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On frontal operators in Hilbert algebras
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Abstract
In this article, we introduce and study a family of compatible functions in Hilbert algebras which in the case of Heyting
algebras agree with the frontal operators given by Esakia (2006, J. Appl. Non-Class. Log., 16, 349–366). Moreover, we give a
representation theory, based on previous works by Cabrer, Celani and Montangie, for Hilbert algebras with a frontal operator
and for Hilbert algebras with some particular frontal operators.
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1 Introduction and basic results

Hilbert algebras represent the algebraic counterpart of the implicative fragment of intuitionistic
propositional logic. These algebras were introduced in early 1950s by Henkin for some investigations
of implication in intuitionistic and other non-classical logics ([20], p. 16). In the 1960s, they were
studied especially by Horn and Diego in [11, 15]. For the general development of Hilbert algebras,
the notion of deductive system (also called implicative filter) plays an important role. For example,
it is known that the set of all deductive systems of a Hilbert algebra is a distributive lattice order
isomorphic to the lattice of congruences (see [17]). In this work, we characterize compatible functions
in Hilbert algebras. We introduce and study a family of compatible functions, which are particular
cases of the modal operators considered by Celani and Montangie in [8], and which also generalize
the frontal operators given by Esakia in [12]. We further develop some relevant examples that were
studied by Caicedo and Cignoli in [4] for the case of Heyting algebras (see also [10]).

In Section 2, we give our characterization of compatible functions in Hilbert algebras. We use it
to show that the variety of Hilbert algebras is not locally affine complete, and expansive modal maps
are compatible. In Section 3, we define and study frontal operators in Hilbert algebras, a particular
case of expansive modal maps. Moreover, we introduce three examples of frontal operators (S, γ and
G) that generalize the operators explored in [4, 10]. In particular, we show that S is a new implicit
connective in the sense of [4, 5], G is a new implicit connective over Hilbert algebras with (explicit)
bottom and γ is also an implicit connective over Hilbert algebras with (explicit) bottom. Finally, we
use the irreducible deductive systems of a Hilbert algebra to prove that G is a frontal operator. In
Section 4, we give a representation theory for Hilbert algebras with a frontal operator and determine
explicitly the representation for Hilbert algebras with some particular frontal operators, based on
previous works by Cabrer, Celani and Montangie ([3, 8, 9]).

We start with some definitions and preliminary results.

DEFINITION 1
A Hilbert algebra is an algebra 〈H ,→,1〉 of type (2,0) which satisfies the following conditions:

(a) a→ (b→a)=1.
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2 Frontal operators in Hilbert algebras

(b) a→ (b→c)= (a→b)→ (a→c).
(c) If a→b=b→a=1, then a=b.

It is well known that the class of Hilbert algebras forms a variety. The following equations are an
equational basis for this variety:

1. a→a=1,
2. 1→a=a,
3. a→ (b→c)= (a→b)→ (a→c),
4. (a→b)→ ((b→a)→a))= (b→a)→ ((a→b)→b)).

In every Hilbert algebra we have the partial order

a≤b if and only if a→b=1,

which is called natural order. Relative to the natural order on H , 1 is the greatest element. If H has a
first element, 0, H is called bounded; in this case, for x∈H we denote ¬x=x→0. In what follows,
we say that a Hilbert algebra is bounded if the bottom is in the language of the Hilbert algebra.

Now we shall give some basic results about Hilbert algebras (see e.g. [2]).

LEMMA 2
Let H be a Hilbert algebra and a,b,c∈H . Then we have the following conditions:

1. a≤b→a;
2. a≤ (a→b)→b;
3. a→1=1;
4. a→ (b→c)=b→ (a→c);
5. ((a→b)→b)→b=a→b;
6. a→b≤ (b→c)→ (a→c);
7. If a≤b, then c→a≤c→b and b→c≤a→c;
8. (a→b)→ (b→a)=b→a;
9. ((a→b)→a)→b=a→b.

The following example will be useful in this work:

EXAMPLE 3
In any poset H with top element 1, it is possible to define the following binary operation:

a→b=
{

1 if a≤b
b otherwise

The structure 〈H ,→,1〉 is a Hilbert algebra.

DEFINITION 4
A subset D of a Hilbert algebra is a deductive system if

(d1) 1∈D.
(d2) If a∈D and a→b∈D then b∈D.

Let H be a Hilbert algebra. If C ⊆H we write 〈C〉 for the deductive system generated by C. It
follows from Lemma 2.3 of [1] that

〈C〉={a∈H :a1 → (a2 → (a3......(an →a)......) for some a1,...,an ∈C}.
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In particular, we have that

〈{a,b}〉={c∈H :a→ (b→c)=1}={c∈H :a≤b→c}. (1)

A proper deductive system D of a Hilbert algebra H is irreducible if for any deductive systems D1

and D2 such that D=D1 ∩D2, it follows that D=D1 or D=D2. The set of all irreducible deductive
systems of H is denoted X (H ). For the following two lemmas see [3].

LEMMA 5
Let H be a Hilbert algebra and D a proper deductive system of H . The following conditions are
equivalent:

1. D∈X (H ).
2. If a,b /∈D, there exists c /∈D such that a,b≤c.
3. If a,b /∈D, there exists c /∈D such that a→c,b→c∈D.

LEMMA 6
Let H be a Hilbert algebra. Then

1. For all a,b∈H , if a�b then there exists P∈X (H ) such that a∈P and b /∈P.
2. If P∈X (H ) then a→b /∈P if and only if there exists Q∈X (H ) such that P⊆Q, a∈Q and b /∈Q.

2 Compatible functions

Compatibility of functions is a classical topic in Universal Algebra. In [4] compatible functions
were studied in Heyting algebras, following basically the characterization of compatible functions
by means of the relationship between congruences and filters. In this section, we study compatible
functions in Hilbert algebras using the link between congruences and deductive systems ([17]). More
precisely, we establish a characterization for compatible functions in Hilbert algebras. We also prove
that the variety of Hilbert algebras is not locally affine complete, and we show that expansive modal
operators are compatible.

If θ is a congruence of H and a,b∈H , we write a/θ for the equivalence class of a and θ (a,b) for
the congruence generated by (a,b).

The following remark is part of the folklore of Hilbert algebras:

REMARK 1
There exists an order isomorphism between the lattice of congruences of H and the lattice of
deductive systems of H . The isomorphism is established via the assignments θ →1/θ and D→
θD ={(a,b)∈H ×H :a→b∈D and b→a∈D}.
LEMMA 2
Let H be a Hilbert algebra, θ a congruence of H and a,b∈H .

