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Abstract

This paper studies the transfinite propositional provability logics GLPΛ

and their corresponding algebras. These logics have for each ordinal ξ <

Λ a modality 〈α〉. We will focus on the closed fragment of GLPΛ (i.e.,
where no propositional variables occur) and worms therein. Worms are
iterated consistency expressions of the form 〈ξn〉 . . . 〈ξ1〉⊤. Beklemishev
has defined well-orderings <ξ on worms whose modalities are all at least
ξ and presented a calculus to compute the respective order-types.

In the current paper we present a generalization of the original <ξ

orderings and provide a calculus for the corresponding generalized order-
types oξ . Our calculus is based on so-called hyperations which are trans-
finite iterations of normal functions.

Finally, we give two different characterizations of those sequences of
ordinals which are of the form 〈oξ(A)〉ξ∈On for some worm A. One of these
characterizations is in terms of a second kind of transfinite iteration called
cohyperation.

1 Introduction

In this paper we study transfinite propositional provability logics GLPΛ and
their corresponding algebras. For an ordinal Λ, the transfinite provability logic
GLPΛ is a polymodal version of Gödel-Löb’s provability logic GL where for each
ordinal α < Λ the logic contains a modality [α].

These logics have been studied quite intensively lately and possess a very rich
structure in various aspects. To mention just a few, it is a natural example of a
logic that is not complete for its Kripke semantics but is complete for its class
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of topological models [8, 10, 13]. However, for natural topologies on intervals of
ordinals the completeness for these spaces is independent of ZFC giving rise to
various interesting set-theoretical questions ([1, 6, 11]).

By GLP we denote the class-sized logic that extends all GLPΛ. In this paper
we shall focus on GLP

0 –the closed fragment– of this class-size logic. This is the
fragment that does not contain any propositional variables hence is generated
by ⊤, Boolean connectives and modalities only. Within GLP

0 we consider the
class W of so-called worms. These are iterated consistency statements, that is,
expressions of the form 〈αn〉 . . . 〈α1〉⊤. By Wα we denote the class of worms
where each occurring modality is at least α.

In [4, 9] it has been shown that Wα can be well-ordered by defining A <α
B :⇔ GLP ⊢ B → 〈α〉A. For A ∈ Wα, by ǒα(A) we denote the order-type of A
in 〈Wα, <α〉. It is most natural to consider these well-orders as sub-structures of
the algebras that correspond to GLP which are often called Japaridze algebras.

In this paper we study the ordering <α as an ordering on all of W. We will
see that <α no longer defines a linear order on W; however, we prove that it
does define a well-founded relation and denote the corresponding order-types by
oα(A). We show how the o order-types can be recursively reduced to the ǒ order-
types, and in fact oξ(A) = ǒξ(A) whenever A ∈ Wξ. Based on this reduction we
are able to give a calculus for the ordinal sequences ~o(A) := 〈oξ(A)〉ξ∈On. That
is, we show how to compute ~o(A) for a given worm A and prove which ordinal
sequences are attained as ~o(A) for some A. The calculus we give is based on
hyperexponentials and hyperlogarithms, which are operations on ordinals related
to Veblen progressions and presented in detail in [15].

Our calculus for oξ is different from the ǒξ calculus as presented in [4] in at
least three essential ways. First, the definition of oξ is a genuine generalization
of ǒξ and ǒξ can be obtained a special case. Second, our presentation does not
work with normal forms on worms, either in the presentation of the calculus or
in any of the proofs. Finally, our calculus uses hyperexponentials whereas the
calculus in [4] used Veblen functions.

It is known that the sequences ~o(A) can be interpreted proof-theoretically.
In particular, GLPω has been used to perform a Π0

1-ordinal analysis of Peano
Arithmetic (PA) and related systems ([3]). Meanwhile, it has been shown in [21]
that there exists a close relation between Turing progressions of first-order theo-
ries and the sequences ~o(A). There are ongoing efforts to carry these techniques
to stronger theories using transfinite provability operators [2, 12, 17, 23]

Furthermore, in [20] it is discussed how the sequences ~o(A) unveil important
information about Kripke and other semantics for the closed fragment of GLPΛ

as presented in [14, 16].

Layout. Section 2 introduces the logics GLPΛ and their fragments. In Sections
3 and 4 we present the linear orders <α and their corresponding order-types oξ
on substructures of the Japaridze algebra which are a central focus of this paper.
We show how the computation of oξ can be reduced to the computation of o0.

In Section 5, we give a calculus to compute o0. The calculus that we present
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is actually a reduction to what we call worm enumerators σξ. It is in Section
6 where we provide a calculus to compute the worm enumerators σξ. Section
7 reviews the notions of hyperations and cohyperations from ([15]) to show how
the worm enumerators σξ are hyperations of ordinal exponentiation. Finally,
in Section 8 we set the hyperations and cohyperations to work to obtain full
characterizations of the sequences 〈oξ(A)〉ξ∈On.

The current paper is based on material which originally appeared in the
unpublished manuscripts [18] and [20]. Portions of the latter were reported in
[21].

2 Provability logics and the Reflection Calculus

In this section we introduce the logics GLPΛ and its fragments, as well as fixing
some notation.

2.1 The logics GLPΛ

The language of GLPΛ is that of propositional modal logic that contains for each
α < Λ a unary modal operator [α]. In the definition below the α and β range
over ordinals and the ψ and χ over formulas in the language of GLPΛ.

Definition 2.1. For Λ an ordinal, the logic GLPΛ is the propositional normal
modal logic that has for each α < Λ a modality [α] and is axiomatized by all
propositional logical tautologies together witht the following schemata:

[α](χ → ψ) → ([α]χ → [α]ψ),
[α]([α]χ → χ) → [α]χ,
〈α〉ψ → [β]〈α〉ψ for α < β,
[α]ψ → [β]ψ for α ≤ β.

The rules of inference are Modus Ponens and necessitation for each modality:
ψ

[α]ψ . By GLP we denote the class-size logic that has a modality [α] for each

ordinal α and all the corresponding axioms and rules. The classic Gödel-Löb
provability logic GL is denoted by GLP1.

2.2 Japaridze algebras

The relations <α do not give proper linear orders on Wα, given that different
worms may be equivalent in GLP and hence undistinguishable in the ordering.
We remedy this by passing to the Lindenbaum algebra of GLP – that is, the
quotient of the language of GLP modulo provable equivalence.

This algebra is a Japaridze algebra, as described below:

Definition 2.2 (Japaridze algebra). A Japaridze algebra is a structure

J = 〈D, {[α]}α<Λ,∧,¬, 0, 1〉

such that
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1. 〈D,∧,¬, 0, 1〉 is a Boolean algebra,

2. [α]1 = 1 for all α < Λ,

3. [α](x → y) ≤ [α]x→ [α]y for all α < Λ, x, y ∈ D,

4. [α]([α]x → x) ≤ [α]x for all α < Λ, x ∈ D,

5. [α]x ≤ [β]x for all α ≤ β < Λ, x ∈ D and,

6. 〈α〉x ≤ [β]〈α〉x for all α < β < Λ, x ∈ D,

where 〈α〉,→ are defined in the usual way.

It is in these algebras that the partial orders <α we have described naturally
reside. However, as we are mainly interested in formulas that fall within a spe-
cific fragment of our language, we will work throughout the paper in a restricted
calculus.

2.3 The Reflection Calculus

In [12, 2, 7] Dashkov and Beklemishev introduced a calculus for reasoning about
a fragment of the language of GLP and called it the Reflection Calculus (RC).
(Closed) formulas of RC are built from the grammar

⊤ | φ ∧ ψ | λφ,

where λ is an ordinal and φ, ψ are formulas of RC; λφ is interpreted as 〈λ〉φ,
but as RC does not contain operators of the form [λ], the brackets become
unnecessary. RC derives sequents of the form φ ⊢ ψ, given by the following rules
and axioms:

φ ⊢ φ φ ⊢ ⊤
φ ⊢ ψ ψ ⊢ χ

φ ⊢ χ

φ ∧ ψ ⊢ φ φ ∧ ψ ⊢ ψ
φ ⊢ ψ φ ⊢ χ

φ ⊢ ψ ∧ χ

ααφ ⊢ αφ
φ ⊢ ψ

αφ ⊢ αψ

βφ ⊢ αφ βφ ∧ αψ ⊢ β(φ ∧ αψ) for α < β.

In the context of GLP we shall sometimes denote GLP ⊢ φ → ψ by φ ⊢ ψ.
The following is proven in [2]:

Theorem 2.3. GLP is a conservative extension of RC.

This result implies that any reasoning carried out within GLP can, in prin-
ciple, be carried out within RC, and we shall use this calculus in all formal
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reasoning in this paper. As such will write λφ instead of 〈λ〉φ, unless the brack-
ets are needed for legibility. We will merely write φ ⊢ ψ to mean “φ ⊢ ψ is a
theorem of RC”, and for formulas of RC, we will write φ ≡ ψ if φ ⊢ ψ and ψ ⊢ φ.
The equivalence class of φ under ≡ will be denoted φ. For a set of formulas Φ,
we denote by Φ the set of equivalence classes of its elements.

2.4 Worms and the closed fragment

A closed formula in the language of GLP is simply a formula without proposi-
tional variables. In other words, closed formulas are generated by just ⊤ and
the Boolean and modal operators.

The closed fragment of GLP is the class of closed formulas provable in GLP

and is denoted by GLP
0. Within this closed fragment and the corresponding

algebra, there is a particular class of privileged inhabitants/terms which are
called worms. Worms are nothing more than iterated consistency statements.

Definition 2.4 (Worms, W, Wα). By W we denote the class of worms of GLP
which is inductively defined as ⊤ ∈ W and A ∈ W ⇒ 〈α〉A ∈ W. Note that
every worm belongs to the language of RC.

Similarly, we inductively define for each ordinal α the class of worms Wα

where all ordinals are at least α as ⊤ ∈ Wα and A ∈ Wα∧β ≥ α⇒ 〈β〉A ∈ Wα.

Both the closed fragment of GLP and the set of worms have been studied in
[4] and [9]. Worms can be conceived as the backbone of GLP0 and obtain their
name from the heroic worm-battle, a variant of the Hydra battle (see [5]).

Notation 2.5. We reserve lower-case letters at the beginning of the Greek al-
phabet α, β, γ, . . . for variables ranging over ordinals. Also ξ and ζ will denote
ordinals. Worms will be denoted by upper case latin letters A,B,C, . . .. The
Greek lower-case letters φ, ψ, χ, . . . will denote formulas. However, ϕ shall be
reserved for the Veblen enumeration function. Likewise, we reserve ω to denote
the first infinite ordinal.

