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Abstract

Tree paths are investigated using first-order logic. The following
results are obtained: (i) every definable path can be defined by a first-
order formula using at most one parameter chosen from the path itself;
(ii) a canonical representation of the formulas that define definable
paths is obtained; and (iii) every tree that has only finitely many paths
that are not definable is n-equivalent to a tree of which all paths are
definable. Moreover, a certain property that might be expected to
hold, involving the transfer of n-equivalence between trees, is shown
not to be true.
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1 Introduction

A systematic analysis of the first-order theories of trees, as done in [12]
for linear orders, does not exist. It is known by Rabin’s Tree Theorem
([11, 9]) that the monadic second-order theory of rooted binary trees
with infinite paths is decidable and this result can be extended to
other classes of trees. In [10], n-equivalence of finite coloured linear
orders is investigated. Adding colours to linear orders increases the
complexity of their analysis substantially. Hence a general analysis of
the first-order theories of trees is likely to be complex: by partitioning
a tree along any of its paths and assigning to each part in this partition
a first-order sentence of some fixed quantifier rank that characterises
that part of the tree, one obtains a coloured linear order. The analysis
of the first-order theories of trees is further complicated by the fact



that not all paths in a tree are definable and one cannot quantify over
individual paths. Trees may contain so-called emergent paths (see
[8, 7]) that have the property that every node in the path belongs to
infinitely many other paths too, thus hindering attempts to impose
particular structural properties on paths in a discriminate manner.

Some important known results about the first-order theories of
trees include: the first-order theory of the class of finite trees given
in [1], the first-order theory of the class of well-founded trees (trees
with a well-founded prefix ordering) given in [2], and that every tree
is n-equivalent, for suitable n, to a finitely branching tree ([13, 6]). In
[7] the relationship between a class of linear orders C, and the corre-
sponding class T (C) of trees having paths that are isomorphic to linear
orders in C, is investigated. In [5] axiomatisations of the monadic sec-
ond order theory, the first-order logic with transitive closure theory,
and the first-order logic with least fixed points theory, of finite trees,
is given.

The structure of a tree is determined by the order types of its
paths and by its branching behaviour. There are subtle relationships
between these two structural properties: consider for example Konig’s
Lemma (a well-founded tree of height w has a path with order type
w if it is finitely branching) and the existence of Suslin trees (well-
founded trees of height w; that do not contain any paths with order
type w; and that do not have any uncountable antichains) which is
undecidable within ZFC.

This paper examines some first-order aspects of paths in trees. A
broad set-theoretical definition of trees is used: trees are not required
to be finite, rooted, discrete, finitely branching, or well-founded. The
paper is structured as follows:

e Section 2: Background. Some terminology and notation that
is used later is fixed. A short overview of relativisations and
characteristic sentences is given.

e Section 3: Trees. Trees are defined set-theoretically. Paths
and path defining formulas are introduced. Some tree composi-
tion results are given.

e Section 4: Canonical form of formulas that define paths.
A lemma dealing with the elimination of parameters from trees
is given. This lemma is used to prove the following result: every
definable path can be defined by a first-order formula using at
most one parameter chosen from the path itself. A canonical
representation of the first-order formula that defines a definable
path is given.

e Section 5: Trees that have only finitely many undefin-



able paths. The transfer of truth of first-order sentences be-
tween a tree and certain of its subtrees is investigated. It is
shown that, for every natural number n, every tree that has at
most finitely many paths that are not definable is n-equivalent
to a tree of which all paths are definable.

e Section 6: The partition and cover properties. Using a
Ramsey-type theorem, a proof of the following partition prop-
erty is given: Every tree can, for any natural number n, be
partitioned along any of its paths into subtrees all but one of
which are pairwise n-equivalent. In contrast to this, a certain
cover property that one might expect to be true, involving the
transfer of first-order equivalence between trees with equivalent
covers, is shown to be false. This cover property fails because
end extensions of trees need not be elementary extensions. A
further condition involving elementary chains that is sufficient
for this cover property to hold is suggested.

The motivation behind the partition property and cover property
introduced in Section 6 lies in the problem of axiomatising the first-
order theory of the class T, that consists of trees of which every path is
isomorphic to the ordinal «. Consider the case where &« = w + 1. The
first-order theory of 7,41 admits models that have paths that are not
isomorphic to w4+ 1. Consider for example a tree B,,+1 of which each
path is isomorphic to w—+1 and of which each non-leaf node has exactly
two successors. Since B, has at least 2% many paths, and since
each path has a leaf node, the cardinality of B, is at least 280 so
by the downwards Léwenheim-Skolem theorem, B,,+1 has a countably
infinite elementary substructure B, ;. Each non-leaf node in B,
also has exactly two immediate successors so B, ; will differ from
B,4+1 only in the distribution of its leaf nodes. In particular, B/
must contain paths that are isomorphic to w. The paths in B/, 41 that
are parametrically definable are precisely the ones that are isomorphic
to w + 1 while the paths that are not parametrically definable are
precisely the ones that are isomorphic to w. Since B,,4+1 € T41 and

w41 = Boy1 then B | is a model of the first-order theory of 7,4 1.

Now suppose we have a candidate set of axioms A that we wish
to show axiomatises the first-order theory of 7,11. One way to show
that A does indeed axiomatise the first-order theory of 7,11 would be
to show, for each natural number n, that every model 9t of A is n-
equivalent to a tree in 7,+1. The model 9 may contain paths that are
isomorphic to w (as in the case of the tree B, ,; above), so a possible
strategy would be to show that each path in 91 that is isomorphic to w
can be augmented with a leaf node to obtain a path that is isomorphic
to w 4 1. The resulting tree will be a member of the class 7,41 and



if it is n-equivalent to 2 then we will have succeeded in showing that
A axiomatises the first-order theory of 7,1.

