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Abstract

Cirquent calculus is a new proof-theoretic and semantic approach introduced for the needs
of computability logic by G.Japaridze, who also showed that, through cirquent calculus, one can
capture, refine and generalize independence-friendly (IF) logic. Specifically, the approach allows
us to account for independence from propositional connectives in the same spirit as the traditional
IF logic accounts for independence from quantifiers. Japaridze’s treatment of IF logic, however,
was purely semantical, and no deductive system was proposed. The present paper constructs
a formal system sound and complete w.r.t. the propositional fragment of Japaridze’s cirquent-
based semantics for IF logic. Such a system can thus be considered an axiomatization of purely
propositional IF logic in its full generality.

MSC: primary: 03B47; secondary: 03B70; 68Q10; 68T27; 68T15.

Keywords: Computability logic; Cirquent calculus; IF logic.

1 Introduction

Cirquent calculus is a new proof-theoretic and semantic approach introduced by G.Japaridze in [6] and
further developed in [7,9–11,17–19]. It was proposed for the needs of his computability logic (CoL) [5,8].
Unlike the more traditional proof theories that manipulate tree-like objects such as formulas, cirquent
calculus deals with circuit-style objects termed cirquents. The main characteristic feature of the latter
is allowing (one or another sort of) sharing of subcomponents between different components. Due
to sharing, cirquent calculus has higher expressiveness and efficiency. For instance, as shown in [7],
the analytic cirquent calculus system CL8 achieves an exponential speedup of proofs over the classical
analytic systems.

A qualitative generalization of the concept of cirquents was made in [9], where the idea of clustering
of propositional connectives was introduced. Intuitively, clusters are switch-style devices that combine
tuples of individual disjunctive or conjunctive gates in a parallel way — in a way where the choice (left
or right) of an argument is shared between all members. It was showed semantically in [9] that, through
cirquents with clustered connectives (and also quantifiers as generalized connectives), one can capture,
refine and generalize the well known independence-friendly (IF) logic.1 The latter, introduced by J.
Hintikka and G. Sandu [2] and further developed [3,4,12–16] by a number of authors, is a conservative
extension of classical first-order logic, allowing one to express independence relations between quantifiers.
The past attempts (cf. [13, 14]) to apply the same ideas to propositional connectives and thus develop
IF logic at the propositional (as opposed to first-order) level, however, have remained limited only to
certain special syntactic fragments of the language.

Japaridze’s treatment of IF logic in [9] was purely semantical, and no deductive system was pro-
posed. In this paper, we axiomatically construct a cirquent calculus system called IFp, with clustered

∗Supported by National Natural Science Foundation of China (61303030) and the Fundamental Research Funds for
the Central Universities of China (K5051370023).

1Clustering only disjunctions is sufficient for the basic IF logic, while the so called extended IF logic requires clustering
both disjunctions and conjunctions.
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disjunctive connectives, for propositional IF logic. Such a system is sound and complete w.r.t. the
propositional fragment of Japaridze’s cirquent-based semantics and can thus be considered an axioma-
tization of purely propositional, non-extended IF logic in its full generality.

2 Preliminaries

In this section we reproduce the basic relevant concepts from [9]. An interested reader may want to
consult [9] for additional explanations, illustrations, examples and insights.

Our propositional language has infinitely many atoms, for which p, q, r, s, . . . will be used as
metavariables. An atom p and its negation ¬p are called literals. A formula means one of the
language of classical propositional logic, built from literals and the binary connectives ∧,∨ in the stan-
dard way. Thus, all formulas are required to be in negation normal form. If we write A → B, it is to be
understood as an abbreviation of ¬A∨B. And ¬, when applied to anything other than an atom, should
be understood as an abbreviation defined by ¬¬A = A, ¬(A∧B) = ¬A∨¬B and ¬(A∨B) = ¬A∧¬B.

A cirquent is a formula together with a partition of the set of all occurrences of ∨ into subsets,
called clusters.2 With each cluster is associated a unique positive integer called its ID. IDs serve as
identifiers for clusters, and we will simply say “cluster k” to mean “the cluster whose ID is k”.

