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Abstract

A new syntactic characterization of problems complete via Turing re-
ductions is presented. General canonical forms are developed in order to
define such problems. One of these forms allows us to define complete
problems on ordered structures, and another form to define them on un-
ordered non-Aristotelian structures. Using the canonical forms, logics are
developed for complete problems in various complexity classes. Evidence
is shown that there cannot be any complete problem on Aristotelian struc-
tures for several complexity classes. Our approach is extended beyond
complete problems. Using a similar form, a logic is developed to capture
the complexity class NP ∩ coNP which very likely contains no complete
problem.

Keywords: theory of computation, computational complexity, Turing re-
duction, completeness, descriptive complexity

1 Introduction

Since 1974, descriptive complexity characterizes computational complexity in
terms of logical languages. Fagin [6] first shown that the complexity class NP
coincides with the set of problems expressible in second order existential (SO∃)
logic. Stockmeyer [19] extended Fagin’s result to the polynomial-time hierarchy
(PH) characterized by second order logic. Further researches revealed logical
characterizations for various complexity classes [11, 17]. Immerman presented
a lot of results on descriptive complexity in his diagram [11] whose fragment is
shown in Figure 1.

Medina and Immerman [14] addressed the following question. What is it
about a SO∃-sentence that makes the expressed property NP-complete? They
answered this question in part. Namely, a necessary and sufficient syntactic
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Figure 1: The World of Descriptive and Computational Complexity from P to
PSPACE.

condition is provided for a SO∃-sentence to represent a NP-complete problem
on ordered structures. In addition, the problem is NP-complete via first-order
projections (fops). The condition is expressed in some canonical form based on
the CLIQUE problem. This canonical form provides a syntactic tool for showing
NP-completeness: if a SO∃-sentence is of the form, then the problem defined
by this SO∃-sentence proves to be NP-complete via fops.

Bonet and Borges [3] generalized Medina–Immerman’s canonical form in two
directions. First, Bonet–Borges’s canonical form works for various complexity
classes on ordered structures, and not just NP. Second, the form can be given
in terms of any complete problem in the class, and not just CLIQUE in case of
NP.

However, all the above mentioned forms have a restricted application. No
fops are known for the vast majority of complete problems. For example, in the
complexity class NP, only up to fifty NP-complete problems are known to be
complete via fops [3, 14]. Moreover, only five numerical NP-complete problems
among thousands of such ones are known to be complete via fops [3]. Besides,
these forms define complete problems merely on ordered structures, and no
canonical form was known till now to define complete problems on unordered
structures.

As shown in Figure 1, there are complexity classes such as NP-complete
problems, coNP-complete problems, P-complete problems, and NP ∩ coNP for
which no logics were known till now. In addition, for the complexity classes of
PSPACE-complete problems and NL-complete problems which are not depicted
in Immerman’s diagram, no logics were known as well. The purpose of our
research is to develop logics for these classes.

We will consider problems complete via Turing reductions, and not just fops.
A new canonical form will be presented to easily define any complete problem on
ordered structures in the following complexity classes: NL, P, coNP, NP, and
PSPACE (no matter whether it is complete via fops or not). In that way, we
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will completely answer the above mentioned question of Medina and Immerman.
Moreover, using the form, logics will be developed for complete problems on
ordered structures in these complexity classes.

We will show an evidence that there cannot be any complete problem on
Aristotelian structures in P, coNP, NP, and PSPACE.

A new canonical form will be presented to define any complete problem
on unordered non-Aristotelian structures in the following complexity classes:
coNP, NP, and PSPACE. Using this form, logics will be developed for complete
problems on unordered non-Aristotelian structures in these complexity classes.

Furthermore, we will extend our approach beyond complete problems. By
means of a very similar canonic form for defining problems in the complexity
class NP ∩ coNP, a logic will be developed to capture NP ∩ coNP which very
likely contains no complete problem.

2 Preliminaries

We specify some of the notations and conventions used throughout this paper.
We denote by log x the logarithm of x to the base 2. For a real number x, we
denote by bxc the greatest n ∈ Z subject to n ≤ x. We denote by x̃ the prefix-
free encoding [9] of a nonnegative integer x. The length of a string w is denoted
by |w|. For strings w1 and w2, we denote by w1w2 their concatenation. For a
string w and a nonnegative integer x, we denote by wx the concatenation w . . . w︸ ︷︷ ︸

x times

(if x = 0, then this concatenation is interpreted as the empty string). By w[i]
we denote the i-th bit of a nonempty binary string w (for definiteness, we will
assume that numbering the bits of any nonempty binary string starts with 1
from left to right). For a natural number x, we denote by `(x) the length of
x represented in binary, i.e. `(x) = blog xc + 1. By `(k) we mean the function
composition ` ◦ · · · ◦ `︸ ︷︷ ︸

k times

.

We use notations and definitions of finite model theory as stated in [8, 11].
For convenience and without loss of generality, we will consider vocabularies
without constant symbols and without function symbols. So, a vocabulary is a
finite set τ = {Ra1

1 , . . . , Ramm } of relation symbols of specified arities. A τ -struc-
ture is a tuple A = (|A|, RA1 , . . . , RAm), where |A| is a nonempty set, called
the universe of A, and each RAi is a relation on A such that arity(RAi ) = ai,
1 ≤ i ≤ m. A τ -structure is ordered if one of the symbols of its vocabulary τ is
<, interpreted as a linear order on the universe.

A finite τ -structure is a τ -structure A whose universe |A| is a finite set. We
will assume that the universe of every finite τ -structure is an initial segment
{0, . . . , n− 1} of nonnegative integers, where n > 1. The notation ‖A‖ denotes
the cardinality of the universe of A. Only finite structures will be considered
throughout this paper. Therefore, we will omit the word ‘finite’, when referring
to the structures in what follows.

Let us suppose that A = (|A|, RA1 , . . . , RAm) and B = (|B|, RB1 , . . . , RBm) are

3



two τ -structures. An isomorphism between A and B is a mapping h : |A| → |B|
that satisfies the following two conditions:

1) h is a bijection.

2) For every relation symbol Ri, 1 ≤ i ≤ m, of arity t and for every t-tu-
ple (a1, . . . , at) of elements in |A|, we have RAi (a1, . . . , at) if and only if
RBi (h(a1), . . . , h(at)).

By a model class we mean a set K of τ -structures of a fixed vocabulary τ
that is closed under isomorphism, i.e. if A ∈ K and A is isomorphic to B, then
B ∈ K as well. For a vocabulary τ , we by STRUC[τ ] denote the model class of
all τ -structures.

Let L denote a logic. For every vocabulary τ , the language L(τ) is the
recursive set of all well-formed sentences (whose elements are called L(τ)-sen-
tences) with the symbols of τ and with the symbols predefined for the logic L.
For example, for first order (FO) logic, FO(τ) is the set of all first order sentences
with the symbols of τ , numerical relational symbols: =, 6=, logical connectives:
∧,∨,¬, variables: x, y, z, . . . with or without subscripts, quantifiers: ∃,∀, and
brackets: (, ), [, ]. All the predefined symbols have the standard interpretations.
Also, for SO∃ logic, SO∃(τ) denotes the set of all second order sentences of the
form ∃Q1 . . . ∃Qlϕ, where ϕ is a FO(τ ∪ {Qa1

1 , . . . , Qall })-sentence.
In addition, |= is a binary relation between L(τ)-sentences and τ -structures,

so that for each L(τ)-sentence Γ, the set {A ∈ STRUC[τ ] | A |= Γ} denoted
by MOD[Γ] is closed under isomorphism. Also, we say that a L(τ)-sentence Γ
defines a model class K if K = MOD[Γ]. We call a L(τ)-sentence Γ logically
valid if STRUC[τ ] = MOD[Γ]. We say that two L(τ)-sentences Λ and Γ are
logically equivalent if MOD[Λ] = MOD[Γ].

By Γ(ψ) we denote a sentence Γ such that ψ occurs in Γ as a subformula.
Then, Γ[ψ/ξ] denotes the sentence obtained by replacing each occurrence of ψ
by ξ in Γ.

In order to measure the computational complexity of problems on structures,
we need to represent structures by binary strings to be used as inputs for Turing
machines. Moreover, simple encodings can be used to represent any arbitrary
objects (integers, sentences, Turing machines, etc.) as binary strings.

For an object Z, we will use 〈Z〉 to denote some binary representation of Z.
For example, if Z is a natural number, then 〈Z〉 denotes its usual binary rep-
resentation. If Z is a sentence, then 〈Z〉 denotes the binary representation of
Gödel number of Z. If Z is a Turing machine, then 〈Z〉 also denotes the binary
representation of Gödel number of Z. If Z is a τ -structure, then 〈Z〉 denotes
the binary encoding bin(Z) as stated in [11].