The partition property and cover property involve the transfer of
n-equivalence between trees in the context described above and may
be useful in showing the completeness of a set of axioms for the first-
order theory of the class 7.

2 Background

The reader is referred to [2] for more information about characteristic
sentences, and to [12] for more information about relativisations. The
details from [2, 12] that are relevant to this paper are briefly mentioned
in the sections on characteristic sentences and relativisations below.

The axiom of choice is assumed.

2.1 Some notation and terminology

The concatenation of tuples  and 7y will be denoted as Zy. The length
of the tuple T = (z;);eq is taken as the ordinal « and will be denoted as
0(x). 0, will denote the tuple of length « of which every entry is 0 and
1, will denote the tuple of length « of which every entry is 1. o(u/x)
denotes the formula ¢(x) with u substituted for z. The quantifier rank
of a formula ¢ is denoted as qr(¢). The domain of a structure 2 is
denoted as [2|. Given a structure 2 and a tuple a with entries from
|2(], (2(;a) denotes the structure 2 with the elements in a added as
constants. The first-order formula p(x,a) defines the set B C |2 in
the structure (;a) when v € B if and only if (;a) = ¢(u/z,a). The
set B is definable in 2 when there exists a tuple a of elements from |2
and a first-order formula ¢(z,a) such that ¢(x,a) defines B in (;a).
Two structures 2l and B are called n-equivalent, denoted 2 =,, B,
when 2 and *B satisfy the same first-order sentences of quantifier rank
less than or equal to n.

Ehrenfeucht-Fraissé games (see e.g. [3]) will be used to show the
n-equivalence of structures. An n-round Ehrenfeucht-Fraissé game is
played by two players - Player I and Player II - on structures 2 and ‘B,
as follows. In each round i of the game (1 < ¢ < n), Player I chooses an
element from either of the two structures, say a; € |2| (respectively
b; € |®B]), and Player II responds by choosing an element b; € |B]
(respectively a; € [2|). Let @ = (a1,...,a,) and b = (by,...,by).
Player II then wins the game if the structures (2; a) and (%; 13) satisfy
the same atomic sentences. Player II has a winning strategy for the



n-round game on 2 and B (a strategy that allows her to win the game
regardless how Player I chooses his elements) if and only if A =, B.

The rank of a formula ¢ is the sum of qr(y) and the number of free
variables in ¢. 2 is called an n-elementary substructure of B, denoted
2 <, B, when 2 is a substructure of B and for every formula () of
rank at most n where Z is a k-tuple of variables, if @ € |2|* then 2 |=
e(a/z) if and only if B = ¢(a/z). The Tarski-Vaught criterion for
elementary substructures generalises to n-elementary substructures: if
2 is a substructure of %6 then 2 <,, B if and only if for every formula
@(x,y) of rank at most n and for every tuple a with entries from |2,
if B = 3wp(r,a/y) then A = Jzp(z,a/y). Moreover, if {U;},., is a
chain of structures such that 2(; <, 2; when 7 < j then 2(;, <, Uiea 2A;
for all k.

The order types of ({0,...,k—1}; <) and (N; <) will be denoted as
k and w respectively. Ordinals will sometimes be identified with their
domains and the finite ordinal k will sometimes be identified with the
natural number k. Given a linear order £ = (L; <) and an ordinal
«, an increasing sequence (a;)ieq in L is called cofinal in £ when, for
every x € L, there exist j € a such that x < a;j. The least ordinal «
for which a sequence (a;)ico that is cofinal in £ exists, is called the
cofinality of £.

2.2 Relativisations

Let 2 be any structure. Let T be an n-tuple of variables, § be a k-
tuple of variables all of which are different from the variables in z, and
a € |2|" (the tuples Z, J and @ may be empty).

For ¢(z) and 6(u,y) any first-order formulas, the relativisation of
¢ to @ is denoted as ¢’ (where ¢? = ¢ (Z, 7)) and is defined as follows:

o If ¢ is atomic then ? := .
o If o = =) then ¢? := - (¢9)

o If ¢ =11 x 92, where x is any of the connectives V, A, = or <,
then ¢f := % x f.

e If ¢ = Ja1p then ¢’ := Iz (0(x,y) A Y?).
o If o = Va1p then ¥ := Vz (9($,gj) — 1/19)

Define (2; @)’ to be the structure with domain

{zelA: (A;a) = 0(z/u,a)} (1)

and subject to the constant symbols, relation symbols, and function
symbols of the structure 2 but restricted to the set (1).



Proposition 1 ([12]) Let o(z) and 0(u,y) be any first-order formu-

las. For any n-tuple of elements b from ‘(Ql, d)e ,

A= (b/z,a/5) & (Wa) Ee(b/z).

2.3 Characteristic sentences

Fix structures 2 and B with the same finite relational signatures. Let
ae /¥ and b € |B|* and let Z be a k-tuple of variables (the tuples
a, b and T may be empty).

For n any natural number, the n-characteristic formula [(;a)]™
(where [(;a)]™ = [(2;a)]™(x)) of the structure 2 over the tuple a is
defined as follows:

o [(A;a)]° := A {¢(Z) : ¢ an atomic or negated atomic
formula with 2 |= ¢(a/z)};
o [a)]™ = A, e Fonr1 [ aar)]™ A
Va1 Va, e[ aaks1)]™
For languages with finite relational signatures it can be shown that,
for all natural numbers n and k, there are only finitely many pairwise
non-equivalent n-characteristic formulas, taken over the class of all
structures in that signature and all k-tuples in those structures. If a

is the empty tuple then [(2(;a)]™ is written as []™ and is called the
n-characteristic sentence of .