By |A|, the length of a worm A, we shall mean the number of modalities
occurring in A: |⊤| = 0, and |〈ξ〉A| = |A| + 1. For A a worm and n a natural
number we define the n-times concatenation of A –denoted by An– as usual:
A0 = ⊤ and An+1 = AAn. We will denote concatenation of worms by juxtapo-
sition, defined recursively so that ⊤A = A and (ξB)A = ξ(BA).

3 Ordering worms

In this section we define various natural ordering on worms and see how these
orderings are related to each other.
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3.1 Worms and consistency orderings

It is a fact of experience that natural mathematical theories can be linearly
ordered in terms of consistency strength. Something similar holds for worms
which motivates the next definition.

Definition 3.1 (<,<ξ). We define a relation <ξ on W×W by

A <ξ B :⇔ B ⊢ 〈ξ〉A.

Instead of <0 we shall simply write <.

We shall sometimes refer to the orderings <ξ as the ξ-consistency orderings,
and these orderings and their corresponding order-types are the main theme of
this paper. It is known ([4, 9]) that the class of worms is linearly ordered by
<0; that is, if A,B are worms then either A <0 B, A ≡ B or B <0 A.

Recall that Wξ denotes the class of worms in Wξ modulo GLP-provable
equivalence. Clearly, <ξ is well-defined on any of the Wζ by A <ξ B ⇔ A <ξ B
whence we shall use the same symbol <ξ for both relations. The following
theorem is proven in ([4, 9]).

Theorem 3.2. For each ordinal ξ, we have that 〈Wξ, <ξ〉 is isomorphic to the
class of all ordinals.

As a consequence we see that <ξ is irreflexive on W. For, suppose that
A <ξ A for some A ∈ W, then A ⊢ ξA ⊢ 0A contradicting the irreflexivity of
<0 on W0(= W).

The existence of a minimal element and the fact that each element has a
direct <ξ successor in 〈Wξ, <ξ〉 are reflected in the following easy lemma.

Lemma 3.3.

1. ⊤ is a <ξ-minimal element;

2. For no worms A,B do we have A <ξ B <ξ ξA.

Proof. For the first item, suppose that for some A we have A <ξ ⊤, then
⊤ ⊢ 〈ξ〉A ⊢ 〈ξ〉⊤ whence ⊤ <ξ ⊤ which contradicts the irreflexivity of <ξ.

For the second, suppose towards a contradiction that there were such a B.
Then ξA ⊢ ξB ⊢ ξξA whence ξA <ξ ξA which once again contradicts the
irreflexivity of <ξ.

The orderings <α for any ordinal α > 0 are not linear on W. For example,
1 and 101 are α incompatible for α > 0: Suppose 101 ⊢ α1, then 101 ⊢ 11 ⊢
11 ∧ 01 ⊢ 1101 ⊢ 0101, i.e. 101 < 101 which contradicts the irreflexivity of <.
Likewise 1 ⊢ α101 ⊢ 0101 ⊢ 01 yields a contradiction. Also 1 ≡ 101 contradicts
reflexivity since 1 ⊢ 101 ⊢ 001 ⊢ 01. Similarly, it is easy to construct infinite
anti-chains –see [20] for examples– for <ξ when ξ > 0, hence the <ξ orderings
do not define a well-quasiorder on W.

The next two lemmata are folklore and follow easily from the axioms of GLP.
They shall be used repeatedly often without explicit mention in the remainder
of this paper.
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Lemma 3.4.

1. Given formulas φ and ψ, if β < α, then (αφ ∧ βψ) ≡ α(φ ∧ βψ);

2. If A ∈ Wα+1, then A ∧ 〈α〉B ≡ AαB;

Proof. The left-to-right direction of the first item is an axiom of RC. For the
other direction we observe that αβψ ⊢ βψ in virtue of axioms αβψ ⊢ ββψ and
ββψ → βψ. The second item follows directly from the first by induction on |A|.
For more details, we refer to [9].

The next lemma tells us that in various occasions we are allowed to substitute
equivalent parts into worms.

Lemma 3.5.

1. If A,B ∈ Wα+1 and A ≡ B, then for any worm C we have AαC ≡ BαC;

2. If A,B,C ∈ W and B ≡ C, then AB ≡ AC;

3. More generally, if A,B,C ∈ W and B ⊢ C, then AB ⊢ AC;

4. For A,B ∈ W we have AB ⊢ A.

Proof. Item 1 follows directly from Lemma 3.4.2, Item 3 follows from an easy
induction on the length of A and Item 2 follows from Item 3. Also, Item 4
follows from Item 3 by taking C = ⊤.

We are not allowed to substitute just any part of a worm. For example, let
us see that 1 ≡ 10 but 11 6≡ 101: From 3.5.4 we see that 10 ⊢ 1. Conversely,
1 ⊢ 1 ∧ 0 ⊢ 10 by Lemma 3.4.2 so that 1 ≡ 10. However, if we assume that
11 ≡ 101, then 101 ⊢ 11 ⊢ 11 ∧ 01 ⊢ 1101 ⊢ 0101 whence 101 ⊢ 0101. But this
is nothing but 101 < 101 which contradicts the irreflexivity of <.

So, in general we are not allowed to substitute equivalent parts into the left-
most side of a worm. Lemma 3.5.1 gives an exception and in Corollary 5.2 we
will see another exception: when A ≡ B, then A0C ≡ B0C.

3.2 Decomposing and manipulating worms

In studying worms, and in particular to perform inductive arguments on them
it is often useful to decompose worms into smaller worms. In this subsection
we will introduce such decompositions, which will appear throughout the text.
We use A ≤0 B as a shorthand for A <0 B or A ≡ B. Recall that we use |A| to
denote the length of A.

Definition 3.6. Let A be a worm. By hξ(A) we denote the ξ-head of A.
Recursively: hξ(⊤) = ⊤, hξ(ζA) = ζhξ(A) if ζ ≥ ξ and hξ(ζA) = ⊤ if ζ < ξ.

Likewise, by rξ(A) we denote the ξ-remainder of A: rξ(⊤) = ⊤, rξ(ζA) =
rξ(A) if ζ ≥ ξ and rξ(ζA) = ζA if ζ < ξ.
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In words, hξ(A) corresponds to the largest initial part (reading from left to
right) of A such that all symbols in hξ(A) are at least ξ and rξ(A) is that part
of A that remains when removing its ξ-head. We thus have A = hξ(A)rξ(A) for
all ξ and A.

Observe that
hξ(A)rξ(A) ≡ hξ(A) ∧ rξ(A), (1)

as the first symbol of rξ(A) is less than ξ and hξ(A) ∈ Wξ (see Lemma 3.4).
As a particularly useful instance, we will write simply h, r instead of h1, r1.

Definition 3.7. Given a worm A, we define b(A) = B if r(A) = 0B, and
b(A) = ⊤ otherwise. We call b(A) the body of A.

Lemma 3.8. Given a worm A 6= ⊤, we have that

1. A ≡ h(A) ∧ 0b(A);

2. |b(A)| < |A|;

3. B <0 r(A) if and only if (B ≤0 b(A) and r(A) 6= ⊤).

Proof. We first address the first item. If b(A) 6= ⊤ then we know A ≡ h(A) ∧
r(A) = h(A) ∧ 0b(A), otherwise, since A 6= ⊤, we always have A ⊢ 0 so A ≡
h(A) ∧ 0 = h(A) ∧ 0b(A).

It is obvious that b(A) is always shorter than A so that only the last item of
the lemma needs to be proven.

For the ⇐ direction, suppose that r(A) 6= ⊤. Then, r(A) = 0b(A) whence
B ≤0 b(A) <0 0b(A) and B <0 r(A).

For the ⇒ direction, from B <0 r(A) we get that r(A) 6= ⊤ (Lemma 3.3.1)
whence B < 0b(A). Since b(A) < B < 0b(A) is not possible (Lemma 3.3.2) we
get the required B ≤0 b(A).

The following lemma tells us that if for some worm A the first element is
at most zero, then any worm A′ equivalent to A must also start with a first
element that is at most zero.

Lemma 3.9. If there exists a worm B such that A ≡ r(B), then h(A) = ⊤.

Proof. Assuming that A ≡ r(B), we clearly have A ⊢ h(A)∧ r(B). If h(A) 6= ⊤
then h(A) ⊢ 1, and thus A ⊢ 1 ∧ r(B) ⊢ 1r(B) ⊢ 0r(B). This contradicts the
irreflexivity of <0.

By Theorem 3.2 we knew that there is a close relation between worms and
ordinals and the above lemma exhibits yet another ordinal feature: If we can
write an ordinal α as α′ + 1, then any other way of writing α must necessarily
end with a ‘+1’ too. This analogy will be made more precise after proving
Lemma 4.7.
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So far we have seen operations on worms that decompose them into different
parts. Another very important manipulation on worms is a sort of translation
where all modalities in a worm are shifted by a constant amount.

As we shall see in the remainder of this paper, this shift preserves a lot of
structure and can even be conceived of as a functor between different spaces.

We will define a shift to the right and one to the left. In order to define the
shift to the left we need to recall a very basic fact from ordinal arithmetic (see
for example [24]).

Lemma 3.10. If ζ<ξ are ordinals, there exists a unique η such that ζ + η = ξ.

We will denote this unique η by −ζ + ξ and it is this operation that is used
to define our shift on worms to the left. We are now ready to introduce the
shift to the right which is an operation α ↑ that in general promotes worms to
worms with higher consistency strength. As a converse operation we introduce
a demoting operator α ↓ which can be viewed as our shift to the left.

Definition 3.11 (α ↑ and α ↓). Let A be a worm and α an ordinal. By α ↑ A
we denote the worm that is obtained by simultaneously substituting each β that
occurs in A by α+ β.

Likewise, if A ∈ Wα we denote by α ↓ A the worm that is obtained by
replacing simultaneously each β in A by −α+ β.

Note that by Lemma 3.10, the operation α ↓ is well-defined on Wα.

Lemma 3.12. For α, β, γ ordinals and worms A,B we have:

1. α ↑ β < α ↑ γ ⇔ β < γ,

2. α ↑ β ≥ β,

3. α ↑ (β ↑ A) = (α+ β) ↑ A,

4. α ↓ (β ↑ A) = (−α+ β) ↑ A, provided α ≤ β,

5. α ↓ (β ↓ A) = (β + α) ↓ A, provided A ∈ Wβ+α,

6. α ↑ ((β + α) ↓ A) = β ↓ A for A ∈ Wβ+α,

Proof. The first three items are trivial. It is clearly sufficient to prove items
4 — 6 only for ordinals rather than for worms. All these items have similar
elementary proofs. We shall prove Item 4 as an illustration. Thus, let α ≤ β
and fix some ordinal γ. We see that

α+ (α ↓ β) ↑ γ = α+ ((α ↓ β) + γ)
= (α+ (α ↓ β)) + γ
= β + γ.

Thus, (α ↓ β) ↑ γ is the unique ordinal δ so that α+ δ = β+ γ. In other words,
α ↓ (β ↑ γ) = (−α+ β) ↑ γ, provided α ≤ β.