(a) Let c,d ∈H . Then cθd if and only if (c→d,1)∈θ and (d →c,1)∈θ .
(b) Let c,d ∈H . Then (c,d)∈θ (a,b) if and only if a→b≤ (b→a)→ (c→d) and a→b≤ (b→

a)→ (d →c).

PROOF. By Remark 1 we obtain the item (a). An alternative proof can be obtained using the equation
(a→b)→ ((b→a)→a))= (b→a)→ ((a→b)→b)). Now we prove the item (b). By Remark 1
again we have that 1/θ (a,b)=〈{a→b,b→a}〉. Using the equality (1) and the item (a) we obtain
that (c,d)∈θ (a,b) if and only if (c→d,1)∈θ (a,b) and (d →c,1)∈θ (a,b) if and only if a→b≤
(b→a)→ (c→d) and a→b≤ (b→a)→ (d →c).
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Now we recall the following:

DEFINITION 3
Let H be an algebra and let f :Hn →H be a function.

1. We say that f is compatible with a congruence θ of H if (ai,bi)∈θ for i=1,...,n implies
(f (a1,...,an),f (b1,...,bn))∈θ .

2. We say that f is a compatible function of H provided it is compatible with all the congruences
of H .

The simplest examples of compatible functions in an algebra H are the polynomial functions.
The notion of polynomial used here is simply that from universal algebra ([16]). It is known that a
function f :H →H is compatible if and only if (f (a),f (b))∈θ (a,b) for every a,b∈H .

Taking into account Lemma 2 we obtain the following

PROPOSITION 4
Let H be a Hilbert algebra and f :H →H a function.
The following conditions are equivalent:

1. f is compatible.
2. For every a,b∈H we have that a→b≤ (b→a)→ (fa→ fb).

Let A be an algebra, f :Ak →A a function and a= (a1,...,ak )∈Ak . For i=1,...,k , define unary
functions f a

i :A→A by f a
i (x) := f (a1,...,ai−1,x,ai+1,...,ak ).

Then, we have the following characterization for the compatibility of a k-ary function f :

LEMMA 5
Let A be an algebra and f :Ak →A a function.

The following conditions are equivalent:

(a) f is compatible.
(b) For every a∈Ak and every i=1,...,k , the functions f a

i :A→A are compatible.

Proposition 4 together with Lemma 5 allow us to characterize compatible k-ary functions on a
Hilbert algebra.

We apply Proposition 4 to give the following example of a compatible function that is not a
polynomial function:

EXAMPLE 6
Consider the following poset:

1

c

a

��������
b

�������

This poset, with the implication given in the Example 3 from the Introduction, is a Hilbert algebra
H . It follows from Proposition 4 that the function f :H →H given by fx=x∨a is compatible. We
shall see, through straightforward computations based on the complexity (number of connectives)
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of a polynomial, that any function P :H →H such that Pa=a and Pb=Pc=c is not a polynomial.
Note that the case of complexity 0 and 1 follows from direct computations. Suppose that the property
holds for polynomials of complexity less than or equal to n, and let P be a polynomial of complexity
n+1. Then there exist Q and R polynomials of complexity less than or equal to n such that Px=
Qx→Rx. We will see that Pa �=a or Pb �=c or Pc �=c. Suppose that Pa=a and Pb=Pc=c. Hence
we obtain that Qb=Qc=1 and Rb=Rc=c, so Ra �=a. But Pa=a=Qa→Ra, so Ra=a, which is a
contradiction. Then, Pa �=a or Pb �=c or Pc �=c. Therefore, f is a compatible function which is not
a polynomial.

An algebra H is affine complete if any compatible function of H is given by a polynomial of H .
It is locally affine complete provided that any compatible function is given by a polynomial on each
finite subset of H . The variety of Boolean algebras is affine complete ([14]). The variety of Heyting
algebras is not affine complete but it is locally affine complete ([4]). It follows from Example 6 the
following

COROLLARY 7
The variety of Hilbert algebras is not locally affine complete.

We finish this section showing that certain modal operators in Hilbert algebras are compatible. A
Hilbert algebra with a modal operator ([8]) is a pair 〈H ,�〉, where H is a Hilbert algebra and � is
a semi-homomorphism defined on H , i.e. � is a map such that satisfies the following conditions:

1. �1=1,
2. �(a→b)≤�a→�b, for all a,b∈H .

LEMMA 8
Let H be a Hilbert algebra and � :H →H a semi-homomorphism which satisfies the additional
inequality a≤�a for every a∈H . Then � is a compatible function.

PROOF. Let a,b∈H . Then a→b≤�(a→b)≤�a→�b. As

a→b≤�a→�b≤ (b→a)→ (�a→�b),

the conclusion follows from Proposition 4.

3 Frontal operators

In this section, we introduce and study frontal operators in Hilbert algebras as a generalization of
the frontal operators in Heyting algebras given by Esakia in [12] (see also [19]). Moreover, we
build up three examples of frontal operators (S, γ and G) that generalize the operators studied
in [4, 10].

As expressed in the openning of [4], if we consider intuitionistic and intermediate propositional
calculi as logics with truth values in Heyting algebras, it is natural to consider new connectives for
these logics as operations in the algebras. For example, the modalized Heyting calculus mHC was
considered in [12], which consists of an augmentation of the Heyting propositional calculus by a
modal operator. The algebraic models of mHC are Heyting algebras with a unary operator subject to
additional identities. These identities must be the algebraic counterpart of the axioms that the modal
operator satisfies on the logic.
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Let 〈H ,∧,∨,→,0,1〉 be a Heyting algebra. The map τ :H →H is a frontal operator if it satisfies
the following conditions for every a,b∈H :

(f1): τ (a∧b)=τa∧τb,
(f2): a≤τa,
(f3): τa≤b∨(b→a).

Equivalently, τ is a frontal operator if and only if it satisfies (f2),(f3) and the inequality τ (a→
b)≤τa→τb. The main motivation to study frontal operators in Heyting algebras stemmed from
topological semantics in which τ is interpreted as the co-derivative operator. Frontal operators were
also generalized in residuated lattices and in weak Heyting algebras ([7, 10]).

LEMMA 1
Let H be a Heyting algebra and τ :H →H a map. Then τ satisfies (f3) if and only if it satisfies
τa≤ ((b→a)→b)→b for every a,b∈H .

PROOF. Suppose that τ satisfies (f3). It follows from b≤ ((b→a)→b)→b and b→a≤ ((b→a)→
b)→b that τa≤b∨(b→a)≤ (b→a)→b)→b. Conversely, suppose that τ satisfies τa≤ ((c→
a)→c)→c. Put c=b∨(b→a). As c→a= (b→a)∧((b→a)→a)= (b→a)∧a=a, we have that
(c→a)→c=a→c=1. Therefore, τa≤1→c=c=b∨(b→a).

