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The attack as strong negation, part I
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Abstract

We add strong negation N to classical logic and interpret the attack relation of ‘x attacks y’ in argumentation as (x — Ny).
We write a corresponding object level (using N only) classical theory for each argumentation network and show that the
classical models of this theory correspond exactly to the complete extensions of the argumentation network. We show by
example how this approach simplifies the study of abstract argumentation networks. We compare with other translations of
abstract argumentation networks into logic, such as classical predicate logic or modal logics, or logic programming, and we
also compare with Abstract Dialectical Frameworks.
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1 Background from classical logic: non-logical axiomatic theories

This article introduces a particularly intuitive and simple representation/translation of abstract argu-
mentation networks into classical propositional logic. All we need is a simple version of strong
negation. So our starting point must be to introduce this negation.

Classical propositional logic can be properly axiomatized in many ways. For simplicity, let us
take the set T of all tautologies as axioms and the rule of modus ponens as the deduction rule. Let us
assume that the connectives used are the usual ones {—, A,V,—, L, T} and the atomic sentences are
the set P={p1,p2,ps,...}. Classical logic is strongly complete for the classical semantics. Models
are assignments /4 giving values in {0, 1} to the atoms of P.

We have satisfaction defined as follows for wffs 4 and theories A.

* hEpiff h(p)=1, forpeP

« hET

s hi# L

s hE—Aiff hi# A

* hEAABiff h=4 and hEB

* hEAVBiff hEA4 or hEB

* hEA— B iff hFE A implies hFEB.
* hEAiff hEA forall A€ A.

The notion of proof 4y, ..., 4, B can be defined in classical logic in many ways and completeness
holds for any set of wffs A and any 4:

* AFA iff for all models 2 we have AF A implies hFA.

We now introduce the notion of a set of sentences being a specific non-logical axiomatic theory ©,,.
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2 The attack as strong negation

Consider again the set of atomic wff

P:{p11p25p3""}‘

Suppose we insist, for our own reasons, that we want to consider only those models / satisfying the
restriction (n) below:

(m) Forall even index atoms p,,p4,ps, - .-, P2i, --- We have a(py;) =1 implies h(py;_1)=0,i=1,2,3,...
There is a theory ®, of classical propositional logic whose models are exactly all the models
satisfying (m). This theory is
On={p2—> —p1.p4—> —P3.P6 = ~Ps, ...}

Let us now for the sake of clarity, rename the atoms of P with the help of a new symbol N. We
rename as follows:

q, =def. p;
NC]] =def. P2

g2 =def. p3
Nq3 =def. P4

gi =def. py;
Ng; =def. py;

We can thus write the set of atoms as P as the set O

0={q1,Nq1,92,Nqz,...}.

The theory ®, becomes the theory

On={Ng— —qlq€{q1,92,...}}

®, is considered a non-logical set of axioms on the symbol N.

Note that N cannot be iterated and can be applied only to atoms taken from {q,¢,...}.

We said that we regard ©, as a non-logical axiomatic theory on the symbol N. This is common
practice in logic and model theory. Consider, e.g., the classical theory of Abelian groups formalized
in classical logic for the multiplication symbol * and the constant 1. We add to the logical axioms
of predicate logic the non-logical group axioms below

o Vxyz(x*(y*xz)=(x*y)*z)
o Vxy(xxy=y*x)

* Vx(xx1=x)

o VxIy(xxy=1)

In our case our non-logical axioms are ®, ={Ng— —q}.

Thus our logic for N is a theory (of N) within classical propositional logic, much in the same way
as the theory of Abelian groups is a theory within the classical predicate calculus. The next section
defines the logic CN formally.
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The attack as strong negation 3

2 The logic CN

We add to classical propositional logic the strong negation symbol N. We can thus form atomic
sentences like {q1,...,qx, ...} as well as atoms of the form {Ng;,Ng,, ...}. We do this as explained in
Section 1.

At this point we do not allow iterations of N. We have the usual connectives — (negation),
A,V,—, T, L. We shall discuss iterated use of NV in a later section. We require the only additional
non-logical axioms ®, = {Ng — —g}. We can thus view Ng as strong negation. For example ¢ might
be true or ¢ might be false (i.e. —¢ is true) or ¢ might be strongly false (Ng true) or ¢ might be false
but not strongly false (—g and —Ng true).

Let us define our logic directly.

DermiTioN 2.1 (The CN classical propositional logic with atomic strong negation)

(1) Let Ly be a language with a set of atoms Qy=1{q1,92,...,¢n,...} and the connectives
{=,A,V,—>,N}. {—,A,V,—} are the usual classical connectives and N is a unary connective
applied once to atoms only.

(2) An atomic formula has the form ¢ or Ng where g € Q.

(3) A wff has the form A = atomic formula or A AB,—A4,4AV B,A— B where 4 and B are wffs.

(4) We regard as axioms for our logic CN the nonlogical set of axioms ®, as discussed in
Section 1. The proof theory CN is relying on the proof theory of classical logic C, as follows:

o AbenA iff (def) AUB, FcA.
(5) A model % for the logic CN is an assignment % giving each atomic wff of the form ¢ or Ng a

value in {0, 1} such that if #(Ng)=1 then h(q)=0.
(6) Satisfaction is defined in the usual way.

THEOREM 2.2
CN is complete for the proposed semantics.

Proor. Our discussion in Section 1 presented CN as a non-logical theory ®, of the classical propo-
sitional calculus of item 4 of Definition 2.1 defined the consequence for CN, via the classical
consequence. Since we have strong completeness for C we also have it for CN. [ |

REMARK 2.3

Note that what we are calling our ‘logic’ CN is actually a theory in a two sorted classical propositional
logic with two sorts of atoms of the form ¢ and Ng. In Appendix 10 we will turn our logic into a
proper modal logic, which we will call CNN.

We now have enough machinery to faithfully represent abstract argumentation networks in the logic
CN. This is the job of the next section.

3 Expressing argumentation networks in CN

This section will show a simple way of translating formal argumentation networks into CN. We
assume we are dealing with finite argumentation networks.'

We shall use the Caminada labelling characterization of complete extensions. See [17] for a
survey. Given an argumentation network (S, R), with S# & and RC .S x S, a legitimate Caminada

! Actually, we do not need the requirement that the network is finite. All we need is that it is finitary, namely that each
point is attacked by a finite number of attackers. This will allow us to write classical wffs describing the attacks.
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4 The attack as strong negation

3 s <

labelling A on S is a function A:S+> {in, out, und} giving values ‘in’, ‘out’, ‘undecided’ to each

x €8, satisfying the following properties.

(C1) A(x)= in iff either —3y(yRx) or Vy(yRx — A(y)= out).
(C2) A(x)= out iff Fy(yRx AA(y)= in)
(C3) A(x)= und iff Vy(yRx — A(y) # in) and Jy(yRx AA(y) = und).

Each legitimate Caminada labelling gives rise to a unique complete extension and all complete
extensions can be obtained in this way. See [17].

DeriNiTION 3.1

Let A=(S, R) be a formal argumentation network which is finitary, i.e. each point has a finite number
of attackers This means that S # & and RC .S x S is the attack relation. Define a theory A 4 of the
logic CN as follows

(1) We can assume that S € Q (i.e. the arguments of S are identified as atoms of the logic).
2) Aa={l=PORIIVY < A.c Attack oy V2ly €SYULz = NylzRy}U
{(\,c Attackq) ") A (V.. Attack() "V2) = 7y A—Nyly €S}, where Attack(y)={z|zRy}.

TrEOREM 3.2 (First Correspondence Theorem)
Let A=(S,R). Then the models of A 4 correspond exactly to the complete extensions of A.

Proor.

(1) Let & be a model of A 4. We show it defines a complete extension on A (note that two
different models can yield the same complete extension): We use the Caminada labelling
function. Let x € S. Define

in, if A(x)=1
A(x)={ out, if A(Nx)=1
und, if A(x)=h(Nx)=0

we prove the following

(a) X, is well defined. For each x we can have exactly one of the three cases mentioned in
the definition of A;,. The reason for that is that we have the axiom Ng— —¢g and so the
case h(x)=1 and A(Nx)=1 does not arise.

(b) The crucial points to show are

(i) If x is not attacked then A, (x)= in. This holds because x€ A 4.
(i1) If zRy and XA,(z)= in then A(z)=1. Therefore hA(Ny)=1 (because z— Ny is in the
theory) and so A,(y)= out.

(iii) Suppose for all z such that zRy we have A,(z)= out. We want to show the 1,(y)=
in. We have for all z such that zRy that A(Nz)=1 hence A( /\zRyNz) =1 and therefore
h(y)=1 (because of the theory), and so 1,(y)= in.

(iv) Suppose An(y)= und. Then h(y)=h(Ny)=0. Let zRy. We cannot have A,(z)= in
because then A(z)=1 and this implies #(Ny)=1. Thus none of the attackers z of y
are in. Thus for all z such that zRy we have A(z) =0. Can we have that for all of such
z,h(Nz)=1? If this were the case, since y <> /\2RyNz isin Ay we get h(y)=1 i.e.
An(y)= in, contradicting our assumption that 1,(y) = und.

Therefore for some z such that zRy we have A(Nz)=0. But this means that A,(z)=
und. We thus got that if A,(y)= und then none of the attackers z of y are in and at
least one of them is undecided.
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(v) If A,(y)=out, (i.e. A(Ny)=1), show that for some z such that zRy , we have A,(z)=in,
(i.e. h(z)=1). Otherwise for all z such that zRy, we have 4(z)=0. We ask about
any such z, is A(Nz)=17? If the answer is yes for all of them then we must have
h(y)=1, by item (iii) above. So for some z we have A(Nz)=0. Then by the axiom
e Attack) —2)A (V.. Attacke) —Nz))— —y A—=Ny we get that A(Ny)=0.

Either way, the assumption that for all z such that zRy we have h(z)=0, leads to a
contradiction.

Thus A is a legitimate labelling, giving rise to a complete extension.

(2) Let X be a legitimate labelling giving rise to a complete extension. We show that it gives a
model for A 4.
Define /4, as follows:

hy(x)=1if A(x)=in
By (Nx)=1 if A(x)=out.

We show that all axioms of A 4 hold

(a)
(b)

(©)

(d)

Show that 4; F Nx — —x otherwise h;(Nx)=h;(x)=1. This means that A(x)= out and
A(x)= in which is not possible.

Second we show that if zRy then %, Fz— Ny. Otherwise we have 4;,(z)=1 and
h;(Ny)=0. The former implies A(z)= in. Therefore A(y)— out and so by definition
h;(Ny)=1, a contradiction.

We now show that

h;, |:y<—>/\Nz.

zRy

Assume /;(y)=1. Then A(y)= in. So for all z such that zRy,A(z)= out, and so by
definition of #4;, for all such z, 4, (Nz)=1 and hence 4, ( /\2RyNz): 1.

Assume £, (y)=0. Therefore A(y) # in. Then either A(y) = out or A(y) = und. If A(y)) = out
then for some z such that zRy we have A(z) = in. Therefore A(z) # out and so 4, (Nz)=0.
If A(y)= und, then for some z,zRy an A(z) = und again A(z) # out and so /;(Nz)=0.
Thus for sure if 4, (y) =0 then for some z,zRy and 4, (Nz)=0 and so hk(/\zRyNz)zo.
We show that &, = A\ __ Attack(y) "2 (V.. Attacky) ~N2)) = =y A—=Ny. If the antecedent
holds then all attackers of y are not in and one of them is undecided. Therefore y is unde-
cided and so the consequent holds.