As announced before, the shift operators preserve important structure as is
expressed in the following lemma.
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Lemma 3.13. For worms A,B ∈ Wξ we have

1. A <ξ B ⇔ A < B;

2. A <ξ B ⇔ ζ ↑ A <ζ+ξ ζ ↑ B.

Proof. The ⇒ direction of 1 is easy. The other direction follows directly from
the ⇒ direction using irreflexivity and the fact that <ξ linearly orders Wξ.

The ⇒ direction of 2 is the consequence of a more general observation. One
can easily extend the operation ζ ↑ to any formula of RC. As the operation ζ ↑
is order preserving on the ordinals one can easily prove by induction that any
proof in RC remains a proof after applying ζ ↑ to every formula appearing in it.
Thus, if φ ⊢ ψ, then also ζ ↑ φ ⊢ ζ ↑ ψ.

The ⇐ direction follows directly from the ⇒ direction using irreflexivity and
the fact that <ξ is a linear order on Wξ.

As a consequence of this lemma we see that we can view each α↑ as an
isomorphism between structures.

Lemma 3.14. The map α↑ is an isomorphism between (W, <) and (Wα, <α).
Moreover, the map α ⇑: W → Wα given by α ⇑ A = α ↑ A is well-defined

and also defines an isomorphism.

Proof. The first claim follows from Property 2 of Lemma 3.13. Note that by
Property 6 of Lemma 3.12 we see that α ↑ (α ↓ A) = A for A ∈ Wα so that α↑
is clearly a bijection.

To check the second point it suffices to observe that if A ≡ B then in view
of the first claim, α ↑ A ≡ α ↑ B, so that the map α ⇑ is well-defined.

3.3 Reducing the ξ-consistency orderings

In this subsection we shall see that any question of the form A <α B can be
reduced in various ways to simpler questions, for example, to questions of the
form A′ < B′.

To do so, we first need a reduction lemma (first published in [21]). Recall
from Definition 3.6 that hξ(A) is the largest initial segment of A which lies in
Wξ, while rξ(A) is the rest/remainder of A after removing hξ(A).

Lemma 3.15. Let A and B be worms and ξ an ordinal. Then, A >ξ B if and
only if hξ(A) >ξ hξ(B) and A ⊢ rξ(B).

Proof. (⇒) Assume A >ξ B, i.e., A ⊢ 〈ξ〉B. By (1), B ≡ hξ(B)∧ rξ(B) whence
A ⊢ ξB ⊢ ξ(hξ(B) ∧ rξ(B)) ⊢ ξhξ(B) ∧ ξrξ(B) ⊢ ξrξ(B) ⊢ rξ(B), since rξ(B) is
either ⊤ or starts with a modality stricly below ξ.

It remains to show that hξ(A) >ξ hξ(B). Again, we write A ≡ hξ(A)∧rξ(A).
As hξ(A), hξ(B) ∈ Wξ we know that either (i) hξ(A) ≡ hξ(B), (ii) hξ(B) ⊢
ξhξ(A) or (iii) hξ(A) ⊢ ξhξ(B) holds, so it suffices to discard cases (i) and (ii)
under the assumption that A ⊢ ξB whence A ⊢ ξhξ(B).
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Suppose now hξ(A) ≡ hξ(B). Then, A ≡ hξ(A) ∧ rξ(A) ⊢ ξhξ(B) ∧ rξ(A) ⊢
ξhξ(A) ∧ rξ(A) ⊢ ξA which contradicts the irreflexivity of <ξ.

By a similar argument, the assumption that hξ(B) ⊢ ξhξ(A) contradicts the
irreflexivity of <ξ and we conclude that hξ(A) ⊢ ξhξ(B).

(⇐) This is the easier direction. Assume that hξ(A) ⊢ ξhξ(B) and A ⊢
rξ(B). Then, A ≡ hξ(A)∧rξ(A) ⊢ ξhξ(B)∧rξ(B) ⊢ ξ(hξ(B)∧rξ(B)) ⊢ ξB.

In the right-hand side of Lemma 3.15 we see that the first conjunct hξ(A) >ξ
hξ(B) is only referring to worms in Wξ and their <ξ relations. The worm
rξ(B) starts with a modality strictly less than ξ and thus the second conjunct
A ⊢ rξ(B) of the lemma can be settled by calling recursively to the lemma once
more. Thus, Lemma 3.15 recursively reduces the evaluation of statements of the
form A <ξ B with A,B ∈ W to evaluation of statements of the form A′ <ξ′ B

′

with A′, B′ ∈ Wξ′ .
Moreover, we know (by Lemma 3.13) that

hξ(A) >ξ hξ(B) ⇔ hξ(A) >0 hξ(B)
⇔ ξ ↓ hξ(A) >0 ξ ↓ hξ(B).

Thus, Lemma 3.15 tells us that by recursion on ξ, any question about B <ξ A
can be reduced to question about B′ <0 A

′.
Thus, we can reduce questions about any <ξ ordering to questions about the

<0 ordering. We shall now see that we reduce questions about the <0 ordering
even further in that we may restrict questions of the form A <0 B to the case
where one of A or B is either ⊤ or of the form 0C.

Before we prove this further reduction, we first need an elementary lemma
that relates the notions <, ≤, and ⊢.

Lemma 3.16.

1. (A ≤ B < C) ∨ (A < B ≤ C) ⇒ A < C;

2. C ≤ A ⇔ C < 0A;

3. If B ⊢ A then A ≤0 B;

4. A ⊢ r(B) ⇔ A ≥ r(B).

Proof. Easy and left to the reader.

Note that we cannot reverse the implication of the third item since, for
example, it is easy to check that 1 < 01 but 01 0 1. We shall use our previous
lemma without explicit mention in the remainder of this paper.

Lemma 3.17.

1. A <0 B if and only if one of the following occurs:

(a) A <0 r(B) or

(b) r(A) <0 B and h(A) <0 h(B).
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2. A ≤0 B if and only if

(a) A ≤0 r(B) or

(b) r(A) ≤0 B and h(A) ≤0 h(B).

Proof. We prove the first item and first focus on the ⇐ direction omitting
various 0-subscripts. In case A < r(B) we get B ⊢ h(B) ∧ r(B) ⊢ r(B) ⊢ 0A so
A < B.

So, now suppose that r(A) < B and h(A) < h(B). Clearly, h(A) < h(B) ⇔
h(A) <1 h(B), and since 0r(B) ⊢ r(B) we get

B ⊢ h(B) ∧B ⊢ 1h(A) ∧B ⊢ 1h(A) ∧ 0r(A) ⊢ 1h(A) ∧ r(A) ⊢ 1h(A)r(A) ⊢ 0A

whence A < B.
For the ⇒ direction, assume that A <0 B; let us show that if 1a fails, then

1b holds. Clearly we have r(A) <0 B since B ⊢ 0A ⊢ 0(h(A) ∧ r(A)) ⊢ 0r(A).
We wish to see that h(A) < h(B). Since by assumption 1a fails, we have
that r(B) ≤0 A whence A ⊢ r(B). Now suppose for a contradiction that
h(B) ≤ h(A). In case h(B) ≡ h(A) we get

A ⊢ h(A) ∧A ⊢ h(B) ∧A ⊢ h(B) ∧ r(B) ⊢ B ⊢ 0A,

and in case h(B) < h(A) then also h(B) <1 h(A) and we get

A ⊢ h(A) ∧ A ⊢ 1h(B) ∧A ⊢ 1h(B) ∧ r(B) ⊢ 1B ⊢ 10A ⊢ 00A ⊢ 0A,

contradicting the irreflexivity of < so that h(A) < h(B) as was to be shown.
The proof of Lemma 3.17.2 is similar.

Note that when asking the question A <0 B we may always assume that
one of A or B contains a zero, since A <0 B ⇔ α ↓ A <0 α ↓ B where α is
the smallest ordinal appearing in AB. Thus, indeed, by induction on |A|+ |B|
we see that this lemma provides a reduction of questions about <0 to questions
about <0 where one of the arguments is either ⊤ or starts with a 0.

4 Worms and ordinals

In the previous section we introduced various orderings on the worms. In the
current section we shall study the corresponding order-types.

4.1 Well-founded orders and order types

An important corollary to our reduction lemma, Lemma 3.15, is that the <α
orders are well-founded.

Corollary 4.1. The relation <α on W×W is well-founded.
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Proof. Any hypothetical infinite descending <α-chain A0 >α A1 >α A2 >α . . .
in W yields a corresponding chain hα(A0) >α hα(A1) >α hα(A2) >α . . . in Wα

by Lemma 3.15. This contradicts the fact that <α defines a well-order on Wα

(Theorem 3.2).

In virtue of this well-foundedness we can assign a ξ-order to each worm by
bar-recursion. In this subsection we shall revisit classical theory on how this
assignment can be made in the general setting of well-founded orders. In the
next subsection we shall apply the general results to the orders induced by the
<ξ orderings.

Definition 4.2. If X is either a set or a class and ≺ is a well-founded relation
on X, we define o≺ : X → On by

o≺(x) = sup
y≺x

(o≺(y) + 1),

where sup∅ = 0.

Note that o≺ is well-defined due to the assumption that ≺ is well-founded.
In the case that ≺ is in addition a linear order, o≺ is in fact an isomorphism
onto an initial segment of the ordinals. To make this precise, we first need an
important definition. We shall identify the ordinal α with the set {β | β < α}
of ordinals β less than alpha.

Definition 4.3. If 〈X,≺〉 is a well-order, define

ot≺(X) = sup
x∈X

(o≺(x) + 1),

where possibly ot≺(X) = On if X is a proper class.

To formulate our result we shall use the following notation

X≺x = {y ∈ X | y ≺ x}.

Lemma 4.4. For 〈X,≺〉 a well-order, we have that o≺ : 〈X,≺〉 → 〈ot≺(X), <〉
is an isomorphism. Moreover, if x ∈ X, then o≺(x) = ot≺(X

≺x).

The proof is easy and details can be found, e.g., in [22, 24, 19].

In general, while o≺ is defined for any well-founded relation, it has much
nicer behavior when ≺ is linear. For example, both o≺ and o−1

≺ are continuous
as expressed by the following easy lemma whose proof we omit.

Lemma 4.5. If 〈X,≺〉 is a well-ordered set and S ⊂ X is bounded (in X), then
S has a supremum and o≺(supS) = sup o≺(S).

Likewise, o−1
≺ (sup Γ) = sup o−1

≺ (Γ) for any set of ordinals Γ.
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4.2 Worms and their order-types

We shall now see how the observations of the previous subsection apply to W.
If X = W and ≺ = <ξ for some ordinal ξ, we write oξ instead of o<ξ

, while if

X = W we will write oξ.
Instead of o0 we shall just write o. When S is a set or class we shall denote

by oα(S) the image of S under oα. It is easy to see that, for any A ∈ W,
oα(Ā) = oα(A) and moreover oα(Wβ) = oα(Wβ) for any ordinals α, β. We shall
often refer to the oξ as ξ-consistency order-types.

