〈α〉x > 0, we have for n > 1

fe(αnx(⊥)∗) + 1 ≤ fe(αn+1
x (⊥)

∗
).

Therefore, we conclude for 〈α〉x > 0

rk(ϕ) = supn<ω{fe(αnx(⊥)∗) + 1} = supn<ω{fe(αnx(⊥)∗)}
= fe(α) + 〈α〉x · ω = fe(α) + 1 + 〈α〉x · ω = fe(ϕ).

5 Generating modal µ-formulae of any complexity

We present a uniform method to generate modal µ-formulae of arbitrary
rank below ωω. This establishes ωω as lower bound for the range of the
µ-rank. We start with some auxiliary definitions.

Definition 12. We fix an infinite sequence of propositional variables p0, p1, . . .
such that pi 6≡ pj for i 6= j. We set

Ψk
n :≡ (pn+k ∧ . . . ∧ (pn ∧ p0))

and define formulae Φk
n by

Φk
n :≡

{
⊥ ∧ p0 k = 0,

µp(n+k−1) . . . µpn.Ψ
k−1
n k > 0.

11

Lemma 13. For all natural numbers n and k we have

u ∈ atm(Φk
n) ⇒ 〈Φk

n〉u = ωk.

Proof. By induction on k. If k = 0 and u ∈ atm(Φk
n) we have

〈Φk
n〉u = 〈⊥ ∧ p0〉u = 1 = ω0.

If k > 0, then for any k > i ≥ 0 we set ϕi :≡ µpn+i . . . µpn.Ψ
k−1
n . We show

u ∈ atm(Φk
n)⇒ 〈ϕi〉u = ωi+1 by induction on i.

• If i = 0 then

〈ϕ0〉u = 〈Ψk−1
n 〉u + 1 + 〈Ψk−1

n 〉pn · ω = ω

because of 0 < 〈Ψk−1
n 〉u ≤ 〈Ψk−1

n 〉pn < ω.

• For i > 0 we have 〈ϕi−1〉u = 〈ϕi−1〉pn+i = ωi by i.h. Hence

〈ϕi〉u = 〈µpn+i.ϕi−1〉u = 〈ϕi−1〉u + 1 + 〈ϕi−1〉pn+i · ω
= ωi + 1 + ωi · ω = ωi+1.

Observing 〈Φk
n〉u = 〈ϕk−1〉u = ωk finishes the proof.

For ordinals ξ with 0 < ξ < ωω there is a unique representation in Cantor
normal form (see, e.g., [10]), which is

ξ =CNF ω
k0 + . . .+ ωkn with ω > k0 ≥ . . . ≥ kn ≥ 0.

Definition 14. We define a mapping Θ : ωω → Lµ by

Θξ :≡


⊥ ξ = 0,

Φk
1[Θ0/p0] ξ =CNF ω

k,

Φkn
1+k0+...+kn−1

[Θωk0+...+ωkn−1/p0] ξ =CNF ω
k0 + . . .+ ωkn .

Example 15. We give some examples to illustrate the structure of the
formulae Θξ.

Θω2 ≡ Φ2
1[⊥/p0] ≡ µp2µp1(p2 ∧ (p1 ∧ ⊥)),

Θω2·2 ≡ Φ2
3[Θω2/p0] ≡ µp4µp3(p4 ∧ (p3 ∧ µp2µp1(p2 ∧ (p1 ∧ ⊥)))),

Θω2·2+ω+2 ≡ ⊥ ∧ (⊥ ∧ µp5(p5 ∧ µp4µp3(p4 ∧ (p3 ∧ µp2µp1(p2 ∧ (p1 ∧ ⊥)))))).

Theorem 16. For each ξ < ωω we have rk(Θξ) = rke(Θξ) = ξ.

Proof. This is proved by induction on ξ. We simultaneously show the fol-
lowing:

12

(i) atm(Θξ) = {⊥, p0, . . . , pk0+...+kn}\{p0} for ξ =CNF ω
k0 + . . .+ ωkn ,

atm(Θ0) = {⊥},

(ii) Θξ is well-bound,

(iii) rke(Θξ) = ξ.

If ξ = 0, then Θ0 ≡ ⊥ is well-bound, atm(⊥) = {⊥}, and

rke(⊥) = max
u∈Atm

{0} = 0.