Lemma 2 ([2]) The following hold for every natural number n:
(1) A= [(a)])" (@/z);
(i) the formula [(2;a)]™ has quantifier rank n.

Theorem 3 ([2]) The following statements are equivalent for every
natural number n:

(i) (U;a) =, (B;0);
(ii) B = [ a)]" (b/7);
(iii) the formulas [(;a)]"™ and [(B;b)]" are equivalent.

3 Trees

3.1 Trees as ordered sets

The simplest first-order language for trees has no constant symbols,
two relation symbols (the usual equality symbol = and an order sym-
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bol <), and no function symbols. Define the following first-order for-
mulas in this language:
r—y = r<yVe=yVy<lcw
Ty = z<yVvVzrr=y
A tree is then a structure ¥ = (T'; <) that satisfies the following first-
order sentences:
o Vr—(x <z) (irreflexivity);
o VaVyVz(x < yANy <z —x<z) (transitivity);

VaVyVz ((y <z Az <z) — (y— 2)) (subtotalness);
o VaVydz(z <z Az <y) (connectedness).

The elements of T" are called nodes. Given a tuple a of nodes from
T and a subset A C T, the language may sometimes be enriched by
adding the tuple of constant symbols @ to obtain the structure (%;a),
or by adding the unary relation symbol A to obtain the structure
(T; A), where for u € T it holds that (T;A) = A(u/x) if and only
if u € A. When referring to a tree ¥ without specifying additional
constant or relation symbols, it will be understood that ¥ has the
form T = (T;<). A leaf is node that is maximal with respect to <.

Given nodes a,b € T with a < b, define the following sets:

a5 = {zeT:a<x}

bw = {zeT:x<b}
Cb) = {ze€T:bLx}

T = aSNnCob)
[a,b) = {x€T:a<z<b}

Define the following trees:

To o= (T = (a%i<l,e)
T o= (T = (CO)<lew)
o= (a0 (T

3= (
*‘32 = (Tg;[a,b))

Note that, for trees ¥ and & with a,b € T such that a <p b and
¢,d € S such that ¢ <g d, if T =, &¢ and T =, &%, it need not be
the case that T =,, G¢.



3.2 Paths

Let ¥ = (T; <) be a tree. If A is a linearly ordered subset of T" that is
maximal in the set of all linearly ordered subsets of T" then (A; <[4)
is called a path in T. As a notational convenience the path (A;<[4)
will usually simply be identified with the set A although it must be
understood that a path is a linear order rather than just a set.

For k any natural number and ¢(z, Z) any formula with z a k-tuple
of variables different from x, define the formula

T(2) == Fzp(x, 2) AVVY (p(2, 2) A p(y, 2) = (T — y)) A
Vavy (z <y Ap(y, 2) = o(z,2)) A =32y (p(y,2) >y < z).

If a is a k-tuple consisting of nodes from T then ¢(z,a) defines a path
in (T;a) if and only if (T;a) = m,(a).

Let X be a first-order theory. The tree ¥ will satisfy the theory
{VE (7p(2) = 0%(2)) : ¢(x,Z) is any formula and o € E}

if and only if every definable path in ¥ satisfies the theory X.

A path A is called singular when there exists a € A such that
A={z €T :xz — a}, else A is called emergent. Every singular path
is definable: if A is singular with A = {z € T : = — a} then the
formula ¢(z,a) = x — a defines A in (T;a). If B C A then (B;<|p)
is called a stem when the following condition is satisfied: if z € B
and y < z then y € B (in other words, stems are simply downwards
closed subsets in a tree). Again the stem (B; <[p) will usually simply
be identified with the set B although a stem is actually a linear order
rather than just a set. Given a tree ¥ and a stem B in ¥, define the
following sets and trees (X¢ denotes the set-theoretical complement
of the set X):

BS = {zeT:y<uxforallye B}
QB = ((B<)C; <f(B<)c)
TP = (TPB)

Note that if (b;);c4 is a cofinal sequence of nodes in B and f is a limit

ordinal then
3" = g2



3.3 Tree composition theorems

The following Feferman-Vaught-type composition theorems will be
used in the remainder of the paper. The first result, which is a refine-
ment of the Feferman-Vaught composition theorem for ordinal sums
(see [4]), can be proved using a straightforward application of Ehren-
feucht-Fraissé games and the proof is omitted.

Lemma 4 Let n be a natural number. Let T = (T;<r) and & =
(S;<g) be trees. Let a,b,c € T and p,q,r € S with a <p b < ¢ and
p<gq<gr.If *‘IZ =, *Gg and %} =, *62 then 26 =), *6;.

The following known result (see e.g. [3, Lemma 3.12]) is used in
the proof of Lemma 5:

If k,m > 2" — 1 then k =, m. (2)

Lemma 5 Let n be a natural number. Let T = (T;<r) and & =
(S;<g) be any trees. Let T and o be ordinals (possibly finite) such
that 7 =, 0. Let (a;)ic1+r and (b;)ic1+o be increasing sequences of
nodes in T and S respectively such that *ngﬂ =, *GZ;“ for all i and
jwithiyi+1€l+7andjj+1€l+or Let A= ;i . lao,ai),
B =Uiciolb0,bi), A ={zx €T :a; <z foralli}, BB ={zcS:b <

x for all i},

T = (aé\A/; <<T) f(a§\A/)7 A> )
& = (bé\B/; (<s) r(b§\B’)’ B) .
Then ¥ =,, &'.

Proof Given a node t € |¥'| (respectively s € |&'|), let t™ (respec-
tively s7) be the greatest element i € 1+ 7 (respectively i € 1+ o)
such that ¢t € a; (respectively s € b5). Note that ¢ € Ty7 ™" and
s € Sg::“ for all ¢ € |T'| and s € |&/|.