Lemma 4.6. Given A,B ∈ W, A < B if and only if o(A) < o(B), and the
map o : W → On is surjective. Moreover, the map o : 〈W, <0〉 → 〈On, <〉 is an
isomorphism.

Proof. Since 〈W, <0〉 is a well-order, we have by Lemma 4.4 that o : W →
ot<0(W) is an isomorphism, and moreover since for A,B ∈ W we have that
A <0 B if and only if A <0 B, it also follows that A <0 B if and only if
o(A) < o(B).It remains to show that o(W) is unbounded in On. But an easy
induction shows that o(〈α〉) ≥ α for all α.

Some elementary properties of the mappings oξ are readily proven.

Lemma 4.7.

1. oξ(⊤) = 0;

2. oξ(ξA) = oξ(A) + 1;

3. oξ(ξ
n) = n.

Proof. The first item is clear (by Lemma 3.3.1) since {A | A <ξ ⊤} = ∅ and
sup∅ = 0.

For the second item, since A <ξ ξA clearly oξ(A) + 1 ≤ oξ(ξA). By Lemma
3.3.2, we see that {B | B <ξ ξA} = {B | B <ξ A} ∪ {A} so that actually
oξ(A) + 1 = oξ(ξA).

Finally, Item 3 follows from the other two by induction on n.

Let us conclude this subsection by identifying the ‘limit worms’ and the
‘successor worms’. As usual, by Succ and Lim we denote the class of successor
respectively limit ordinals.

Lemma 4.8. For any worm A we have

1. o(A) = 0 ⇔ A = ⊤;

2. o(A) ∈ Succ ⇔ h(A) = ⊤ 6= A⇔ A = 0A′ for some worm A′;

3. o(A) ∈ Lim ⇔ h(A) 6= ⊤ ⇔ A 6= ⊤ & A = sup
B<A

B.
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Proof. The ⇐ direction of Item (1) is just Lemma 4.7.1. For the ⇒ direction
we see that if A 6= ⊤, then A ⊢ 0⊤ so that o(A) > 0.

The o(A) ∈ Succ ⇐ h(A) = ⊤ 6= A direction of (2) is already given in
Lemma 4.7.2. The other direction follows from (1) in case A = ⊤ so we assume
that h(A) 6= ⊤. If o(A) ∈ Succ, then by definition of o we have o(A) = o(B)+ 1
for some B < A. Thus, it suffices to show that

if h(A) 6= ⊤, and B < A then 0B < A. (2)

Indeed, h(A) ⊢ 1, hence A ⊢ 1∧0B ⊢ 10B ⊢ 00B, and 0B < A, as claimed. The
statement that (h(A) = ⊤ 6= A) ⇔ (A = 0A′ for some worm A′) is a mere
syntactical triviality.

The o(A) ∈ Lim ⇔ h(A) 6= ⊤ equivalence of Item (3) clearly follows from
the other two items. Thus it remains to show that o(A) ∈ Lim if and only
if A 6= ⊤ and A = supB<AB. First assume that o(A) ∈ Lim; then clearly
A 6= ⊤ 6= h(A) and, by (2) if B < A, then o(A) > o(B) + 1 = o(0B) so by
Lemma 4.6 B < 0B < A; it follows that A = supB<AB, since {B ∈ W : B < A}
can have no smaller upper bound than A.

Similarly, if A 6= ⊤ and A = supB<AB, then given C < A we have that
0C < A (as we cannot have that 0C ≡ A), and thus o(C) + 1 < o(A), which
means that o(A) ∈ Lim.

Thus we will say that A is a successor worm whenever A = 0A′ for some
worm A′, or a limit worm A whenever h(A) 6= ⊤.

4.3 Reducing the ξ-order-types

In our reduction lemma, Lemma 3.15, we saw how questions about the <ξ
orderings could be reduced. This reduction could be viewed as a reduction to
the <ζ orderings restricted to the respective Wζ ’s as well as a reduction to the
<0 ordering. In this subsection we shall see that we have similar reductions for
the order-types.

Let us temporarily introduce new orderings ǒξ which shall turn out to be
just the restriction of oξ to Wξ.

Definition 4.9. For A ∈ Wξ we define ǒξ(A) = o<ξ↾Wξ
(A).

Since we know that <ξ linearly orders Wξ we have an alternative character-
ization of ǒξ(A).

Lemma 4.10. Given A ∈ Wξ, ǒξ(A) = ot<ξ
{B ∈ Wξ | B <ξ A}.

Proof. By Theorem 3.2 we know that 〈Wξ, <ξ〉 is well-ordered, thus by Lemma
4.4, ǒξ : Wξ → ot<ξ

(Wξ) is an isomorphism. It remains to check that ot<ξ
(Wξ) =

On; but this readily follows by observing (by a straightforward induction) that
ǒξ(〈ξ + α〉) ≥ α.

The next lemma tells us how the computation of oξ can be reduced to com-
putations of ǒξ.
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Lemma 4.11. For any worm A and ordinal ξ we have oξ(A) = oξhξ(A) =
ǒξhξ(A).

Proof. Recall that for a partial order 〈X,≺〉 and x ∈ X , we defined X≺x =

{y ∈ X | y ≺ x}. We will write W
<ξA

ξ instead of (Wξ)
<ξA.

We first see that

W
<ξhξA

ξ = hξW
<ξA := {hξ(B) | B <ξ A}. (3)

For the ⊆ inclusion, we fix some C ∈ Wξ and observe that hξ(C) = C. Now, if
C <ξ hξ(A) then clearly A ⊢ hξ(A)∧rξ(A) ⊢ hξ(A) ⊢ 〈ξ〉C whence also C <ξ A.

The other direction follows directly from Lemma 3.15 since B <ξ A implies
hξ(B) <ξ hξA and clearly hξ(B) ∈ Wξ.

Now that we have this equality we proceed by induction on A and obtain

oξ(A) := supB<ξA

(

oξ(B) + 1
)

ih(B<ξA) = supB<ξA

(

oξhξ(B) + 1
)

by (3) = sup
C∈W

<ξhξ(A)

ξ

(

oξ(C) + 1
)

ih(C<ξhξ(A)≤ξA) = sup
C∈W

<ξhξ(A)

ξ

(

ǒξ(hξ(C)) + 1
)

= sup
C∈W

<ξhξ(A)

ξ

(

ǒξ(C) + 1
)

= ǒξhξ(A).

Likewise,

oξ(A) = sup
C∈W

<ξhξ(A)

ξ

(

oξ(C) + 1
)

(hξA=hξhξA) = sup
C∈W

<ξhξhξ(A)

ξ

(

oξ(C) + 1
)

by (3) = supC<ξhξ(A)

(

oξ(hξ(C)) + 1
)

ih(C<ξhξ(A)≤ξA) = supC<ξhξ(A)

(

oξ(C) + 1
)

= oξhξ(A).

Indeed, this lemma yields a reduction of questions about the orders oξ defined
on W to questions about the orders ǒξ which are defined on Wξ. In particular,
we see that ǒξ is just the restriction of oξ to Wξ.

Corollary 4.12. For A ∈ Wξ we have that oξ(A) = ǒξ(A).

Proof. Immediate from Lemma 4.11 since hξ(A) = A for A ∈ Wξ.

We now also obtain an alternative characterization of oξ(A): If 〈X,≺〉 is a
partially ordered set (or class), a ≺-chain in X is any subset C of X which is
linearly ordered by ≺. We reserve C to denote chains. Given x ∈ X we will
write C ≺ x if x is a strict upper bound for C, we say that C is a chain below x.

It is straightforward to check that if C ≺ x then ot≺(C) ≤ o≺(x). However,
it may be that ot≺(C) is always much smaller than o≺(x) as is expressed in the
following lemma which is folklore.
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Lemma 4.13. Given an ordinal γ, there exists a partially ordered set 〈X,≺〉
and x ∈ X so that o≺(x) = γ but every ≺-chain below x is finite.

Thus it may not be the case that o≺(x) is ‘attained’. To be precise, given a
partially ordered set 〈X,≺〉 and x ∈ X , say that o≺(x) is attained if there is a
chain C ≺ x such that ot≺(C) = o≺(x).

Theorem 4.14. If A ∈ W and ξ is any ordinal, then

oξ(A) = sup
C<ξA

otξ(C).

Moreover, oξ(A) is attained in 〈Wξ, <ξ〉.

Proof. To prove that oξ(A) = supC<ξA
otξ(C), clearly it suffices that oξ(A) is

attained in 〈Wξ, <ξ〉.

Let A ∈ W and define C = W
<ξhξ(A)
ξ = {B ∈ Wξ : B <ξ hξ(A)}. By

Theorem 3.2, Wξ is well-ordered and hence C is a chain; clearly also C <ξ A.
Meanwhile, by Lemma 4.11, we have that oξ(A) = ǒξhξ(A); however, by Lemma
4.4, ǒξhξ(A) = ot<ξ

C. We conclude that C is a <ξ-chain below A with oξ(A) =
ot<ξ

C, and thus oξ(A) is attained.

Just like the reduction lemma for the <ξ orderings yielded a reduction to <0,
by an additional lemma we shall see that Lemma 4.11 also provides a reduction
of oξ to o0.

Lemma 4.15. For A ∈ Wξ we have oξ(A) = o(ξ ↓ A).

Proof. By Lemma 3.12 it suffices to prove that for any worm A ∈ W we have
oξ(ξ ↑ A) = o(A). Now, since ξ ↑ B <ξ ξ ↑ A ⇔ B < A (this is Lemma 3.13)
and since each B ∈ W is equal to ξ ↓ (ξ ↑ B), we have that for each worm A

{B ∈ W | B < A} = {ξ ↓ C | C ∈ Wξ ∧ C <ξ ξ ↑ A}. (4)

We will now show by induction on <0 that for any worm A we have o(A) =
ǒξ(ξ ↑ A):

o(A) = supB<A
(

o(B) + 1
)

ih = supB<A
(

ǒξ(ξ ↑ B) + 1
)

by (4) = sup
C∈W

<ξξ↑A

ξ

(

ǒξ(ξ ↑ (ξ ↓ C)) + 1
)

= sup
C∈W

<ξξ↑A

ξ

(

ǒξ(C) + 1
)

= ǒξ(ξ ↑ A).

We conclude our proof using Lemma 4.11 to see that

o(A) = ǒξ(ξ ↑ A) = oξ(hξ(ξ ↑ A)) = oξ(ξ ↑ A).

The reduction of oξ to o follows by combining Lemma 4.15 and Lemma 4.11.
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Corollary 4.16. For any worm A and ordinal ξ we have oξ(A) = o(ξ ↓ hξ(A)).