CoROLLARY 3.3
Let A be an argumentation network. Consider A 4. Then A 4 is CN consistent.

Proor. Since A has the complete ground extension, by the previous Theorem 3.2 this yields a model
for A 4.

ExampLE 3.4

(1) Consider the argumentation network of Figure 1.
Its theory in CN is A = {x — Nx, Nx <> x, —x A—Nx — —x A —Nx}. Since we have the N axiom
Nx — —x we get that x - —x is provable and so —x is provable and so —Nx is also provable.
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6 The attack as strong negation

”

X

Fic. 1.

This means we have only one model / with A(x)=A(Nx) =0 and therefore the only extension
is A(x)= und.
(2) Consider the additional axiom added to the theory ®, namely

Stable: {x Vv Nx|for all x}.

The theory ®,+ stable does not have models /4 in which A(x)=h(Nx)=0 for any x. Thus
this axiom characterises all stable extensions.

THEOREM 3.5
Let A=(S,R) be an argumentation network. Consider A 4 and let £ = {x|A 4 cnx}. Then E is the
ground extension of A.

Proor. We know that A 4 is consistent. Hence E is consistent. We show that £ is a complete
extension. Since other complete extension E’ corresponds to a model of A 4, £’ contains E. Thus £
would be the smallest complete extension — namely FE is the ground extension. We now show that
E is a complete extension.

(1) E is conflict free. Let x,y € E. If xRy holds, then x — Ny € A 4 and hence A 4Fcnx— —,
which contradicts the consistency of A 4 since A 4Fcny.

(2) Assume E protects x. We show x € E. Let zRx. then for some y € E, yRz holds. Hence y — Nz
isin A 4 and so A 4 FcnNz. Thus we have

Aqten /\Nz

zRx

and hence A 4Fcnx and so x€E.

REMARK 3.6
This is a clarifying remark about the correspondence between extensions of an argumentation net-
work A=(S,R) and CN models of the theory A 4.

Consider the three argumentation networks A;, .4,, A; in Figure 2. They all have the same exten-
sion, x = in, y= out, z= in.

Their theories A 4, are different, but they have the same models.

Ayx, = {x,x—>Npy,y<>Nx,z,7x A—Nx — =y A—Ny}
Ay, = {xx—>Ny,y<Nx,y— Nz, z<Ny,

—X A= Nx— =y A=Ny, =y A= Ny — -z A—Nz}
Ag, = {x,x—=>Ny,y<>NxANz,xVz— Ny,~xA—zA

(=NxV —=Nz)— =y A—=Ny,y— Nz,z— Ny,
—YA-Ny — —zA-Nz,7zA—-Nz— =y ANy,
y<>Nz,z< Ny}
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The attack as strong negation 7

Ai: r TPy z
As: T ey e
./43 r Ty z

All three theories have only one model 7
x=1,Nx=0,y=0,Ny=1,z=1,Nz=0.

The moral of the example is that the theories describe the extensions and not the geometry of the
networks. In fact, A 4, are all equivalent to A 4 = {x,—~Nx,—y,Ny,z,~Nz}.

Compare the CN approach with the truly meta-level approach of [17, Section 5], discussed below
in the beginning of Section 5.

We describe (S, R) in predicate logic with unary predicates Q;(x)=x is in, Qyp(x)=x is out, and
O»(x)=x is und, and a relation xRy for attack. Thus using R the networks of Figure 2 can be
distinguished in the semantics. Note, however, that we can read the geometry of the networks from
the syntax of the theories A 4,,i=1,2,3, but not from their models! This highlights the importance
of proof theory.

REMARK 3.7

The previous correspondence theorem reduces the idea of attack in argumentation networks to the
idea of strong negation in classical propositional logic. This reduction simplifies every move we
make in the argumentation area and gives us a tremendous advantage in making available to us all
the machinery of classical logic. This includes

(1) extensions for formal argumentations such as joint attacks, support, higher level attacks,
probabilistic argumentation, predicate/modal logic argumentation and more, all can be done
more simply and easily using strong negation, see the following sections;

(2) applications of argumentation become application of classical logic;

(3) new ideas can be more readily imported from classical logic into argumentation;

(4) the Caminada labels, x is in, x is out and x is undecided are available in the object language
as x is true, Nx is true and —x A —Nx is true, respectively.

(5) we now need to ask ourselves: what is the added value of argumentation over classical logic?
We need a clear and detailed answer to this question.

4 Intermediate critical evaluation

This section pauses our formal development to evaluate what we have so far and to explain to the
reader where we are going. We shall do this by a list of critical comments.

CC1. Basing argumentation on the unary notion of ‘being attacked’
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8 The attack as strong negation

We read Nx as ‘x is being attacked’, we are not saying how and from where this attack comes.
This makes Nx a kind of strong negation (with axiom Nx — —x), see [40]. This single simple idea
allows us to have Theorem 3.2. It also allows us to go in the direction of turning the system CN
into a paraconsisent logic of negation (see Wikipedia) by adding axioms on iterating N (e.g. the
axiom NNx <> x). We can do this safely for as long as Theorem 3.2 is retained. We shall address
this direction in later sections. We believe we can achieve similar results for logic programming by
reading Nx as ‘x fails’. This direction, and the connection with answer set programming, is left for
a subsequent paper.

There is another direction we can go in. We can use another meaningful logic such as intu-
itionistic logic, linear logic or relevance logic or fuzzy logic to replace classical logic and thus get
argumentation theory in those contexts. Again we shall look at this in a subsequent paper.

CC2. Simple way of defining joint attacks

The theory A 4 written for an argumentation network A= (S, R) is composed of several components.

(1) The logic CN (the use of N).
(2) Formulas defining when an argument x is ‘in’.
This is the part

(Fin) X< /\Nz

zZRx

F;, also includes the part relating to ‘x is not attacked’, since the empty conjunction is T.
(3) Formulas defining when an argument x is ‘out’. This is the part z— Nx, for all zRx, or if we
write it as a single formula, it is Foy.

(Fout) \/Z — Nx.

zRx

(4) Formulas defining when x is undecided

(Fund) ( /\ _‘Z) /\( \/ _‘NZ) — —x A—Nx.
ze Attacke) ze Attack)

Once we put the above in A 4 we get the correspondence theorem, Theorem 3.2, generating
complete extensions by models of A 4.

Now we can see how easy it is to generalize argumentation to joint attacks. Joint attacks,
introduced in [28, 44] can be described by the configuration in Figure 3 (using Gabbay’s
notation from [28]).

The meaning is that we have x is out if all of zy, ..., z, are in. This we can write in our logic CN
simply as /\(Z1 R Zi = Nx where Ry is the joint attack relation of the form Ry C (25—-2)xS.

So we can write the formula F°M for joint attacks as

(Floint (\V/ /\2)—Mx,

GRox zeG

where GCS,x€eS.
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Z1, ey Zn

x

FiG. 3.

The formula for F2M for a point x will be

(Floint xo(\ VM)

GRyx zeG
(floint AN =22\ \EV-Nz)— —xA=Nx,
GR,x zeG GRoxzeG

If we use these three wifs FIo" and F2°i and F°1 to define A 4, we can study the semantics
for joint attacks, in the object level, in classical logic as models of A 4, provided we prove a
correspondence theorem similar to Theorem 3.2.

The reader can compare the simplicity of this approach to what is done in the papers [28, 44].

CC3. Simple way of defining higher level attacks

Higher level attacks on attacks. These were studied in many papers [5, 6, 29, 39, 43]. They were first
introduced in general in Gabbay’s paper [8]. Figure 4 illustrates the basic configuration for higher
level attacks.

z attacks x and y attacks the attack z —x. We write it as y — (z —x).

We need to write the FI¥™ and FA2™" and F&" of this type of attack. In our set up with N
it is easy to write this! The Foy is zA Ny — Nx and the F;, involves NzVy. Let us write the wff’s
in detail for a network with one level of higher attacks. So our networks have the form (S,R,R)),

where RC S x S are the attacks and R; C S x R are the attacks on the attacks. We write:

(Fo'™) \/ A\ zAN»)—Nx
ZRx yR|(z,x)
higher
(F™™) AV Qzvy)ox
ZRx yR\(z,x)
(Fing™ A Mzvia=\/za \ Ny)—-xA—=Nx.
ZRx yR|(z,x) zRx YR1(z,x)

Again we use Fi-", F2" and F™™% to define A 4, and let the semantics be all CN models of A 4.

We need to prove a correspondence theorem similar to Theorem 3.2.
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FiG. 4.

CC4. A word of caution

Although we are showing how other types of networks can be translated into CN, we are not just
saying ‘look, our paper is introducing you to another master generalization of argumentation’. We
reserve judgement about N until the end of this paper and we might say at the end to the reader
‘in view of our article, do not think any more in the old conceptual framework of argumentation of
(S, R) but think in terms of strong negation N of just being attacked, and do your argumentation from
now on in classical logic with N’. The reason we reserve judgement is because we want to figure
out first how the use of N affects related systems such as ABA (Assumption Based Argumentation,
see [23]) and ASPIC (see [46]). In ASPIC and ABA, the game is to start with a logic theory A,
define proofs from A as the argument set S, define a respective suitable attack R between proofs,
then define (S,R) as an instantiated network, take extensions £ C .S and then make sure that £ is
consistent in the logic of A. This we perceive as a potentially unnecessary external detour. From
the point of view of our method, we might say to a proponent of ABA and ASPIC, “why do you
need all these roundabout ways involving a multitude of problems? Why not add strong negation N
directly to the logic of A and model your argumentation there and you are done?” If CN can swing
this and we succeed in working out the details, then ABA and ASPIC would immensely benefit
from our conceptual view. See CC7 below.

CCS. Comparing with abstract dialectical framework (ADF)

ADF were introduced in [16] by Professor G. Brewka as a generalization of argumentation frame-
works and immediately caused both excitement and criticism. In this article, we shall use an example
from Brewka’s slides [14] to do our comparison.

An ADF has the form (S,R,C) where S is a set of arguments and R C S xS is the link relation
(Brewka calls them ‘links’ because he does not view them as attacks). C is a family of accep-
tance relations. For each x €S, there is a formula of classical propositional logic ¢,, specifying the
acceptance (‘in”) condition for x, based on the acceptance values of {y|yRx}.

In our terms, as well as in classical logic terms, what ADF is saying is condition F¢ :

(FS x< @, forall xes.

If we regard F$, as a condition in our logic CN, then we can define all complete extensions in our
sense as all extensions obtained from models m of Ac=(©, +FY), where the values {in, out, und}
are as in the proof of part 1 of Theorem 3.2, namely:

e x=inifm(x)=1
e x=outif m(Nx)=1
* x=und if m(x)=m(Nx)=0.
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Brewka, however, works only in classical proposition logic with the three valued semantics
according to Kleene. So his models give 3 values {1,0,u} with

Inl=1
0A0=0
I1Au=0Au=uru=u.

Brewka derives his extensions for the 3 valued models using some process. See [14, slides 13—18].
We now reproduce in Figure 5 the original slide 18 of Brewka [14] in order to compare ADF with
our CN approach.