Inspirated by the previous lemma we give the following

DEFINITION 2
Let H be a Hilbert algebra and let τ :H →H be a map. We say that τ is a frontal operator if it
satisfies the following conditions for every a,b∈H :

(i1): τ (a→b)≤τa→τb,
(i2): a≤τa,
(i3): τa≤ ((b→a)→b)→b.

Note that a frontal operator in a Hilbert algebra is a semi-homomorphism such that satisfies (i2)
and (i3). In particular, it follows from Lemma 8 of the previous Section, that frontal operators are
compatible. Moreover, in every Hilbert algebra the identity map is a frontal operator.

Let H be a Hilbert algebra. We define the function S :H →H through the inequality (i3) and the
additional equation

(S): Sa→a≤Sa.

It is immediate that a function which satisfies the previous conditions is necessarily unique. This
map will be called successor, and it is a generalization of the unary operation introduced on Heyting
algebras in [18] (see also [4, 10]).

LEMMA 3
Let H be a Hilbert algebra and a,b∈H . Then b→a≤b if and only if a≤b and b→a=a.

PROOF. Suppose that b→a≤b. As a≤b→a we have that a≤b. Besides, taking into account
the item 9. of Lemma 2 of the Introduction we obtain that b→a= ((b→a)→b)→a=1→a=a.
The converse is immediate.

COROLLARY 4
Let H be a Hilbert algebra. The successor function is characterized by (i2), (i3) and the equation
Sa→a=a.
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PROPOSITION 5
Let H be a Hilbert algebra.

(a) S is characterized by Sa=min {b∈H :b→a≤b}.
(b) The successor function is a frontal operator.

PROOF. (a) Let S be the successor function. Straightforward computations show that Sa=min {b∈
H :b→a≤b}. Conversely, let S be the map given by Sa=min {b∈H :b→a≤b}. As Sa∈{b∈H :
b→a≤b} we obtain the inequality Sa→a≤Sa. Let c= ((b→a)→b)→b. By properties of Hilbert
algebras we have that b≤c and b→a≤c, so c→a≤b→a≤c. Hence, S(a)≤c= ((b→a)→b)→b.

(b) We only need to prove the condition (i1). We have that

S(a→b) ≤ ((Sb→ (a→b))→Sb)→Sb
= ((Sb→a)→ (Sb→b))→Sb)→Sb
= ((Sb→a)→b)→Sb)→Sb.

Then,

S(a→b)≤ ((Sb→a)→b)→Sb)→Sb. (2)

As b≤Sb we have that (Sb→a)→b≤ (Sb→a)→Sb. Thus,

((Sb→a)→Sb)→Sb≤ ((Sb→a)→b)→Sb. (3)

Using inequality (3) we obtain that

Sa≤ ((Sb→a)→Sb)→Sb≤ ((Sb→a)→b)→Sb,

so we deduce the inequality

((Sb→a)→b)→Sb)→Sb≤S(a)→S(b). (4)

Therefore, it follows from (2) and (4) that S(a→b)≤Sa→Sb.

In [4] it was defined a frontal operator called γ , and in [10] it was proved that γ is characterized
by γ a= min {b :¬b∨a≤b}. Inspirated in this fact, we define the following unary map in bounded
Hilbert algebras:

γ a= min {b∈H :¬b≤b and a≤b}.
PROPOSITION 6
γ is a frontal operator.

PROOF. For every a∈H , put γa ={b∈H :¬b≤b and a≤b}. It is immediate that γ satisfies (i2). To
prove the condition (i3), let a,b∈H . Straightforward computations show that the element defined
as c= ((b→a)→b)→b is such that a≤c. Besides c→0≤c→a≤c (see proof of Proposition 5).
Thus, c∈γa, i.e. γ a≤c= ((b→a)→b)→b.

Finally we will prove the condition (i1). Let a,b∈H . We will see that γ a→γ b∈γa→b. First
note that

(a→b)→ (γ a→γ b) = ((a→b)→γ a)→ (b→ (γ a→γ b))
= ((a→b)→γ a)→ (γ a→ (γ b→γ b))
= 1,
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so a→b≤γ a→γ b. Now we will see that ¬(γ a→γ b)≤γ a→γ b. To prove it, we make the
following computation:

¬(γ a→γ b)→ (γ a→γ b) = γ a→ (¬(γ a→γ b)→γ b))
= (γ a→¬(γ a→γ b))→ (γ a→γ b)
= ((γ a→ (γ a→γ b))→¬γ a)→ (γ a→γ b)
= ((γ a→γ b)→¬γ a)→ (γ a→γ b)
= (γ a→¬γ b)→ (γ a→γ b)
= γ a→ (¬γ b→γ b)
= γ a→1
= 1.

Then, ¬(γ a→γ b)≤γ a→γ b. Hence, γ a→γ b∈γa→b, that is, γ (a→b)≤γ a→γ b. Therefore,
we conclude that γ is a frontal operator.

PROPOSITION 7
Let H be a bounded Hilbert algebra. The map γ is characterized by the following inequalities:

1. a≤γ a,
2. ¬γ a≤γ a,
3. γ a≤ ((a→b)→ ((¬b→b)→b)).

PROOF. It is immediate that if we have a unary operation that satisfies the inequalities given in the
proposition, then this operation is given by γ a = min {b∈H :¬b≤b and a≤b}. Conversely, suppose
that there exists the unary operation given by γ a = min {b∈H :¬b≤b and a≤b}. It is immediate that
a≤γ a and ¬γ a≤γ a. Let c= ((a→b)→ ((¬b→b)→b)). We shall prove that ¬c≤c. Suppose that
¬c�c. In what follows we shall use Lemma 6 of the Introduction. We have that there exists P∈X (H )
such that ¬c∈P and c /∈P, so there exists Q∈X (H ) such that P⊆Q, a→b∈Q and (¬b→b)→b /∈Q.
Thus, there is Z ∈X (H ) such that Q⊆Z , ¬b→b∈Z and b /∈Z . In particular, ¬b /∈Z , so there is
W ∈X (H ) such that Z ⊆W and b∈W . Taking into account that b≤c and P⊆W , we obtain that
c∈W . Besides we have that ¬c∈W . Hence, we have that 0∈W , which is a contradiction. Thus,
¬c≤c. Straightforward computations show that a≤c. Therefore, γ a≤c.