Our temporary definition of ǒ will not be used further on in the paper. In
previous papers on well-orders in the Japaridze algebra one used the definition
ǒξ and denoted that by oξ. By Corollary 4.12 we know that the definition of oξ
in this paper coincides with the old definition when restricted to Wξ. Thus, our
notation for the new definition causes no rupture with the tradition yet merely
generalizes the existing theory.

5 A calculus for the consistency order-types

In this section we show how to compute the order-types o(A). Actually, we shall
provide a calculus that reduces the computation of o(A) to the computation of
what we call worm enumerators. The calculus will consist of three cases: the
empty worm, worms containing a zero and non-empty worms that do not contain
a zero. Recall that the definitions of h(A), b(A), r(A) may be found in Section
3.2.

5.1 Worms containing a zero

For ordinals we do not have that ξ < ζ ⇔ ξ+α < ζ+α. However for addition
on the right we do have that ξ < ζ ⇔ α + ξ < α + ζ. For worms we have
something similar although now the left-most side of the worm is determinant:

Lemma 5.1. Given worms A,B,C, we have that A0C <0 B0C if and only if
A <0 B.

In order to simultaenously prove both implications, we will instead prove the
equivalent claim that if A,B,C,D are worms such that h(C) = h(D) = ⊤ (i.e.,
C,D begin with a zero or are ⊤), then AC <0 BC implies that AD <0 BD.
We work by induction on |A| + |B|. Observe that if A1, A0 are worms with
h(A0) = ⊤, then h(A1A0) = h(A1) while r(A1A0) = r(A1)A0.

If AC <0 BC, then by Lemma 3.17 we have that either (i) AC <0 r(BC),
or (ii) r(AC) <0 BC and h(AC) <0 h(BC). If (i) holds, since r(BC) = r(B)C,
we have that C ≤0 AC <0 r(B)C, hence by irreflexivity r(B) 6= ⊤ (or else
C <0 C) and thus r(B) = 0b(B) and b(BC) = b(B)C. Thus by Lemma 3.8,
AC ≤0 b(BC) = b(B)C. By linearity this is equivalent to b(B)C 6<0 AC, so
that by our induction hypothesis b(B)D 6<0 AD, i.e. AD ≤0 b(B)D. It follows
that r(B)D = 0b(B)D >0 b(B)D ≥0 AD, and thus BD = h(B)r(B)D ⊢
h(B)0AD ⊢ 0AD, so that AD <0 BD.

If (ii) holds, we first claim that BD ⊢ r(A)D. If r(A) = ⊤ this is obvious,
otherwise we note that b(A)C <0 AC <0 BC, so by the induction hypothesis
b(A)D <0 BD and BD ⊢ 0b(A)D = r(A)D. Thus, since h(A) = h(AC) <0

h(BC) = h(B), we also have h(A) <1 h(B) and get BD ≡ h(B) ∧ BD ⊢
1h(A) ∧ r(A)D ≡ 1h(A)r(A)D ⊢ 0AD, and AD <0 BD.

18



We have seen at the end of Lemma 3.5 that on the left side of a worm, one
is not allowed to replace a part by any equivalent part. The next corollary tells
us that if we have a zero, then that allows us such a substitution and as such
the zero functions as a sort of buffer.

Corollary 5.2. For worms A,B and C we have that A ≡ B if and only if
A0C ≡ B0C.

Proof. Immediate from Lemma 5.1.

The following is an analogue of Lemma 3.10; it says that, for worms, we have
a form of subtraction. In this case, however, it becomes “right subtraction”.

Lemma 5.3. A <0 B if and only if there exists C such that B ≡ C0A.

Proof. One direction is trivial: if B ≡ C0A, then clearly B ⊢ 0A.
So assume that A <0 B. We shall prove by induction on |B| that if A <0 B,

then we can find a worm C so that B ≡ C0A.
We consider two cases depending on A <0 r(B) or r(B) ≤0 A.
In case A <0 r(B) we must have r(B) 6= ⊤, so r(B) = 0b(B), whence

A ≤0 b(B). If indeed A ≡ b(B) then we have B = h(B)0b(B) ≡ h(B)0A.
Otherwise, A <0 b(B) so by induction hypothesis b(B) ≡ C′0A for some worm
C′. We set C = h(B)0C′ and readily see that B ≡ C0A.

In case A ≥0 r(B) we claim that B ≡ h(B)0A. Indeed since A <0 B,
B ⊢ h(B) ∧ 0A ≡ h(B)0A, while since A ≥0 r(B), we also have h(B)0A ⊢
h(B) ∧ 0A ⊢ h(B) ∧ 0r(B) ⊢ h(B) ∧ r(B) ≡ B.

The above lemmas suggest that concatenations of the form A0B behave
much like addition; the following result makes this precise.

Lemma 5.4. Given worms A,B, o(A0B) = o(B) + 1 + o(A).

Proof. By induction on <0. First let us show that o(A0B) ≤ o(B) + 1 + o(A).
Suppose that C <0 A0B. If C ≤0 B, then we already have o(C) ≤ o(B) <
o(B)+1+o(A). If C >0 B, then by Lemma 5.3 we have that C ≡ D0B for some
D, and thus by the induction hypothesis we have o(C) = o(B)+1+o(D). But by
Lemma 5.1, D <0 A so o(D) <0 o(A) and thus o(B)+1+o(D) < o(B)+1+o(A).

We now will show that o(B)+1+ o(A) ≤ o(A0B). Note that if A = ⊤, then
o(A0B) = o(0B) = o(B) + 1 by Lemma 4.7. Thus, we assume that A 6≡ ⊤ so
that we can choose ξ < o(A). Then, since o is an isomorphism between 〈W, <0〉
and the ordinals (Lemma 4.6), there is a worm C <0 A with o(C) = ξ. By
Lemma 5.1 we have that C0B <0 A0B, and by induction o(C0B) = o(B) +
1 + o(C) = o(B) + 1 + ξ. Since ξ < o(A) was arbitrary, we conclude that
o(A0B) ≥ o(B) + 1 + o(A).

In this subsection we have dealt with worms that do contain a zero and
could recursively compute their order-types. We shall reduce worms that do not
contain a zero to worms that do contain a zero via the ξ ↑ and ξ ↓ mappings.
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5.2 A calculus using the worm enumerators σα

A key role in the larger calculus is reserved for the functions σα that enumerate
the <-orders of worms in Wα in increasing order. We shall prove sufficiently
many structural properties of these functions σα so that we end up with a
recursive calculus to compute them.

Moreover, it shall turn out that the functions σα can be viewed as transfinite
iterations of a certain ordinal exponentiation that we shall call hyperexponential
functions and which we shall discuss in Section 7.1.

Definition 5.5 (Worm enumerators σα). We define σα to be the function that
enumerates o(Wα) in increasing order.

We shall first see how a calculus for o can be reduced to a calculus for these
functions σα. The following nice lemma characterizes σα as a conjugate of the
map α ⇑ on worms.

Lemma 5.6. o(Wα) = o(Wα) is enumerated in increasing order by o◦α⇑◦o−1,
that is,

σα = o ◦ α⇑ ◦ o−1.

Proof. In the proof we shall explicitly write <0 for the ordering on worms and
< for the ordering on ordinals. Lemma 4.6 told us that o : 〈W, <0〉 ∼= 〈On, <〉.
Thus by Lemma 3.13.1 we see that for A,B ∈ Wα

A <α B ⇔ A <0 B ⇔ o(A) < o(B). (5)

If we combine this with the fact that o(Wα) is an unbounded class of ordinals,
we see that an order-preserving enumeration of o(Wα) is nothing but the unique
isomorphism between 〈On, <〉 and 〈o(Wα), <α〉.

We can reformulate (5) as o : 〈Wα, <α〉 ∼= 〈o(Wα), <〉. We also have by
Lemma 3.14 that α⇑ : 〈W, <0〉 ∼= 〈Wα, <α〉. Once more using the fact that
o−1 : 〈On, <〉 ∼= 〈W, <0〉, we see by composing these three isomorphisms that
o ◦ α⇑ ◦ o−1 : 〈On, <〉 ∼= 〈o(Wα), <〉, whence σ

α = o ◦ α⇑ ◦ o−1.

So seeing α ⇑ as an action of the ordinals on W, and σα as an action of the
ordinals on the ordinals, the above tells us that the two actions are isomorphic.
Let us draw a nice corollary from our lemma.

Corollary 5.7. For any worm A, o(α ↑ A) = σαo(A)

Proof. We have that

o(α ↑ A) = o(α ↑ A) = o(α ⇑ A) = o(α ⇑ o−1(o(A))) = σαo(A).
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We may recast this by stating that the following diagram commutes:

W

o

��

α↑
// W

o

��

On
σα

// On

With this we now obtain a complete calculus for computing o and oα once we
know how to compute the functions σα.

Theorem 5.8. Given worms A,B and an ordinal ξ,

1. o(⊤) = 0;

2. o(A0B) = o(B) + 1 + o(A);

3. o(ξ ↑ A) = σξo(A).

The calculus in this theorem looks efficient and elegant but we seem to be
running in circles here. To compute o we need to know how to compute the
worm-enumerators σξ. The σξ in their turn are defined in terms of o. In the
next section we shall see how we can break out of this circle and provide a
stand-alone calculus for our worm-enumerators.

6 Computing the worm enumerators σξ

In this section we shall see how the worm enumerators σα can be computed.
We shall provide a recursive calculus in Theorem 6.11.

6.1 Worm enumerators: basic properties

The first step in characterizing the worm enumerators we get almost for free
and consists of determining the ordinal function σ0.

Lemma 6.1. The function σ0 is the identity function on the ordinals.

Proof. Recall that by definition, σ0 enumerates o(W0) in increasing order. Since
o defines an isomorphism between W and On, we see that o(W0) = o(W) = On.
Evidently, On is enumerated by the identity function, so that σ0(α) = α for
each ordinal α.

As a second step in characterizing the worm enumerators σα, we shall prove
that for each ordinal α, the corresponding σα is a normal (both increasing and
continuous) function. Since each σα by definition enumerates a class of ordinals
in increasing order, it is clear that each σα is increasing.

So, next we need to see that each σα is continuous, that is, that computing
σα commutes with taking suprema: if ∆ is a set of ordinals then σα(sup∆) =
supσα∆. Since we know that σα = o ◦ α⇑ ◦ o−1 (this is Lemma 5.6), it suffices
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to prove that taking suprema commutes with all of o, o−1, and ⇑. For o and
o−1 this has been established in Lemma 4.5; it remains to show that α↑ can be
viewed as continuous on W. We shall state continuity for ‘limit worms’. Recall
from Lemma 4.8 that o(A) ∈ Lim iff h(A) 6= ⊤ in which case A = supB<AB.