The Brewka extensions are given in the figure.

Figure 6 lists the models in CN obtained for the ADF theory.

We note that our model m; is he same as Brewka’s v; and our model my is the same as Brewka’s
v,. However, model mj3 gives a= in, b= in, ¢c= in and d = und, and model m; gives b=c= und
and a=d = in. We do not get the Brewka’s grounded model G={a= in,b=c=d = und}.

This model is not one of the model of the theory

Ac={x< ¢,|x anode in Figure 5}UO,.

So how does Brewka get his grounded extension? Look at v; and v,, a gets 1 in both, but b, c and
d get value 1 in one of them and 0 in the other. So if we look at G with the undecided value u given
to b,c and d for each of these arguments there are extensions which make its value 1 and there are
extensions which make its value 0. Therefore their value, according to ADF is undecided.

From our point of view, this way of looking at undecided is just external combinatorics, devoid
of conceptual content. According to our view only —x A—Nx makes x undecided, namely x is false
but not strongly false.

G is not an extension. It is not a model of A, because of the axiom d =—b.

Obviously we could try and add restrictions on the models to get the same results as Brewka (i.e.
implement ADF in CN) but why should we do that at all? Our methodology is sound and stronger.

Yq =1 wp=2>

a C;b

c d
Pe = 0a Ab ©Yd = —b
e models:

— vy ={am—t,b—t,c—t,d— [} corresponds to {a,b,c,~d}

—wvy={a—t,b— f,e— f,d— t} corresponds to {a, b, ~c,d}
e grounded model: v; = {a — t,b+— u,— u,d — u} corresponds to {a}

FiG. 5.
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model | a=T | Na |b=b| Nb|c=aAb| Nc|d=-b| Nd
m 1 0 1 0 1 0 0 1
mo 1 0 0 0 0 0 1 0
ms 1 0 1 0 1 0 0 0
my 1 0 0 1 0 1 1 0
FiG. 6.
At a4 )
a b c
T
FiGc. 7.

Given that we had NV in the object language, we can do more than ADF. ADF writes the acceptance
conditions in 2-valued classical logic and brings in the undecided value only through the semantic
interpretation. We have the undecided value (—x A —Nx) in the language itself and therefore we can
put the undecided property into the acceptance conditions. Consider the joint attack described in
Figure 7.

Suppose all three attackers a, b, c are undecided. In this case, we traditionally say that x is also
undecided because we do not know, maybe all three a =b=c = in. This could happen. If, however,
we adopt the new view that the chance that all three attackers are ‘in’ can be disregarded, then we
want to say it in our acceptance conditions.

So we want to say

(Fin(x)) x < (Na /\Nb/\Nc)\/(—-a A—=NaA—=bA—=NbA—cA—Nc)
(Fou(x)) avbvVve— Nx

a<> Nb
(Fin(a,b,c)) b<>NaANc

c<Nb

avc— Nb

(Fou(a,b,c)). b— Na A Nc.

Can ADF express exactly the same extensions as what CN gets for the above, especially the one
a=b=c=und, x= in?
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N

a b

N

FiG. 8.

CCé. Using CN for the probabilistic approach

There are many papers on probabilistic argumentation. Our paper [37] offers a comprehensive
approach based on probability models of classical logic. We shall therefore compare the probabilistic
use of CN with the approach in [37]. We shall use the network of Figure 8 as an example.

The approach of [37] regards {a, b} as atoms of classical propositional logic. The logic with these
atoms has the following models

m,: aAb;x

my: aA-—b;y

m;: —aAb;z

my: —aA—-b;l—x—y—z.

We can give a probability distribution P on the models

P(ml):x
P(my)=y
P(HI3)=Z
Pmy)=1—x—y—z.

The fact that these nodes {a,b} are part of the network (S,R) of Figure 8 is reflected in the
probability having to satisfy the equational approach equation called E3 in [37] (see [27] for the
Equational Approach to argumentation).

(E3) Px)=P(/\ ).

YRx

In our case this means

- P(a)=P(=b)
. P(b)=P(—a)

where
* P(x)ZthxP(m)
Therefore the equations we get are

s x+y=1—-x—z
e x+z=1—-x—y

9T0Z ‘ST Yo\l uo Binoguisxn Jo Alsleaiun e /6io'sfeuinolpioxo: edBily/:dny wouy papeojumod


http://jigpal.oxfordjournals.org/

14 The attack as strong negation
These two are the same equation, yielding
l—x—y—z=P(my)=x.
Therefore any probability distribution P of the form

P(anb)=x
P(an—=b)=y
P(—manb)=z
P(—an—b)=x

with 2x+y+z=1 is a good one, respecting the attack relation.

We have P(a)=x+y,P(b)=x+z,P(—arn—b)=x.

Let us now check how the models of CN relate to probability. For the language with atoms
{a,Na, b, Nb} satisfying the CN axiom

Nx — —x

we can have the following models 4; j=o; A B;,i=1,2,3,j=1,2,3 where

oy = aA—Na
oy = =—aA—Na
o3 = =—aANa
B1 = bA—-Nb
B, = —bA—-Nb
/33 = —bAND.

Here we have 9 models as opposed to 6 models of the previous approach. Let the probabilities on
these models be

(e AB)=Pi;

with
ZPi‘j == 1
i

The models must satisfy the theory A 4 for the network of Figure 8. These are

Na— —a

Nb— —b

a<>Nb

b<>Na

—aA—Na— —bA—Nb
—bA—=Nb— —aA—Na.

So only 3 models are models of A 4. These are

hi = aA—-NaANbA—-b
hy = —-aAnNaAbA—Nb
hy = —aA—NaA—bA—Nb.
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Let the relative probabilities be p1,p,,p; respectively with > p;=1.

Note that 4; is the extension a= in, b= out A, is the extension b= in, a= out and /3 is the
extension ¢ =b = und.

The first difference between the approaches is that while the approach in [37] gives probability
to arguments (called in [37] ‘the internal approach’), the CN approach ends up giving probabilities
to extensions (called in [37] ‘the external approach’).

Giving probability to extensions is not new. It is supported by many authors (see references/
discussion in [37]). Let us calculate the probabilities 7 (a) and 7 (b). We get

w(a)=pi1,7w(b)=py,t(—aN—b)=p;s.
Comparing the two approaches, it makes sense to equate
D3=X,pr=X+z,p1=x+Y.

The main difference is that we are giving probabilities to 2-valued models in [37] and using CN
we are using 3-valued models.

In both cases we give probabilities to models. However, in case of CN, the models are extensions
and so we are giving probabilities to extensions also.

CC7. CN and bipolar networks

Note that in CN we get support and contrary arguments for free. Since we have implication ‘—’ in
the logic, we can write ‘x — )’ to mean “x supports y’ and since we have negation ‘—’ in the logic,
we can view —x as the contrary of x. We need not introduce additional atoms into the argumentation
network for contraries, nor do we have to introduce an additional arrow for support into the network.
Furthermore, since we have negation, we have the additional option to represent ‘x supports y’ as
‘x — =y’ namely as x —> N—y.

Let us do this in a systematic manner.

DerNiTION 4.1

(1) A bipolar network 3 has the form B=(S, R,, R), where R, C S x § is the attack relation (also
denoted by —) and R; C.§ x § is the support relation (also denoted by =).
(2) Given a bipolar network B, we offer two possible translations into CN.
s i(x—>»y)=x— Ny
s I(x=y)=x—y
s H(x—»y)=x— Ny
s px=>y)=x—>N—y
(3) Note that the complete extensions of the bipolar networks will be obtained from all the
models of CN.

REMARK 4.2

(1) We note that x — y implies x — N—y. This holds because, as we shall see in Section 5,
—Ny— N—y and because y — N—y both hold. Thus 7, is stronger than ;.

(2) When we have a translation t from one system (e.g. B) into another (e.g. CN), we need to
examine the properties of soundness and completeness.
Soundness in our case means that whatever we consider as a bipolar complete extension for
B will turn out to be a complete extension according to CN. Completeness means that CN
does not give any additional complete extensions.
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The problem in this case is that there is disagreement in the community about how to define
the complete extensions for B. The main papers of C. Cayrol and M. C. Lagasquie-Schiex
are [19, 20]. These have been criticised by G. Brewka and S. Woltran [16] and a solution
was proposed in our paper [47]. Thus a detailed analysis of soundness and completeness for
our translations must be postponed to a continuation paper [35]. However, we can point out
in this article some key properties involved in [47].
The possible properties are as follows:
X=Y,z—>»Yy

Z—xX
X=p,y—u

X—u

(P3) WX, X=y

(P1)

(P2)

w—-y

We need to check these properties for both
T(x—>y)=x—y
and
T(x=>y)=x—> N—y.

What we need is consistency. Can we add the translation of these rules to CN and remain
consistent?
The answer is positive. So we can hope to have something like the following theorem:

THEOREM 4.3

Let P be a set of properties for a bipolar network B (e.g. (P1)—(P3) of Remark 4.2). Let T be a
translation of B into CN, and let 7(IP) be the translation of PP into CN. Then the translation 7 of B
into CN+ t(P) is sound and complete.

As we said, we shall address this theorem in Part 2 of this article.

CC8. Limitations of the CN approach

The CN approach transforms the geometrical representation of an argumentation network A =(S, R)
into a theory A 4 of the logic CN. Theorem 3.2 ensures that the correspondence between complete
extensions of A and models of A4 is sound and complete. We are trading off here, however,
geometry for model theory.

The previous CC1-CC4 discussed the advantages of the CN approach. The limitations come from
the fact that in the CN approach we obscure/lose the geometrical aspects of .A. Therefore, any moves
in argumentation theory which use the geometry (e.g. the strongly connected components, SCC of
Baroni et al. [7]) will become less transparent. We can mathematically do them in CN, but we would
have to extract the geometry of A=(S,R) back out of A 4!

The following Figure 9 can be used to illustrate our point using the CF2 semantics [7, 32].

The CN semantics gives the complete extension of all undecided to the network A of Figure 9 in
agreement, of course, with the traditional Dung approach. The CF2 semantics takes maximal conflict
free subsets of the top SCC and therefore yields the extensions {a,d},{b,d},{c,e}. CF2 relies on
identifying the SCCs. It relies on the geometry of (S, R).
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S
Alx/C\\\d*>>e

FiG. 9.

The CN theory for this network A is

Ay = O,U{a— Nb,b— Nc,c— Na,c— Nd,d— Ne,e<> Nd,
d <> Nc,c<>Nb,b<>Na,a<> Nc}

Looking at A 4, we have to define/extract the cycles in order to define the CF2 semantics for A.
Gabbay’s approach using annihilators [7] also requires the use of geometry but to a lesser extent.
We can identify syntactically a cycle, say

X1 — Nxp,xy — Nx3,...,x, — Nx;

and break the cycle by applying an annihilator, say to annihilate the point x;, i.e. add a new point
z(x;) to A 4 with z— Nx;, and look instead at

AR = A 4Uz(x), 2(x) — N}

We still need some geometric intuition in doing this.