One way to represent cirquents is to do so graphically, using arcs to indicate the “clusteral affiliations”
as in the following figure:

(

(p ∨ ¬p) ∧ (p ∨ ¬p)
)

∨
(

(q ∨ r) ∧ (p ∨ ¬q)
)

✦
✦✦

❛
❛❛

1
✟

✟
❍
❍

32

For space efficiency considerations, in this paper we will instead be writing cirquents just like formulas,
only with every occurrence of ∨ indexed with the ID of the cluster to which the occurrence belongs. So,
for instance, the above cirquent will be simply written as

(

(p∨1¬p)∧ (p∨1¬p)
)

∨2

(

(q∨3 r)∧ (p∨3¬q)
)

.
A cirquent C is said to be classical iff all of its clusters are singletons. We shall identify such

a cirquent with the formula of classical logic obtained from it by simply deleting all cluster IDs, i.e.
replacing each ∨k (whatever k) with just ∨.

We will be using the term oconnective to refer to a connective together with a particular occurrence
of it in a cirquent.

An interpretation (or model) is a function ∗ that sends each atom p to one of the values p∗ ∈
{⊤,⊥}, and extends to all literals by stipulating that (¬p)∗ = ⊤ iff p∗ = ⊥.

A metaselection is a function f : {1, 2, 3, . . .} → {left,right}. Given a cirquent C and a metaselec-
tion f , the resolvent of a disjunctive subcirquent A ∨k B of C is defined to be A if f(k) = left, and B
if f(k) = right.

Let C be a cirquent, ∗ an interpretation, and f a metaselection. In this context, with “metatrue” to
be read as “metatrue w.r.t. (∗, f)”, we say that:

• A literal L of C is metatrue iff L∗ = ⊤.

• A subcirquent A ∨k B of C is metatrue iff so is its resolvent.

• A subcirquent A ∧ B of C is metatrue iff so are both of its conjuncts.

Next, we say that C is true under the interpretation ∗ (in the model ∗), or simply that C∗ is true, iff
there is a metaselection f such that C is metatrue w.r.t. (∗, f). Finally, we say that C is valid iff it is
true under every interpretation (in every model).

Note that, when C is a formula, i.e. a cirquent where all clusters are singletons, C is valid iff it is valid
(tautological) in the sense of classical logic. And classical truth of a formula under an interpretation ∗

means nothing but existence of a selection f such that the formula is true in our sense w.r.t. (∗, f). So,
classical logic is nothing but the conservative fragment of our logic obtained by only allowing formulas
in the language.

2The concept of cirquents considered in cirquent calculus is more general than the one defined here. See [9].
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Each cirquent C with n atoms can be seen to be an n-ary truth function (even though expressed in
a very unusual way) and, for this reason, C can be represented by a disjunctive-normal-form formula
F of classical logic obtained in the standard way from the truth table characterizing C. However,
the formula F obtained this way from C will generally be exponentially bigger than C. We believe
there is no translation from cirquents to equivalent Boolean formulas that only creates polynomial size
differences, even though this needs to be proven, of course. Overall, an answer to the question whether
our system yields a greater expressive power than classical propositional logic depends on who is asked.
A philosopher would probably say “No”, a computer scientist say “Yes”, and a mathematician say that
it depends on how “expressive power” is precisely defined.

The rest of this section is not technically relevant to the main results of the present paper and is
only meant for those who are familiar with IF logic but not with [9].3 In an attempt to understand
what all of the above has to do with IF logic, consider the formula

∀x(∃y/∀x)∃z p(x, y, z) (1)

with its standard meaning. According to the latter, given any object x, two objects y and z can be
chosen so that p(x, y, z) is true, with the modifier ‘∀x’ attached to ‘∃y’ indicating that here y can be
chosen independently from (without any knowledge of) x. Assuming that the universe of discourse is
{1, 2}, (1) can just as well be (re-)written as

(

(

p(1, 1, 1) ∨z p(1, 1, 2)
)

∨y/∧x
(

p(1, 2, 1) ∨z p(1, 2, 2)
)

)

∧x
(

(

p(2, 1, 1) ∨z p(2, 1, 2)
)