We will characterize a model class of STRUC[τ ] for some fixed vocabulary τ
as a complexity theoretic problem. Let L be a logic, N a complexity class, and
τ a vocabulary. We say that L captures N on STRUC[τ ] if the following two
conditions are satisfied:

1) For every L(τ)-sentence Γ, the model class MOD[Γ] belongs to N.
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2) For every model class K ⊆ STRUC[τ ] in N, there exists a L(τ)-sentence Γ
that defines K.

Also, we say that L captures N on all (ordered) structures if L captures N on
STRUC[τ ], for every vocabulary τ (containing <).

We need the following definition of oracle Turing machines adapted for struc-
tures [11, 12]. An oracle Turing machine is a Turing machine with a two-way
read only input tape, a two-way read-write storage tape, and a one-way write
only oracle tape. Oracle Turing machines have special states: ACC, QUE,
Y ES, and NO. The state ACC is the accepting state. That is, a τ -structure
A is accepted by a Turing machine T if and only if T on the input 〈A〉 halts in
state ACC. The state QUE is the query state. In each state except QUE the
machine may write a symbol onto the oracle tape. In state QUE the machine
goes into state Y ES if the string written on the oracle tape is a member of the
oracle set, otherwise it enters state NO. In moving from state QUE to Y ES or
NO no other action is taken except to erase the oracle tape. By TB we denote
the oracle Turing machine T equipped with an oracle for the set B of some
τ -structures. For example, the string 〈A〉 encoding a τ -structure A is written
on the oracle tape when TB enters the query state QUE. At the next step, TB

goes into either Y ES if A ∈ B, or NO otherwise; the oracle tape is (magically)
erased.

We also need the following definitions of Turing machines with bounded
resources.

A Turing machine T is polynomial time clocked if the code of T contains a
natural number c such that (n+ 2)c is an upper bound for the running time of
T on inputs of length n.

A Turing machine T is logarithmic space (logspace) bounded if the code of
T contains a natural number c such that c log(n+ 2) is an upper bound for the
memory space of T ’s storage tape on inputs of length n.

Let we by N mean some complexity class. For short, we will call an
oracle Turing machine N-specific if it is of the same type as the machines
that usually realize Turing reductions of problems in N. So, in case of
N ∈ {coNP,NP,PSPACE}, by N-specific Turing machines we mean polynomial
time clocked oracle Turing machines. In case of N ∈ {NL,P}, by N-specific
Turing machines we mean logspace bounded oracle Turing machines.

Let us recall the following definitions of Turing reducibility and completeness.
Given a complexity class N, for two sets A and B in N, we say that A is Turing
reducible to B if there exists a N-specific Turing machine TB to recognize the
set A. A set A ∈ N is called N-complete (via Turing reductions) if X is Turing
reducible to A for all X ∈ N.

3 Aristotelian structures and completeness

In this section, let N denote one of the following complexity classes: P,
coNP, NP, or PSPACE. We will present a vocabulary τ such that the ex-
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istence of a N-complete problem defined on the τ -structures is unlikely. Let
τ = {R1

1, . . . , R
1
m} be a fixed vocabulary that contains only the symbols

of monadic predicates. We call such a vocabulary Aristotelian [13]. Let
A = (|A|, RA1 , . . . , RAm) be an arbitrary τ -structure. We also call such a τ -struc-
ture Aristotelian.

Let us consider in detail the binary encoding 〈A〉 of an Aristotelian τ -struc-
ture A. This encoding 〈A〉 represents the concatenation of some binary strings:
wA1 . . . w

A
m, where n = ‖A‖; wAj ∈ {0, 1}n, 1 ≤ j ≤ m. Each string wAj ,

1 ≤ j ≤ m, is defined as follows: either wAj [i+ 1] = 1 if RAj (i), or wAj [i+ 1] = 0
otherwise, for every 0 ≤ i ≤ n− 1.

Let us show that any Aristotelian τ -structure A can be encoded in a more
condensed form as compared with the encoding 〈A〉. We write in lexicographic
order the sequence v1, . . . , v2m of all binary strings in {0, 1}m. Let us introduce
the following characteristic function χA : {0, . . . , n− 1} × {1, . . . , 2m} → {0, 1}
for the τ -structure A:

χA(i, j) ,

{
1 if vj = wA1 [i+ 1]wA2 [i+ 1] . . . wAm[i+ 1] ;

0 otherwise.

Then, we define a mapping benc : STRUC[τ ]→ {0, 1}∗ as follows:

benc(A) , 1v1ñ1v2ñ2 . . . v2m ñ2m

where each nj , 1 ≤ j ≤ 2m, is equal to
n−1∑
i=0

χA(i, j).

Let us estimate the length of benc(A). Note that |benc(A)| ≤ 1 + 2m(m +
log n+ 2 log log n+ 7), where n = ‖A‖. Therefore, the length of benc(A) grows
logarithmically in n since m is a constant, while the length of 〈A〉 grows polyno-
mially in n. That is, benc(A) encodes A in a more condensed form as compared
with 〈A〉.

Note that any Aristotelian τ -structure A can be also encoded as a unary
string. We denote by uenc(A) the unary string 1benc(A), where benc(A) is in-
terpreted here as a number (represented in binary). Then, uenc(A) can be just
considered as the unary encoding of A. Since |uenc(A)| ≤ 2|benc(A)|−1, we have
|uenc(A)| < 2(m+7)2m+1 · (n log2 n)2m , where n = ‖A‖. That is, the length of
uenc(A) grows polynomially in n since m is a constant.

We can unambiguously recover benc(A) from uenc(A) as benc(A) =
〈|uenc(A)|〉 since benc(A) always starts with 1. However, we cannot unam-
biguously recover A from benc(A) or uenc(A). Nevertheless, the function uenc
defines the isomorphism property between Aristotelian τ -structures, which is
shown by the following lemma.

Lemma 1 Any two Aristotelian τ -structures A and B are isomorphic if and
only if uenc(A) = uenc(B).

Proof. Let h : |A| → |B| be an isomorphism between the τ -structures A
and B. Note that the statement χA(a, j) = χB(h(a), j) holds for any a ∈ |A|
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and 1 ≤ j ≤ 2m. It follows that benc(A) = benc(B) and, therefore, uenc(A) =
uenc(B).

Suppose that uenc(A) = uenc(B). Then, we have benc(A) = benc(B). We
will show that the equality benc(A) = benc(B) implies an isomorphism between
A and B. We denote by ≺A (resp. ≺B) the following linear order on |A| (resp.
|B|). For any x1, x2 ∈ |A| (resp. y1, y2 ∈ |B|), we say that x1 ≺A x2 (resp.
y1 ≺B y2) if there exist natural numbers j1 and j2 such that one of the two
conditions is satisfied:

1) 1 ≤ j1 < j2 ≤ 2m and χA(x1, j1) = χA(x2, j2) = 1 (resp. χB(y1, j1) =
χB(y2, j2) = 1).

2) 1 ≤ j1 = j2 ≤ 2m, χA(x1, j1) = χA(x2, j2) = 1 (resp. χB(y1, j1) =
χB(y2, j2) = 1), and x1 < x2 (resp. y1 < y2).

Let us write in orders ≺A and ≺B the sequences a1 ≺A a2 ≺A · · · ≺A an and
b1 ≺B b2 ≺B · · · ≺B bn of all elements in |A| and |B| respectively, where n = ‖A‖
(note that ‖A‖ = ‖B‖ since benc(A) = benc(B)). Using these sequences, we
define a function g : |A| → |B| as follows. For any a ∈ |A|, we have g(a) , bj ,
where j such that aj = a.

Note that the equality χA(a, j) = χB(g(a), j) holds for any a ∈ |A| and
1 ≤ j ≤ 2m. In other words, for every a ∈ |A|, we have RAi (a) if and only
if RBi (g(a)), 1 ≤ i ≤ m. That is, this bijection g represents an isomorphism
between A and B. This concludes the proof of the lemma. �

Then, the following theorem holds.

Theorem 2 Let τ = {R1
1, . . . , R

1
m} be a fixed Aristotelian vocabulary. If

there exists a N-complete model class of τ -structures, then there exists a unary
N-complete set.

Proof. Let L be some N-complete model class of Aristotelian τ -structures.
Let us consider the set M = {u ∈ 1∗ | (∃A ∈ STRUC[τ ])[u = uenc(A)∧A ∈ L]}.