5 Introducing the logic CNN

5.1 A meta-level object level short discussion

The perceptive reader may be aware of Section 5 of my 2009 paper with Caminada [17]. In this article,
we describe several options of looking at an abstract argumentation network (S, R). Since 2009, there
were many other papers, which put forward different representations of Abstract Argumentation
Networks in terms of well-known logics, see e.g. [21]-[38]. We shall compare and discuss these
papers in our Comparison with the Literature Section 9. Meanwhile in this section, we want to make
a critical point about the difference between Object Level Vs Meta-Level representation of Abstract
Argumentation Networks, and so we consider now one of the possible options of Section 5 of [17].
This option is to describe (S, R) completely in classical predicate logic. We consider S as the domain
of the logic and we consider the attack relation R as a binary relation on S. In addition to that, we
need 3 unary predicates, Q1,0 an O, representing the 3 Caminada labels for the elements of S,
namely x is ‘in’, x is ‘out’ and x is ‘undecided’, respectively.

We write axioms in predicate logic basically expressing the properties of the labelling relative to
R making it a legitimate labelling. These are the following:

Consider the following classical theory A(R, Oy, O1,09).

(1) Yx(Qo(x)V Q1(x) v O(x))
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(2) =IO, A Q) for i#),i,j€(0,1,%)
(3) Yy(Vx(xRy — Qy(x))— O1(»)
(4) Vy@Ex(xRy A Q1(x)) = Oo(v))
(5) Vy(Vx(xRy — (Qo(x) v Q2(x))) ATx(xRy A Q(x)) = Oo(»))

Any model of A with domain D defines an argumentation framework with the set of argument
S'=D, and the attack relation is R and the labelling X, is what we obtain from the elements satisfying
the respective predicates Oy, 01 and Q,. Notice that we are not using ‘=".

If we want to characterize any specific argumentation framework A= (S, R) we need equality and
we need constant names for every element of S. We write the following additional axioms .A

(6) Yx(\/ ,sx=0a)
(7) /\a.be&a#ba#b
(8) A peraRb

The use of predicate logic to talk about (S, R) is meta-level. The predicates Q0,0 and O, are
not logical connectives. We cannot write, e.g. the expression Oy(Qo(x)). In contrast, the logic CN
is object level. It can express the predicates O, 0y and O in the object level, as well as the relation
R, as follows (see, however, Remark 3.6 of Section 3):

O:1(x)=def x
Qo(x)=def Nx
Os(x)=def =x A—Nx
XRy=def x — Ny.

Note the difference between object level and meta-level. Suppose we want to instantiate (S, R) with
arguments which are formulas of predicate logic, say we have xRy and we instantiate x=« and
y=8. In the meta-level language we cannot write «Rf. Even if we allow for the use of names ‘o’
and ‘B’ and add appropriate axioms for the correct handling of names, we still do not know what
‘@’ R ‘B’ means in terms of semantics. The meta-level translation does not give any meaning to R it
is just a translation. On the other hand, we can write in our object level system the formula o — N 8,
and if we use predicate logic with N, we can let the models of this predicate logic with N provide
a proposed semantics for the instantiation by using Theorem 3.2 as a definition. Furthermore we

can write additional axioms for N. For example we can also write NNx and add an axiom (which is
valid)

NN: x <> NNx

On the other hand, the meta-level predicate approach can deal with infinite non-finitary networks ,
while our object level approach requires the network to be finitary. We shall discuss the predicate
approach further in the context of comparing with paper [25] in Section 9.

5.2 The logics CN and CNN

Having explained the object level nature of our translation of argumentation into CN, let us now
focus on this logic.

So what kind of a logic is CN? Can we say more about it, in addition to what we said in Section
1? The answer is yes. We can add a modal point of view to that of Section 1.
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P
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o —

Fic. 10.

Consider a modal logic with two possible worlds t and s. Assume that s is accessible to t and t is
accessible to s. So we have a symmetric non-reflexive relation. See Figure 10.

We further require on assignments to atoms that if the atom ¢ is assigned T at t, then it is assigned
T at s (but not necessarily vice versae).

Let t be the actual world and let us have the modal connective N with the following truth table

* tENA iff sE—4
s sENA iff tF—4
* FAiff tE A (i.e. t is the actual world)

Let us call this modal logic CNN.
We therefore have the following true in the actual world t

*+ CNNFNg— —q,q atomic
CNNENNA <4
CNNEN(AAB)<> NAVNB
CNNEN(AVB)< NAANB
CNNENN—-g—q)

* CNNF(4— B)— N(NB— NA)

In this context for atomic arguments ¢ we understand the following in t:

(*1) q attacks p, reads g— Np

(*2) q is out, reads Ng

(*3) ¢qisin, reads q

(*4) q is undecided, reads —g A —Ng.

DErFNITION 5.1
Let CNN be the logic extending CN with the following axioms

NN: NNx<x

NA: N(@xAy)<NxVvNy

Nv: N(xVvy)< NxANy

N<: x<y implies Nx <> Ny, where IN does not occur in x or ?
N—-: N-x<-—Nx

ExampLE 5.2
Consider the network of Figure 11

The Figure describes a network containing the points x,y,z where x is the only attacker of y and y
is the only attacker of z. Given that, we know that no matter what complete extension we are dealing

2Note that we have T <> (Nx — —x) but not N T <> N (Nx — —).
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Fic. 11.

Fic. 12.

with, the value of x must be equal to the value of z.

s x=in=y=out=z=in
* x=out=y=in =z=out
* x=und =y=und =z=und

If we look at Fy,,, Fo, and F,q applied to these points, we see that the formulas

(1) x—> Ny
2) y—>Nz
(3) y< Nx
(4) z< Ny
(5) =x A—=Nx— =y A—=Ny
(6) =y A—=Ny— —zA—-Nz

must hold in the logic. We also have, of course, the axiom schema Nu — —u.
These formulas must prove x <>z and Nx <> Nz. We now proceed to prove them:

(a) Assume x, then from 1. and 4. we get z.

(b) Assume z, then from 4. we get Ny and from the axiom we get —y and so from 3. we get
—Nx. If we had —x then from 5. and 6. we would have got —z. Therefore we must have x.

(c) Assume Nx, then from 2. and 3. we get Nz.

(d) Assume Nz, then from axiom we get —z, and therefore from 4. and 1. we get —x. If we had
—Nx, we would have got from 5. and 6. =Nz, and so we must have Nx.

We thus proved x <>z from a. and b. and we proved Nx <> Nz from c. and d..

ExampLE 5.3
Consider the network A= (S, R) of Figure 12
The axioms of A 4 are the following:

(1) x<>NxANy
(2) y< Nx
3) x— Nx
(4) x— Ny

9T0Z ‘ST Yo\l uo Binoguisxn Jo Alsleaiun e /6io'sfeuinolpioxo: edBily/:dny wouy papeojumod


http://jigpal.oxfordjournals.org/

The attack as strong negation 21
(5) (@) (~xA=Y)A(=NxV—=Ny)— —x A—Nx
(b) =x A=Nx— =y A—=Ny

The network A has two possible extensions y = in, x = out, and x=y = und. So we want to be able
to prove (using A 4 and the extra axiom NNA <> A) that either y= in and x= out or y=x= und.
This means we want to prove (6)

(6) (y ANx)\/(=y A—=Ny A—x A—Nx)

Let us show we can do it!
From (1) we get x — Nx and since we have the axiom Nx — —x we get

(7) —x
We now prove
(8) Ny——Ny

Assume Ny, therefore by axiom we get —y and so from (2) we get —Nx, and so from from (7) and
(5b) we get —Ny. Thus we have proved (9) below:

(9) —Ny.
Therefore, in view of (9) and (7), (6) becomes (6*)
6*. (¥ ANx)\/(—yA—Nx)
or, equivalently (6**)
6**. (yVNx)— y ANx.
In view of (2), (6**) becomes
6***. (yVy)= (Y AY).
which holds.

6 Conjunctive and disjunctive attacks in CN

In 2009, Gabbay [28] introduced the option of conjunctive (joint) attacks and the notion of disjunctive
attacks. The basic configuration can be seen in Figures 13, 14, 15 and 16. In Figure 15, the nodes
{y1,...,ym} jointly mount a disjunctive attack on the nodes {zi,...,z,}. The meaning in Figure 15 is
that if all of y; are in then at least one of z; is out. See Figure 16. Translated into CN this means:

m n
/\y,-—> \/sz.
i=1 j=1

DermiTION 6.1 (CD network)

(1) Let S be a non-empty set of arguments. Consider the set 2 of all non-empty subsets of S.
Use the notation G, H C .S for such subsets. Let R be a binary relation on such subsets, i.e.

RC(25—@)°.

A conjunctive—disjunctive argumentation network (CD-network) has the form (S, 2, R).
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Y1 yeeny  YUm
z
Fic. 13.
z
21 R Zn
Fic. 14.
h yoeey Ym
Z1 yoooy Zn
Fic. 15.

(2) When all attacked sets are singletons we get only joint attacks of the form
GR{x},x€eS.
We can use the notation
Ry={(G,x)|GR{x}}.

(3) When all attacking sets are singletons we get only disjunctive attacks of the form {x}RH.
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m n

/\yi—»/\zj

i=1 j=1

Fic. 16.

REMARK 6.2

We need to discuss the nature of the joint—disjunctive attack. The disjunctive part of the definition
is different in nature from the conjunctive part. This may cause difficulties. Consider the disjunctive
attack of Figure 17. x is not attacked and so x = in. Thus we must have either a = out or b= out. So
the extensions are

x=1in, b= out. a= und
x=1n, a= out, b= und.

In CN we can write this as
x—> NaV Nb.

The reader should be strongly aware that the translation is from .A=(S, R) into CN and not the other
direction.

So if we have a joint attack of {x,a}— b, then the translation would be x Aa — Nb.

To make this point clearer note that the condition x — Na Vv Nb is equivalent to the following two
conditions

(1) x=in and a # out — b= out
xA—Na— Nb

(il)) x=1in and b # out — a= out
xA—Nb— Na.

Consider now (i) as a new kind of joint attack as in Figure 18.
In this new kind of joint attack if one or more of the attackers is undecided, then the attack still
goes through. This also means that we get a new type of single attack which we denote by

x—O—>y,

where y is out even when x = undecided.
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xT a

new kind of joint attack

Fic. 18.

In fact, we can define x—O0— y as the truth T disjunctively attacking x Ay. This view also
implies that x—0—> y iff y—O—> x.

This is not a good understanding of disjunctive attacks. Our intuitive understanding of being
undecided is that x is undecided because x can go either way. Either to x= in or to x = out. So we
might want to say that in Figure 14, if all z; are either in or undecided, with one z; undecided, then
/\;z: is undecided and hence z is undecided.

It is not our purpose to study in detail disjunctive attacks. We just want to show that the logics CN
and CNN are very good in expressing attacks. The reader can see for a fact that in the CN language
we can say whatever we want. The attack x—{)— y can be written as —=Nx — Ny or equivalently
=Ny — Nx.

There is no agreement in the literature on the meaning of the argument z attacking the set of
arguments H ={zi,...,z,}. In [28, 33] the definition is z— \/szj, while in [44] the definition is
\/j(z — Nz;). See Section 8 below for further discussion and also see [26].

These 2 options are the same in 2-valued logic but not if we have the third undecided value.

Given the uncertainty of how to define complete extensions for networks with disjunctive attacks,
we can simply write the CN-formulas Fy,, Foy, Funa that we want and stipulate that the complete
extensions are to be all CN models of these formulas. For further discussion see Section 8 below.