Let H be a Heyting algebra with γ . This operation is a polynomial in H because γ x=x∨γ 0.
It is natural to ask whether γ is a polynomial function in the Hilbert reduct of a bounded Hilbert
algebra H .

REMARK 8
Let H be the Hilbert reduct of the Heyting chain {0,a,1}, with 0<a<1. Straightforward computa-
tions based on the complexity of a polynomial proves that any polynomial P :H →H is such that
P0 �=a or Pa �=a. As γ 0=γ a=a, we obtain that γ is not a polynomial in H . Note we have obtained
an alternative example to show that the variety of Hilbert algebras is not locally affine complete.

Let H be a bounded Hilbert algebra. We define the function G through the inequalities (i2), (i3)
and the following additional inequalities:

(i4): Ga≤¬¬a,
(i5): Ga→a≤¬¬a→a.

We will prove that if this function exists then it is necessarily unique. This map generalizes the
Gabbay’s function given in [13] (see also [4, 10]). It follows from (i4) and (i5) that
Ga→a=¬¬a→a.
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LEMMA 9
Let H be a bounded Hilbert algebra and a,b∈H . Then

(a) a≤¬¬a and ¬a=¬¬¬a.
(b) b→a≤¬¬a→b if and only if b→a≤¬¬a→a and a≤b.
(c) ¬¬a→¬¬b=a→¬¬b.
(d) ¬¬(a→b)≤¬¬a→¬¬b.

PROOF. (a). Let a∈H . Then a→¬¬a=a→ (¬a→0)=¬a→ (a→0)=¬a→¬a=1, so a≤¬¬a.
Using the previous property we obtain that ¬¬¬a≤¬a≤¬¬¬a, so ¬a=¬¬¬a.

(b). Now let a,b∈H . Suppose that b→a≤¬¬a→b. As a≤¬¬a and a≤b→a≤¬¬a→b we
obtain that a≤b. Besides 1= (b→a)→ (¬¬a→b)=¬¬a→ ((b→a)→b), so ¬¬a≤ (b→a)→b.
Thus, ¬¬a→a≥ ((b→a)→b)→a=b→a. Hence, a≤b and b→a≤¬¬a→a. Conversely, sup-
pose that a≤b and b→a≤¬¬a→a. So, b→a≤¬¬a→a≤¬¬a→b. Therefore,
b→a≤¬¬a→b.

(c). Let a,b∈H . Then

¬¬(a→b) = ¬¬a→ (¬b→0)
= ¬b→¬¬¬a
= ¬b→¬a
= ¬b→ (a→0)
= a→¬¬b.

(d). Finally we have that

a ≤ (a→b)→b
≤ ¬(a→b)→¬b
≤ ¬¬(a→b)→¬¬b,

so a≤¬¬(a→b)→¬¬b. Thus, ¬¬(a→b)≤a→¬¬b=¬¬a→¬¬b.

PROPOSITION 10
Let H be a bounded Hilbert algebra. The Gabbay’s function is characterized by Ga=min {b∈H :
b→a≤¬¬a→b}.
PROOF. For every a∈H , we define Ga ={b∈H :b→a≤¬¬a→b}. Suppose that there exists the
Gabbay’s function G, and let a∈H . By (i2), (i5) and Lemma 9 we have Ga∈Ga. Let b∈Ga, i.e.
b→a≤¬¬a→b. It follows from (i3) and the previous inequality that Ga≤ ((b→a)→b)→b≤
((¬¬a→b)→b)→b=¬¬a→b. By (i4) we have that Ga≤¬¬a, so Ga≤b. Then, Ga=minGa.
Conversely, suppose that Ga=minGa. By Lemma 9 we obtain (i2) and (i5). As ¬¬a∈Ga we have
that Ga≤¬¬a, i.e. the condition (i4). Let b∈H , and let c= ((b→a)→b)→b. We have that a≤c
and c→a≤c (see proof of Proposition 5). Taking into account Lemma 3 we have that a≤c and
c→a=a≤¬¬a→a. It follows from Lemma 9 that c∈Ga, so we conclude the condition (i3).

REMARK 11
In Proposition 18 we shall prove that G satisfies (i1).

In what follows, we consider posets with the implication given in Example 3 in the Introduction.

EXAMPLE 12
Consider the Hilbert algebra given in Example 6 of Section 2. We have that Sa=Sb=c and Sc=
S1=1.
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EXAMPLE 13
Consider the following poset:

1

b

�������
c

��������

a

We have that Sa=b and Sb=Sc=S1=1.

EXAMPLE 14
Consider the following poset:

1

a

��������
b

�������

0

��������

�������

There is no S0 because {y :y→0≤y}={a,b,1}, and there is no γ 0 because {y :y→0≤y and
0≤y}={y :y→0≤y}. However, there exists G, with G0=0 and Ga=Gb=G1=1.

EXAMPLE 15
Consider the following poset:

1

b

�������
c

��������

a

�������

��������

0

There is no Sa because {y :y→a≤y}={b,c,1}, and there is no Ga because {y :y→a≤¬¬a→
y}={y :y→a≤y}. However, there exists γ , with γ 0=a, γ a=a, γ b=b, γ c=c and γ 1=1.

In what follows, we shall give some results to prove that G satisfies the inequality (i1).

LEMMA 16
Let H be a Hilbert algebra and f :H →H a map that satisfies (i3). Let P∈X (H ) and a,b∈H such
that fa∈P and b /∈P. Then b→a∈P.



[15:17 27/2/2015 jzu031.tex] Paper Size: a4 paper Job: JIGPAL Page: 11 1–18

Frontal operators in Hilbert algebras 11

PROOF. Suppose that b→a /∈P. As b /∈P, by Lemma 5 of the Introduction, we have that there exists
c /∈P such that b→c,(b→a)→c∈P. We have that

b→c≤ (c→a)→ (b→a)≤ ((b→a)→c)→ ((c→a)→c),

so we obtain that (b→a)→c≤ (b→c)→ ((c→a)→c). As (b→a)→c∈P we have that (b→
c)→ ((c→a)→c)∈P. It follows from that b→c∈P the fact that (c→a)→c∈P. Thus, by (i3)
we have that fa≤ ((c→a)→c)→c. So we conclude that c∈P, which is a contradiction. Therefore,
b→a∈P.

Let X be a set. If U ⊆X , we write U c for the complement of U relative to X . If 〈X ,≤〉 is a poset
and U ⊆X , we write UM to indicate the set of maximal elements of U .

Let H be a Hilbert algebra and a∈H . We define the set

ϕ(a)={P∈X (H ) :a∈P}.

LEMMA 17
Let H be a Hilbert algebra with G, and let a∈H . Then ϕ(Ga)=ϕ(a)∪(ϕ(¬¬a)∩(ϕ(a)c)M ).