First, we will reduce L to M via a N-specific Turing machine TM . Given a
τ -structure A, this machine TM transforms the input 〈A〉 into the binary string
benc(A) on the storage tape. Then, TM rewrites benc(A) in the unary encoding
uenc(A) onto the oracle tape and enters state QUE. Next, if TM goes into state
Y ES (i.e. uenc(A) ∈M), then TM immediately moves to state ACC (i.e. TM

accepts A). Otherwise, TM rejects A. Note that this reduction requires at most
logarithmic space since |benc(A)| grows logarithmically in ‖A‖. Therefore, TM

is indeed N-specific.
Second, we will show that M belongs to the complexity class N. Let an

arbitrary string u ∈ 1∗ be given. Let us decide whether u ∈ M or not. We
transform u into the binary string w = 〈|u|〉. Then, we verify in polynomial

time whether w is of the form 1v1ñ1v2ñ2 . . . v2m ñ2m or not, where
2m∑
l=1

nl > 1.

If this is not the case, then u 6∈ M . Otherwise, we construct a τ -structure
A = (|A|, RA1 , . . . , RAm) in the binary encoding 〈A〉 by means of the following
algorithm:
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1) Set i := 1, j := 1, k := 1, n :=
2m∑
l=1

nl.

2) Set the binary strings: wA1 := 0n, . . . , wAm := 0n.

3) If j > 2m, then stop (the τ -structure A is formed in the binary encoding
〈A〉 = wA1 . . . w

A
m). Otherwise, go to step 4.

4) If nj = 0, then set j := j + 1 and go to step 3. Otherwise, go to step 5.

5) For every 1 ≤ r ≤ m, set wAr [i] := 1 if vj [r] = 1.

6) Set i := i + 1 and k := k + 1. If k > nj , then set k := 1, j := j + 1 and go
to step 3. Otherwise, go to step 5.

Since the set L is closed under isomorphism, the string u belongs to M if and
only if this τ -structure A is in L. It is obvious that constructing the τ -structure
A from the input u takes polynomial time. Hence, M belongs to N. Thus, the
set M is N-complete. This concludes the proof of the theorem. �

By Theorem 2, it is unlikely that there is a N-complete model class of Aris-
totelian structures. For example, the existence of a NP-complete unary language
implies P = NP (see [2]). Also, the existence of a P-complete sparse language
under many-one logspace reduction implies L = P (see [4]). Therefore, we will
consider N-complete problems on non-Aristotelian structures in what follows.

4 Canonical forms for complete problems

4.1 Canonical form for complete problems on ordered
structures

We will introduce a canonical form for N-complete problems on ordered struc-
tures. We denote by σ< the vocabulary {R1, <}. We assume that first order
logic is extended with the numerical predicate BIT which is defined in [11].
Let LN be a logic capturing N on STRUC[σ<], and Υ(R(x)) a distinguished
L(σ<)-sentence defining some N-complete model class. In this section, we by N

mean one of the following complexity classes: NL, P, coNP, NP, or PSPACE.
For definiteness, we assume that LNL, LP, LcoNP, LNP, and LPSPACE stand for
the following logics: FO(TC), FO(LFP), SO∀, SO∃, and SO(PFP) respectively.

We need to be able to construct sentences defining N-complete problems
for various vocabularies containing <, using an operator over Υ(R(x)). Let
τ< = {Ra1

1 , . . . , Ramm , <} be a fixed arbitrary vocabulary containing <. We
define the operator Tτ< for mapping Υ(R(x)) to a LN(τ<)-sentence as follows.

If a1 = 1, then Tτ<(Υ(R(x))) , Υ[R(x)/R1(x)]. If a1 > 1, then Tτ<(Υ(R(x))) ,
Υ[R(x)/∃yR1(y, . . . , y︸ ︷︷ ︸

a1−1 times

, x)], where y is a new variable (we assume that y does

not occur anywhere in Υ(R(x))). For short, let Υτ< denote Tτ<(Υ(R(x))).
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Let us show that the L(τ<)-sentence Υτ< defines a N-complete problem.
We will reduce MOD[Υ(R(x))] to MOD[Υτ< ]. For this purpose, we intro-

duce a N-specific Turing machine TMOD[Υτ< ] that recognizes the model class
MOD[Υ(R(x))] as follows.

Let the binary string 〈A〉 encoding some σ<-structure A be written on the
input tape of TMOD[Υτ< ], and n denote ‖A‖. At first, the machine TMOD[Υτ< ]

computes n as |〈A〉| since the equality ‖A‖ = |〈A〉| holds in case of the vocabu-
lary σ<. Then, the machine TMOD[Υτ< ] rewrites the input string 〈A〉 onto the
query tape. Next, the machine TMOD[Υτ< ] will transforms the σ<-structure A
into a τ<-structure B such that ‖B‖ = ‖A‖, either RB1 = {0}a1−1×RA if a1 > 1,
or RB1 = RA if a1 = 1; RB2 = ∅, . . . , RBm = ∅. For this purpose, TMOD[Υτ< ] ap-
pends N zeros to 〈A〉 on the query tape, obtaining the string w = 〈A〉0N , where
N = na1 + na2 + . . .+ nam − n. Note that w encodes the τ<-structure B since
the initial substring 〈A〉0na1−n encodes the relation RB1 , and (if any) the other
substrings 0n

a2
, . . . , 0n

am
encode the relations RB2 , . . . , R

B
m respectively. Then,

TMOD[Υτ< ] enters the query state QUE. If B |= Υτ< , then TMOD[Υτ< ] goes into

state Y ES, otherwise it enters state NO. At the next step, TMOD[Υτ< ] moves
to state ACC from state Y ES (i.e. TMOD[Υτ< ] accepts A). Otherwise, TM

rejects A.
It is obvious that TMOD[Υτ< ] realizes a logspace reduction from

MOD[Υ(R(x))] to MOD[Υτ< ] since A is a model of Υ(R(x)) if and only if B is a
model of Υτ< . Therefore, MOD[Υτ< ] is N-complete as well as MOD[Υ(R(x))].
Thus, the L(τ<)-sentence Υτ< indeed defines some N-complete problem.

With each LN(τ<)-sentence Γ and with each N-specific Turing machine
TMOD[Γ], we associate the following set of τ<-structures:

S<
Γ,TMOD[Γ] , {A ∈ STRUC[τ<] | (∀B ∈ STRUC[τ<])[ ‖B‖ > `(3)(|〈A〉|)∨

(TMOD[Γ] accepts 〈B〉 ⇔ B |= Υτ<) ] }.

The set S<
Γ,TMOD[Γ] has some interesting properties. Note that if the condi-

tion “TMOD[Γ] accepts 〈B〉 ⇔ B |= Υτ<” is satisfied for all B ∈ STRUC[τ<],
then TMOD[Γ] is a Turing reduction from MOD[Υτ< ] to MOD[Γ]. In this case,
MOD[Γ] is a N-complete model class, and S<

Γ,TMOD[Γ] = STRUC[τ<]. If this is

not the case, then S<
Γ,TMOD[Γ] is finite. Let us show how to find a FO(τ<)-sen-

tence that defines the model class S<
Γ,TMOD[Γ] .

The complexity class DTIME[log n] consists of all problems decidable in
logarithmic time in the input length n. For logarithmic time, an appropriate
model of computation is random access machines which can directly access any
memory cell by means of indices. We have the following theorem.

Theorem 3 S<
Γ,TMOD[Γ] ∈ DTIME[log n].

Proof. Let us use a random access machine to decide whether A ∈ S<
Γ,TMOD[Γ]

or not, given a τ<-structure A. As stated in [11], in complexity theory, n usually
denotes the size of the input. However, in finite model theory, n denotes the
cardinality of the universe. In order to clear up confusion, let n̂ denote |〈A〉|.
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First, we need to compute the number `(3)(n̂). For this purpose, we compute
n̂, using a binary search [1]. Since we use a random access machine, this can be
done in time O(log n̂). Then, we count the number `(n̂) of bits in n̂ represented
in binary. Likewise, we count the number `(2)(n̂) of bits in `(n̂) and then the
number `(3)(n̂) of bits in `(2)(n̂). It is obvious that the total time necessary for
computing `(3)(n̂) is O(log n̂).

Second, we enumerate all τ<-structures B ∈ STRUC[τ<] such that
‖B‖ ≤ `(3)(n̂). Since |〈B〉| ≤ p(‖B‖), the value |〈B〉| is bounded above by
p(log log log n̂), where p is a polynomial dependent on the vocabulary τ<. There-
fore, this enumeration takes time O(2p(log log log n̂)). Then, for each τ<-structure
B of the enumeration, we need to verify the following condition:

TMOD[Γ] accepts 〈B〉 ⇔ B |= Υτ< . (1)

If condition (1) is not satisfied for some τ<-structure B of the enumeration,
then the input τ<-structure A does not belong to S<

Γ,TMOD[Γ] . Otherwise, A ∈
S<

Γ,TMOD[Γ] . Now, let us estimate the running time for verifying condition (1).