We describe a winning strategy for Player II for the n-round Ehren-
feucht-Fraissé game on ¥ and &’. We will play two sets of smaller
Ehrenfeucht-Fraissé games in parallel with the main game on ¥’ and
&', and the nodes that have been played in these smaller games in
their earlier rounds will be determined by the nodes that have been
played in the main game in its earlier rounds. The two sets of smaller
games that we will consider are (i) the n-round game on 7 and o where

IThe first element in 1+ 7 and 1+ o is taken as 0. If 7 and o are infinite then 1+7 =7
and 1 +o0 =o0.



the elements played in its earlier rounds are of the form ¢7 € 7 and
s? € o for the nodes t € |T'| and s € |&’| that were played in the main
game, and (ii) for each j and k, a game on the trees , T’ and *GZI;“
where the nodes played in its earlier rounds are those that have been
played in the main game on ¥’ and &' and that belong to ,Tg’*" and

b1
*Gbk )

Let 0 < ¢« < n—1 and suppose that, after round ¢ of the game, the
nodes that have been chosen by the two players so far are t4,...,t; €

|| and s1,...,s; € |&'| (if i = 0 then the game is yet to begin).
Suppose that Player I chooses the node t;11 € |¥'| for his (i + 1)-th
turn. We now describe how Player II can choose a response s;+1 € |&'|
that will allow her to eventually win this game. (The case where,
for the (i + 1)-th round of the game, Player I instead chose a node
Si+1 € |&'], is handled similarly but with obvious modifications.)
Let j =t7,,. Consider for a moment the n-round game on 7 and
0. Note that there are 7 many sets of the form T, ™', and ¢ many
sets of the form SZ:Z“. Suppose that Player II plays this game using
the winning strategy she has for it (since 7 =,, o) and that, after
round ¢, the elements that have been chosen so far in this game are
T,...,tT €Tand s],...,s7 € 0. Let the (i + 1)-th move of Player II,
in response to Player I’s choice of j € 7 as his (i 4 1)-th move for this
game, be the element k € o.
j+1

Next consider the n-round game on the structures By

y and

*GZ:“. Player II has a winning strategy for this game since *TZ§+1 =,
*GZ:“. Let u1,...,u, be all the nodes from amongst t1,...,t; such

that wuq,...,up € \*Sij“ , and let v,...,v, be all the nodes from

k+1
k
response of Player II, using her winning strategy for this game, to

Player I's choice of the node ti41 € [,TaJ™"| for his (p + 1)-th move,

amongst s1,...,s; such that vy,...,v, € ’*62 ‘ Suppose that the

assuming that the nodes played so far in this game are ui,...,u, €
a1 b, . b
‘*Taj% ‘ and vy,...,vp € *GbZ“ , is the node v,11 € ‘*Gb’;+1

Returning now to the m-round game on ¥’ and &', Player II’s
(i + 1)-th move, in response to Player I having chosen the node ¢;11 €
|T'| for his (i 4+ 1)-th move, is then the node s; 11 = vp41.

At the end of the game, let ¢ = (t1,...,t,) and § = (s1,...,58p).
To show that (¥';%) and (&'; 5) satisfy the same atomic sentences (and
hence that Player II wins the game, from which it then follows that
T =, &), it suffices to show, for all ¢ and j, that (i) t; = ¢; iff s; = s;,
that (ii) ¢; < t; iff s; < s; and that (iii) t; < a4 for some ¢ iff s; < b, for
some r (because ¥ |= A(t;/z) iff t; < aq for some ¢, and &' |= B(s;/x)
iff s; < b, for some r).

10



It is straightforward to verify that the winning strategy used by
Player II above for the game on ¢ and 7, and her winning strategies
for the various games on the trees of form ,JIZ;“ and *62';“, together
with the structure of the trees ¥ and &', guarantee that (i)-(iii) do
indeed hold. o

Lemma 6 Let ¥ = (T;<r) and S = (S;<g) be trees. Consider the
following configurations of nodes:

e a=(ay,...,a), whereay,...,ar € T withay,...,ax_1 € Clag);
o b=(by,...,by), where by,..., by €S with by, ..., bp_1 € C(by);
e c=(c1,...,Cm), where ci,...,c;y €T withcl,...,cmealf; and

o d=(di,...,dp), where di,...,dm € S withdy,...,dpn € by.

If ((T%; a1, .. ap-1) =n (x8%;b1,. .., bpo1) and (Ty,;€) = (G, d)
then (%;a,¢) =, (G;b,d).

Proof Suppose that (,Z%;aq,...,a5-1) =y (*Gbk;bl,...,bk_l) and
(Tay; €) =n (Gbk; d) and let o and 7 be winning strategies for Player
IT for the n-round Ehrenfeucht-Fraissé games on (,T%;aq,...,a5—1)
and (*Gbk; by, ... ,bk_l), and on (%, ;¢) and (Gbk;d), respectively. A
winning strategy for Player II for the n-round game on (%;a,¢) and
(6; b, J) is obtained by combining her winning strategies o and 7 as
follows.

Whenever Player 1 chooses a node from T% (respectively S%),
then, based on all the nodes that have already been chosen from the
sets T% and S Player II uses her strategy o to choose a node from
S (respectively T%), and whenever Player I chooses a node from
Ty, (respectively Sp, ), then, based on all the nodes that have already
been chosen from the sets T, and Sy, , Player II uses her strategy
to choose a node from Sy, (respectively T, ).