Having concluded our discussion in the previous Remark 6.2, we still do need to prove a correspon-
dence theorem for the case of joint attacks only, since there is agreement about them in the literature.

DEFINITION 6.3

(1) An argumentation network with joint attacks has the form (S, Rj), where S is a non-empty
set of arguments and Ry C (25 — @) x § is the joint attack relation.

(2) A legitimate Caminada—Gabbay labelling from S into {in, out, und} is a function A satisfying
the following conditions:

(CG1) A(x)= in iff either x is not attacked by any G C .S or for every G C S such that GRyx,
there exists a y € G such that A(y)= out.

(CG2) A(x)= out iff for some G S, GRyx and for all ye G,A(y)= in.

(CG3) A(x)= und iff for all G C S, such that GRyx there exists a y € G such that A(y) # in,
and for some G’ C .S, GRyx we have that for all y € G’, A(y) = either in or und.

(3) We identify the complete extensions of (S,R;) with the legitimate Caminada—Gabbay
labellings of S.

9T0Z ‘ST Yo\l uo Binoguisxn Jo Alsleaiun e /61o'sfeuinolpioxo’ edBily/:dny wouy papeojumod


http://jigpal.oxfordjournals.org/

The attack as strong negation 25

THEOREM 6.4
Let A=(S,Ry) be an argumentation network with joint attacks. Let A 4 be its associated CN theory
with Foint Floint and Floint a5 defined in CC2 of Section 4 and listed below.

Then the models of A 4 correspond exactly to the Caminada—Gabbay labellings of A according
to Definition 6.3.

FJoint . (\/GRox/\zeGZ)_)Nx
out forallxeS
F.]oint . xe(/\GRox \/zeGNZ)
mo- forallxeS
Floint. AN A\ \@V=Nz))— —xr=Nx
GRox zeG GRyxzeG
ProoF.
Part A. Assume we have a legitimate A. We define a model 1=/, of A 4.
Let

e h(x)=1if A(x)=in
* hy(Nx)=1if A(x)= out

We show that all axioms of CN hold.

(1) Show Nx — —x. Otherwise /; (Nx) = h; (x)=1, but this means A(x) = in = out which is impos-
sible.
(2) We check Fin. Assume hi(\ Grox /\zccZ)=1. So for some GRyx we have h;(z)=1 for all
z € G. This means for this G that A(z) = in for all z € G. Hence A(x)= out. Hence /, (Nx)=1.
(3) We check Floint,
(a) Assume A, (x)=1. This means A(x)= in. Hence for any GRx we have that for some z €
G, \(z)= out. Thus for all GRox there isaz€ G s.t. A(Nz)=1,i.e. hi(\gp,. V.caN2)=1.
(b) Suppose 1, (/\gg,x V-ccVz) = 1. This means for every GRyx there is a z such that 4, (Nz) =

1. But this means for every GRyx thereisaz € G s.t. A(z) = out. Thus A(x) =1inso A, (x)=1.
(4) We check F°™: Assume that

und
(a) h)»(/\GRox \/zeG _|Z) =1
®) A\ grox N\zcc(zV—=Nz))=1.
We show that A(—x A—=Nx)=1.
From (a) we get that every GRyx has a z such that 4, (z) =0, i.e. A(z) # in.
From (b) we get that there is a GRyx such that for all z € G, we have that =z — —Nz holds.
Thus for one GRyx there is a z such that A(—z A—Nz)=1. This means A(z) # in and A(z) #
out, i.e. A(z) = undecided.
So we got that for every GRyx, not all A(z) = in, for z € G and for one such G’ all z are either
in or undecided with one A(z) = und.
This implies A(x)= und. So %; (—x)=~h;(—Nx)=1.

Part B. Assume % is a model of A 4. Define A,
o M(x)=inif h(x)=1
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o Mu(x)=out if A(Nx)=1
e h;(x)=und if A(—x A—=Nx)=1.

We show Ay is a legitimate labelling.

(1) X, is well defined because # satisfies
hE Nx — —x.

(2) We show (CGl)
(a) If x is not attacked then x € A 4 and so A,(x)= in.
(b) Assume that for every GRyx there is y € G with A,(y)= out.
This means for every GRyx there is y € G with A(Ny)=1. So h(\ .. Ve V) =1.
So by Fi° we get that (x)=1 i.e. A(x)= in.

(3) We show (CG2). Assume for some GRyx and all y € G that A,(y)= in. This means

h(\/ A\»=1.

GRoxyeG

Hence by F2° a(Nx)=1, i.e. A(x)= out.
(4) We show (CG3). Suppose for every GRyx there is a y s.t. A(y) # in and in some G'Ryx for
y€G’,M(y)= in or undecided and that there is a yy € G’ such that A(yy) = und.
Then A(/\ g, \/yec —y)=1and h(\/ gz . /\yec(yv =Ny))=1.

This means that the antecedent of F'°™ holds and so #(—x A—Nx)=1 and so A(x)= und.

und
[ |

THEOREM 6.5
Let A=(S, Ry) be a argumentation network with joint attacks. Then there exists a Caminada—Gabbay
legitimate labelling A for it, (i.e. it does have complete extensions).

Proor. We reproduce a construction from Gabbay’s 2009 paper [28] which faithfully reduces joint
attacks to single attacks. This means that (S, Ry) can be faithfully embedded into a traditional network
(8’,R) with SCS’. Since (8’,R") has complete extensions, we will get that (S,R,) has complete
extensions.
We now proceed to generate the new points to add to S to obtain S’, and we define R'.
LetxeS.Let Gy, ..., G, be all the attacking sets of x. Let G;={z; 1,..., 2, },i=1, ..., n. Introduce
new points as follows:

Sx = {x(G,-),e(x, Giszi,l)a .. .,e(x, G,‘,Zi,r(i)|l.: 1, .. .,n}.

Let S'=SUJ, Sk

Note that for any configuration (G, ..., G,,x), where G; are all the sets attacking x, the sets S, are
all sets of distinct disjoint points. Note also the correspondence between each z; ; € G; and the point
e(x,Gj,z; ;). So, for example, if {a,b}Rox and {a, b}Ry hold and {a, b} is the only attacker of x and
the only attacker of y, the new points will be

Sy = {x({a,b}),e(x,{a,b,},a),e(x,{a,b},b)}
Sy = {)’({a,b}),e(y’ {avb}va)9e(y?{avb}’b)}'

Define R’ on S’ as follows.
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21,y -0 21,r(1) PRI Zn,ly -+ An,r(n)

A

FiG. 19. Joint attacks of Gy, ...,G,.

Zilyy e ey Z1,0(1) goe ey Zn,ls -y Anyr(n)

P

e(x, G'n7 Z’n,,l)» AR e(a:., Gna Zn,r(n))

)

e(z,G1,21),...,e(x,G1,2,1)) ..

Fic. 20. Reduction of the joint attacks.

For any Gy, ..., G, attacking any x, let

Zi‘jR/e(x, Gj.ZjJ)
e(x, Gi,ZiJ)R/X(Gi)
x(G)R'x.

Figures 19 and 20 show what we have down for the case of x € S and G; are the only joint attacker
of x with Gi={z;1,...,zi,)},i=1,...,n.
We want to prove the following claims.

Claim 1. Let A be a legitimate labelling of (S’,R’). Then u=A [ S is a legitimate labelling of (S, Ry).

Claim 2. Let u be a legitimate labelling of (S, Rp). Then u can be uniquely extended to a labelling
A of (8, R") and this A is legitimate for (S',R’).

To prove the above we need some shorthand definitions.

Let G be a set of nodes. We say that G is in if every x€ G is in. We say that G is out
if some x€G is out and we say G is undecided if every x in G is not in and some ye€G is
undecided.
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Proof of Claim 1 and Claim 2. This is proved in [28]. We can see the idea of the proof by comparing
Figures 19 and 20.

(D

2)

)

4)

Suppose x is in, in Figure 20 then we must have that all of x(G;) are out. For x(G;) to be
out, one of {e(x,G;,z;;)[j=1,2,...} must be in. So one of {z;;[j=1,...} must be out and so
the set G; must be out.

This means that x= in implies that all G; are out. In fact we have that x is in if and only if
all G; are out. But this is exactly the condition for x= in, in (S, Ry).

Suppose x is out in (S",R’). Then some x(G;) is in. Therefore all of {e(x, G;,z;;|[j=1,...} for
this G; are out. Hence all of {z;;} for this G; are in, and hence G; is in. Again this goes in
both (iff) direction and is the out condition in (S, Ry).

Suppose x is undecided in (S’,R’). Then all of x(G;) are either out or undecided, with one
x(G;) at least being undecided. If x(G;) is out then as we have seen before, G; must be in.
If x(G;) is undecided then all elements of G; must be either in or if not, in then undecided,
with at least one element of G; being undecided. Again this argument is an if and only if
argument and is exactly the condition for x = und in (S, Ry).

The considerations in (1), (2), (3) also show that Claim 2 is true because the values of G;
and x determine the values of e(x, G;,z; ;) and x(G;) uniquely.

The theorem follows from the claims, since (S’, R") does have legitimate labellings.

REMARK 6.6

The considerations in the proof of Theorem 6.5 show that basically the configuration in Figure 20
‘implies uniquely’ the configuration of Figure 19. This means that if we write in the logic CNN
the conditions F; ,F, ,F. , for x and for all the additional new points in (S’,R’), it should logically

n’" out?

imply in CNN, the conditions F;° Flint and Foi for x in (S, Ry). This means the new points play
no real logical role.

Let us prove this, also as an exercise in the deduction capabilities of CNN.

Let us write all the F” of x for (S, R") and prove all the F**™ of x for (S, Ry).

We are given the following data.

(1
2)
)
4)
)

(6)
(N

x < N\, Nx(G))
\/x(G;)— Nx
X(G,‘) <> /\jNe(x, Gi,Z,‘,j)
V,ex, Gi,zi ;) = Nx(G;)

(a) Zij —> Ne(X.Gi,ZiJ)
(b) _'Zi,j/\_'NZi,j — —|e(x, Gi,ZiJ)/\_'Ne(X, GiaZiJ)
e(x,G,—,Z,-J-)<—>NZ,-’_,-

(@) A\,~x(G)A\,;=Nx(G;)— —x A—=Nx
(b) A\;—e(x,Gr.zij) A\, ~Ne(x, Gi,zj) = —x(G) A=Nx(G))

Let us see what we can prove in CNN from (1)—(7). We start by proving F{on:

X< /\ \/Nz

GRyxzeG
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®)

(a) Assume x

(b) from (1) we get for all i, Nx(G)).

(c) From (8b) we get —x(G)).

(d) Fix an arbitrary i. We show that for at least one i we have e(x, G;,z; ;).

(e) we assume in order to reach a contradiction that for all j we have —e(x, G,z ;). If by
any chance we have that for at least one j —=Ne(x, G;,z; ;), we would get by (7b) =Nx(G;)
also, contradicting (8b). Thus we must have Ne(x, G;,z;;) for all j. But then by (3) we
get x(G;), contradicting (8c). Therefore (10d) must hold.

(f) So from (6) and (10d) we get that for at least one j we have Nz; ;.