∨y/∧x
(

p(2, 2, 1) ∨z p(2, 2, 2)
)

)

,

which, after further rewriting p(1, 1, 1), p(1, 1, 2), . . . as the more compact p, q, . . ., is the propositional
formula

(

(

p ∨z q
)

∨y/∧x
(

r ∨z s
)

)

∧x
(

(

t ∨z u
)

∨y/∧x
(

v ∨z w
)

)

. (2)

Here we have turned ∀x into ∧x, ∃y into ∨y and ∃z into ∨z , with the superscript in each case used
just to remind us from which quantifier each oconnective was obtained, and ∨y/∧x indicating that the
y-superscripted disjunction is independent of the x-superscripted conjunction. Now, Japaridze’s recipes
(see [9], Descriptions 7.4 and 7.5) translate (2) into the following cirquent:

(

(

p ∨2 q
)

∨1

(

r ∨3 s
)

)

∧
(

(

t ∨4 u
)

∨1

(

v ∨5 w
)

)

. (3)

Note that cluster 1 contains two disjunctive oconnectives — namely, those originating from ∃y, and all
other clusters are singletons. It is left as an exercise for the reader to convince himself or herself that,
in any given model (interpretation) ∗, (3) is true in our sense if and only if (2) is true in the sense of IF
logic. Well, the present case is a “lucky” case because we easily understand what “true in the sense of
IF logic” means for (2) — after all, (2) originates from (and will be handled in the same way as) the
first-order (1). As an example of an “unlucky” case, consider the cirquent

(p ∨1 q) ∧
(

(r ∨1 s) ∧ q
)

. (4)

It is just as meaningful from the point of view of our semantics as any other cirquent, including (3). An
attempt to express the same in the traditional formalism of IF logic apparently yields something like

(p ∨/∧x q) ∧x
(

(r ∨/∧x s) ∧y q
)

. (5)

Unlike (2), however, (5) is problematic for the traditional semantical approaches (the ones based on
imperfect information games) to IF logic. Namely, because of a problem called signaling, it is far from
clear how its truth should be understood.

If the connections and differences between our present semantics and that of IF logic are still not
clear, see the first 6 sections of [9] for more explanations, discussions and examples.

3As for those unfamiliar with IF logic, they may want to consult [12] or [15].
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3 Main results

3.1 System IFp introduced

Throughout the rest of this paper, for convenience of descriptions, we will be always omitting the IDs
for singleton clusters when writing cirquents. Note that, this way, all classical cirquents mechanically
turn into (rather than are just identified with) formulas of classical logic.

As will be seen shortly, the inference rules of our system IFp modify cirquents at any level rather
than only around the root. Thus, IFp is in fact a deep inference system, in the style of [1]. This
explains our borrowing some notation from the Calculus of Structures. Namely, we will be using Φ{}
or Ψ{} to denote any cirquent where a vacancy (“hole”) {} appears in the place of a subcirquent.
The vacancy {} can be filled with any cirquent. For example, if Φ{} = (p ∨1 q) ∨1 ({} ∧ q), then
Φ{¬p} = (p ∨1 q) ∨1 (¬p ∧ q), Φ{q} = (p ∨1 q) ∨1 (q ∧ q), and Φ{p ∨1 q} = (p ∨1 q) ∨1 ((p ∨1 q) ∧ q).
Multiple vacancies are also allowed and they are treated similarly.

The axioms of IFp are all classical cirquents that (seen as formulas) are tautologies of classical
logic. We schematically represent the rules of inference of IFp in Figure 1, where A,B, C,D stand
for any cirquents and ◦ is a variable that stands for either ∧ or ∨ or ∨l for some (whatever) particular
index l such that cluster l is a non-singleton one. It is important to point out that, in each rule, all
occurrences of ◦ stand for the same object (∧, ∨ or ∨l).