PROOF. Let P∈ϕ(Ga), i.e. Ga∈P. Suppose that a /∈P. As Ga≤¬¬a we have that ¬¬a∈P. Let
Q∈X (H ) such that P⊆Q and a /∈Q. Suppose that there exists b∈Q such that b /∈P. Taking into
account Lemma 16 we obtain that b→a∈P⊆Q. As b∈Q we obtain that a∈Q, which is absurd.
Hence, we obtain that ϕ(Ga)⊆ϕ(a)∪(ϕ(¬¬a)∩(ϕ(a)c)M ).

Conversely, let P∈ϕ(a)∪(ϕ(¬¬a)∩(ϕ(a)c)M ). If a∈P we have that Ga∈P because a≤Ga. Let
P∈ϕ(¬¬a)∩(ϕ(a)c)M . Suppose that Ga /∈P. Recall that Ga→a=¬¬a→a. If ¬¬a→a∈P, as
¬¬a∈P we have that a∈P, which is imposible. Thus, Ga→a /∈P. Taking into account Lemma 6
of the Introduction we have that there exists Q∈X (H ) such that P⊆Q, Ga∈Q and a /∈Q. But
P∈ (ϕ(a)c)M , so P=Q. Then Ga∈Q, which is a contradiction. Therefore, we conclude that ϕ(Ga)=
ϕ(a)∪(ϕ(¬¬a)∩(ϕ(a)c)M ).

PROPOSITION 18
G satisfies the inequality (i1).

PROOF. Suppose that there exist a,b such that G(a→b)�Ga→Gb. It follows from Lemma 6 of
the Introduction that there exists P∈X (H ) such that G(a→b)∈P and Ga→Gb /∈P. Taking again
into account Lemma 6 we obtain that there exists Q∈X (H ) such that Ga∈Q, Gb /∈Q and P⊆Q.
So, by Lemma 17 we have that P∈ϕ(G(a→b))=ϕ(a→b)∪(ϕ(¬¬(a→b))∩(ϕ(a→b)c)M ), Q∈
ϕ(Ga)=ϕ(a) ∪(ϕ(¬¬a) ∩(ϕ(a)c)M ) and Q /∈ϕ(Gb)=ϕ(b)∪(ϕ(¬¬b)∩(ϕ(b)c)M ). In what follows,
we shall consider the cases a→b∈P and a→b /∈P to obtain a contradiction.

Case a→b∈P. If a∈Q, as a→b∈P⊆Q we have that b∈Q, which is a contradiction. Thus, Q∈
ϕ(¬¬a)∩(ϕ(a)c)M . Suppose that ¬¬b /∈Q. If ¬¬a→¬¬b∈Q, as ¬¬a∈Q we obtain that ¬¬b∈Q,
which is a contradiction. Hence, ¬¬a→¬¬b /∈Q, so ¬¬a→¬¬b /∈P. Using that a→b≤¬¬(a→
b)≤¬¬a→¬¬b (Lemma 9) we have that a→b /∈P, which is a contradiction again. Hence, we
have that Q /∈ (ϕ(b)c)M because Q /∈ϕ(Gb). Then there exists Z ∈X (H ) such that b /∈Z and Q⊂Z .
If a∈Z , as a→b∈Z we have that b∈Z , which is absurd. So a /∈Z . Thus, we conclude that Q=Z
because Q∈ (ϕ(a)c)M , which is impossible.

Case a→b /∈P. We have that P∈ϕ(¬¬(a→b))∩(ϕ(a→b)c)M . Suppose that a∈Q. If a→b∈Q
we have that b∈Q, which is not possible. Thus, a→b /∈Q. As P⊆Q and P∈ (ϕ(a→b)c)M we obtain
that P=Q. Then ¬¬(a→b)∈P=Q. As ¬¬(a→b)≤¬¬a→¬¬b and ¬¬a∈P=Q we have that
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¬¬b∈Q. It implies that Q /∈ (ϕ(b)c)M . Hence, there exists Z ∈X (H ) such that b /∈Z and Q⊂Z .
We have that a→b /∈Z (if a→b∈Z we have that b∈Z because a∈Z , which is a contradiction).
As Q∈ (ϕ(a→b)c)M we obtain that Q=Z , which is absurd. In consequence, we obtain that a /∈Q.
Suppose that ¬¬b /∈Q, so by Lemma 6 in the Introduction, there exists Z ∈X (H ) such that ¬b∈Z
and Q⊆Z . Then ¬¬b /∈Z . Besides ¬¬a∈Z . Using that ¬¬(a→b)∈P⊆Q⊆Z and that ¬¬(a→
b)≤¬¬a→¬¬b, we obtain that ¬¬b∈Z , which is a contradiction. Then we have necessarily
that Q /∈ (ϕ(b)c)M , so there exists Z ∈X (H ) such that b /∈Z and Q⊂Z . If a→b /∈Z then P=Q=Z ,
which is a contradiction. So a→b∈Z . If a∈Z then b∈Z , which is impossible. Thus, a /∈Z and in
consequence Q=Z , which is a contradiction again.

Therefore, we conclude that G(a→b)≤Ga→Gb.

COROLLARY 19
G is a frontal operator.

4 Representation theory

In [8] a dual equivalence for the category of Hilbert algebras with modal operators is given. As
frontal operators are modal, in this section we give an explicit description of this equivalence for
the category of Hilbert algebras with frontal operators, and a detailed description for the particular
frontal operators S, γ and G. We start with some basic results about the dual equivalence for the
category of Hilbert algebras with modal operators. We recommend the reader to have the refer
[2, 3, 9] while reading this section.

Let us consider a poset 〈X ,≤〉. A subset U ⊆X is said to be increasing (decreasing) if for all
x,y∈X such that x∈U (y∈U ) and x≤y, we have y∈U (x∈U ). For each Y ⊆X , the increasing
(decreasing) set generated by Y is [Y )={x∈X : there is y∈Y such that y≤x} ((Y ]={x∈X : there is
y∈Y such that x≤y}. If Y ={y}, then we will write [y) and (y] instead of [{y}) and ({y}], respectively.
It is well known that the set of upsets of 〈X ,≤〉 is a Hilbert algebra, where the implication ⇒ is
given by

U ⇒V = (U ∩V c]c ={x∈X : [x)∩U ⊆V }. (5)

Moreover, the set of upsets of 〈X ,≤〉 is a Heyting algebra.
Consider a pair 〈X ,κ 〉, where X is a set, ∅ �=κ ⊆P(X ) and P(X ) is the set of all subsets of X .