We can decide whether “B |= Υτ<” for one τ<-structure B in time
O(2p1(log log log n̂)), where p1 is a polynomial. This follows from the fact that
any model-checking problem in N is decidable at most in exponential time.
In a similar manner, the verification of “TMOD[Γ] accepts 〈B〉” takes time
O(2p2(log log log n̂)), where p2 is a polynomial. This follows from the fact that
a simulation of running TMOD[Γ] together with a simulation of oracle queries
to MOD[Γ] requires at most exponential time as well. Therefore, the ver-
ification of (1) takes time O(2p1(log log log n̂) + 2p2(log log log n̂)), or, in short,

O(2p
′(log log log n̂)), where either p′ = p1 in case of lim

n̂→∞

p2(n̂)

p1(n̂)
< ∞, or p′ = p2

otherwise.
Consequently, the total time to verify (1) for all τ<-structures B of the

enumeration is O(2p(log log log n̂) · 2p′(log log log n̂)), or, in short, O(2p
′′(log log log n̂)),

where p′′ = p + p′. Note that lim
n̂→∞

2p
′′(log log log n̂)

log n̂
= 0 for any polynomial p′′.

Then, this time can be approximately estimated at most as O(log n̂).
Thus, the overall running time consists of the time for computing `(3)(n̂) and

of the time for verifying (1) on all τ<-structures B of the enumeration. These
times are both estimated as O(log n̂). Therefore, so is the overall running time.
This concludes the proof of the theorem. �

Corollary 4 Given a LN(τ<)-sentence Γ and a N-specific Turing machine
TMOD[Γ], one can construct a FO(τ<)-sentence that defines S<

Γ,TMOD[Γ] .

Proof. By Theorem 3, we can use a random access machine M to recog-
nize S<

Γ,TMOD[Γ] , where M runs in time O(log n). Then, one can construct the

FO(τ<)-sentence from M as shown in [11], provided that first order logic is
extended with the numerical predicate BIT. �
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Then, by γΓ,TMOD[Γ] we denote the constructed FO(τ<)-sentence defining the
model class S<

Γ,TMOD[Γ] . This γΓ,TMOD[Γ] characterizes the corresponding Turing

machine TMOD[Γ] in two different ways. First, TMOD[Γ] is a Turing reduction
from MOD[Υτ< ] to MOD[Γ] if and only if γΓ,TMOD[Γ] is logically valid. Second,

TMOD[Γ] does not realize any Turing reduction from MOD[Υτ< ] to MOD[Γ] if
and only if MOD[γΓ,TMOD[Γ] ] is finite. We call the FO(τ<)-sentence γΓ,TMOD[Γ]

the characteristic sentence for the pair (Γ, TMOD[Γ]). The following theorem
holds.

Theorem 5 Let LN be a logic capturing a complexity class N on STRUC[τ<],
and Π ⊆ STRUC[τ<] a model class. Then, Π is N-complete if and only if there
exists a LN(τ<)-sentence Λ such that MOD[Λ] = Π and Λ is of the form

(γΓ,TMOD[Γ] ∧ Γ) ∨ (¬γΓ,TMOD[Γ] ∧Υτ<) (2)

where Γ is a LN(τ<)-sentence; TMOD[Γ] a N-specific Turing machine; γΓ,TMOD[Γ]

the characteristic sentence for (Γ, TMOD[Γ]).

Proof. For short, we denote the form (2) by ΦΓ,TMOD[Γ] .
First, we will prove that ΦΓ,TMOD[Γ] defines a N-complete problem for any

pair (Γ, TMOD[Γ]). Let TMOD[Γ] be a Turing reduction from MOD[Υτ< ] to
MOD[Γ]. Then, γΓ,TMOD[Γ] is logically valid. In this case, the LN(τ<)-senten-
ce ΦΓ,TMOD[Γ] is logically equivalent to Γ, and Γ defines a N-complete prob-
lem. Therefore, ΦΓ,TMOD[Γ] defines the same N-complete problem as well.

Now, let TMOD[Γ] be not a Turing reduction from MOD[Υτ< ] to MOD[Γ].
Then, MOD[γΓ,TMOD[Γ] ] is finite, and MOD[¬γΓ,TMOD[Γ] ] is cofinite. There-
fore, the model class MOD[ΦΓ,TMOD[Γ] ] differs from the model class MOD[Υτ< ]
only in a finite set of τ<-structures, i.e. MOD[ΦΓ,TMOD[Γ] ] \ MOD[Υτ< ] and
MOD[Υτ< ] \ MOD[ΦΓ,TMOD[Γ] ] are both finite. Hence, MOD[ΦΓ,TMOD[Γ] ] is
N-complete. Consequently, ΦΓ,TMOD[Γ] defines a N-complete problem in this
case as well.

Second, we will prove that any N-complete problem can be represented by
means of the form ΦΓ,TMOD[Γ] . Let Γ be a LN(τ<)-sentence defining an arbitrary

N-complete problem, and TMOD[Γ] a N-specific Turing machine realizing a Tur-
ing reduction from MOD[Υτ< ] to MOD[Γ]. Then, γΓ,TMOD[Γ] is logically valid.
In this case, the LN(τ<)-sentence Γ is logically equivalent to the LN(τ<)-sen-
tence ΦΓ,TMOD[Γ] . Since Γ defines a N-complete problem, so does ΦΓ,TMOD[Γ] .
This concludes the proof of the theorem. �

Thus, the form (2) can serve as a canonical form providing a syntactic tool
for showing N-completeness: if a problem on ordered structures in N is defined
by a sentence of the form, then the problem proves to be N-complete via Turing
reductions.
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4.2 Canonical form for complete problems on unordered
structures

We will introduce a canonical form for N-complete problems on unordered non-
Aristotelian structures. We denote by σ the vocabulary {R2}. In this section,
we by N mean one of the following complexity classes: coNP, NP, or PSPACE.
Let LN be a logic capturing N on STRUC[σ]. For definiteness, we assume
that LcoNP, LNP, and LPSPACE stand for the following logics: SO∀, SO∃, and
SO(PFP) respectively. Let Υ(R(x, y)) be a distinguished L(σ)-sentence defining
some N-complete model class.

We need to be able to construct sentences defining N-complete problems
for various non-Aristotelian vocabularies, using an operator over Υ(R(x, y)).
Let τ = {Ra1

1 , . . . , Ramm } be a fixed arbitrary non-Aristotelian vocabulary. We
define the operator Tτ for mapping Υ(R(x, y)) to a LN(τ)-sentence as follows.
We find the least number k which is subject to 1 ≤ k ≤ m and ak > 1. If ak = 2,
then Tτ (Υ(R(x, y))) , Υ[R(x, y)/Rk(x, y)]. If ak > 2, then Tτ (Υ(R(x, y))) ,
Υ[R(x, y)/∃zRk(x, y, z, . . . , z︸ ︷︷ ︸

ak−2 times

)], where z is a new variable (we assume that z does

not occur anywhere in Υ(R(x, y))). For short, let Υτ denote Tτ (Υ(R(x, y))).
Let us show that the L(τ)-sentence Υτ defines a N-complete problem. We

can easily reduce MOD[Υ(R(x, y))] to MOD[Υτ ] in the following way. Let
A be an arbitrary σ-structure. Then, we take a τ -structure B such that
‖B‖ = ‖A‖, either RBk = RA if ak = 2, or RBk = RA × {0}ak−2 if ak > 2;
RB1 = ∅, . . . , RBk−1 = ∅, RBk+1 = ∅, . . . , RBm = ∅. Note that A is a model of
Υ(R(x, y)) if and only if B is a model of Υτ . It is obvious that MOD[Υτ ]
is N-complete as well as MOD[Υ(R(x, y))]. Thus, the L(τ)-sentence Υτ indeed
defines some N-complete problem.

With each LN(τ)-sentence Γ and with each N-specific Turing machine
TMOD[Γ], we associate the following set of τ -structures:

SΓ,TMOD[Γ] , {A ∈ STRUC[τ ] | (∀B ∈ STRUC[τ ])[ ‖B‖ > `(2)(|〈A〉|)∨
(TMOD[Γ] accepts 〈B〉 ⇔ B |= Υτ ) ] }.