Φ
{

Ψ{A} ∨k C
}

Rule I (left)

Φ
{

Ψ{A ∨k B} ∨k C
}

Φ
{

C ∨k Ψ{A}
}

Rule I (right)

Φ
{

C ∨k Ψ{B ∨k A}
}

Φ
{

(A ◦ C) ∨k (B ◦ C)
}

Rule II (left)

Φ
{

(A ∨k B) ◦ C
}

Φ
{

(C ◦ A) ∨k (C ◦ B)
}

Rule II (right)

Φ
{

C ◦ (A ∨k B)
}

Φ
{

(A ◦ C) ∨k (B ◦ D)
}

Rule III

Φ
{

(A ∨k B) ◦ (C ∨k D)
}

Figure 1: The rules of IFp

In each application of these rules, we call the oconnective(s) ∨k in the premise (resp. conclusion),
as shown in Figure 1, the key oconnecitve(s) of this application in the premise (resp. conclusion).

A proof of a cirquent A in IFp, as expected, is a sequence of cirquents such that the first cirquent
in the sequence is an axiom of IFp, the last cirquent is A, and every cirquent, except the axiom, follows
from the preceding cirquent by one of the rules of IFp. When such a proof exists, A is said to be
provable in IFp. Below is an example of a proof:

Axiom
((q ∧ p) ∨ (p ∧ ¬q)) ∨ ((q ∧ ¬p) ∨ (¬p ∧ ¬q))

Rule III
((q ∧ p) ∨2 (q ∧ ¬p)) ∨ ((p ∧ ¬q) ∨2 (¬p ∧ ¬q))

Rule II (left)
((q ∧ p) ∨2 (q ∧ ¬p)) ∨ ((p ∨2 ¬p) ∧ ¬q)

Rule II (right)
(q ∧ (p ∨2 ¬p)) ∨ ((p ∨2 ¬p) ∧ ¬q)

Rule I (right)
(q ∧ (p ∨2 ¬p)) ∨1 ((p ∨2 ¬p) ∧ (s ∨1 ¬q))

Rule I (left)
((q ∨1 r) ∧ (p ∨2 ¬p)) ∨1 ((p ∨2 ¬p) ∧ (s ∨1 ¬q))

Lemma 3.1 Given an interpretation ∗ and a metaselection f , a cirquent Φ{A∨k B} is metatrue w.r.t.
(∗, f) iff f(k) = left (resp. f(k) = right) and the cirquent Φ{A} (resp. Φ{B}) is metatrue w.r.t. (∗, f).
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Proof. We prove the proposition by induction on the number of oconnectives of Φ{}.
For the basis, assume that the number of oconnectives of Φ{} is 0. Then Φ{A ∨k B} = A ∨k B,

Φ{A} = A and Φ{B} = B. By the definition of metatruth, we immediately have A ∨k B is metatrue
w.r.t. (∗, f) if and only if f(k) = left (resp. f(k) = right) and its resolvent A (resp. B) is so.

Now (induction hypothesis) assume that the proposition holds when the number of oconnectives of
Φ{} is n. We want to show that the proposition still holds when the number of oconnectives of Φ{} is
n+ 1. The following three cases (i), (ii), (iii) need to be considered:

(i) Assume that the main connective of Φ{} is ∧, namely, Φ{A ∨k B} = Ψ{A ∨k B} ∧ C for some
cirquent C (the other possibility Φ{A∨kB} = C∧Ψ{A∨kB} is similar). By the definition of metatruth,
Φ{A∨k B} is metatrue w.r.t. (∗, f) iff both Ψ{A∨k B} and C are so. But, by the induction hypothesis,
Ψ{A ∨k B} is metatrue w.r.t. (∗, f) iff f(k) = left (resp. f(k) = right) and Ψ{A} (resp. Ψ{B}) is
metatrue w.r.t. (∗, f). Therefore, Φ{A∨k B} is metatrue w.r.t. (∗, f) iff f(k) = left (resp. f(k) = right)
and Ψ{A} ∧ C = Φ{A} (resp. Ψ{B} ∧ C = Φ{B}) is metatrue w.r.t. (∗, f).

(ii) Assume that the main connective of Φ{} is ∨, namely, Φ{A ∨k B} = Ψ{A ∨k B} ∨ C (the case
Φ{A ∨k B} = C ∨Ψ{A ∨k B} is similar). This means that the displayed (main) occurrence of ∨ is in a
singleton cluster i for some positive integer i 6= k. Two (sub)cases are to be further considered here.