(g) summarizing, having assumed x in (8a) we get from (8d) and (8e) that for all i, there
exists a j such that Nz, ; holds. This is the direction x — Agp V.o Nz

()]

(a) Assume for each i there exists a j such that Nz, ; holds.

(b) Therefore from (6) we get that for all i there exists a j such that e(x, G;,z; ;) holds.

(¢) Therefore from (4) we have for all i, Nx(G;) holds.

(d) Therefore from (1) we have that x holds.

(¢) Summarizing, we have proved that /\ sz \/..oNz— x.

We continue to derive F'oint,

out

(10) From (5) we get /\jz,«,j—> /\je(x,Gi,ziJ).

(11) Using (6) and (3) we get /\jz,-l,-—>x(G,-).

(12) From (2) and (11) we get \/; /\;z;;— Nx. This is Fio".
We now show Flomt,

We need first to prove (14) below.

From (3) we get

(13) A\i~x(G) < \,V,~Ne(x, Gi,zi).

From (6) substituted in the right-hand side of (13) we get
(14) \i~x(G) < A, \/j ~NNz;;

hence /\iﬂx(Gi)<—>/\i\//—|zi,j.

We now carry on to prove F/oint

und *

(15) Assume the antecedents of F'°™ namely

und

@ ViV —Nzy).
(b) /\i\/j_'ZiJ'

We want to show the consequent
() =x A—Nx.
From (a) there is an i* satisfying

(16) A,y V =z ).

For this i* we use (b) an get \/j —z;» ;. Let j* be a choice for this disjunction. We thus get
that

17 TZjx g /\_'NZI‘* ~+ holds.
J J

Therefore by axiom (5b) we get that

(18) —-e(x.Gi*,Zi*J*)A—'Ne(x, Gi*vzi*.j*) holds.
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Look again at Gj» ={z;+ 1, ..., »4+)). We have for each (i*,) that either z;- ; holds in which
case by (5a) Ne(x, Gj+,z;- ;) holds or —z;- ; holds in which case by (15) we get that —z;- ; A
—Nz;- ; holds and therefore by (5b)

(19) —e(x, Gy, zx j) A—Ne(x.Gj,z;;) holds.
Therefore (7b) holds for G+ and hence

(20) —x(Gi+)A—Ne(Gi+) holds.
Let us see what we got so far. From (14) we have

/\—x(Gy)

From (19) we get

\/ —Nx(G))
holds.
Therefore the antecedent of (7a) holds and we get
(¢) =xA—=Nx

7 Higher level attacks

Higher level attacks are attacks on attacks. This concept was first introduced in 2005 in [8] (see
also[9] for an expanded version). The idea is very simple. Suppose we are given an abstract system
(S,R) where § is a non-empty set of objects and R is a binary relation on S, (i.e. R is a set of pairs
(x,y) where x and y are from §). In argumentation theory S is a set of arguments and R is the attack
relation (denoted by x —y, for (x,y) in R), but in general there are other interpretations for S and
R. In the abstract, we can regard the elements of R also as objects and therefore we can expand
the relation R into a wider relation R; also containing elements from R itself. This means that in
argumentation we allow also to have attacks on attacks. So we can also write possibly

(i) z=>(x—>y)
(i) (u—=>v)=>(x—>y)
(i) (u—»v)—>z

The papers [5, 6, 29, 39, 43] deal only with possibility (i) above, but there is no mathematical reason
not to generalize to all three possibilities and even iterate the process.

The problem is to extend whatever semantics we have for the case of (S, R) to the general iterated
case where we turned the elements of R into objects.

In the case of higher level attacks in argumentation, we need to give semantics for the generalized
higher level networks. This is not difficult, thanks to the nature of the Caminada labelling. Since
we regard higher level attacks as legitimate objects to be attacked (following the pattern in (i)), we
can give such objects labels from the set {in, out,undecided} and require the Caminada conditions
(conditions C1,C2, C3 of the beginning of Section 3) to hold for the higher level attacks.

Our task in this article is to express higher level attacks in the system CN.

To show how to express higher level attacks in CN we shall reduce higher level attacks to joint
attacks by adding points to the network. First, let us define the networks we are dealing with.
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DeriniTioN 7.1
(1) Let S be a non-empty set of arguments. A higher level network based on S has the form

A=(S,p1,...,0,) Where

p1 €S xS, first level attacks
piv1 €S %X p;,  i+1 level attacks

P €S % p,_1, nth level attacks

Note that S, py,..., p, are all pairwise disjoint
(2) Let A=(S,p1,...,0,) be a higher level network. We define the associated joint attacks
network A, =(S;,R;) as follows:
(@) S:=SullJ,p:
(b) Let xeS;. Then there is a unique i such that x € p;. Let (z1,x),...,(z,x) be all the
attackers of x in p;; ;. Then let the following joint attacks be in R,

{Zl ) (Zl ’x)}Rrx

(20, (20} Rex.

(3) We stipulate/define that the complete extensions of A to be the restrictions of the complete
extensions A of A, to S

ExampLE 7.2
Consider Figure 21
In Figure 21 we gave names to the attacks.

o=z—»X
B=y—»«a
y=u—p
S=w—>y.
_ w
S
Bl
§ y
o B
T

Fic. 21.
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w )
u Y
\T/ ’}/
Yy
B
| \T/
=
T
Fic. 22.

It is natural to give the double arrows names, because in higher level attacks we treat them as objects
to be attacked.

Figure 21 becomes Figure 22.

This illustrates how we reduce higher level attacks to joint attacks, simply by giving names to the
attacking arcs.

8 Disjunctive attacks

Our starting point is the representation of the disjunctive attack of Figure 14. We noted in Remark
6.2 that this attack is represented in CN by the formula

n
z— \/NZ,—.
i=1

In classical logic this formula is equivalent to the formula
\/(z — Nz)).
i=l

On the face of it, it looks like a disjunctive attack on a set is reduced to attacking one of the elements
of the set. The next example will explain what is really going on.

ExawmpLE 8.1
Consider the networks in Figures 23, 24 and 25.
The representation of the attacks of Figure 23 in CN is through (1)—(3):

(1) a— Nb
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a b
x Yy
Fic. 23.

N

g
-d— <

8
<

Fic. 24.

>

Q
(=l

8
<

Fic. 25.
(2) b— Na
(3) a— NxVNy.
Item (3) is equivalent in classical logic to item (4):

(4) (a— Nx)V(a— Ny).
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The representation of the attacks of Figure 24 is by items (1) and (2) as well as item (4.1)
4.1. a— Nx

while the representation of the attacks in Figure 25 is by items (1), (2) and (4.2).
4.2. a— Ny.

We recall that we said that in CN the attack relations of the given source network are brought
forward (using N) from the meta-level in the object level. So the meaning of the equivalence in
classical logic of

(Equiv): (a— NxVNy)< ((a— Nx)V(a— Ny))

is the meta-level statement (MD):

(MD): E is a complete extension of the network of Figure 23 iff £ is a complete extension of at
least one of the networks of Figures 24 or 25.

We make two critical comments.

(CC1) (MD) is a meta-level property. We can ask the following question (Q) for example:
(Q) Given traditional networks (S,R;),i=1,..., k, then under what conditions do there exist
a disjunctive network (S, R) such that (MD) holds?
(CC2) If our logic CN were not classical logic, but say intuitionistic logic (as will be investi-
gated in Part 2 of this paper [35]), then the equivalence (Equiv) will not hold and the results
would be different.

We are now ready for a formal definition of disjunctive attacks. We use Caminada—Gabbay
labelling.

DEFINITION 8.2

(1) A disjunctive argumentation network has the form (S, p), where S is a non-empty set and
0 C S x (25— @). See Figure 26.

(2) LetxeS. Let yy, ...,y be all the elements of S which attack x directly. Let zy,...,z,, all be
elements of S which disjunctively attack sets which contain x, namely zp{x,u},...,u}.
We say z; indirectly attacks x.

(3) Let 1:S+ {in, out, und}. We say that X is a legitimate Caminada—Gabbay labelling for (S, p)
iff the following conditions hold:

(D1) A(x)= in if A(y;))= out, i=1,...,k and for all 1<j<m, if A(z;))= in then for some

k,)»(ui): out.

Yly- -5 Yk 2 i=1,...,m
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Fic. 27.

(D2) A(x)= out, if for some 1 <i <k, A(y;)= in, or for some j, (A(z;) = in and for all 1 <k <r(j)
we have )\(ui);é out.

(D3) A(x)= und iff all attacks on x direct or indirect are either out or undecided, and where at
least one attack is undecided, where the following define the meaning of the terms we just

used.
* A direct attack on x by y is out if A(y)= out. It is undecided if A(y)= und.
* An indirect attack of z on x using the disjunctive attacked set {x,u1,...,u,} is out if

either A(z) is out or for some j, A(u;) is out. The attack is undecided if A(z) and A(u;)
are all different from out, with at least one of them is und.

REMARK 8.3

Using higher level attacks and T, we can implement disjunctive attacks using conjunctive attacks.
See Figure 27. This figure implements the disjunctive attack ap{b,c} . We have that {b,c}— T) and
T—->{b,c}—»T)and a— (T — ({b,c}—T))

9 Comparison with literature

9.1 Comparison with the paper of S.Villata, G. Boella and L .van der Torre:
Attack Semantics for Abstract Argumentation

We compare with paper [48]. The paper is different from ours, but since it has a similar name, we
should address it.

Our article translates argumentation into classical logic with a symbol ‘Na’, meaning ‘a is under
attack’. Paper [48] regards the attack arrows as objects and discusses semantics for them. (In our
article ‘a— b’ is a wff ‘a— Nb’). Our set up is completely different. Furthermore, the idea of
regarding the attack arrow as an object and labelling it already appears in [29, Figure 13] and in [8].
However, we do want to make a point in this article using the machinery of [48] and so let us quote
some passages from them and then make our point.

Begin quote 1:

Example 2 Consider AF =(4,—) with A={a;b;c;d;e} and {a— b,b—a,b—c,c—d,d—
e,e— c} visualized in Figure 2. The complete extensions are &compi(AF;4)=1{9,{a},{b;d}}. ¥
is the unique grounded extension, {a} and {b;d} are the preferred extensions, and {b;d} is the
stable extension. In the complete extension ¢ the arguments are rejected, because they are not
defended. In the extension {b;d} the other arguments are rejected, because they are attacked
by an accepted counterargument.
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Figure 2: The argumentation framework of Example 2.

Begin quote 2:

Example 3 (Continued from Example 2 in quote 1 above): The grounded extension ¢ has only
successful attacks, the preferred extension {a} has {a¢ <> b,c— d,d — e,e—> c} as successful
attacks, and the stable extension {b,d} has {b— a,b— c,d — e}.

Begin quote 3:

We define attack labeling analogous to argument labeling. An attack is in when its attacking
argument is in, an attack is undecided when its attacking argument is undecided, and an argu-
ment is out when its attacking argument is out. An attack is successful when it is in or undecided,
whereas an argument is accepted when it is in. For example, if an argument is rejected, but at
least one of its attacks is successful, then the argument is undecided.

Example 5 (Continued from Example 3 in quote 2 above). The grounded extension @ has
only undecided attacks, the preferred extension {a} has in attack a < b and undecided attacks
c—>d,d— e,e— c, and the stable extension {b,d}has in attacks b~ a,b<> c¢,d < e and no
undecided attacks.

End quotes.