Like S<
Γ,TMOD[Γ] , the set SΓ,TMOD[Γ] has similar properties. Note that if the

condition “TMOD[Γ] accepts 〈B〉 ⇔ B |= Υτ” is satisfied for all B ∈ STRUC[τ ],
then TMOD[Γ] is a Turing reduction from MOD[Υτ ] to MOD[Γ]. In this case,
MOD[Γ] is a N-complete model class, and SΓ,TMOD[Γ] = STRUC[τ ]. If this is not
the case, then SΓ,TMOD[Γ] is finite. Let us show how to find a LN(τ)-sentence
that defines the model class SΓ,TMOD[Γ] .

The complexity class DTIME[n] consists of all problems decidable in linear
time in the input size n. The following theorem holds.

Theorem 6 SΓ,TMOD[Γ] ∈ DTIME[n].

Proof. It is similar to the proof of Theorem 3 in many respects. Let us
decide in linear time whether A ∈ SΓ,TMOD[Γ] or not, given a τ -structure A. Let
n̂ denote |〈A〉|.

12



First, we need to compute the number `(2)(n̂). Suppose that we use a usual
Turing machine rather than a random access machine. In this case, it is obvious
that the time necessary for computing `(2)(n̂) is O(n̂).

Second, we enumerate all τ -structures B ∈ STRUC[τ ] such that ‖B‖ ≤
`(2)(n̂). Since |〈B〉| ≤ p(‖B‖), the value |〈B〉| is bounded above by p(log log n̂),
where p is a polynomial dependent on the vocabulary τ . Therefore, this enu-
meration takes time O(2p(log log n̂)). Then, for each τ -structure B of the enu-
meration, we need to verify the following condition:

TMOD[Γ] accepts 〈B〉 ⇔ B |= Υτ . (3)

If condition (3) is not satisfied for some τ -structure B of the enumeration,
then the input τ -structure A does not belong to SΓ,TMOD[Γ] . Otherwise, A ∈
SΓ,TMOD[Γ] . Now, let us estimate the running time for verifying condition (3).

We can decide whether “B |= Υτ” for one τ -structure B in time
O(2p1(log log n̂)), where p1 is a polynomial. This follows from the fact that any
model-checking problem in N is decidable at most in exponential time. In a simi-
lar manner, the verification of “TMOD[Γ] accepts 〈B〉” takes time O(2p2(log log n̂)),
where p2 is a polynomial. This follows from the fact that a simulation of run-
ning TMOD[Γ] together with a simulation of oracle queries to MOD[Γ] requires
at most exponential time as well. Therefore, the verification of (3) takes time
O(2p1(log log n̂) + 2p2(log log n̂)), or, in short, O(2p

′(log log n̂)), where either p′ = p1

in case of lim
n̂→∞

p2(n̂)

p1(n̂)
<∞, or p′ = p2 otherwise.

Consequently, the total time to verify (3) for all τ -structures B of the
enumeration is O(2p(log log n̂) · 2p′(log log n̂)), or, in short, O(2p

′′(log log n̂)), where

p′′ = p+ p′. Note that lim
n̂→∞

2p
′′(log log n̂)

n̂
= 0 for any polynomial p′′. Then, this

time can be approximately estimated at most as O(n̂).
Thus, the overall running time consists of the time for computing `(2)(n̂)

and of the time for verifying (3) on all τ -structures B of the enumeration. The
both of these times are estimated as O(n̂). Therefore, so is the overall running
time. This concludes the proof of the theorem. �

Corollary 7 Given a LN(τ)-sentence Γ and a N-specific Turing machine
TMOD[Γ], one can construct a LN(τ)-sentence that defines SΓ,TMOD[Γ] .

Proof. By Fagin’s theorem [6], in case of N = NP, we can construct
a SO∃(τ)-sentence to define the model class SΓ,TMOD[Γ] since SΓ,TMOD[Γ] ∈
DTIME[n]. In case of N = PSPACE, we can use the same SO∃(τ)-sentence
since SO∃ is a fragment of SO(PFP). In case of N = coNP, we can at first
construct a SO∃(τ)-sentence to define the model class STRUC[τ ] \ SΓ,TMOD[Γ]

since STRUC[τ ] \ SΓ,TMOD[Γ] ∈ DTIME[n] as well as SΓ,TMOD[Γ] ∈ DTIME[n].
Then, the SO∀(τ)-sentence defining SΓ,TMOD[Γ] is obtained by logical negation
of this SO∃(τ)-sentence. �

Then, by ΘΓ,TMOD[Γ] we denote the constructed LN(τ)-sentence defining the
model class SΓ,TMOD[Γ] . This ΘΓ,TMOD[Γ] characterizes the corresponding Turing
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machine TMOD[Γ] in two different ways. First, TMOD[Γ] is a Turing reduction
from MOD[Υτ ] to MOD[Γ] if and only if ΘΓ,TMOD[Γ] is logically valid. Second,

TMOD[Γ] does not realize any Turing reduction from MOD[Υτ ] to MOD[Γ] if
and only if MOD[ΘΓ,TMOD[Γ] ] is finite. We call the LN(τ)-sentence ΘΓ,TMOD[Γ]

the characteristic sentence for the pair (Γ, TMOD[Γ]).
Similarly, by ΘΓ,TMOD[Γ] we denote a LN(τ)-sentence that defines the

model class STRUC[τ ] \ SΓ,TMOD[Γ] . Given a LN(τ)-sentence Γ and a N-spe-

cific Turing machine TMOD[Γ], this ΘΓ,TMOD[Γ] can be also constructed since
STRUC[τ ] \ SΓ,TMOD[Γ] ∈ DTIME[n] as well as SΓ,TMOD[Γ] ∈ DTIME[n]. Note

that ΘΓ,TMOD[Γ] is logically equivalent to ¬ΘΓ,TMOD[Γ] . However, we cannot di-
rectly use ¬ΘΓ,TMOD[Γ] to construct a canonical form since ¬ΘΓ,TMOD[Γ] is not a

LN(τ)-sentence in case of N ∈ {NP, coNP}. Therefore, we will use ΘΓ,TMOD[Γ]

instead. We call the LN(τ)-sentence ΘΓ,TMOD[Γ] the complementary sentence
for ΘΓ,TMOD[Γ] . Then, the following theorem holds.

Theorem 8 Let LN be a logic capturing a complexity class N on STRUC[τ ],
and Π ⊆ STRUC[τ ] a model class. Then, Π is N-complete if and only if there
exists a LN(τ)-sentence Λ such that MOD[Λ] = Π and Λ is of the form

(ΘΓ,TMOD[Γ] ∧ Γ) ∨ (ΘΓ,TMOD[Γ] ∧Υτ ) (4)

where Γ is a LN(τ)-sentence; TMOD[Γ] a N-specific Turing machine; ΘΓ,TMOD[Γ]

the characteristic sentence for the pair (Γ, TMOD[Γ]); ΘΓ,TMOD[Γ] the complemen-
tary sentence for ΘΓ,TMOD[Γ] .

Proof. For short, we denote the form (4) by ΦΓ,TMOD[Γ] .
First, we will prove that ΦΓ,TMOD[Γ] defines a N-complete problem for any

pair (Γ, TMOD[Γ]). Let TMOD[Γ] be a Turing reduction from MOD[Υτ ] to
MOD[Γ]. Then, ΘΓ,TMOD[Γ] is logically valid. In this case, the LN(τ)-senten-
ce ΦΓ,TMOD[Γ] is logically equivalent to Γ, and Γ defines a N-complete prob-
lem. Therefore, ΦΓ,TMOD[Γ] defines the same N-complete problem as well.

Now, let TMOD[Γ] be not a Turing reduction from MOD[Υτ ] to MOD[Γ].
Then, MOD[ΘΓ,TMOD[Γ] ] is finite, and MOD[ΘΓ,TMOD[Γ] ] is cofinite. There-
fore, the model class MOD[ΦΓ,TMOD[Γ] ] differs from the model class MOD[Υτ ]
only in a finite set of τ -structures, i.e. MOD[ΦΓ,TMOD[Γ] ] \ MOD[Υτ ] and
MOD[Υτ ] \ MOD[ΦΓ,TMOD[Γ] ] are both finite. Hence, MOD[ΦΓ,TMOD[Γ] ] is
N-complete. Consequently, ΦΓ,TMOD[Γ] defines a N-complete problem in this
case as well.

Second, we will prove that any N-complete problem can be represented by
means of the form ΦΓ,TMOD[Γ] . Let Γ be a LN(τ)-sentence defining an arbitrary

N-complete problem, and TMOD[Γ] a N-specific Turing machine realizing a Tur-
ing reduction from MOD[Υτ ] to MOD[Γ]. Then, ΘΓ,TMOD[Γ] is logically valid.
In this case, the LN(τ)-sentence Γ is logically equivalent to the LN(τ)-sentence
ΦΓ,TMOD[Γ] . Since Γ defines a N-complete problem, so does ΦΓ,TMOD[Γ] . This
concludes the proof of the theorem. �
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Thus, the form (4) can serve as a canonical form providing a syntactic tool for
showing N-completeness: if a problem on unordered structures in N is defined
by a sentence of the form, then the problem proves to be N-complete via Turing
reductions.