If ξ =CNF ω
k0 +. . .+ωkn and ζ = ωk0 +. . .+ωkn−1 < ξ and s = k0+. . .+kn−1

(for n = 0 let ζ = 0 and s = 0), then Θξ ≡ Φkn
1+s[Θζ/p0]. By the definition

of Φkn
1+s we have that Φkn

1+s is well-bound and

bound(Φkn
1+s) = atm(Φkn

1+s)\{⊥, p0} = {p1+s, . . . , ps+kn}.

By i.h. we get that Θζ is well-bound, and that atm(Θζ) = {⊥, p1, . . . , ps}.
Thus, because there is only one occurrence of p0 in Φkn

1+s and bound(Φkn
1+s)∩

var(Θζ) = ∅, we have that

atm(Θξ) = {⊥, p1, . . . , ps+kn} and Θξ is well-bound.

Now because Θξ, Θζ and Φkn
1+s are well-bound and because p0 ∈ free(Φkn

1+s)

and bound(Φkn
1+s) ∩ var(Θζ) = ∅ the following holds by Lemma 8:

rke(Θξ) = rke(Φkn
1+s[Θζ/p0]) = max{rke(Φkn

1+s), rk
e(Θζ) + 〈Φkn

1+s〉p0}
= max{ωkn , rke(Θζ) + ωkn} = rke(Θζ) + ωkn by L. 13

= ζ + ωkn = ξ by i.h.

We conclude rk(Θξ) = rke(Θξ) = ξ for ξ < ωω by Theorem 11.

Corollary 17.
rk[Lµ] = ωω

6 Conclusion

We have introduced a rank function rk for the propositional modal µ-calculus
and established that its range is ωω. We have also shown that this ordinal is
the least upper bound on the ranks of Lµ-formulae, that is for each ξ < ωω

there is a formula ϕ with rk(ϕ) = ξ.
We can even prove more. Namely, the mapping rk is a minimal µ-rank

with respect to well-bound formulae, that is we have the following theorem.

Theorem 18. For any µ-rank |.| we have

rk(ϕ) ≤ |ϕ| for all well-bound formulae ϕ.

13

The proof of this theorem, however, requires a detour via a more general
rank function that is minimal with respect to all Lµ-formulae. A full defini-
tion of this general rank function and a detailed proof of the above theorem
are given in Krähenbühl’s thesis [12].

References

[1] L. Alberucci. Sequent calculi for the modal -calculus over S5. Journal
of Logic and Computation, 19(6):971–985, 2009.

[2] L. Alberucci and A. Facchini. The modal µ-calculus hierarchy over
restricted classes of transition systems. Journal of Symbolic Logic,
74:1367–1400, 2009.

[3] L. Alberucci and A. Facchini. On modal µ-calculus and Gödel-Löb
logic. Studia Logica, 91(2):145–169, 2009.

[4] K. Brünnler and T. Studer. Syntactic cut-elimination for common
knowledge. Annals of Pure and Applied Logic, 160:82–95, 2009.

[5] K. Brünnler and T. Studer. Syntactic cut-elimination for a frag-
ment of the modal mu-calculus. Annals of Pure and Applied Logic,
163(12):1838–1853, 2012.

[6] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of
Programs, Workshop, pages 52–71, 1982.

[7] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never”
revisited: on branching versus linear time temporal logic. J. ACM,
33(1):151–178, 1986.

[8] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Science, 18(2):194–211,
1979.

[9] G. Jäger, M. Kretz, and T. Studer. Canonical completeness for infini-
tary µ. Journal of Logic and Algebraic Programming, 76(2):270–292,
2008.

[10] T. Jech. Set theory. Springer, third millennium edition, 2002.

[11] D. Kozen. Results on the propositional modal µ–calculus. Theoretical
Computer Science, 27:333–354, 1983.

[12] J. Krähenbühl. Justifying induction on modal mu-formulae. Master’s
thesis, Universität Bern, 2009.

14

[13] G. Mints and T. Studer. Cut-elimination for the mu-calculus with one
variable. In Fixed Points in Computer Science 2012, volume 77 of
EPTCS, pages 47–54. Open Publishing Association, Open Publishing
Association, 2012.

[14] A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science 1977, pages 46–57, 1977.

[15] K. Tamura. A small model theorem for the hybrid µ-calculus. Journal
of Logic and Computation, 2013. Published online on January 4, 2013.

Addresses
Luca Alberucci
Waldeckstrasse 17, 3072 Ostermundigen, Switzerland
luca.alberucci@gmail.com

Jürg Krähenbühl
Mezenerweg 8, 3013 Bern, Switzerland
jkraehen@gmail.com

Thomas Studer
Institut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, 3012 Bern, Switzerland
tstuder@iam.unibe.ch

15

	1