Let us implement the attack network of Example 2 in quote 1 above and of its Figure 2 in our
CN logic using the idea of [29, Figure 13]. Note that this idea is NOT what [48] does but we start
with our own approach for comparison. We add for each arrow x —y a new node z, , and translate
the attack x—y into the conjunctive attack (x,z,)—»y. We thus get Figure 28. This figure has
conjunctive attacks and can be dealt with within CN.

Note that all the attack arrows, z,5,2p.4,2p.cs2c.d,24.. and z, . are all in, because they are not
attacked. This is as it should be according to the Dung traditional approach.

However, as we said, the above is not the attack semantics of [48]. According to [48] an attack
x—»y is out if x is out. So the attacks in Figure 28 are not always in, but depend on the extensions
chosen, as discussed in [48] and quoted above in Example 5 of quote 3. So we need a new figure to
implement the attack semantics of [48].

To achieve that we need to add that —x attacks z, ,. This is easy to write in CN: —x — Nz, ,. No
new figure is really needed. However we can, if we insist, use Figure 29. It is a quite complicated
higher level figure.

If we do not want to use higher level attacks, we can use Figure 30. The figures tend to be
complicated because we need to add the nodes —x on x—y (or on z.,). In CN we just write
—x — Nz, ,, which is much simpler and does not add any nodes!

Independent of the problem of representing the attack semantics of [48] and the idea that if x is
out then x —Yy is also out, is compatible with another idea of ours, from [28, Section 4.3]. In [28],
we regard x —y as a channel, carrying an attack signal, sent by x towards y. So if x is out, no signal
is sent but the channel is alive. We can say that according to [48], if x is out, the channel itself is
out.

Let us now say more about our approach of [28, Section 4.3]. We want to look at the attack a — b
as a signal from a to b. As such it can be considered as an object (a wave front). It therefore can split

9T0Z ‘ST Yol uo Binoguisxn Jo Alsleaiun e /6io'sfeuinolpioxo: edBily/:dny woiy papeojumod


http://jigpal.oxfordjournals.org/

The attack as strong negation 37

Zb,c

Fic. 28.

o

N
S
\y
FiG. 29.

or it can interfere/join with another signal. This idea was presented in [28, Section 4.3] and will be
fully developed in [26]. Figure 31 illustrates this idea. Compare with Figure 23.

In Figure 31 the attack emanates from a and disjunctively splits into two attacks one that attacks
both x; and x; and one that attacks both y; and y,. Success, should a be ‘in’, is that either both x;
and x, are out or both y; and y, are out.

The attacks of Figure 31 can be described in CN by the clauses:

(1) a— Nb
(2) b— Na
B) a—>Nx V)V N1 V)
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Z1 T2 Y1 Y2

Fic. 31.

9.2 Comparison with Gabbay’s paper: modal provability foundations for
argumentation networks

In 2009, Gabbay [30] asked a simple question:

(Q2009) Given an argumentation network A= (S, R), what is its logical content I" 4 in terms of some
reasonable logic L?

Gabbay answered this question using a version of a modal logic of provability called LN1. The
similarity with our article is clear. We associate a modal logic CNN and a theory I" 4 with A. The
view of [30] is that I" 4 is the theory satisfying more or less (for accuracy see [30]) the equivalence
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below:

Fae0(/\xe \OTar—p),

where y; are all the attackers of x in A.

In words: the logical content I" says that x is in iff it is possible, from the point of view of T, to
have all the attackers of x out/false. This is a fixed point equation for I".

The above is the idea of [30]. Once [30] develops the semantics for the logic, we end up with a
three point linear modal logic (¢, %, t3), with ¢#; the actual world and ¢ accessible to #,_;,/=3,2. In
other words we have t; <f, <t3, where ‘<’ is the modal accessibility relation.

The labelling obtained from such a model is the following, where the triple (v;,v,,vs;) indicates
the respective values in worlds (¢,%,,1):

in=(T,T,T)
out =(L1,1,1)
und =(T,L,T)

und* =(T,L, 1)

As you can see, [30] has a completely different point of view, and furthermore, the point of view
of [30] can get two types of undecided! Comparing with our current paper we have a classical
point of view, and have a two worlds linear modal logic, where the assignment is restricted like in
intuitionistic logic, giving rise to the following labelling with only one type of undecided:

in =(T,T)
out =(L,1)
und =(L,T)

To obtain a better comparison, let us organize the worlds #,, 15, ; in different accessibility ordering,
say <*:

%) <*t3 <*t.

The four possible values can now be seen as in Figure 32

For the ordering #, <*#; <*t;, the assignments are clearly intuitionistic. True continues to be true
in this ordering.

Consider now the loop of Figure 33.

In this loop b attacks itself, so its degree of undecided must be possibly different from the degrees
of the other points in the loop and must be in the middle, equally away from the value ‘in’ and
from the value ‘out’. Indeed paper [30] can distinguish between the node b being undecided and
the other nodes. There is a problem, however, in this case. There are only two values of undecided
, und and und*, and so there is no middle, so what value do we give b? Paper [30] calculates the
values according to its fixed point semantics rationale and gives b the value und, while the value of
a is und* and the value of ¢ is also und. Thus according to [30], we get:

a=(L,L,T),b=c=(L,T,T).
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model | in | out | und | und*

t1 T 4L T T

|

t3 T L T L

|

to T 1 1 1

Fic. 33.

We, however, would like to give b the other value of undecided, namely b=(L, L, T), and so we
have to give c=(L, T, T) and have a=5.We can offer the following rationale for these values:

(1) x being undecided means that x can go either way, to be in or be out, but is neither, i.e.
xA(T,T,T),xA(L,L,1).

(2) Different vectors for undecided relate to how likely x is to be in or out. So when comparing
the sequences (L, T, T) with (L, L, T), the less ‘T’ we have in the sequence, the nearer
‘out’ =(L,L, 1) is the value of the sequence.

(3) In Figure 33, we need to choose the value for b. Paper [30] adopted a generous credulous
view for letting an argument x to be in, namely that x is in if it is possible for all its attackers
y to be out. Our view in this article is more skeptical and strict, it is that x is in if all attackers
y are strongly out (Ny holds). So if paper [30] calculated that b=(L, T, T), and our view
is different, then we might consider the other undecided value, namely b=(L, L, T). This
option agrees with the equational approach, (see Remark 9.1 below) and so we choose
(contrary to [30]), to take the value of b to be (L, L, T).

(4) c is attacked by b, which is nearer b= out, so ¢ must be still undecided, but nearer the value
in. So we expect ¢ to have the value (L, T, T)

(5) From (4) we expect a to be still undecided but nearer the value out and so our only option
isto have a=b=(L, L1, T).

The comparison and discussion of the rationale above suggests that we can look at logics like
CNN#k, where k2 defined by chains of worlds of the form

w <*wy, <, ..., < wy.
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The undecided values can be of the form
und; =(L,...,L,T,....,T).
where 1 <j <k and the value is L until position k—1 and T afterwards.

We reserve the study of CNNk for Part 2 of this article.

Remark 9.1
Note that the equational approach of [27] also supports our analysis and choice of value for b. In
this approach we solve the following equations of the nework of Figure 33.

(1) b=(1-b)(1—a)

(2) c=(1-b)

3) a=(1—0¢)
From (2) and (3) we get

4) a=b

Substituting in (1) we get
(5) a=(1—a)?

which solves to a=b=0.38 and c=0.62.

This is in agreement with our analysis provided we understand undecided as numerical value
strictly between 0 and 1 and nearer out to mean a numerical value nearer to 0.

We can also view the equational approach as a CNNoo approach, where the possible worlds
intuitionistic model is taken to be [0, 1], with O the actual world and the value x=+k for x€.S and
k€[0,1] means

s yExiff x <k

Again, this connection will be investigated in Part 3 of this article.

9.3 Comparison with David Pearce logic

We compare our logic CNN with Pearce’s logic of [45]. Pearce introduced his logic in 1995 in the
context of studying Answer Set Programming (ASP). Pearce ’s logic is very similar to our logic
and so we need to offer a comparison. Furthermore, Pearce did apply his logic to argumentation.
In Pearce’s own words [45], equilibrium logic N5 provides

(1) a general methodology for building non-monotonic logics;

(2) alogical and mathematical foundation for ASP-type systems, enabling one to prove useful
metatheroetic properties;

(3) further means of comparing ASP with other approaches to nonmonotonic reasoning.

The semantics for Pearce’s logic uses the same two possible worlds linear model which we use,
namely an actual world, ¢, a possible world s, with the restriction on atoms g that if =g then sk q.
The difference between us and Pearce is in what we actually do with this semantics.

3The following is a private communication from David Pearce:
‘Equilibrium logic was designed to capture stable reasoning and, not surprisingly, you can apply it to capture stable extensions
in argumentation theory. Together with other colleagues we were able to show how to capture stable extensions in assumption-
based argumentation. However, including strong negation would be a new topic.’
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In order to be able to compare the two logics, we need to agree on notation. Our approach and
notation so far can be summarised as follows:

Comments Group 1. The model has two worlds, ¢ and s. ¢ is the acutral world and s is possible
relative to ¢. For atomic ¢ we have ¢F g implies sFgq.

(1) Our view is that this model is a modal semantics model with two possible worlds linearly
ordered whose atomic assignments satisfy a restriction.

(2) Pearce’s view is that this model is an intuitionistic Kripke model with two worlds (Gddel’s
logic with two worlds). This semantics is well known and can be axiomatised. See [45].

Comments Group 2. We use the connectives — (classical negation), — (classical implication) and
modality N. We also use A and V.
The semantical conditions are as follows

(1) tE—A4iffti#A4

(2) tFA— B iff (tF A4 implies tF B)
(3) Same as above for s

(4) tENA iff sE—A4

(5) sENA iff tE—A4

(6) xEAVB iff xFA or xEB,xe{t,s}
(7) xEAAB iffxEFA and xEB,x€{t,s}

Comments Group 3. Pearce uses intiutionistic connectives and Nelson strong negation. He calls
his system Ns, the logic of here and there. To describe Pearce’s system Ns, let us use the notation
below to distinguish the intuitionistic connectives from the classical ones and to distinguish N5 from
CNN. Let us use the following:

(1) ‘= for intuitionistic negation. Its semantic satisfaction condition is
s tE=AifftH#A4 and s A
s sE4iff sHA
(Note that for atoms we have t=A4 implies sFA!)
(2) ‘=" for intuitionistic implication with the semantic conditions
* tFA= B iff (tF 4 implies s B) and (sF 4 implies sF B)
* sFA= B iff (sFA4 implies sFEB).
(3) Use A and Vv with the same semantic conditions as Comment 2.6 and 2.7 respectively.
(4) Note that for wffs with A, Vv, =" and = we have
* A4 implies sFA4
(5) Pearce adds strong negation ‘~’ to the system Ns in a similar way to the way we added N in
Section 1. With each atom ¢, Pearce adds another atom ~ ¢ and adds the axiom ~g= =¢q.
Thus Ns is the intuitionistic theory {~ g — "¢} based on the atoms {g, ~ ¢|q atomic}. Note
that for us in CN, we added Ng with the axiom Ng — —¢g and we have ¢ Nq iff s = —q. This
implies that if =g A Ng holds at # then =¢ holds at ¢.