At the end of the game, let the nodes that were chosen by the two
players be t1,...,t, € T and s1,...,s, € S and let t = (¢1,...,t,)
and § = (s1,...,8,). To confirm that the structures (%;a,¢c,t) and
(6; b,d, §) satisfy the same atomic formulas (and hence that Player II
wins the game), it suffices to check the following for all i and j: (i)
a; = a5 <= b; = bj, (ii) a; < aj <= b; < bj, (iii) C =Cj <= d; = dj, (iV)
i <cjed <dj, (v)ag=cj &b =dj; (Vi) a; < ¢j & b <dj, (vii)
¢ < a4 <= d; < bj, (Viii) t; = tj < 8 = 8y, (iX) t; < tj < 8 < 8y,
(X) t; = a; <= 8 = bj, (Xl) t; < aj <= 8; < bj, (Xll) a; < t]’ S b < Sjy
(Xiii) t; = Cj <= 8 = dj, (XiV) t; < Cj <= 8§ < dj, and, ﬁnally, (XV)
Ci<tj<:>di < 8j.

It is straightforward to check that each of (i)-(xv) does indeed hold.
It hence follows that (%;a,c) =, (6; b, CD .
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4 Canonical form of formulas that de-
fine paths

Lemma 7 (Elimination of parameters) Let ¥ be any tree. Let
a=(ay,...,ax) be a k-tuple of nodes from T such that ay,...,ax_1 €
C(ax) and let b,c € a,f. Let n be a natural number. The following
statements are equivalent:

(i) (%;b,a) =, (T;¢,a)
(ii) (T;b,ax) =n (T;c,ax)
(111) (Ta,;b) =n (Tay:c)

Proof (i) = (ii): Immediate.

(ii) = (iii): Suppose that (T;b,ar) =, (¥;c,ar). Then Player
IT has a winning strategy for the n-round Ehrenfeucht-Fraissé game
on the trees (T;b,ar) and (T;c,ar). Clearly this winning strategy
will require that, whenever Player I chooses a node from alf in either
of these two trees then Player II responds with a node from af in
the other tree. It follows that Player II has a winning strategy for
the n-round game on the trees (T,,;b) and (%, ;c) hence (T,,;b) =,
(Ta,; €), as required.

(iii) = (i): Suppose that (T4, ;0) =, (Ty,;c). Since

E™ar, ... a5-1) =n (T*5a1,. .., a5-1)

then by Lemma 6, (T;b,a) =, (T;¢,a). -

Corollary 8 Let ¥ be any tree. Let a = (ay,...,ax) be a k-tuple of
nodes from T such that aq,...,ax_1 € C(ay) and let b,c € alf. Letn
be a natural number. The following statements are equivalent:

(i) (%;a) = [(%50,a)]"(c/x,q)
(i) (%5ax) = [(F56,a8)]"(c/z, ax)
(iit) Fay, = [(Ta; 0)]"(c/2)

Proof By Theorem 3 and Lemma 7. =

Every path that contains a leaf can be defined using at most one
parameter chosen from the path itself: If A is a path in a tree ¥
and A has a leaf a then A can be defined in (¥;a) by the formula
o(z,a) = © < a. The next theorem shows that every leafless path
that is at all definable can be defined using at most one parameter
chosen from the path itself.
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Theorem 9 (Canonical form of path-defining formulas) Let ¥
be any tree. Let a = (ai,...,ar) be a tuple of nodes from T and let
A be a leafless path that is defined in (T;a) by a formula p(x,a) of
quantifier rank m. For every b € A such that ay,...,a; € C(b) U{b},
there exists an m-characteristic formula 7(x,y) such that A is defined
in (T;b) by the formula

Y(x,b) = Fz(z < 2 AT(2,b)).

Proof Let b€ A with ay,...,a; € C(b) U{b} and note that A is de-
fined in (¥;ab) by the formula ¢'(z,ab) = p(z,a). Let the cofinality
of the stem AN bS be o and let (b;),c, be a sequence that is cofinal
in the stem A N bS. Since there are only finitely many pairwise non-
equivalent m-characteristic formulas over 2-tuples in the language of
trees, it follows from the infinite pigeonhole principle there must ex-
ist an m-characteristic formula 7(x,y) and a subsequence (c;);c, of
(bi);cq such that (T;0) = 7(ci/x,b) for every i € a, and the sequence
(¢i);eq will also be cofinal in the stem A N bS. Since, in particular,
(%;0) E 7(co/x,b), then by Theorem 3, 7(z,y) = [(%;co,b)]™(z,y)
hence (T;0) = [(%;c0,b)]™(ci/x,b) for each i € a. By Corollary 8 it
follows that

(%;ab) = [(F; co,ab)]™ (u/x, ab) <
(T:0) = [(F5c0,0)]™ (u/,b) (3)

for every u € bS.

For every u € bS\A, (T;ab) £ [(T;co,ab)]™(u/x,ab): If (T;ab) =
[(%; co, ab)]™(u/z, ab) then by Theorem 3, (¥; u, ab) =, (T; co, ab) and
since (T;ab) = ¢'(co/x, ab) then (T;ab) = ¢'(u/x,ab), a contradiction
with the fact that ¢'(z,ab) defines A in (%;ab).

Hence by (3), (%;b) = [(T; co, b)]™(u/z,b) for every u € bS\ A.

Moreover, (T;b) (= [(T;co,b)]™(u/z,b) for every u € C(b), because
(%;0) = [(%;¢0,b)]™(u/x,b) only if b < u.

Since, however, (T;b) = [(%;co,b)](ci/z,b) for each i € «, and
since A consists precisely of those nodes that lie below a node ¢; for
some i € «, it follows that A can be defined in (¥; b) using the formula

U(z,b) =3z (z <z A [(T;00,0)]"(2,0)),
as required. -

Obviously the formula ¥ (x, b) given in the above theorem is not the
formula of lowest quantifier rank to define A (since qr(v) = qr(p) + 1
where p(z,a) is known to define A). Furthermore, it may actually be
the case that A can be defined without any parameters whatsoever.