We define a relation ≤κ⊆X ×X by x≤κ y if and only if for every W ∈κ , if x /∈W then y /∈W . It is
immediate that ≤κ is a reflexive and a transitive relation. Define the operators sat and cl on P(X ) as
follows. For each Y ⊆X , let sat(Y )=⋂{W :Y ⊆W and W ∈κ } and cl(Y )=⋂{X −W :Y ∩W =∅
and W ∈κ }. If κ is a basis of a topology T defined on X , then ≤κ is the specialization dual order
of X, sat(Y ) is the saturation of Y , and cl(Y ) is the closure of Y . We note that the relation ≤κ can
be defined in terms of the operator cl as follows: x≤κ y if and only if y∈cl({x}). The relation ≤κ
is a partial order when X is T0. In this case, cl(Y )=[Y ), sat(Y )= (Y ], and every open (resp. closed)
subset is a decreasing (resp. increasing) subset respect to ≤κ .

Let X be a topological space. An arbitrary non-empty subset Y of X is irreducible if for any closed
subsets Z and W such that Y ⊆Z ∪W , we have that Y ⊆Z or Y ⊆W . A topological space X is sober
if, for every irreducible closed set Y , there exists a unique x∈X such that cl({x})=Y . Notice that a
sober space is automatically T0. A topological space X with a base κ will be denoted by

〈
X ,Tκ

〉
or

simply 〈X ,κ 〉. From now on, for every topological space 〈X ,κ 〉 we shall write ≤ in place of ≤κ .
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DEFINITION 1
(Definition 3.4 of [9]) An H -space is a topological space 〈X ,κ 〉 such that:

(H1) κ is a base of open and compact subsets for the topology Tκ on X .
(H2) For every A,B∈κ , sat(A∩Bc)∈κ .
(H3) 〈X ,κ 〉 is sober.

If
〈
X ,Tκ

〉
is an H -space, then D(X )=〈D(X ),⇒〉 is a Hilbert algebra, where D(X )={U ⊆X :

U c ∈κ } and ⇒ is the binary map given in (5). This algebra is called the dual Hilbert algebra
of the H -space

〈
X ,Tκ

〉
. If H is a Hilbert algebra then X(H )=〈X (H ),κH 〉 is an H -space, where

κH ={ϕ(h)c :h∈H }. Moreover, we have that ≤κ H
= ⊆. We also write ϕ for the isomorphism

of Hilbert algebras from H to D(X(H )) given by ϕ(a)={P∈X (H ) :a∈P}. If
〈
X ,Tκ

〉
is an H -

space, then the map ε :X →X (D(X )) given by ε(x)={U ∈D(X ) :x∈U } is well defined and it is an
homeomorphism between the topological spaces X and X(D(X ))(see [3, Theorem 2.2]).

If X ,Y are sets and R⊆X ×Y , we define R(x)={y∈Y : (x,y)∈R}. If U ⊆Y , we define R−1(U )=
{x∈X :R(x)⊆U }.
DEFINITION 2
Let X1 =〈X1,κ 1〉 and X2 =〈X2,κ 2〉 be two H -spaces. Let us consider a relation R⊆X1 ×X2. We
say that R is an H -relation from X1 into X2 if it satisfies the following properties:

(HR1) R−1(U )∈κ 1, for every U ∈κ 2.
(HR2) R(x) is a closed subset of X2, for all x∈X1.

We say that R is an H -functional relation if it satisfies the following additional condition:

(HF) If (x,y)∈R there exists z∈X1 such that x≤z and R(z)=[y).

If 〈X ,κ 〉 is an H -space, the relation ε∗ ⊆X ×X (D(X )) given by (x,P)∈ε∗ if and only if ε(x)⊆P
is an H -functional relation which is an isomorphism in the category whose objects are H -spaces
and whose morphisms are H -functional relations. If R is an H -functional relation from 〈X1,κ 1〉
into 〈X2,κ 2〉, then the map hR from D(X2) into D(X1) given by hR(U )={x∈X1 :R(x)⊆U } is an
homomorphism of Hilbert algebras. If h :A→B is a function between Hilbert algebras, we define
the relation Rh ⊆X (B)×X (A) by (P,Q)∈Rh if and only if h−1(P)⊆Q. If h is an homomorphism of
Hilbert algebras, then Rh is an H -functional relation.

It follows from [9] and [3, Theorem 3.7] as below.

THEOREM 3
There exists a dual equivalence between the category of Hilbert algebras and the category whose
objects are H -spaces and whose morphisms are H -functional relations.

A Hilbert algebra with a modal operator �, or H�-algebra for short, is a pair 〈A,�〉 where A
is a Hilbert algebra and � is a semi-homomorphism defined on A. We write H� for the variety
of H�-algebras. Let A,B∈H�. A map h :A→B is a �-homomorphism if h is an homomorphism
such that h(�a)=�(h(a)), for all a∈A. We also denote by H� to the category of H�-algebras with
�-homomorphisms.

Let X be a set and Q a binary relation defined on X . For each U ⊆X consider the set �Q(U )=
{x∈X :Q(x)⊆U }. A triple 〈X ,κ,Q〉 is an H�-space if 〈X ,κ 〉 is an H -space and Q⊆X ×X is an
H -relation. Let 〈X1,κ 1,Q1〉 and 〈X2,κ 2,Q2〉 be two H�-spaces and R⊆X1 ×X2 be an H -functional
relation. We say that R is an H�-functional relation if Q1 ◦R=R◦Q2, where ◦ is the composition
of relations.



[15:17 27/2/2015 jzu031.tex] Paper Size: a4 paper Job: JIGPAL Page: 14 1–18

14 Frontal operators in Hilbert algebras

If A is a H�-algebra, then
〈
X (A),κX (A),R�

〉
is an an H�-space. If h :A→B is a �-homomorphism,

then Rh is an H�-functional relation. Let A∈H�. The map ϕ :A→D(X(A)) is an �-homomorphism,
i.e. ϕ(�a)=�R� (ϕ(a)) for every a∈A. If 〈X ,κ,Q〉 is an H�-space, then

〈
D(X ),�Q

〉
is a H�-

algebra. Let 〈X1,κ 1,Q1〉 and 〈X2,κ 2,Q2〉 be two H�-spaces and R⊆X1 ×X2 be an H�-functional
relation. Then hR is a morphism of H�. If 〈X ,κ,Q〉 is an H�-space, then the relation ε∗ is a
morphism of H�-spaces.