Case (a): f(i) = right. Then Ψ{A ∨k B} ∨ C is metatrue w.r.t. (∗, f) iff its resolvent C is so. But
exactly the same (and for the same reason) holds for both Ψ{A} ∨ C and Ψ{B} ∨ C. Consequently,
vacuously adding “f(k) = . . .”, we arrive at the desired conclusion that Ψ{A ∨k B} ∨ C is metatrue
w.r.t. (∗, f) iff f(k) = left (resp. f(k) = right) and Ψ{A}∨C (resp. Ψ{B}∨C) is metatrue w.r.t. (∗, f).

Case (b): f(i) = left. Then Φ{A ∨k B} is metatrue w.r.t. (∗, f) iff its resolvent Ψ{A ∨k B} is so,
which, in turn (by the induction hypothesis), is the case iff f(k) = left (resp. f(k) = right) and Ψ{A}
(resp. Ψ{B}) is metatrue w.r.t. (∗, f). This, in turn, is the case iff f(k) = left (resp. f(k) = right) and
Φ{A} (resp. Φ{B}) is metatrue w.r.t. (∗, f). Hence the desired conclusion holds.

(iii) Assume that the main connective of Φ{} is ∨l, for some (whatever) particular index l such that
cluster l is not a singleton. Namely, assume Φ{A ∨k B} = Ψ{A ∨k B} ∨l C (the case Φ{A ∨k B} =
C ∨l Ψ{A ∨k B} is similar). If l 6= k, then we can employ an essentially the same argument as the one
used in (ii). And if l = k, then the case is even simpler, so we leave details to the reader.

Lemma 3.2 All rules of IFp preserve truth in both top-down and bottom-up directions.

Proof. Pick an arbitrary interpretation ∗.
Rule I: Here we will only look at Rule I (left), with Rule I (right) being similar. Consider an

arbitrary metaselection f . By Lemma 3.1, the premise is metatrue w.r.t. (∗, f) iff f(k) = left (resp.
f(k) = right) and Φ

{

Ψ{A}
}

(resp. Φ{C}) is metatrue w.r.t. (∗, f). But exactly the same is the case for
the conclusion as well (only, now Lemma 3.1 needs to be applied twice). Thus, the premise is metatrue
w.r.t. (∗, f) iff so is the conclusion. This, of course, implies that the premise is true under ∗ iff so is the
conclusion, as desired.

Rule II: Again, we will only consider Rule II (left), with Rule II (right) being similar. We want to
show that the premise Φ

{

(A ◦ C) ∨k (B ◦ C)
}

is true under ∗ iff so is the conclusion Φ
{

(A ∨k B) ◦ C
}

.
The following two cases need to be considered here.

Case (a): ◦ is ∧ or ∨l. In this case, by Lemma 3.1 applied to both the premise and the conclusion,
we immediately get that, for an arbitrary metaselection f , the premise is metatrue w.r.t. (∗, f) iff so is
the conclusion. Hence, the premise is true under ∗ iff so is the conclusion.

Case (b): ◦ is ∨. Assume that, after restoring the (otherwise always omitted) singleton-cluster IDs,
the premise is Φ

{

(A ∨i C) ∨k (B ∨j C)
}

and the conclusion is Φ
{

(A ∨k B) ∨m C
}

, where clusters i, j,m
are singletons. Let {l1, . . . , ln} be the collection of all singleton clusters in the subcirquent C of the
conclusion. And let {l′1, . . . , l

′

n} (resp. {l′′1 , . . . , l
′′

n}) be the collection of all singleton clusters in the left
(resp. right) occurrence of C in the premise satisfying the condition that, for any h ∈ {1, . . . , n}, l′h
(resp. l′′h) occurs in this C at the same place as lh occurs in the C part of the conclusion.