13



Corollary 10 Let T be any tree. For every node a € T and for every
natural number n, there are only finitely many paths in T that pass
through a and can be defined by a formula p(z,a) of quantifier rank n
in the tree (%;a).

Proof By Theorem 9 and the fact that there are only finitely many
pairwise non-equivalent characteristic formulas of a given quantifier
rank over tuples of a given length. -

5 Trees that have only finitely many
undefinable paths

Proposition 11 Let ¥ be any tree, let A be a path in T, let a € A
and let B = AN aS. Then A can be defined by a formula in (T;a) if

and only if B can be defined by a formula in %,.

Proof If A has a leaf then the result is trivial, so consider the case
where A does not have a leaf. First suppose that A can be defined
by a formula in (¥;a). By Theorem 9 there exists a node ¢ € B (¢
is the node ¢ in the proof of Theorem 9) and natural number &k such
that the formula p(z,a) = Jy (z <y A[(T;¢,a)]*(y,a)) defines A4 in
(T;a). By Corollary 8,

(Ta) B [(Ts¢,0)]*(u/z,0) & Tl [(Ta;o)]*(u/z)

for each u € aS. It follows that B is defined in ¥, by the formula
U(@) =3y (z <y A(Ta; 01" ().

Conversely, suppose that ¢(x) is any formula that defines the path
B in T,. Since T, = (T;a)*S" then by Proposition 1, the formula
©%S%(x,a) defines the set B in (T;a). Hence the formula ¢ (z,a) =
r < aVe®S%(x,a) defines the path A in (%T;a). 4

Proposition 12 Let ¥ be any tree and let a € T. Let A be a path in
T that does not contain a (i.e. A C C(a)). Then A is definable in T
if and only if A is definable in T°.

Proof If A has a leaf ¢ then the formula z < ¢ defines A in both of
the trees (T;¢) and (T%; ¢). Hence consider the case where A does not
have a leaf.

First suppose that the path A is definable in €. By Theorem 9 it
follows that there exists b € A with a € C(b) (hence b £ a) such that
A can be defined by a formula in (%;b). By Proposition 11, ANbS can

14



be defined by a formula in ¥} so by another application of Proposition
11 in the context of the tree T (since |Tp| C |T?|), A can be defined
by a formula in (%% b).

Next suppose that A is definable in %. By Theorem 9 there exists
b€ A and a formula ¢(x,b) that defines A in (¥%b). Since (T¢;b)
(T b, a)ﬁ(a@) then by Proposition 1 it follows that ¢ (¢<?) (z,b,a
defines A in (%;b,a).

1

Proposition 13 Let T be any tree and let A be a path that is not
definable in T. For every a € A and for every natural number n, there
exists b€ aSNA and ¢ € ag\A such that T, =, Te.

Proof Let a € A and let n be a natural number, but suppose to
the contrary that T, #, T, for every u € aS N A and v € aS\A. Let
Ti,...,Tm be all the n-characteristic sentences in the language of trees,
up to logical equivalence. Let I = {i: T, |= 7; for some u € aS N A}.
Then for every u € aS we have that T, = 7; for some i € I if and only
if u € A. But then A can be defined in (¥;a) using the formula

So(x,a) =xrx<aVa<zTA (\/ Tf(w,:v)(x)>

il

where 0(w, z) = x < w, a contradiction. o

Proposition 14 Let T be a tree that has only finitely many paths that
are not definable. For every natural number n, there exists a tree &
of which every path is definable, and such that & =, ¥.

Proof Let n be a natural number. Let A be a path in ¥ that is not
definable. Since ¥ has only finitely many paths that are not definable
then there exists a € A such that A is the only path in ¥ that contains
a and is not definable. By Proposition 13 there exists b € a< N A and
c € aS\A such that T, =, T.. Let T be the tree that is obtained
from T by replacing T, with .. Since ,T° =,, ,T? then it follows by
Lemma 6 that T’ =, <.

Every path in ¥ that contains c¢ is definable hence by Proposition
11, every path in T is definable. By another application of Proposition
11, every path in ¥’ that contains the node ¢ from the copy of €. that
was substituted for Ty, is definable in ¥’.

Moreover, by Proposition 12, every path X in ¥ for which X C
C(b) that is definable in T, is definable in T as well, so by a second
application of Proposition 12 in the context of the tree ', such a path
X is also definable in T’
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Hence the tree T’ has one fewer path that is not definable than the
tree T: every path in ¥’ that contains the node ¢ from the copy of T,
that was substituted for Ty, is definable in T, while every path in the
tree ¥ that is contained in C(b) and is a definable path in ¥, is also
definable in T'.

Repeat this construction for every other path in T that is not
definable so as to eventually obtain a tree & with the property that
every path in & is definable and 6 =, ¥. o

6 The partition and cover properties

6.1 The partition property

Let £ = (L; <) be a linear order and let C be a finite set. A func-
tion f : {(x,y) cl?:x< y} — (' is called a colouring of £. The
colouring f is called additive when the following condition holds:
for all x1,y1,21 € L and x2,y2,29 € L with 1 < 31 < 2z and
zo < y2 < 22,if f ((x1,91)) = f ((22,92)) and f ((y1,21)) = f ((y2, 22))
then f ((z1,21)) = f((z2,22)). An increasing sequence (a;)ijcq in L
is called homogeneous in £ if there is an element ¢ € C such that
f ((ai,a;)) = c for all i < j. The following version of Ramsey’s Theo-
rem is proved in [14].

Theorem 15 ([14]) If f is an additive colouring of a limit ordinal
« then there exists a sequence (xi)ieﬁ that is cofinal and homogeneous
m Q.