5 Logics for completeness

At first, we will consider ordered structures. Let an arbitrary vocabulary τ<
containing < be given. Let us address the following question. Can one re-
cursively enumerate all LN(τ<)-sentences that define N-complete problems on
STRUC[τ<], where N denotes one of the following complexity classes: NL, P,
coNP, NP, or PSPACE? We will answer this question in the negative.

We will use notions of context-free languages [7], and exploit them in a
similar manner as in [15]. Let Σ be a fixed alphabet containing at least two
symbols. By G and L(G) we mean a context-free grammar and the context-free
language defined by this grammar respectively. We assume that there cannot be
any finite N-complete set. Suppose that Φ1,Φ2, . . . is a recursive enumeration
of all LN(τ<)-sentences defining N-complete problems. With every context-free
grammar G with the terminal alphabet Σ, we associate the following set:

S<G , {A ∈ STRUC[τ<] | (∀w ∈ Σ∗)[ |w| > `(3)(|〈A〉|) ∨ w ∈ L(G)] }.

Since the decision problem of w ∈?L(G) requires at most polynomial time,
we have S<G ∈ DTIME[log n] by analogy with Theorem 3. Then, there is
a FO(τ<)-sentence γG that defines S<G . Note that if L(G) = Σ∗, then γG
is logically valid. Otherwise, the set MOD[γG] is finite. It follows that the
LN(τ<)-sentence γG ∧ Υτ< defines a N-complete problem if and only if the
statement L(G) = Σ∗ holds.

Let an arbitrary context-free grammar G with the terminal alphabet Σ be
given. Let us decide whether L(G) = Σ∗ or not. We concurrently start the
following two algorithms. First, we enumerate all strings in Σ∗. If we can
find a string w such that w 6∈ L(G), then L(G) 6= Σ∗. Second, we construct
the LN(τ<)-sentence γG ∧ Υτ< for this grammar G. Then, we enumerate the
LN(τ<)-sentences Φ1,Φ2, . . .. If we can find Φi such that Φi = γG ∧Υτ< , then
L(G) = Σ∗. Hence, we can algorithmically decide whether L(G) = Σ∗ or not.
However, this contradicts the fact that the decision problem of L(G) =? Σ∗

is algorithmically undecidable [7]. Thus, one cannot recursively enumerate all
LN(τ<)-sentences that define N-complete problems on STRUC[τ<].

Nevertheless, we can use form (2) in order to recursively enumerate (not all)
LN(τ<)-sentences that define all N-complete problems. Let CN(τ<) denote the
following set of all LN(τ<)-sentences of form (2):

{Φ ∈ LN(τ<) |Φ = (γΓ,TMOD[Γ] ∧ Γ) ∨ (¬γΓ,TMOD[Γ] ∧Υτ<); Γ ∈ LN(τ<),

TMOD[Γ] is a N-specific Turing machine}.

Note that CN(τ<) is recursively enumerable since we can effectively enumer-
ate all possible pairs (Γ, TMOD[Γ]). Therefore, the set of all N-complete prob-
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lems on STRUC[τ<], defined by sentences in CN(τ<), is recursively enumerable
as well.

However, it is hard to determine whether CN(τ<) is recursive. In order to be
able to decide whether Φ ∈ CN(τ<), we need to find the corresponding N-specific
machine TMOD[Γ]. This seems to be undecidable. Fortunately, we can change
form (2) in such a way as to obtain a recursive set of LN(τ<)-sentences defining
all N-complete problems on STRUC[τ<].

With each nonempty binary string w, we associate the following identically
false first order sentence ψw:

Qx1 . . .Qxk[x1 6= x1 ∧ · · · ∧ xk 6= xk]

where k = |w|; Qxi denotes either ∃xi if w[i] = 1, or ∀xi if w[i] = 0, for every
1 ≤ i ≤ k. We say that ψw encodes the binary string w, and call ψw an encoding
sentence. Since such a first order sentence can be considered in a certain sense
as a representation of binary strings, we will use this sentence for an appropriate
encoding of Turing machines. Let us introduce the following form:

(γΓ,TMOD[Γ] ∧ Γ) ∨ (¬γΓ,TMOD[Γ] ∧Υτ<) ∨ ψ〈TMOD[Γ]〉 (5)

Note that form (5) is logically equivalent to form (2) since ψ〈TMOD[Γ]〉 is
identically false. However, in contrast to (2), form (5) allows us to easily con-
struct a logic capturing the complexity class of all N-complete problems on all
ordered structures. Indeed, let COLN be a mapping from every vocabulary
τ< containing < to COLN(τ<), where COLN(τ<) denotes the following set of
LN(τ<)-sentences of form (5):

{Φ ∈ LN(τ<) | Φ = (γΓ,TMOD[Γ] ∧ Γ) ∨ (¬γΓ,TMOD[Γ] ∧Υτ<) ∨ ψ〈TMOD[Γ]〉;

Γ ∈ LN(τ<), TMOD[Γ] is a N-specific Turing machine}.

Then, the following theorem holds.

Theorem 9 Let LN be a logic capturing a complexity class N (among the
classes NL, P, coNP, NP, and PSPACE) on STRUC[τ<] for some fixed vo-
cabulary τ< containing <. Then, COLN is a decidable fragment of LN that
captures the complexity class of all N-complete problems on STRUC[τ<].

Proof. Let us show how to effectively decide whether Φ ∈ COLN(τ<) or not,
given an arbitrary Φ ∈ LN(τ<). At first, we verify whether Φ is of the form
(γ ∧ Γ) ∨ (¬γ ∧ Υ) ∨ ψ or not, where Γ and Υ are both LN(τ<)-sentences; γ
and ψ are both first order sentences. If this is not the case, then Φ 6∈ COLN.
Otherwise, we apply the operator Tτ< to Υ(R(x)), and obtain Υτ< . If Υ 6= Υτ< ,
then Φ 6∈ COLN. Otherwise, we check whether ψ is an encoding sentence ψw
or not. If this is not the case, then Φ 6∈ COLN. Otherwise, we verify whether
w is a code of some N-specific Turing machine TMOD[Γ] or not. If w does not
encode any N-specific Turing machine TMOD[Γ], then Φ 6∈ COLN. Otherwise,
we recover TMOD[Γ] from its code w. Then, we construct the characteristic sen-
tence γΓ,TMOD[Γ] for the pair (Γ, TMOD[Γ]). If γ = γΓ,TMOD[Γ] , then Φ ∈ COLN.
Otherwise, Φ 6∈ COLN.

16



Thus, the set COLN(τ<) of LN(τ<)-sentences is recursive, and COLN is a
logic that represents a decidable fragment of LN. Since form (5) is logically
equivalent to form (2), Theorem 5 holds for form (5) as well as for form (2).
Then, a problem Π ⊆ STRUC[τ<] is N-complete if and only if there exists a
COLN(τ<)-sentence Λ defining Π. This concludes the proof of the theorem. �

Corollary 10 If a logic LN captures a complexity class N on all ordered struc-
tures, then the logic COLN captures the complexity class of all N-complete prob-
lems on all ordered structures.

Proof. It is immediate from the theorem. �

Now, we proceed to unordered non-Aristotelian structures. Let us introduce
the following form:

(ΘΓ,TMOD[Γ] ∧ Γ) ∨ (ΘΓ,TMOD[Γ] ∧Υτ ) ∨ ψ〈TMOD[Γ]〉 (6)

Note that form (6) is logically equivalent to form (4) since ψ〈TMOD[Γ]〉 is
identically false. However, in contrast to (4), form (6) allows us to easily con-
struct a logic capturing the complexity class of all N-complete problems on all
non-Aristotelian structures. Indeed, let CLN be a mapping from every non-
Aristotelian vocabulary τ to CLN(τ), where CLN(τ) denotes the following set
of LN(τ)-sentences of form (6):

{Φ ∈ LN(τ) |Φ = (ΘΓ,TMOD[Γ] ∧ Γ) ∨ (ΘΓ,TMOD[Γ] ∧Υτ ) ∨ ψ〈TMOD[Γ]〉;

Γ ∈ LN(τ), TMOD[Γ] is a N-specific Turing machine}.

Then, the following theorem holds.

Theorem 11 Let LN be a logic capturing a complexity class N (among the
classes coNP, NP, and PSPACE) on STRUC[τ ] for a fixed arbitrary non-
Aristotelian vocabulary τ . Then, CLN is a decidable fragment of LN that cap-
tures the complexity class of all N-complete problems on STRUC[τ ].