The following theorem follows from results of [8]:

THEOREM 4
There exists a dual equivalence between H� and the category whose objects are H�-spaces and
whose morphisms are H�-functional relations. Moreover, there exists a dual equivalence between
the full subcategory of H� whose objects satisfies the inequality a≤�a and the full subcategory of
H�-spaces with H�-functional relations whose objects 〈X ,κ,Q〉 satisfies the additional condition
Q⊆≤.

PROPOSITION 5
Let H be a Hilbert algebra and f :H →H a function. Then f satisfies (i3) if and only if <⊆Rf ,
where < is the strict inclusion in X (H ).

PROOF. Suppose that τ satisfies (i3). Let P,Q∈X (H ) such that P⊂Q. Then there exists b∈Q such
that b /∈P. Let a∈ f −1(P), i.e. fa∈P. By Lemma 16 of previous Section, we have that b→a∈P⊂Q.
As b∈Q we obtain that a∈Q. Hence, <⊆Rf . Conversely, suppose that <⊆Rf . Suppose that there
exist a,b∈H such that fa� ((b→a)→b)→b. Hence, by Lemma 6 of the Introduction, there exists
P∈X (H ) such that fa∈P and ((b→a)→b)→b /∈P, so using this lemma again we have that there
exists Q∈X (H ) such that P⊆Q, (b→a)→b∈Q and b /∈Q. As b /∈Q we have that b→a /∈Q, so
there exists Z ∈X (H ) such that Q⊆Z , b∈Z and a /∈Z . As b∈Z and b≤ (b→a)→b)→b we have
that (b→a)→b)→b∈Z . Using that (b→a)→b)→b /∈P, we obtain that P⊂Z . Thus, it follows
from the hypothesis that f −1(P)⊆Z . So a∈Z because fa∈P, which is a contradiction. Therefore, f
satisfies (i3).

PROPOSITION 6
Let 〈X ,κ,Q〉 be a H�-space.

If <⊆Q then �Q satisfies (i3).

PROOF. Let <⊆Q. It follows from Theorem 4 that <⊆R�Q . Hence, taking into account Proposition 5
we obtain that �Q satisfies the condition (i3), which was our aim.

We write FH for the category whose objects are algebras 〈H ,τ 〉, where H is a Hilbert algebra and
τ is a frontal operator on H . The morphisms are homomorphisms of Hilbert algebras that commute
with the frontal operator. Note that a frontal operator τ on a Hilbert algebra H can be seen as an
semi-homomorphism that satisfies the additional conditions (i2) and (i3).

THEOREM 7
There exists a dual equivalence between FH and the full subcategory of H�-spaces with H�-
functional relations whose objects 〈X ,κ,Q〉 satisfies the additional condition <⊆Q⊆≤.

In what follows, we establish a dual equivalence for the category of Hilbert algebras with successor.

LEMMA 8
If H is a Hilbert algebra with successor, then ϕ(Sa)=ϕ(a)∪(ϕ(a)c)M for every a∈A.
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PROOF. Let P∈ϕ(a)∪(ϕ(a)c)M . If P∈ϕ(a), as a≤Sa we have that P∈ϕ(Sa). If P∈ (ϕ(a)c)M we have
that a /∈P. Using that a=Sa→a by Lemma 6 in the Introduction, we obtain that there is Q∈X (H )
such that P⊆Q, Sa∈Q and a /∈Q. Thus, P=Q and then P∈ϕ(Sa). Hence, ϕ(a)∪(ϕ(a)c)M ⊆ϕ(Sa).
Conversely, let P∈ϕ(Sa), that is, Sa∈P. Suppose that a /∈P, and let Q∈X (H ) such that P⊆Q and
a /∈Q. Let b∈Q. We will show that b∈P. Suppose that b /∈P. Taking into account Lemma 16 we
have that b→a∈P⊆Q. But b∈Q, so a∈Q, which is a contradiction. Thus, b∈Q. Hence, P=Q.
Therefore, we conclude that ϕ(Sa)=ϕ(a)∪(ϕ(a)c)M .

We say that an H -space 〈X ,κ 〉 is an SH -space if for every U ∈D(X ), U ∪(U c)M ∈D(X ).

COROLLARY 9
If H is a Hilbert algebra with successor then X(H ) is an SH -space.

LEMMA 10
Let H be a Hilbert algebra, a,b∈H and P∈X (H ). The following conditions are not simultaneously
verified: (b→a)→b∈P,b /∈P and P∈ (ϕ(a)c)M .

PROOF. Suppose that the assertion is not true. In particular, b→a /∈P. It follows from Lemma 6 of
the Introduction, that there exists Q∈X (H ) such that P⊆Q, b∈Q and a /∈Q. But P∈ (ϕ(a)c)M , so
P=Q, which is a contradiction because b /∈P and b∈Q.

COROLLARY 11
If 〈X ,κ 〉 is an SH -space, then D(X ) is a Hilbert algebra with successor.

PROOF. Let U ∈D(X ). We will prove that TU :=U ∪(U c)M is the successor function. It is immediate
that U ⊆TU . We will show that TU ⊆ ((V ⇒U )→V )⇒V . Suppose that there is x∈TU such that
x /∈ ((V ⇒U )⇒V )⇒V . Thus, there is y such that x≤y, y∈ (V ⇒U )→V and y /∈V . Suppose that
y∈U , so y∈V ⇒U . As y∈ (V ⇒U )→V we have that y∈V , which is a contradiction. Thus, y /∈U .
Then, x /∈U and x=y. Hence, we obtain that x∈ (V ⇒U )⇒V , x /∈V and x∈ (U c)M , which is a
contradiction by Lemma 10. Finally, we will prove that TU ⇒U ⊆U . First note that (TU ⇒U )c =
((U c)M ]. Let x /∈U . Taking into account Lemma 7 of [11] we have that there is y∈ (U c)M such that
x≤y. Therefore, TU ⇒U ⊆U .

A moment’s reflection shows the following two remarks.

REMARK 12
Let H ,M be Hilbert algebras with successor and f :H →M a morphism of Hilbert algebras.

(a) If f is an isomorphism of Hilbert algebras, then S(fh)= f (Sh) for every h∈H .
(b) If f commutes with the successor function, then hRf (S(ϕh))=S(hRf (ϕh)) for every h∈H .

REMARK 13
Let 〈X ,κ 〉 and 〈Y ,κ 〉 be SH -spaces, and let R⊆X ×Y be an isomorphism of H -spaces. Then hR is
an isomorphism of Hilbert algebras and in consequence hR(SU )=S(hR(U )) for every U ∈D(X ).
Moreover, as ε∗ ⊆X ×X (D(X )) is an isomorphism of H -spaces, we have that hε∗ is such that
hε∗ (SU )=S(hε∗U ).