Lemma 6.2. Given a worm A with h(A) 6= ⊤ and an ordinal α > 0, then

α ↑ A = α ↑ ( sup
B<A

B) = sup
B<A

α ↑ B and,

α ⇑ A = sup
B<A

α ⇑ B.

Proof. Clearly, the second item follows from the first one. In Lemma 4.8 it
is proven that A = supB<AB whenever h(A) 6= ⊤ so we will concentrate on
showing α ↑ A = supB<A α ↑ B.

From B < A we get by Lemma 3.13 that α ↑ B <α α ↑ A whence α ↑ B <
α ↑ A so that supB<A α ↑ B ≤ α ↑ A is clear.

In order to show that α ↑ A ≤ supB<A α ↑ B it suffices to prove that for
any C < α ↑ A we can find B < A such that C < α ↑ B. This we prove by
induction on |C|, with the base case (C = ⊤) being trivial so that we may write
C = β ↑ (C10C0). Moreover we shall pick C0 and C1 in the unique way so that
C1 ∈ W1 (this includes the case C1 = ⊤).

If β < α, then clearly both C and α ↑ A belong to Wβ . Using Lemmas
3.12 and 3.13, we have C10C0 = β ↓ C < β ↓ (α ↑ A) = (−β + α) ↑ A.
Since C0, C1 ≤ C10C0, by the induction hypothesis for |C0|, |C1| < |C| there
are B0, B1 < A with Ci < (−β + α) ↑ Bi. Taking B = max{B0, B1} we see
that for i = 0, 1, (−β + α) ↑ B ≥ (−β + α) ↑ Bi > Ci. Since we chose C1

with C1 ∈ W1, we also have (−β + α) ↑ B >1 C1 whence (−β + α) ↑ B ⊢
1C1 ∧ 0C0 ⊢ 1C10C0 ⊢ 0C10C0, i.e., C10C0 < (−β + α) ↑ B. It follows that
C = β ↑ (C10C0) < β ↑ ((−β + α) ↑ B) = α ↑ B, as was to be proven.

If β ≥ α we get that C,α ↑ A ∈ Wα, so that from C < α ↑ A we obtain α ↓
C < α ↓ (α ↑ A) = A. Since A is a limit, we have that α ↓ C < 0(α ↓ C) < A,
thus C = α ↑ (α ↓ C) < α ↑ (0(α ↓ C)), as was to be shown.

Now that we have established that α↑ can be viewed as continuous on W we
can prove that the σα are continuous ordinal functions.

Lemma 6.3. Each σα is a normal function.

Proof. It is clear that σα is increasing so we only need to see that σα is contin-
uous for each α. For the continuity of σα we reason as follows. Let λ ∈ Lim so
that for some worm A with h(A) 6= ⊤ we have λ = o(A).

σα(λ) = σαo(A) = o (α ⇑) o−1o(A) = o (α ⇑) Ā
= o (α ⇑) sup

B<A

B̄ = o sup
B<A

(α ⇑) B̄ = sup
B<A

o (α ⇑) B̄

= sup
B<A

o (α ⇑) o−1o(B) = sup
B<A

σαo(B) = sup
β<λ

σαβ,

where we use Lemmas 4.5 and 6.2 to commute sup with o and α ⇑, respectively.
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As a next step in characterizing the σα functions we shall set out to determine
σ1. We first look at the <1-first non-trivial worm in W1. It is not hard to prove
by elementary methods that 1 = supn∈ω 0

n. In this sense, 〈0n〉n∈ω is a natural
fundamental sequence for the worm 1. Since we know that o(on) = n we see
that o(1) = o(supn∈ω 0

n) = supn∈ω o(0
n) = ω.

In a similar fashion we see that for the <1-second non-trivial worm in W1

which is 11, can prove that 11 = supn∈ω(10)
n1 so that 〈(10)n1〉n∈ω can be

conceived as a natural fundamental sequence for the worm 11. Using that
o(1) = ω, by repeatedly applying Lemma 5.4 we know that o((10)n1) = ω·(n+1)
so that o(11) = o(supn∈ω(10)

n1) = supn∈ω o((10)
n1) = supn∈ω ω · (n+1) = ω2.

The following two lemmas are inspired by these examples and establish that
limit worms admit uniform fundamental sequences and that there is essentially
a power ω difference between o(A) and o(1↑A).

Lemma 6.4. Let B ∈ W1. For A = 1B, we have that A = supn<ω A[n], where
A[0] = B and A[n+ 1] = B0A[n].

Proof. That A > A[n] for all n follows by induction; the base case is easy since
A = 1B ⊢ 0B. For the induction step,

A
IH

⊢ 1B ∧ 0A[n] ≡ 1B0A[n] ⊢ 0B0A[n] = 0A[n+ 1].

Meanwhile, we prove by induction on the length of C that if C < A then
C < A[n] for some n. We assume C 6= ⊤, otherwise the claim is trivial. Thus,
from b(C) < C < A, the fact that |b(C)| < |C| and the induction hypothesis we
obtain b(C) < A[n] for some n so that also 0A[n] ⊢ 0b(C).

Then, from h(C) ≤ C <1 A we obtain h(C) ≤ B whence h(C) ≤1 B and
B ⊢ 1h(C). Thus,

A[n+ 1] = B0A[n] ≡ B ∧ 0A[n] ⊢ 1h(C) ∧ 0b(C) ≡ 1h(C)0b(C) ⊢ 0h(C)0b(C)

whence C < A[n+ 1].

With the use of this lemma, we can now establish a relation between o(A)
and o(1↑A), as to determine σ1:

Lemma 6.5.

1. Given a worm A, we have that o(1 ↑ A) = −1 + ωo(A);

2. For each ordinal ξ we have σ1ξ = −1 + ωξ.

Proof. We first prove 1 by induction on <0. For the base case, A = 1↑A = ⊤,
we verify that o(1↑A) = 0 = −1 + ω0 = −1 + ωo(A).

If A is a limit worm, i.e. h(A) 6= ⊤, the claim follows from Lemmas 4.5 and
6.2 since

−1 + ωo(A) = sup
B<A

(−1 + ωo(B))
IH
= sup

B<A

o(1↑B) = o(1↑ sup
B<A

B) = o(1↑ A).
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If A = 0B, then by Lemma 6.4 we have that 1↑A = supn<ω Bn, where
B0 := 1↑B and Bn+1 := (1↑B)0Bn. Therefore o(1 ↑ A) = supn<ω o(Bn).

By an easy subsidiary induction on n we now see that o(Bn) = −1+ωo(B) ·
(n+ 1). For n = 0 this is just the induction hypothesis of the main induction.
For n+ 1 we apply Lemma 5.4 to obtain

o(Bn+1) = o((1↑B)0Bn) = o(Bn) + 1 + o((1↑B))

By the subsidiary induction we have that o(Bn) = −1 + ωo(B) · (n+ 1) and by
the main induction we have that o((1↑B)) = −1 + ωo(B) so that

o(Bn)+1+o((1↑B)) = −1+ωo(B) ·(n+1)+1+−1+ωo(B) = −1+ωo(B) ·(n+2)

as was to be shown. We now conclude the argument by observing that for
A = 0B we have

o(1↑A) = sup
n<ω

o(1↑Bn) = sup
n<ω

−1+ωo(B) · (n+1) = −1+ωo(B)+1 = −1+ωo(0B)

whence o(1↑A) = −1 + ωo(A), as claimed.

To see Item 2, choose an ordinal ξ and a worm A such that o(A) = ξ. By
Theorem 5.8.3, we have that σ1ξ = σ1o(A) = o(1 ↑ A); but by the previous
item this is equal to −1 + ωo(A) = −1 + ωξ, as desired.

Note that −1 + ωξ = ωξ whenever ξ 6= 0. At this point we may give a
convenient breakdown of o(A) in terms of its head, rest and body.

Corollary 6.6. If A is any worm, then

o(A) = o(r(A)) + o(h(A)) = o(b(A)) + ωo(1↓h(A)).

Proof. Immediate from Theorem 5.8 and Lemma 6.5.

With a lemma similar to Lemma 6.5 we can now characterize σ2 since 2↑ =
1↑ ◦ 1↑ and we just need to iterate Lemma 6.5. The more general fact that
(α+ β)↑ = α↑ ◦ β↑ is reflected in the following lemma.

Lemma 6.7.

1. σ0 = id;

2. σ1 = e where e(ξ) = −1 + ωξ;

3. σα+β = σα ◦ σβ .

Proof. The first item is Lemma 6.1 and the second item is Lemma 6.5.
For the last item we see that

σα ◦ σβ = o ◦ α⇑ ◦ o−1 ◦ o ◦ β⇑ ◦ o−1 = o ◦ α⇑ ◦ β⇑ ◦ o−1

= o ◦ (α + β)⇑ ◦ o−1 = σα+β .
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Clearly this lemma, together with Theorem 5.8 completely determines the
order-types for worms that only use natural numbers as ordinals.

Example 6.8. o(2103) = o(3) + 1 + o(21) = σ3o(0) + 1 + o(21) = σ3(1) + 1 +
o(21) = σ1 ◦ σ1 ◦ σ1(1) + 1 + o(21) = ωω

ω

+ 1 + o(21) = ωω
ω

+ 1 + σ1o(10) =
ωω

ω

+ 1 + σ1o(10⊤) = ωω
ω

+ 1 + σ1(o(⊤) + 1 + o(1)) = ωω
ω

+ 1 + σ1ω =
ωω

ω

+ 1 + ωω = ωω
ω

+ ωω.

6.2 A recursive calculus for the worm enumerators

It is evident that Lemma 6.7 says nothing about the behavior of σα for additively
indecomposable α. To deal with those ordinals we have the following lemmas.

Lemma 6.9. If λ is infinite and additively indecomposable then

λ ↑ (0A) = sup
η<λ

η(λ ↑ A).

Proof. It is evident that supη<λ η(λ ↑ A) ≤ λ(λ ↑ A) = λ ↑ (0A) so we shall
show the other inequality by proving that for each B < λ ↑ (0A) there is some
η < λ so that B ≤ η(λ ↑ A). We distinguish two cases.

First assume that B = λ ↑ B′. Then, B′ < 0A and thus B′ ≤ A so that
0(λ ↑ B′) ≤ 0(λ ↑ A) < λ ↑ (0A).

Otherwise, there are γ < λ, a worm B1 ∈ W1 and B0 ∈ W such that B = γ ↑
(B10B0). By induction on length, there are η0, η1 < λ such that Bi < ηi(λ ↑ A).
Letting η′ = 1+max{η0, η1} (so that η′ > 0) we see that B1 < η′(λ ↑ A) whence
B1 <1 η

′(λ ↑ A). Thus, η′(λ ↑ A) ⊢ 1B1 ∧ 0B0 ⊢ 1B10B0 ⊢ 0B10B0 whence
B10B0 < η′(λ ↑ A). Since λ is additively indecomposable we see that γ+λ = λ
and η = γ + η′ < λ, while B = γ ↑ (B10B0) < η(λ ↑ A), as needed.