Proof. Let us show how to effectively decide whether Φ ∈ CLN(τ) or not,
given an arbitrary Φ ∈ LN(τ). At first, we verify whether Φ is of the form
(Θ ∧ Γ) ∨ (Ξ ∧ Υ) ∨ ψ or not, where Θ, Γ, Ξ, and Υ are LN(τ)-sentences; ψ is
a first order sentence. If this is not the case, then Φ 6∈ CLN. Otherwise, we
apply the operator Tτ to Υ(R(x, y)), and obtain Υτ . If Υ 6= Υτ , then Φ 6∈ CLN.
Otherwise, we check whether ψ is an encoding sentence ψw or not. If this is
not the case, then Φ 6∈ CLN. Otherwise, we verify whether w is a code of some
N-specific Turing machine TMOD[Γ] or not. If w does not encode any N-specific
Turing machine TMOD[Γ], then Φ 6∈ CLN. Otherwise, we recover TMOD[Γ] from
its code w. Then, we construct the characteristic sentence ΘΓ,TMOD[Γ] for the

pair (Γ, TMOD[Γ]). Also, we construct the complementary sentence ΘΓ,TMOD[Γ]

for ΘΓ,TMOD[Γ] , given TMOD[Γ] and Γ. If Θ = ΘΓ,TMOD[Γ] and Ξ = ΘΓ,TMOD[Γ] ,
then Φ ∈ CLN. Otherwise, Φ 6∈ CLN.
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Thus, the set CLN(τ) of LN(τ)-sentences is recursive, and CLN is a logic that
represents a decidable fragment of LN. Since form (6) is logically equivalent to
form (4), Theorem 8 holds for form (6) as well as for form (4). Then, a problem
Π ⊆ STRUC[τ ] is N-complete if and only if there exists a CLN(τ)-sentence Λ
defining Π. This concludes the proof of the theorem. �

Corollary 12 If a logic LN captures a complexity class N on all structures,
then the logic CLN captures the complexity class of all N-complete problems on
all non-Aristotelian structures.

Proof. It is immediate from the theorem. �

6 Canonical form and logic for NP ∩ coNP

Let a vocabulary τ< containing < be given. In a very similar way (see section
5), we will show that one cannot recursively enumerate all SO∃(τ<)-sentences
defining problems in NP ∩ coNP, provided that NP ∩ coNP 6= NP. Let Γ denote
a distinguished SO∃(τ<)-sentence that defines some problem in NP ∩ coNP.
Here the notation Υτ< stands for a SO∃(τ<)-sentence defining a NP-comple-
te problem. Let us consider a SO∃(τ<)-sentence Φ of the form (γG ∧ Γ) ∨
(¬γG ∧Υτ<). Note that if the statement L(G) = Σ∗ holds, then γG is logically
valid. It follows that Φ is logically equivalent to Γ, and Φ defines a problem
in NP ∩ coNP in this case. If the statement L(G) 6= Σ∗ holds, then MOD[γG]
is finite. Therefore, the set MOD[Υτ< ] differs from the set MOD[Φ] only in a
finite set of τ<-structures, i.e. MOD[Υτ< ] \MOD[Φ] and MOD[Φ] \MOD[Υτ< ]
are both finite. Then, Φ defines a NP-complete problem that cannot be in
NP ∩ coNP, on the assumption NP ∩ coNP 6= NP. Thus, Φ defines a problem
in NP ∩ coNP if and only if the statement L(G) = Σ∗ holds.

Let an arbitrary context-free grammar G with the terminal alphabet Σ
be given. We construct the SO∃(τ<)-sentence (γG ∧ Γ) ∨ (¬γG ∧ Υτ<) for
this grammar G. Suppose that we recursively enumerate all SO∃(τ<)-senten-
ces Φ1,Φ2, . . . that define problems in NP ∩ coNP. If we find Φi such that
Φi = (γG ∧ Γ) ∨ (¬γG ∧Υτ<), then we have L(G) = Σ∗. However, this contra-
dicts the fact that the statement L(G) = Σ∗ is algorithmically undecidable (see
section 5). Thus, one cannot recursively enumerate all SO∃(τ<)-sentences that
define problems on STRUC[τ<] in NP ∩ coNP, provided that NP ∩ coNP 6= NP.

Then, we state the following question. What is it about a SO∃-sentence that
makes its defined problem be in NP ∩ coNP? We will answer this question in
the affirmative.

Gurevich [10] conjectured that no logic captures the complexity class
NP ∩ coNP. The conjecture is based on the fact that the existence of such
a logic (in the sense of Gurevich) for NP ∩ coNP implies the existence of a com-
plete problem in NP ∩ coNP. However, there does not exist such a complete
problem relative to a certain oracle [18]. Therefore, NP ∩ coNP very likely has
no complete problem.
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Nevertheless, it is not necessary for a logic to imply the existence of a com-
plete problem. For example, no complete problem is known in the complexity
class PH, whereas second order logic captures PH (see [19]).

We can extend our approach beyond complete problems. A canonical form
(similar to form (6)) will be developed to define problems in NP ∩ coNP. More-
over, we will develop a logic that captures NP ∩ coNP and does not require the
existence of any complete problem in NP ∩ coNP.

Let τ be a fixed vocabulary, where τ may be any (including Aristotelian)
vocabulary. Then, with each pair (Λ,Γ) of SO∃(τ)-sentences, we associate the
following set of τ -structures:

SΛ,Γ , {A ∈ STRUC[τ ] | (∀B ∈ STRUC[τ ])[ ‖B‖ > `(2)(|〈A〉|)∨
(B |= Λ⇔ B 6|= Γ) ] }.

Note that the set SΛ,Γ has very similar properties as the previously consid-
ered set SΓ,TMOD[Γ] . We have the following theorem.

Theorem 13 SΛ,Γ ∈ DTIME[n].

Proof. It is similar to the proof of Theorem 6 in many respects. Let us decide
whether A ∈ SΛ,Γ or not, given a τ -structure A. Let n̂ denote |〈A〉|.

First, we need to compute the number `(2)(n̂). It is obvious that we can find
`(2)(n̂) in time O(n̂).

Second, we enumerate all τ -structures B ∈ STRUC[τ ] such that ‖B‖ ≤
`(2)(n̂). Since |〈B〉| ≤ p(‖B‖), the value |〈B〉| is bounded above by p(log log n̂),
where p is a polynomial dependent on the vocabulary τ . Therefore, this enu-
meration takes time O(2p(log log n̂)). Then, for each τ -structure B of the enu-
meration, we need to verify the following condition:

B |= Λ⇔ B 6|= Γ. (7)

If condition (7) is not satisfied for some τ -structure B of the enumeration,
then the input τ -structure A does not belong to SΛ,Γ. Otherwise, A ∈ SΛ,Γ.
Now, let us estimate the running time for verifying condition (7).

We can verify (7) for one τ -structure B in time O(2p
′(log log n̂)), where p′ is

a polynomial. This follows from the fact that any model-checking problem in
NP ∩ coNP is decidable at most in exponential time.

Consequently, the total time to verify (7) for all τ -structures B of the
enumeration is O(2p(log log n̂) · 2p′(log log n̂)), or, in short, O(2p

′′(log log n̂)), where

p′′ = p + p′. Since lim
n̂→∞

2p
′′(log log n̂)

n̂
= 0 for any polynomial p′′, this time can

be approximately estimated at most as O(n̂).
Thus, the overall running time consists of the time for computing `(2)(n̂)

and of the time for verifying (7) on all τ -structures B of the enumeration. The
both of these times are estimated as O(n̂). Therefore, so is the overall running
time. This concludes the proof of the theorem. �
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Corollary 14 Given a pair (Λ,Γ) of SO∃(τ)-sentences, one can construct a
SO∃(τ)-sentence that defines SΛ,Γ.

Proof. It follows from the statement SΛ,Γ ∈ DTIME[n]. �

Then, by ΘΛ,Γ we denote the constructed SO∃(τ)-sentence defining the
model class SΛ,Γ. This ΘΛ,Γ characterizes Λ and Γ in the following way: if
ΘΛ,Γ is logically valid, then MOD[Λ] and MOD[Γ] are both in NP ∩ coNP. We
call the SO∃(τ)-sentence ΘΛ,Γ the characteristic sentence for the pair (Λ,Γ).
Then, the following theorem holds.