Now consider any tree T. Let A be a leafless path of cofinality «
in T (o will be a limit ordinal since A is leafless) and let (b;);c,, be a
sequence that is cofinal in A. Consider the set C' = { [[*TZZ ]] " 1< g }
and let C'/= be the quotient set of C' under the equivalence relation
of logical equivalence. The set C'/= will be finite.

Define the function f: {(i,j) € a x a: i < j} — C/= by specify-
ing that f((z,7)) = H{*SZZ ]]n]i, where [7]_ denotes the equivalence

class in C//= that contains . The function f is a colouring of «, and
from Theorem 3 and Lemma 4 it follows that f is additive. Hence by
Theorem 15, together with the fact that « is a regular ordinal, there
exists a sequence (x;)icqo that is cofinal and homogeneous in o under
f. Let a; = by, for every 7 € a. Then for p,q,s,t € a with p < ¢ and
s < t, the homogeneity of (x;),.., together with Theorem 3 gives that

Aq __
LT =, T

1€

We have hence obtained the following result for trees.
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Partition Property: Let ¥ be any tree and let A be a
leafless path in ¥. For every natural number n, there is an
ordinal « and a sequence (a;);cq that is cofinal in A such
that *‘ZZZ =, « 20 for all p < q and s < t.

s

6.2 The cover property

Let A be a stem (hence possibly also a path) with no greatest node in
a tree T. A sequence (a;)icq that is cofinal in A will be called a cover
for (T; A). If (a;)icq is a cover for (T; A) then, since A has no greatest
node, a must be a limit ordinal, A = (J;., a7 and T4 = J,, «T%.

Consider the following cover property of trees:

CP: Let n be any natural number. Let (a;)icq and (b;)ica
be covers for the trees (T;A) and (&; B) respectively. If
(T;a;) =, (6;b;) for every i then , T4 =, ,&5.

The above cover property is false, as will be shown in Example
16. We first describe a method that will be used in Example 16 for
constructing trees.

A tree ¥ is called well-founded when every non-empty set of nodes
in T has a minimal element. The height of a node a € T for well-
founded ¥ is the order type (chosen from the class of ordinals) h(a)
of the set a”. The height of T is the ordinal |J,cq (h(a) +1).

Let A be a non-empty set and let « be an ordinal. For each ordinal
B with 8 < «, define the set Gg recursively as follows:

e (Initial value.) Let Go := {()}. The empty sequence () repre-
sents the root of the tree.

e (To find Gy given Gg.) Let 8 be any ordinal with 5 < a and
let the set Gz be known. Choose any function fgi; : Gg — P(A)
such that fz41(Z) # 0 for at least one tuple Z € Gg. Then

Gpy1 = {zy: T € Ggand fz41(z) #0 and y € fz41(T)}.

e (To find Gz when f is a limit ordinal.) Let 5 be a limit ordinal
with 8 < a and let the set G be known for each v < 3. Let

Lg := {z: £(z) = p and if § is a proper initial sub-
sequence of Z then y € G for some v < §}.

Choose any function fg : Lg — P(A) such that f3(z) # 0 for at
least one tuple z € Lg. Then

Gg = {Ty: 7€ Lgand fg(z) # 0 and y € f3(z)}.

17



Now define G := | | G and f:= | J fs.
B<a B<a
For z,y € G, define z < 7y if and only if Z is a proper initial
subsequence of §. The structure (G; <) is a well-founded tree of height
a and will be denoted as &(a, A, f).

We now give the earlier promised counterexample to the property
CP.

Example 16 Fiz a natural number n with n > 6. We will construct a
tree T, paths A and B in T, and covers (a;)icw, and (b;)icw for (T; A)
and (%; B) respectively, such that (T;a;) =, (%;b;) for every i but
g4 Zn IB. To show that T4 Zn *TB, we will find a sentence Y of
quantifier rank at most 6 such that T4 = but I8 - .

Define the function h : N — N as follows:

h(i)=2(2"+i—1)+1.

Consider the tree T = & (w,{0,1,2}, f) with f = Ug.,, fs defined

recursively as follows:
1. Take Go = {()}.

2. Let B be an ordinal with f < w and let the set Gg be given.
Define fzy1:Gg — P({0,1,2}) as follows:
(a) f1(()) ={0,1,2}.
(b) If T has the form T = §j0an where £(j]) = k- 2™ for some odd
natural number k, then fzi1(z) ={0,1,2}.
(¢c) If the last entry of T is 2 then fg11(Z) = 0.
(d) Else fzgi1(x) ={0,1}.

In other words, ¥ is obtained by taking the binary tree of height w
and adding one additional successor to the root node and to each node
of the form 40 with £(y) = k - 2™ for some odd natural number k.

Let a; = Op(y.on and by = Ogp(0y—1)-2n L(2i41).2n for every natural
number i and let A =J,cna; and B = J,cy b7 . The paths A and B
are depicted in Figure 1.

Then (T;a;) = (T;b;) for each i but T4 = (T; A) #, (T; B) = .35,

To see that (T;a;) =, (T;b;) for each i, we show that

Onii_1r9n  — Oinio)_ 1.9
*‘I (h(i)—1)-2 =, *‘I (h(0)—1)-2 , (4)
O(n(i)—1)-27+1 O(h(0)—1)-27 11
g =, 3 5
*T0(n(iy-1)2m " On(o)-1)2n ' (5)
T =, U and (6)

*T0(h(i)—1)-2n+41 *“0(n0)—1)-2n 11
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A B

az ¢ 6(2(2n+1)+1)-2n = 6(h(2))~2" by ¢ 6(h(0)—1)-2n I5-2ﬂ
62(2n+1)-2n = 6(h(2)—1)~2”
a ¢ 0(2(2n)+1)-2n = 6(h(1))-2n by ¢ 6(h(0)—1)-2” Lggn

62(2?1)‘271 - 6(}1(1)71)-2”

a0 ¢ O22n—1)11)2» = On(0))-2n bo ¢ O(n(o)—1)-2n L1.2n
0z(2n—1)-2n = Ogn(o)—1)-2» 0z(2n—1)-2n = Ogn(o)—1)-2»
Og.2n 0.2n
64.27:, 64.27:,
Og.gn 62»2"

0 0

Figure 1: The paths A (left) and B (right) in the tree T (see
Example 16). Nodes that have three immediate successors are
indicated with the symbol x.