For any ordinal λ we have that σλ(0) = o(⊤) = 0. Moreover, since σλ

is continuous, we can compute σλ on limit ordinals if we have computed the
values for all smaller ordinals. Thus, we only need to study the behavior of σλ

on successor ordinals for which we have the next lemma.

Lemma 6.10. Let λ be an additively indecomposable limit ordinal. We have
that

σλ(β + 1) = sup
η<λ

ση(σλ(β) + 1).

Proof. Pick B′ so that o(0B′) = β+1 and let B := λ ↑ B′ so that by Corollary
5.7 we obtain

o(B) = o(λ ↑ B′) = σλo(B′) = σλβ. (6)

Moreover, as λ is additively indecomposable, we see that −η+λ = λ for any
η < λ. In particular we get that

η ↓ B = B for any η < λ. (7)
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By Lemma 6.9, λB = supη<λ ηB, so that

o(λB) = sup
η<λ

o(ηB). (8)

Recall that o(0B′) = β + 1 so that we can reason

σλ(β + 1) = σλ(o(0B′))
= o(λB) by Corollary 5.7
= supη<λ o(ηB) by (8)
= supη<λ σηo(0(η ↓ B)) by Corollary 5.7
= supη<λ ση(o(η ↓ B) + 1) by Lemma 4.7
= supη<λ ση(o(B) + 1) by (7)
= supη<λ ση(σλ(β) + 1) by (6).

Now that we have proved this lemma we finally have fully determined all
functions σα.

Theorem 6.11. For ordinals α and β, the values σα(β) are determined by the
following recursion.

1. σα0 = 0 for all α ∈ On;

2. σ1 = e with e(ξ) = −1 + ωξ;

3. σα+β = σασβ;

4. σα(λ) = supβ<λ σ
α(β) for limit ordinals λ;

5. σλ(β + 1) = supη<λ ση(σλ(β) + 1) for λ an additively indecomposable
limit ordinal.

It is clear that this theorem embodies a full calculus. Let us see a simple
example.

Example 6.12. σω1 = ε0 so that o(〈ω〉⊤) = ε0 with ε0 := sup{ω, ωω, ωω
ω

, . . .}.

Proof. By definition, σ1(1) = e1 = ω. Consequently, σ2(1) = σ1σ1(1) = ωω and
likewise σ3(1) = ωω

ω

, etc. Thus, σω1 = supη<ω σ
η(σω(0)+1) = supη<ω σ

η(1) =
ε0.

It should not come as a surprise that σω(1) is a fixpoint of e and something
more general holds. If λ is additively indecomposable, then η + λ = λ for all
η < λ. Thus

σλ(ξ) = ση+λ(ξ) = σησλ(ξ)

so that for each ξ we see that σλ(ξ) is a fixpoint of ση for each η < λ; this is
very similar to what happens with the Veblen hierarchy. In Theorem 7.5 the
relation between the worm enumerators and the one-placed Veblen functions is
made precise.
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7 Hyperations and Cohyperations

A main theme of this paper is how to compute given a worm A and ordinal ξ its
ξ-consistency order-type oξ(A). In Corollary 4.16 we have reduced the oξ order-
types to the plain o order-type. Subsequently, in Theorem 5.8 we provided
a calculus for o in terms of the so-called worm-enumerators σα. Finally, in
Theorem 6.11 we worked out a recursive calculus for computing the worm-
enumerators thereby completing all ingredients needed to compute any order-
type oξ(A).

In the final section of this paper we wish to characterize what, given a worm
A, the sequence 〈oξ(A)〉ξ∈On can look like. It shall turn out that to give a smooth
characterization of these sequences, we need certain well-behaved left-inverses
of our worm enumerator functions. These inverses can be computed within the
general framework of what the authors call hyperations and co-hyperations.

Hyperations are a kind of transfinite iteration of certain ordinal functions
and were introduced and studied in full generality by the authors in [15]. In this
section we shall briefly state –without proof– the main properties of hyperations
and the related cohyperations that we need in the remainder of this paper and
refer to [15] for further background. Moreover, we shall prove that the worm-
enumerators σα are the hyperation of a special form of ordinal exponentiation.
For definitions and basic properties of ordinals, we refer the reader to [22, 24].

7.1 Hyperations

As mentioned before, hyperation is a form of transfinite iteration of normal
functions. It is based on the additivity of finite iterations, that is fm+n = fm◦fn

generalizing this to the transfinite setting. Let us first recall the definition of a
normal function.

We call a function on the ordinals f increasing if α < β implies f(α) <
f(β). An ordinal function is called continuous if supζ<ξ f(ζ) = f(ξ) for all
limit ordinals ξ. Functions which are both increasing and continuous are called
normal.

Definition 7.1 (Weak hyperation). A weak hyperation of a normal funcion f
is a family of normal functions 〈gξ〉ξ∈On such that

1. g0ξ = ξ for all ξ,

2. g1 = f ,

3. gξ+ζ = gξgζ.

Par abuse de langage we will often write just gξ instead of 〈gξ〉ξ∈On. In
Lemma 6.7 we have proven that the family of worm enumerators σξ is a weak
hyperation of the function e defined as ξ 7→ −1 + ωξ.

Weak hyperations are not unique. However, if we impose a minimality con-
dition, we can prove that there is a unique minimal hyperation.
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Definition 7.2 (Hyperation). A weak hyperation gξ of f is minimal if it has
the property that, whenever hξ is a weak hyperation of f and ξ, ζ are ordinals,
then gξζ ≤ hξζ.

If f has a (unique) minimal weak hyperation, we call it the hyperation of f
and denote it f ξ.

We shall now prove that the worm enumerators σξ are the hyperation of the
function e.

Theorem 7.3. σα is the hyperation of the function e : ξ 7→ −1 + ωξ.

Proof. The properties 1.–3. of Lemma 6.7 express that the σα are a weak
hyperation of e. To see that it is the unique hyperation we only need to check
for minimality.

So, suppose that {fα}α∈Ord is a collection of normal functions such that
1.–3. holds. By induction on α we shall see that σα(β) ≤ fα(β).

For α = 0 and α = 1 this is obvious and for additively decomposable ordinals
we see that σα+β = σασβ ≤IH f

αfβ = fα+β.
So, let α be an indecomposable limit ordinal. We proceed by an auxiliary

induction on β to show that σα(β) ≤ fα(β) which clearly holds for β = 0. As
both fα and σα are continuous, we only need to consider successor ordinals in
which case, by Lemma 6.10 we see that

σα(β + 1) = sup
α′<α

σα
′

(σα(β) + 1) ≤IH sup
α′<α

fα
′

(fα(β) + 1). (9)

As for α′ < α we have α′ + α = α, by Property 3, we see that fα(β + 1) =
supα′<α fα

′

fα(β + 1). But, as fα is monotone we also see that fα(β + 1) ≥

fα(β) + 1 whence by monotonicity of all of the fα
′

we see that

fα(β + 1) = sup
α′<α

fα
′

fα(β + 1) ≥ sup
α′<α

fα
′

(fα(β) + 1).

We combine this with (9) to conclude that σα(β + 1) ≤ fα(β + 1).

Since we have proven that eξ = σξ, from now on we shall only use the
notation based on e. We call the family eξ hyperexponentials.

Hyperations in general allow for an explicit recursive definition very much in
the style of Theorem 6.11. Moreover, there turns out to be a close connection
between hyperations and Veblen progressions:

Definition 7.4. For f a normal function, the Veblen progression based on f
is denoted by 〈fξ〉ξ∈On and defined by f0 := f and for ξ > 0, fξ is the normal
function that enumerates in increasing order the ordinals which are simultaneous
fixpoints for all the fζ for ζ < ξ.

The Veblen progression based on ϕ(ξ) := ωξ are the well-known one-place
Veblen functions ϕξ. Note that ϕ(ξ) = e(ξ) for ξ 6= 0. In [15] it is proven that
hyperations can be seen as a natural refinement of Veblen progressions.
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Theorem 7.5. For f a normal function we have that fω
ξ

= fξ.

It should be clear that this theorem provides an easy link between the hyper-
exponentials and the earlier known Veblen functions. In particular, if we write
some ordinal ξ in its unique Cantor Normal Form with base ω so that for some
n ≥ 0 we have ξ = ωξ1 + . . . + ωξn and ξi ≥ ξi+1 for all i < n, then for α > 0
and ξ /∈ Lim (for ξ ∈ Lim we should replace the α on the right side by −1 + α):

eξ(α) = ϕξ1 ◦ . . . ◦ ϕξn(α).

7.2 Cohyperations

We shall see that in order to relate the different ξ-consistency order-types oξ
to each other we shall need left inverses to hyperexponentials. Hyperations are
injective and hence invertible on the left; however, a left-inverse of a hyperation
is typically not a hyperation, but a different form of transfinite iteration we call
cohyperation.

Instead of transfinitely iterating normal functions we shall consider initial
functions. We will say a function f is initial if, whenever I is an initial segment
(i.e., of the form [0, β) for some β), then f(I) is an initial segment. It is easy to
see that fξ ≤ ξ for initial functions f .

Definition 7.6 (Cohyperation). A weak cohyperation of an initial function f
is a family of initial functions 〈gξ〉ξ∈On such that

1. g0ξ = ξ for all ξ,

2. g1 = f ,

3. gξ+ζ = gζgξ.

If g is maximal in the sense that gξζ ≥ hξζ for every weak cohyperation h
of f and all ordinals ξ, ζ, we say g is the cohyperation of f and write f ξ = gξ.

Both hyperations and cohyperations are denoted using the superscript; how-
ever, this does not lead to a clash in notation as the only function that is both
normal and initial is the identity. In [15], a general recursive scheme to compute
actual cohyperations is given very much in the spirit of Theorem 6.11.

Let f be a normal function. Then, g is a left adjoint for f if, for all ordinals
α, β,

1. if α = f(β), then g(α) = β and

2. if α < f(β), then g(α) < β.

Left-adjoints are natural left-inverses and cohyperating them yields left-
adjoints to the corresponding hyperations in a uniform way:

Theorem 7.7. Given a normal function f with left adjoint g and ordinals ξ ≤ ζ
and α, gξf ζ = f−ξ+ζ and gζf ξ = g−ξ+ζ .
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We shall need left-adjoints to our hyperexponentials. In order to formulate
them, let us first recall some basic properties of the ordinals.

Lemma 7.8. Given any ordinal η > 0, there exist ordinals α, β, where β is
uniquely determined, such that η = α+ ωβ . We will denote this unique β by ℓη
and define ℓ0 = 0.

The following theorem is proven in [15].

Theorem 7.9. The function ℓ is a left adjoint to e, and thus ℓξ is left adjoint
to eξ for all ξ.

We will refer to the functions ℓξ as hyperlogarithms.