Theorem 15 Let Π ⊆ STRUC[τ ] be a model class. Then, Π is in NP ∩ coNP
if and only if there exists a SO∃(τ)-sentence Ω such that MOD[Ω] = Π and Ω
is of the form

(ΘΛ,Γ ∧ Γ) ∨ ψ〈Λ〉 (8)

where Λ and Γ are both SO∃(τ)-sentences; ΘΛ,Γ the characteristic sentence for
(Λ,Γ); ψ〈Λ〉 the sentence encoding the binary string 〈Λ〉.

Proof. For short, we denote form (8) by ΦΛ,Γ.
First, we will prove that ΦΛ,Γ defines a problem in NP ∩ coNP for any pair

(Λ,Γ) of SO∃(τ)-sentences. Suppose that MOD[Γ] = STRUC[τ ] \ MOD[Λ].
Then, MOD[Γ] ∈ coNP, and, therefore, we have MOD[Γ] ∈ NP ∩ coNP. Note
that ΘΛ,Γ is logically valid in this case. Then, ΦΛ,Γ is logically equivalent to Γ.
It follows that ΦΛ,Γ defines the problem MOD[Γ] in NP ∩ coNP. Now, suppose
that MOD[Γ] 6= STRUC[τ ] \ MOD[Λ]. Then, MOD[ΘΛ,Γ] is finite, and so is
MOD[ΦΛ,Γ]. Since the set MOD[ΦΛ,Γ] is finite, MOD[ΦΛ,Γ] ∈ NP ∩ coNP in
this case as well.

Second, we will prove that any problem in NP ∩ coNP can be defined by
means of the form ΦΛ,Γ. Let Γ be a SO∃(τ)-sentence defining an arbitrary
problem in NP ∩ coNP. Then, MOD[Γ] and STRUC[τ ] \MOD[Γ] are both in
NP. Therefore, there exists a SO∃(τ)-sentence Λ that defines the model class
STRUC[τ ] \MOD[Γ]. Note that the characteristic sentence ΘΛ,Γ for the pair
(Λ,Γ) is logically valid in this case. Moreover, Γ is logically equivalent to ΦΛ,Γ.
Since Γ defines a problem in NP ∩ coNP, so does ΦΛ,Γ. This concludes the proof
of the theorem. �

Thus, form (8) can serve as a canonical form for NP ∩ coNP. Now, we can
use form (8) in order to develop a logic capturing NP ∩ coNP. By LNP∩coNP we
mean a mapping from every vocabulary τ to LNP∩coNP(τ), where LNP∩coNP(τ)
denotes the following set of SO∃(τ)-sentences:

{Φ ∈ SO∃(τ) |Φ = (ΘΛ,Γ ∧ Γ) ∨ ψ〈Λ〉; Γ ∈ SO∃(τ),Λ ∈ SO∃(τ)}.

Then, the following theorem holds.

Theorem 16 LNP∩coNP is a decidable fragment of SO∃ logic that captures
NP ∩ coNP.
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Proof. It is similar to the proof of Theorem 11. Let us fix an arbitrary
vocabulary τ . We will show how to effectively decide whether Φ ∈ LNP∩coNP(τ)
or not, given an arbitrary Φ ∈ SO∃(τ). At first, we verify whether Φ is of the
form (Θ ∧ Γ) ∨ ψ or not, where Γ and Θ are both SO∃(τ)-sentences; ψ is a
first order sentence. If this is not the case, then Φ 6∈ LNP∩coNP. Otherwise,
we check whether ψ is an encoding sentence ψw or not. If this is not the
case, then Φ 6∈ LNP∩coNP. Otherwise, we check whether w encodes some well-
formed SO∃(τ)-sentence Λ or not. If this is not the case, then Φ 6∈ LNP∩coNP.
Otherwise, we recover Λ from its code w. Then, we construct the characteristic
sentence ΘΛ,Γ for the pair (Λ,Γ). If Θ = ΘΛ,Γ, then Φ ∈ LNP∩coNP. Otherwise,
Φ 6∈ LNP∩coNP.

Thus, the set LNP∩coNP(τ) of SO∃(τ)-sentences is recursive, and LNP∩coNP

is a logic that represents a decidable fragment of SO∃. Note that Theorem 15
implies that a problem Π ⊆ STRUC[τ ] is in NP ∩ coNP if and only if there
exists a LNP∩coNP(τ)-sentence Ω defining Π. This concludes the proof of the
theorem. �

7 Concluding remarks

We have developed canonical forms for problems that are complete via Turing
reductions. Also, we have shown that any complete problem can be easily
defined by one of these forms. Besides, we have provided an evidence that there
cannot be any complete problem on Aristotelian structures in the complexity
classes P, coNP, NP, and PSPACE.

Logics for complete problems in the complexity classes NL, P, coNP, NP,
and PSPACE have been developed on the basis of the canonical form (5) that
defines these problems on ordered structures. On the other hand, logics for
complete problems in the complexity classes coNP, NP, and PSPACE have been
developed on the basis of the canonical form (6) that defines these problems on
unordered non-Aristotelian structures. It is very likely that analogous canonical
forms can be also developed to construct logics for complete problems in other
complexity classes.

Besides, we have extended our approach beyond complete problems. Using
a similar form, we have developed a logic that captures the complexity class
NP ∩ coNP which very likely contains no complete problem. Note that a recur-
sive enumeration of all problems in NP ∩ coNP was considered to be difficult
(see, for instance, [5, 16]). Up to our knowledge, no such recursive enumeration
was known till now. Dawar [5] pointed out: “...the natural set of witnesses for
NP ∩ coNP is not recursively enumerable. Thus, finding a recursively enumer-
able set of witnesses would require a fundamentally new characterization of the
class and would be a major breakthrough in complexity theory.”. Nevertheless,
using the logic LNP∩coNP to capture NP ∩ coNP, we recursively enumerate all
problems in NP ∩ coNP by enumerating the sentences of this logic.

In conclusion, we have modified a fragment of Immerman’s diagram [11] in
respect to the complexity classes from P to PSPACE, as shown in Figure 2 (cf.
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Figure 2: The World of Descriptive and Computational Complexity from P to
PSPACE: shaded areas indicate our developed logics for NP-complete problems,
coNP-complete problems, P-complete problems, and NP ∩ coNP.

Figure 1). For purposes of clarity, in the diagram we have permitted ourself to
shade areas depicting the following complexity classes: NP-complete problems,
coNP-complete problems, P-complete problems, and NP ∩ coNP for which we
have developed logics for the first time. Moreover, for the complexity classes of
PSPACE-complete problems and NL-complete problems which are not depicted
in Immerman’s diagram, we have developed logics as well.
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[9] P. Grünwald and P. Vitányi. Algorithmic information theory. In Hand-
book of the Philosophy of Science. Volume 8: Philosophy of Information,
P. Adriaans and J. van Benthem, eds, pp. 281–317. Elsevier B.V., 2008.

[10] Y. Gurevich. Logic and the challenge of computer science. In Current
Trends in Theoretical Computer Science, E. Börger, ed., pp. 1–57. Com-
puter Science Press, Rockville, 1988.

[11] N. Immerman. Descriptive Complexity. Springer, 1998.

[12] R. E. Ladner and N. A. Lynch. Relativization of questions about log space
computability. Mathematical Systems Theory, 10, 19–32, 1976.

[13] J. Lukasiewicz. Aristotle’s Syllogistic from the Standpoint of Modern For-
mal Logic. Oxford University Press, 1957.

[14] J. A. Medina and N. Immerman. A syntactic characterization of NP-comp-
leteness. In Proceedings of the 9th IEEE Symposium on Logic in Computer
Science, pp. 241–250, 1994.

[15] V. G. Naidenko. To the problem P =? NP. Doklady Mathematics, 53,
411–412, 1996.

[16] C. R. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. Journal of Computer and System Sciences,
48, 498–532, 1994.

[17] D. Richerby. Logical characterizations of PSPACE. In Computer Science
Logic: 18th International Workshop, CSL 2004, Vol. 3210 of Lecture Notes
in Computer Science, J. Marcinkowski and A. Tarlecki, eds, pp. 370–384.
Springer, 2004.

[18] M. Sipser. On relativization and the existence of complete sets. In Pro-
ceedings of the 9th International Colloquium on Automata, Languages and
Programming, Vol. 140 of Lecture Notes in Computer Science, M. Nielsen
and E.M. Schmidt, eds, pp. 523–531. Springer, 1982.

[19] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Sci-
ence, 3, 1–22, 1977.

23


	1 Introduction
	2 Preliminaries
	3 Aristotelian structures and completeness
	4 Canonical forms for complete problems
	4.1 Canonical form for complete problems on ordered structures
	4.2 Canonical form for complete problems on unordered structures

	5 Logics for completeness
	6 Canonical form and logic for NP n coNP
	7 Concluding remarks