Suppose that the conclusion Φ
{

(A∨k B)∨m C
}

is true under ∗. Then there is a metaselection f such

that Φ
{

(A ∨k B) ∨m C
}

is metatrue w.r.t. (∗, f). This, by Lemma 3.1, implies that f(k) = left (resp.
f(k) = right) and Φ{A ∨m C} (resp. Φ{B ∨m C}) is metatrue w.r.t. (∗, f). Let g be a metaselection
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satisfying the conditions that g(i) = g(j) = f(m), g(l′h) = g(l′′h) = f(lh) for any h ∈ {1, . . . , n} and
g agrees with f on all other clusters. Then we have g(k) = left (resp. g(k) = right) and Φ{A ∨i C}
(resp. Φ{B ∨j C}) is metatrue w.r.t. (∗, g). This, again by Lemma 3.1, implies that the premise
Φ
{

(A ∨i C) ∨k (B ∨j C)
}

is metatrue w.r.t. (∗, g). Therefore, the premise is true under ∗.

Now suppose that the premise Φ
{

(A ∨i C) ∨k (B ∨j C)
}

is true under ∗, meaning that there is a

metaselection u such that Φ
{

(A∨i C)∨k (B∨j C)
}

is metatrue w.r.t. (∗, u). By Lemma 3.1, this implies
that u(k) = left (resp. u(k) = right) and Φ{A ∨i C} (resp. Φ{B ∨j C}) is metatrue w.r.t. (∗, u). Let
v be a metaselection satisfying the following two conditions: if u(k) = left (resp. u(k) = right), then
v(m) = u(i) (resp. v(m) = u(j)) and v(lh) = u(l′h) (resp. v(lh) = u(l′′h)) for any h ∈ {1, . . . , n}; v
agrees with u on all other clusters. Then, we have v(k) = left (resp. v(k) = right) and Φ{A∨m C} (resp.
Φ{B∨mC}) is metatrue w.r.t. (∗, v). This, by Lemma 3.1, implies that the conclusion Φ

{

(A∨kB)∨mC
}

is metatrue w.r.t. (∗, v). Hence, the conclusion is true under ∗.
Rule III: We want to show that the premise Φ

{

(A ◦ C) ∨k (B ◦ D)
}

is true under ∗ iff so is the

conclusion Φ
{

(A ∨k B) ◦ (C ∨k D)
}

. Two cases are to be considered.
Case (a): ◦ is ∧ or ∨l. Consider an arbitrary metaselection f . It is not hard to see that, by Lemma

3.1 applied twice, the conclusion Φ
{

(A ∨k B) ◦ (C ∨k D)
}

is metatrue w.r.t. (∗, f) iff f(k) = left (resp.
f(k) = right) and Φ{A ◦ C} (resp. Φ{B ◦ D}) is metatrue w.r.t. (∗, f). This, in turn, is the case iff the
premise Φ

{

(A ◦ C)∨k (B ◦D)
}

is metatrue w.r.t. (∗, f). Therefore, the conclusion is true under ∗ iff so
is the premise.

Case (b): ◦ is ∨. Assume that (after restoring the singleton-cluster IDs) the premise is Φ
{

(A ∨i

C) ∨k (B ∨j D)
}

and the conclusion is Φ
{

(A ∨k B) ∨m (C ∨k D)
}

, where clusters i, j,m are singletons.
As can be seen from the following two paragraphs, the present case is very similar to Case (b) of Rule
II.

Suppose that the conclusion Φ
{

(A∨k B)∨m (C ∨kD)
}

is true under ∗. Then there is a metaselection

f such that Φ
{

(A ∨k B) ∨m (C ∨k D)
}

is metatrue w.r.t. (∗, f). This, by Lemma 3.1 applied twice,
implies that f(k) = left (resp. f(k) = right) and Φ{A ∨m C} (resp. Φ{B ∨m D}) is metatrue w.r.t.
(∗, f). Let g be a metaselection satisfying the conditions that g(i) = g(j) = f(m) and g agrees with f
on all other clusters. Then we have g(k) = left (resp. g(k) = right) and Φ{A ∨i C} (resp. Φ{B ∨j D})
is metatrue w.r.t. (∗, g). This, again by Lemma 3.1, implies that the premise Φ

{

(A ∨i C) ∨k (B ∨j D)
}

is metatrue w.r.t. (∗, g). Therefore, the premise is true under ∗.
Now suppose that the premise Φ