Tai =n Ty, - (7)

K3

Player II will then have a winning strateqy for the n-round Ehren-
feucht-Fraissé game on the trees (T;a;) and (T;b;) by combining her
winning strategies for the n-round games on the four sets of trees given

in (4) - (7).

Proof of (4): Note that the greatest node in the stem (()(h(i),l)gn)> that
has three immediate successors is the node O (;y—3).on and h(i) — 3 =
2(2" + i — 2), and the greatest node in the stem (O(h(o)_l).gn)> that
has three immediate successors is the node 0y 0)—3).2n and h(0) —3 =
2(2" —2). Now

Oap+2y2n o O(2g42)2m

* 02p.2” * qu_gn

for all integers p and q with 0 < p < 2"+i1—2 and 0 < g < 2" -2

hence _ _
O2pt2).2n  _ 0(24+2).2n

* —n
021,‘271 02q~2n
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for all such p and q.

Let C' be the set that consists of all nodes t that belong to the stem
(ﬁ(h(i)_l).Qn)> C A such that t has three immediate successors, and
let D be the set that consists of all nodes s that belong to the stem

(G(h(o)_l).gn)> C B such that s has three immediate successors. Since
CLID| > 2" —1 then by (2),

(C;<lc) =n (D;<ID).

. 0 .
Since there are |C| many trees of the form *(Z()Z’f:f) > and |D)|

0 on
many trees of the form *K(—);z‘f:nQ) 2

, then it follows from Lemma 5 that

Foem-nen = FOno-12m

Proof of (5): This follows (see Figure 2) from the fact that

ﬁ(h(i)—l)-2”+1 A~ 6(h(0)—1)-2"il
x5, . = %<7 .
O(h(i)—1)-2n O(h(0)—1)-27

Proof of (6): Note that

Ot o Oh(0)—1)-2n La+1

*~0p T *T0h0y—1)-2n1q
for all p and q with (h(i) —1)-2" +1<p < (h(i))-2" and 1 < ¢ <
(2 4+ 1) - 2™ (see Figure 2), hence

T(:)p+1 _ Oh(0)-1)-2n Lg+1
0 T X 0n(0y—1)2nlq

for all such p and q. Let

£ = ([G(h(i)—l)-Q"—f—l? ai) 7 < r[ﬁ(h(i),1)42n+1,ai)> ’

m = ([O(h(o)q)-znil,bi);<f[@(h(0)_l),2n1hbi))-

Note that ||£]], ||| = 2" — 1 so by (2), £ =, M. Since there are
||1£]| many trees of the form *‘Ig”+1, and ||9M|| many trees of the form
P

(:)(h(O)—l)Qn;q-H

ooy nyaniy then it follows from Lemma 5 that

aq = ‘le’ _
*“Ohiy-1)-2n+1 " *TO0h)-1)-2n 1’

Proof of (7): This follows from the fact that T,, = Ty,.
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bi = Omo)-1y2n L2ivyon  [o] -

2] [ 2] [

DN S
e e

G(h(i)*l)@” 6(}1(0)71)»2"

Figure 2: The trees ,T5' (left) and *Qg"
(h(i)—1)-27 (h(0)—1)-27
(right) used in the proofs of (5) and (6) in Example 16.

Function values under f are indicated in boxes.

Hence we conclude that (T;a;) =, (T;b;). Now to see that (T; A) #,
(T; B), consider the following formulas:

p(z) = FziTwoTas (Nigj(zi # x5) A Ay (z < 23) A
3z (Vi (z < 2 A2 < 7))
P(X) = Vo (X(z) = Fy (X(y) Az <yAe(y))

The formula ¢(x) states that x has three immediate successors and
(X)) states that every node in X sits below another node in X that
has three immediate successors. Note that qr(y)) < 6 < n. Now
(T, 4) = ¢(A) but (T;B) ¥~ (B) hence (T;A) #, (T;B). This

concludes our counterexample to the property CP.

Call a cover (a;)icq of a tree (T; A) an n-elementary cover when
#T4 <, 3% for all 4 and j with ¢ < j. Note that if (a;)icq is an
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n-elementary cover of (¥; A) then no node a; can have an immediate
predecessor: if b were an immediate predecessor of a; then

(T4 b) Tz (b < 2 A (aip1)” ()
while
(xF%;b) = Jx (b <xA (ai)>(a:)) ,

a contradiction with the fact that ,T% <,, ,T%+1. Hence well-founded
trees (T; A) of height less than w? cannot have n-elementary covers.

While Example 16 shows that the cover property CP does not hold,
a sufficient condition for the conclusion .34 =,, ,&2 of CP to hold is
that the covers (a;)ica and (b;)ica be n-elementary covers.

Proposition 17 Let (a;)ica and (b;)ica be n-elementary covers for
the trees (T; A) and (S; B) respectively. If (T;a;) =, (S;b;) for every

i then 34 =, ,&5.

Proof Let (a;)ica and (b;);cq be n-elementary covers for (¥; A) and
(6;B). Then

*{Zak jn U *Tai = *TA and

*Gbk =n U *6bi = *GB

for all k. Furthermore, since (T;a;) =, (6;b;) for every i then it
follows that ,T%* =,, ,&% too. Hence L34 =, ,65. -
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