7.3 Exact sequences

A nice feature of cohyperations is that, in a sense, they need only be defined
locally. To make this precise, we introduce the notion of an exact sequence.

Definition 7.10. Let gξ be a cohyperation, and f : Λ → Θ be an ordinal
function.

Then, we say f is g-exact if, given ordinals ξ, ζ with ξ + ζ < Λ, f(ξ + ζ) =
gζf(ξ).

A g-exact function f describes the values of gξf(0). However, for f to be
g-exact, we need only check a fairly weak condition:

Lemma 7.11. The following are equivalent:

1. f is g-exact

2. for every ordinal ξ, f(ξ) = gξf(0)

3. for every ordinal ζ > 0 there is ξ < ζ such that f(ζ) = g−ξ+ζf(ξ).

Example 7.12. By eαβ · γ we denote (eαβ) · γ. Then, the following sequence
whose initial sub-sequence of non-zero elements is of length ω · 2 + 2 is ℓ-exact:

〈eω
2

1 + eω(eω+11 · 2), eω(eω+11 · 2), . . . , eω+11 · 2, eω+11, . . . , ω, 1, 0 . . .〉

Proof. By Lemma 7.11 and Theorem 7.9.

In the light of Theorem 7.5 we can reformulate this example in terms of the
better-known Veblen functions. Thus, using the usual convention that ϕ1(α) is
denoted by εα we can rewrite our example as:

〈ϕ2(1) + εεω+εω , εεω+εω , . . . , εω + εω, εω, . . . , ω, 1, 0 . . .〉.
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8 Consistency Sequences

Given a wormA, we define its consistency sequence to be the sequence 〈oξ(A)〉ξ∈On.
In this section we give a full characterization of consistency sequences. That is,
we will determine which sequences 〈αξ〉ξ∈On

are of the form ~o(A) for some worm

A. Moreover, given o0(A), we will compute oξ(A) for all ξ > 0, even when A
itself is not explicitly given.

It is intuitively clear that for constant A, the function oξ(A) is weakly de-
creasing in ξ as is expressed in the following lemma.

Lemma 8.1. For ξ < ζ we have that oξ(A) ≥ oζ(A).

Proof. By induction on oξ(A) we see that

oξ(A) := sup
B<ξA

(

oξ(B) + 1
)

≥IH sup
B<ξA

(

oζ(B) + 1
)

≥ sup
B<ζA

(

oζ(B) + 1
)

= oζ(A).

Note that we have the last inequality since for ξ < ζ we have B <ζ A implies
B <ξ A.

We will use the notation ~o(A) for the sequence 〈oξ(A)〉ξ∈On; that is,

~o(A) := 〈o0(A), o1(A), . . . , oω(A), oω+1(A), . . .〉 .

By Lemma 8.1, ~o(A) is a weakly decreasing sequence of ordinals. In particular,
we have that {oξ(A) | ξ ∈ On} is a finite set for any worm A. Moreover, we see
that any consistency sequence eventually hits zero.

Corollary 8.2. Given a worm A 6= ⊤, we may write A = ξB for a unique
ordinal ξ and worm B. Then, given an arbitrary ordinal ζ, we have that oζ(A) =
0 if and only if ζ > ξ.

Proof. If A = ξB then clearly hξ(A) 6= ⊤, so that by Lemma 4.11, oξ(A) =
oξhξ(A) 6= 0. On the other hand, for ζ > ξ, hζ(A) = ⊤ whence oζ(A) = 0.

Consistency sequences are of interest of their own. Moreover, they shed
light on (Kripke) semantics for the closed fragment of GLP. Also, they admit a
proof-theoretic interpretation as explained in [20].

8.1 A local characterization

We shall first provide a local characterization of the consistency sequences in
that we relate the values in the sequence to its neighbors. To this end, let us
first compute oξ+1(A) in terms of oξ(A). Recall that ℓα denotes the unique β
such that α = α′ + ωβ for α > 0, while ℓ0 = 0. The following lemma will be
useful:

Lemma 8.3. Given an ordinal ξ and a worm A, oξ+1hξ+1(A) = ℓoξhξ(A).
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Proof. Let B = ξ ↓ hξ(A), so that from Corollary 6.6 we have

oξhξ(A) = o(ξ ↓ hξ(A)) = o(B) = ob(B) + ωo(1↓h(B)),

and thus ℓoξhξ(A) = o(1 ↓ h(B)). But h(B) = ξ ↓ hξ+1(A), so

o(1 ↓ h(B)) = o((ξ + 1) ↓ hξ+1(A)) = oξ+1hξ+1(A),

where the last equality is an instance of Corollary 5.7.
Now we are ready to describe the relation between successive coordinates of

the ~o(A) sequence.

Theorem 8.4. Given an ordinal ξ and a worm A, oξ+1(A) = ℓoξ(A)

Proof. We have that oξ+1(A) = oξ+1hξ+1(A) = ℓoξhξ(A) = ℓoξ(A), where the
second equality uses Lemma 8.3 and the others Lemma 4.11.

Theorem 8.4 tells us what the relation between successor coordinates of ~o(A)
is. We may also infer from it when successor coordinates are different; if oξ(A)
is a fixed point of ζ 7→ −1 + ωζ then oξ(A) = oξ+1(A).

Next we shall determine what happens at limit steps in the consistency
sequences. Since we know that for a given worm A, the set {oξ(A) | ξ ∈ On} is
finite it is clear that for limit ξ, the value oξ(A) can only be non-zero, if at some
point before ξ, the sequence ~o(A) had stabilized. We shall now compute the
relation between this stabilized value and the limit value. Here, our functions
eξ come back into play:

Theorem 8.5. Let ζ∈Lim then, for θ large enough we have that

oθ(A) = e−θ+ζoζ(A) = eω
ℓζ

oζ(A) = eℓζ(oζ(A)).

Proof. That eω
ℓζ

oζ(A) = eℓζ(oζ(A)) is just Theorem 7.5 so we focus on the first
equalities. Since ζ ∈ Lim, for ξ large enough we have that hζ(A) = hξ(A), and
more generally,

hζ(A) = hθ(A) (10)

whenever θ ∈ [ξ, ζ]. Moreover, writing ζ = ζ′ + ωℓζ , we may without loss of
generality choose ξ ≥ ζ′ so that −θ + ζ = ωℓζ for all θ ∈ [ξ, ζ). For the sake of
abbreviating, let δ = −θ + ζ = ωℓζ . By definition

θ + δ = ζ. (11)

Now we can prove our theorem starting with an application of Lemma 4.11:

oθ(A) = oθhθ(A)
= oθhζ(A) By (10)
= o(θ ↓ hζ(A)) Corollary 4.16
= o(δ ↑ ((θ + δ) ↓ hζ(A))) Lemma 3.12.6
= o(δ ↑ (ζ ↓ hζ(A))) By (11)
= eδo(ζ↓hζ(A)) Theorem 5.8.3
= eδoζ(A) Corollary 4.16
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Theorem 8.4 and Theorem 8.5 have been presented in a somewhat different
guise in [21]. Note that, indeed, these theorems provide a local characterization
of ~o(A) given any worm A: start by computing o0(A) and compute how oξ(A)
changes for increasing values of A. Moreover, in [21] a characterization is given
for those values ξ where oξ(A) changes value.

8.2 From local to global

The computations we have presented give the value of oξ(A) from oζ(A) for
ζ < ξ provided ζ is large enough. As such, we have only characterized them
locally. In the next subsection we will give a global characterization of ~o(A), so
that all values may be computed directly from o0(A).

In our local characterization we have distinguished two cases: successor coor-
dinates and limit coordinates. It turns out that one can conceive both successor
and limit steps as one of the same kind. For the successor case when ζ = ξ + 1
we saw that

oζ(A) = oξ+1(A) = ℓoξ(A) = ℓ−ξ+(ξ+1)oξ(A) = ℓ−ξ+ζoξ(A). (12)

For limit steps, we say oξ(A) = e−ξ+ζoζ(A) for ξ < ζ large enough. By
Lemma 7.9, ℓα is a left-inverse to eα for all α. Then our characterization for
limit coordinates becomes

oζ(A) = ℓ−ξ+ζoξ(A) for ξ < ζ large enough. (13)

Written in this way, we see that (12) and (13) actually are the same. More-
over, as we shall see, Lemma 7.11 will allow us to drop the requirement “for
ξ < ζ large enough” giving rise to our desired global characterization. Let us
unify the results obtained so far by describing the sequences ~o(A) using hyper-
exponentials and hyperlogarithms.

8.3 A global characterization

Theorem 8.6. If A is any worm, ~o(A) is the unique ℓ-exact sequence with
o0(A) = o(A).

Proof. In view of Lemma 7.11, it suffices to show that, given any ordinal ζ,
there is ξ < ζ such that oζ(A) = ℓ−ξ+ζoξ(A).

If ζ is a successor ordinal, write ζ = ξ + 1. Then, by Theorem 8.4, we have
that oζ(A) = ℓoξ(A).

Meanwhile, if ζ is a limit ordinal, we know from Lemma 8.5 that, for ξ < ζ
large enough, oξ(A) = e−ξ+ζoζ(A). Applying ℓ−ξ+ζ on both sides and using
Theorem 7.7, we see that ℓ−ξ+ζoξ(A) = oζ(A). Thus we can use Lemma 7.11 to
see that ~o(A) is ℓ-exact, so that, for all ξ, oξ(A) = ℓξo0(A), as claimed.
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Example 8.7. For A = 〈ω · 2 + 1〉〈ω〉〈ω · 2 + 1〉〈0〉〈ω2〉⊤ we have that

~o(A) = 〈eω
2

1 + eω(eω+11 · 2), eω(eω+11 · 2), . . . , eω+11 · 2, eω+11, . . . , ω, 1, 0 . . .〉.

Proof. Theorem 6.11 yields o(A) = eω
2

1+eω(eω+11 ·2). Then, the result follows
from Theorem 8.6 above and Example 7.12.

Recall that we can recast our example in terms of the more familiar Veblen
functions as

~o(A) = 〈ϕ2(1) + εεω+εω , εεω+εω , . . . , εω + εω, εω, . . . , ω, 1, 0 . . .〉.

Hyperexponentials give us lower bounds on ℓ-exact sequences. The value of
oξ(A) fully determines the values of oζ(A) for ζ > ξ but not vice versa. However
for ζ > ξ we do have a lower-bound on oξ(A):

Theorem 8.8. Given a worm A and ordinals ξ, ζ, oξ(A) ≥ eζoξ+ζ(A).

Proof. Towards a contradiction, assume that there is a worm A and ordinals
ξ<ζ such that oξ(A)<e

−ξ+ζoζ(A). Then, by Theorem 7.9, ℓ−ξ+ζoξ(A) < oζ(A).
But this is impossible by Theorem 8.6, given that ℓ−ξ+ζoξ(A) = oζ(A).
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