{

(A∨i C)∨k (B∨jD)
}

is true under ∗. Then there is a metaselection

u such that Φ
{

(A∨iC)∨k (B∨jD)
}

is metatrue w.r.t. (∗, u). By Lemma 3.1, this implies that u(k) = left
(resp. u(k) = right) and Φ{A∨i C} (resp. Φ{B∨jD}) is metatrue w.r.t. (∗, u). Let v be a metaselection
satisfying the following two conditions: when u(k) = left (resp. u(k) = right), v(m) = u(i) (resp.
v(m) = u(j)); v agrees with u on all other clusters. Then, we have v(k) = left (resp. v(k) = right) and
Φ{A ∨m C} (resp. Φ{B ∨m D}) is metatrue w.r.t. (∗, v). This, by Lemma 3.1 applied twice, implies
that the conclusion Φ

{

(A ∨k B) ∨m (C ∨k D)
}

is metatrue w.r.t. (∗, v). Hence, the conclusion is true
under ∗.

3.2 The soundness and completeness of IFp

Theorem 3.3 A cirquent is valid if and only if it is provable in IFp.

Proof. The soundness part is immediate, because the axioms are obviously valid and, by Lemma 3.2,
all rules preserve truth and hence validity. For the completeness part, consider an arbitrary cirquent C
and assume it is valid. We want to show that C is provable in IFp.

In the context of a given cirquent D, we define the level of an oconnective a, denoted by LD(a), to
be the total number of oconnectives b such that a is in the scope of b. An oconnective b is a child of
an oconnective a and a is the parent of b when b is in the scope of a and LD(b) = LD(a) + 1. The
relations “descendant” and “ancestor” are the transitive closures of the relations “child” and “parent”,
respectively. The distance between an oconnective a and one of its descendants b is defined to be the
positive integer k such that k = LD(b) − LD(a); when the distance between a and b is less than the
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distance between a and another descendant c of a, we say that b is nearer to a (or vice versa) than c
is. Next, for any two oconnectives a and b, we denote their nearest common ancestor oconnective by
ab.

If our cirquent C is classical (i.e. every cluster of it is a singleton), then the validity of C can be seen
to mean nothing but its validity in the sense of classical logic. So, in this case, C is an axiom of IFp

and hence is provable.
Now, for the rest of this proof, assume that C is not classical. We construct, bottom-up, a proof of

C as follows.
First, repeat applying Rule I to the current (topmost in the so far constructed proof) cirquent until

no longer possible.
Every time Rule I is applied, the current cirquent loses one pair of disjunctive oconnectives a, b such

that a, b are in the same cluster and b is a descendant of a (or vice versa). So, sooner or later, we get
a cirquent C1 where no descendant-ancestor pair of oconnectives shares the same cluster. Since Rule I
preserves truth in the bottom-up direction (Lemma 3.2), C1 is valid.

Let k1, k2, . . . , kn (n ≥ 0) be a list of all non-singleton clusters of C1. Our construction of a proof of
C continues upward from C1 as follows.

Pick any cluster ki from the above list. Repeat the following three steps until cluster ki becomes a
singleton cluster in the current (topmost) cirquent. Below we use D to denote the current cirquent:

Step 1. Pick any pair a, b of disjunctive oconnectives such that the following two conditions are
satisfied: a, b are both in cluster ki; L

D(ab) ≥ LD(cd) for any pair of oconnectives c, d in cluster ki.
Set m = 2 and l = LD(ab).4

Step 2. (a) Repeatedly perform the following two actions until LD(a) = l+1: (i) Apply (bottom-up)
Rule II to D, with a being the key oconnective of this application (in the conclusion); (ii) Rename the
key oconnective of this application (in the premise) into a.

(b) Repeatedly perform the following two actions until LD(b) = l + 1: (i) Apply (bottom-up) Rule
II to D, with b being the key oconnective of this application (in the conclusion); (ii) Rename the key
oconnective of this application (in the premise) into b.

Step 3. Apply (bottom-up) Rule III to D, with a, b being the key oconnectives of this application
(in the conclusion). Set m = 1.