Taking into account the previous results and Theorem 3, we obtain the following:

THEOREM 14
There exists a dual equivalence between the category of Hilbert algebras with successor and the
category whose objects are SH -spaces and whose morphisms are morphisms of H -spaces R⊆X ×Y
such that hR(SU )=ShR(U ) for every U ∈D(X ).
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In what follows, we establish a dual equivalence for the category of bounded Hilbert algebras
with gamma.

LEMMA 15
If H is a bounded Hilbert algebra with γ , then ϕ(γ a)=ϕ(a)∪(X (H ))M for every a∈A.

PROOF. Let P∈ϕ(a)∪(X(H ))M . If a∈P then P∈ϕ(a) because a≤γ a. Suppose that a /∈P and that
ϕa /∈P. As ¬γ a≤γ a we obtain that ¬γ a /∈P. Hence, by Lemma 6 of the Introduction we have that
there exists Q∈X (H ) such that P⊆Q and γ a∈Q. Taking into account that P∈ (X (H ))M and P⊆Q
we obtain that P=Q. Then γ a∈P. Hence, ϕ(a)∪(X (H ))M ⊆ϕ(γ a).

Conversely, let P∈ϕ(γ a), and suppose that a /∈P. First we will prove that γ 0∈P. To show it,
suppose that γ 0 /∈P. Thus, by Lemma 5 in the Introduction we have that there is c /∈P such that
a≤c and γ 0≤c. Then ¬c≤¬γ 0≤γ 0≤c, so γ a≤c. As c /∈P we obtain that γ a /∈P, which is a
contradiction. Then we have that γ 0∈P. Let Q∈X (H ) such that P⊆Q, and suppose that there exists
b∈Q such that b /∈P. Thus, by Lemma 16 of Section 3 we have that ¬b∈P. So, ¬b∈Q. Using that
b∈Q we obtain that 0∈Q, which is a contradiction. Therefore, ϕ(γ a)⊆ϕ(a)∪(X (H ))M .

REMARK 16
A Hilbert algebra H has bottom if and only if X (H )∈κH . Equivalently, a Hilbert algebra H has
bottom if and only if ∅∈D(X (H )).

We say that an H -space 〈X ,κ 〉 is a γ H -space if ∅∈D(X ) and if U ∪XM ∈D(X ) for every U ∈
D(X ).

LEMMA 17
If 〈X ,κ 〉 is a γ H -space, then D(X ) is a bounded Hilbert algebra with γ .

PROOF. Recall that if H is a bounded Hilbert algebra, for every a∈H we have defined γa ={b∈H :
¬b≤b and a≤b}.

Let U ∈D(X ), and let TU =U ∪XM . It is obvious that U ⊆TU . To show that ¬TU =∅, suppose
that there exists x∈X such that [x)∪TU =∅. In particular, x /∈U . Taking into account Lemma 7
of [11] we obtain that there exists y∈XM such that x≤y, so [x)∩XM �=∅, which is a contradiction.
Hence, ¬TU =∅ and in consequence TU ∈γU . Let V ∈γU , i.e. ¬V ⊆V and U ⊆V . Now let us see
that TU ⊆V . Let x∈TU . If x∈U then x∈V because U ⊆V . Suppose that x /∈U , so x∈XM . Suppose
that x /∈V . Thus, x /∈¬V because ¬V ⊆V . Then we obtain that [x)∩V �=∅, i.e. there exists y∈X
such that x≤y and y∈V . Taking into account that x∈XM , we have that x=y. Then x∈V , which is
a contradiction. Therefore, TU ⊆V .

Similar results to those given in Remarks 12 and 13 allow us to prove the following

THEOREM 18
There exists a dual equivalence between the category of bounded Hilbert algebras with γ and the
category whose objects are γ H -spaces and whose morphisms are morphisms of H -spaces R⊆X ×Y
such that hR(γ U )=γ (hRU ) for every U ∈D(X ).

Finally we establish a dual equivalence for the category of bounded Hilbert algebras with the
Gabbay’s function.

We say that an H -space 〈X ,κ 〉 is a GH -space if ∅∈D(X ) and if for every U ∈D(X ) we have that
U ∪((¬¬U )∩(U c)M )∈D(X ).

LEMMA 19
If 〈X ,κ 〉 is a GH -space, then D(X ) is a bounded Hilbert algebra with the Gabbay’s function.
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PROOF. Let U ∈D(X ). We will prove that TU :=U ∪((¬¬U )∩(U c)M ) is the Gabbay’s function.
It is immediate that U ⊆TU . Let V ∈D(X ). We shall prove that TU ⊆ ((V ⇒U )⇒V )⇒UV .

Suppose that there exists x∈X such that x∈TU and x /∈ ((V ⇒U )⇒V )⇒V . In particular, there
exists y∈X such that x≤y, y∈ (V →U )→V and y /∈V . If y∈U then y∈V ⇒U . Then y∈V , which
is a contradiction. Thus y /∈U , so x /∈U and in consequence x=y. Hence, x∈ (V ⇒U )⇒V , x /∈V and
x∈ (U c)M , which is a contradiction by Lemma 10. Then we obtain that TU ⊆ ((V ⇒U )⇒V )⇒V .

To prove that TU ⊆¬¬U , suppose that there exists x∈TU such that x /∈¬¬U . Thus, we have that
[x)∩¬U �=∅. Taking into account we have that there exists y∈X such that x≤y and [y)∩U =∅. If
x∈U then y∈U , which is a contradiction. Hence we have that x∈¬¬U , which is a contradiction.
Then, TU ⊆¬¬U .

Finally we will prove that TU ⇒U ⊆¬¬U ⇒U . Let x∈TU ⇒U , i.e. [x)∩TU ⊆U . We need to
prove that [x)∩¬¬U ⊆U . Suppose that there exists y∈[x)∩¬¬U such that y /∈U . By Lemma 7 of
[11] we have that there exists z∈ (U c)M such that y≤z. Then we have that z∈[x)∩TU ⊆U , which
is a contradiction. Therefore, we obtain that TU ⇒U ⊆¬¬U ⇒U .

Similar results to those given in Remarks 12 and 13 (together with Lemma 17 of Section 3) allow
us to prove the following:

THEOREM 20
There exists a dual equivalence between the category of bounded Hilbert algebras with G and the
category whose objects are GH - spaces and whose morphisms are morphisms of H -spaces R⊆X ×Y
such that hR(GU )=G(hRU ) for every U ∈D(X ).
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[1] D. Buşneag. A note on deductive systems of a Hilbert algebra. Kobe Journal of Mathematics,

2, 29–35, 1985.
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