During the above three-step procedure, the situation that some descendant together with its ancestor
is in the same cluster will not emerge. To see why, note that there are no descendant-ancestor pairs
within any given cluster in the current cirquent D at the beginning of the procedure. If so, step 1 will
not give rise to the situation. Next, applying Rule II to D in step 2 means that LD(a) (resp. LD(b))
is greater than LD(ab) + 1; fourthly, during step 1 and step 2, l’s being maximal ensures that, when
applying Rule II as Figure 1 shows to the current cirquent D, the subcirquent C does not contain any
oconnective e that is also in cluster ki (otherwise, L

D(ae) > LD(ab) (resp. LD(be) > LD(ab)), which
contradicts the conditions satisfied by a, b). Finally, based on the above conditions, applying Rule III
in step 3 will not create any descendant-ancestor pairs within any given cluster, either.

Below we verify that the above three-step procedure terminates in a finite number of steps.
For the current cirquent D at any given stage of the procedure — hencefore we shall use D as (also)

a name of that stage — we define the state of D to be the four-tuple (x, y, z, t) as follows, where mD,
aD, bD are the values of the corresponding three variables of the procedure at the beginning of stage D:

• x is the number of elements in cluster ki of D;

• y = x−mD;

• z = LD(aD) + LD(bD) if mD = 2, and z = LD(aD)− 1 if mD = 1;

• t is the total number of elements in all other non-singleton clusters of D except cluster ki.

4Here m is a variable that records the number of elements of the collection of key oconnectives in the current cirquent.
It is introduced into the process mainly for later difinitions and proofs.
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Further, we define the relation “≤” on the set of all such tuples as follows. For any two tuples
(x1, y1, z1, t1) and (x2, y2, z2, t2), (x1, y1, z1, t1) ≤ (x2, y2, z2, t2) if and only if one of the following con-
ditions holds: (i) x1 < x2; (ii) x1 = x2 and y1 < y2; (iii) x1 = x2, y1 = y2 and z1 < z2; (iv) x1 = x2,
y1 = y2, z1 = z2 and t1 < t2; (v) x1 = x2, y1 = y2, z1 = z2 and t1 = t2. It is easy to see that “≤”
well-orders the set of all states, with each tuple (state) denoting an ordinal < ω4.

Now we show that every step of the process strictly decreases the state of the current cirquent. One
can see that the state of the current cirquent depends on cluster ki and the picked pair of a, b. At the
beginning of this procedure, for the picked cluster ki and the picked pair of a, b in step 1, the state
(x, y, z, t) has its original value. In step 2, every time substeps (i),(ii) are performed for a (resp. b), x, y
do not change, but z decreases by 1; then in step 3, when Rule III is applied, x is decreased by 1. As
long as cluster ki is not a singleton, the process will come into the next iteration of the loop. During
each iteration, a new pair of a, b is picked and the value of m is changed from 1 to 2 in step 1, which
makes x unchanged but y is decreased by 1; then every iteration of the inner loop in step 2 leaves x, y
unchanged but decreases z by 1; and then step 3 decreases x by 1. Thus, the state keeps decreasing
during the procedure, meaning that the latter terminates at some point.

Then after applying the three-step procedure, we get the resulting cirquent C2 where the number of
non-singleton clusters is n−1, since no new non-singleton clusters are created during the procedure and
cluster ki became a singleton. Pick any cluster kj (j 6= i, 1 ≤ j ≤ n) in C2 and carry out the same steps
as we did with C1, then we get the resulting cirquent C3, with n− 2 non-singleton clusters. Every time
the above steps are performed, the number of non-singleton clusters in the current (topmost) cirquent
decreases by 1. Therefore, the outermost procedure will end sooner or later with the resulting cirquent
Cn+1 having no non-singleton clusters. Since only Rule II and Rule III are applied during this procedure
when we get Cn+1 from C1 and both of these rules preserve truth in the bottom-up direction, all the
cirquents C2, C3, . . . , Cn+1 are valid. Hence, our construction of a proof of C ends up with the top most
cirquent Cn+1, which is an axiom of IFp.
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