Just like we did for N in allowing N to apply to any wff and pushing N through to the atoms, Pearce
does a similar thing for ~. ~ satisfies the following rules both at ¢ and at s:

« ~(AAB)iff ~Av~B

« ~(AVB)iff ~Ar~B
« ~A=B)iff AN~B
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. ~(=A)iff A
o« ~~Aiff A

These rules for ‘~’ allow us to push ‘~’ right in front of the atoms.
Comments Group 4. Comparison so far is as follows:

(1) Both ‘~’ and ‘N’ associate with any atom ¢ the atom ~ g or Ng respectively. Both ~ and
N can be pushed down to the atoms syntactically. N, however, directly changes the world it
is evaluated in. It is a true explicit modality. In comparison, ~ remains in the same world.
It basically adds a strong atom ~ ¢ to any atom ¢, but ~ ¢ is evaluated semantically in the
same world. It can push the evaluation to another world only through the axioms ~=g= ¢
and ~¢g=>="¢ and this is a roundabout way of doing it.

Our logic CNN also added with each atom g another atom Ng, but Ng connects with an
accessible world where ¢ must be false.

(2) Pearce moves from world ¢ to world s using = and =. We move from ¢ to s using N. We
can also move from s to ¢ using N. Pearce has no direct connective which can move the
evaluation from world s to world ¢.

Comments Group 5. To further compare CNN and N5, let us define the intuitionisitc connectives
in our logic CNN.

(1) We let

=X =def.—X ANX
(X = Y)=def (X = Y)AN(X A=Y ANY).

(2) Let 4 and B be two wffs built up from the atoms and the above connectives = and = and
A and V, as defined in Comment 5.1 above. In other words, we have a sublanguage INN of
CNN with wffs defined as follows:

* atoms ¢ are in INN
* If 4 and B are in INN then so are AAB and AV B
e if 4 and B are in INN, so are

(—AANA), this is =4

and

(4— B)AN(AA—BANB), this is A= B.

(3) We now check and see that the truth conditions of intuitionistic semantics hold for these
translations (i.e. the condition in Comment 3.4 holds).

(3.1) For atomic ¢ the condition #F ¢ implies sF ¢ holds.

(3.2) Assume by induction that the condition in Comment 3.4 (¢FX implies s FX') holds for
X =4 and X =B. We show that it holds for A AB and 4V B. This is immediate.

(3.3) Assume that the condition in Comment 3.4 holds for 4 and we show that the condition
in Comment 3.4 holds for ="4. We have

» tE =4 iff (by definition) tF—A4ANA iff tF—A4 and sE—4 iff ¥4 and s 4.
We also have
sFEAiff s#A and tH# A
(because our inductive hypothesis was that Comment 3.4 holds, i.e.  F 4 implies s F4)
iff sE—A4 and s= N4 iff sE—A4 ANA iff (by definition) s ="4.
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* We show now that if tF =4 then sFE=4. We have: tF =4 iff tF—4ANA. This
implies s ¥4 and we have seen before that this is equivalent to sl-—=4.
(3.4) We now check the case of 4 = B. Assume by induction that =X implies s =X holds for
X =4 and for X =B. We show that the semantic condition of Comment 3.2 holds for
A= B and that also if 1FA4 = B holds then sF=A4 =B also holds. We have
* tFA= B iff (by definition) tF(4— B)AN(AA—=BANB) iff tFA— B and sE(—(4 A
—B)V—=NB iff (tFA— B and sF4— B) or (tFA— B and sF—NB).
But sE—NB iff tEB. So we have that: tF4— B iff tF(4— B)VvB.
Therefore we can continue
tEA=B iff ({FA— B and sF4A— B)V(tFA— B and tF=B). But t=B implies sFB
and we continue
iff tE(4— B)AsFEA— B). This is the correct condition for the case of 7.
We check s. sFA4 = B iff by definition sF(4 — B) and sEN(4AA—B) iff sE(4— B)
and tFA4— B.
Given the above, we now show that
* sFA= B iff sE A4 then sEB
If sF A= B then by the above sFA4 — B and so if sF 4 then sFB.
If sF A4 implies sF B then s=4 — B. So the only option for s 74 = B is that s#N(AA—=BA
NB) and so tFAA—BANB. But then this implies by the condition of Comment 3.4 for 4
that s A4 A—B, contradicting what we have just assumed that s=4 — B.

It remains to show 4 = B satisfies the condition of Comment 3.4. This is obvious, however, from
the semantic condition of satisfaction for ‘=".

(3.5) We summarize the results of the current item (Comment 5.3). We have just shown that
CNN contains the intuitionistic part of Ns as the fragment INN (we defined the intu-
itionistic negation and intuitionistic implication in our system and shown they behave
correctly). The reader can verify that the law of excluded middle for this embedded intu-
itionistic fragment does not hold, so the fragment is not trivial, ( i.e. ¢V (—g ANgq) is not
a theorem of CNN, take g=(L, T)).

We now ask, can we also define ‘~’ as well using N?
Let us check. We need a formula of CNN, say «(g), which will act as the connective ~,
namely

~q= (by deﬁnition) Ol(q)

This formula must satisfy

(a) For atomic ¢q,x(q)= =g

(b) For any formula 4 of INN, a(=4)< 4
If the value of ¢ is taken to be (L, T) or (T, T), we get because of (a). and the fact that in
this case the value of =g is (L, L), that the value of o(¢) must be (L, L). To summarize
we must have (c¢) and (d). to hold

(©) (L, T)=(L, L)

(d) a(T. T)=(L,1)
but if we have this , how can (b) hold? For both cases where value of ¢ is taken to be
(L, T)or (T,T), the value of =g is the same and so how can we have

a(=9) & q?
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The only way out is to say that rule (b) is a syntactical reduction, making ~ not a real
connective. O.K. this is acceptable but different from our logic where N is a connective.
So (b) holds syntactically, this means that (a) has to hold by a restriction on the assignment
of the formal syntactical atom ‘~¢’. The only way to it is to take ‘~¢’ to be the same as
‘="q’. This is fine except that when we iterate to have

='='g=q.

The first ‘="’ is not a connective but a syntactical rewrite operator and only the second =
is a connective and the implication is valid. This is not a problem because we will write it
syntactically as ~ =g = ¢ and the ‘~’ will rewrite the following ‘="’ out , leaving only

q4=9-

Comments Group 6. We now start with Ns as our given intuitionistic system with {=, =, A, V,~}
and the semantics as described in [45] and in (Comment Group 3) above and check whether we
can define CN using the connectives of Ns. We need to define N and the classical connectives
{—,—,A,V}. We show that this is not possible. Consider the formula of CN.

* =(¢gANgq),q atomic.

This formula is always true at world ¢ but can be false at world s (for g=T at s and at ¢).

No intuitionisitc wff, even with ‘“~’ can be true at ¢ and false at 5. Therefore N and — are not
definable in Pearce’s logic.

It may still be possible to translate argumentation networks into Ns using its strong negation. We
leave this study to part 2 of our article.

9.4 Comparison with four meta-level approach papers [21,24,25,38] and [11]

To compare with papers of Dvorak et al., Doutre et al., and Grossi, we need some preliminary
methodological discussion about interpretations and translations. All the above papers translate
argumentation networks into other systems and so to explain what they are doing and compare with
our article we need a framework of reference, a matrix schema for comparison.

Consider the schematic Figure 34. This figure is a schema for possible embeddings, containing
four systems. We name the system and give examples to help the reader visualize the schema. We
then discuss options for interpretations in general and then explain how the papers we are discussing
fall into the schema of Figure 34. Once we understand how these papers fit into the schema, our
comparison will be concluded.

In Figure 34, the top left circle is a system T. Think of T as classical logic and think of x,e,)’
as formulas of classical logic. Think of T* as an extension of T, say if T is classical logic then T+
extends T with monadic second order quantification.

The system S; can be interpreted into T. Say x is mapped to x’ (the arrows indicate the mapping)
and y is mapped to y'. Think of ST as an extension of S. Say S= intuitionistic propositional logic
and St is some extension of it. The element e in T is not a result of the mapping of S into T. It
has no source in S. Similarly S, is mapped into T and S extends S,. T™ can be mapped into an
extension 8] of S,. If not all of T* is mapped, at least some of it, say «, is mapped onto o’

Think of S, as modal logic, mapped into classical logic. Think of « as a quantifier of second
order, which is realized/mapped as extending modal logic (as a new modality [, ?, for example).
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Fic. 34.

The systems E and E* are mapped into modal logic. Think, e.g. of E as a substructural logic or a
default system or some normative system or as an argumentation system being interpreted in modal
logic.

We now discuss possible properties of such embeddings.

Type 1: encapsulation of S in T. This type gives names in T to the elements of S and mirrors in
T in all the movements of S. It is like embedding S in T using Gddel numbers. Such encapsulation
is used in translating systems into classical logic in order to use Theorem Proving machines to talk
about/manipulate S. None of the papers involved above are pure encapsulation. Encapsulation is very
general, S can be a recipe for making pizzas and T can just talk about it. T’s role in encapsulation
is that of a Turing machine.

Type 2: Meta-level embedding of S into T. This type is most common. The language T describes
in a meaningful way the system S. T acts as a meta-level language describing S by internally
mirroring S. To understand how this works, think of a mathematical theory modelling some physical
phenomenon, say in an equational model governing the motion of a planet around the sun. The
meta-theory T describing modelling S (e.g. argumentation) in this way is not supposed to provide
a meaning (semantics) for what it describes. It is just supposed to provide a formal language of
accurate description of S, allow one to describe variation of S and enable the use of properties and
tools available in T to investigate S (very common is to use T for complexity issues for S). Of
course, one tends to use T which is well known, general enough and well investigated and well
endowed with tools.

To summarize Type 2.

(P1) T describes S from the meta-level point of view but does not give S any meaning.
(P2) T can describe at the same time several different S;, S, and so can serve as an environment
for suggesting combinations of S| and S,. For example, if T is classical logic and S, is modal
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logic and S, is intuitionistic logic, then embedding S; and S, into T, may suggest how to
formulate modal intuitionistic logics.
(P3) Any tool available for T can be used for S. So e.g. any complexity studies for classical logic
can be used for modal logic through the embedding of modal logic inside classical logic.
(P4) New research ideas can be imported from T to S. Some may be interesting for S and some
may be just mathematics hacks of no interest.

The paper of Dvorak et al., paper [25] is an example of this. The formal mathematical language is
second-order monadic first-order logic. This can serve as the modelling language for the majority, if
not all, of the varieties of argumentation networks. It is intended by the authors to be to argumentation
like ALGOL is to algorithms. It is an exact mathematical logic language strong enough to express
whatever you want to say about argumentation networks. To quote the authors of [25] own words:

Begin quote.

We propose the formalism of monadic second order logic (MSO) as a unifying framework for
representing and reasoning with various semantics of abstract argumentation. We express a
wide range of semantics within the proposed framework, including the standard semantics due
to Dung, semi-stable, stage, cf2, and resolution-based semantics. We provide building blocks
which make it easy and straightforward to express further semantics and reasoning tasks. Our
results show that MSO can serve as a lingua franca for abstract argumentation that directly
yields to complexity results. In particular, we obtain that for argumentation frameworks with
certain structural properties the main computational problems with respect to MSO-expressible
semantics can all be solved in linear time. Furthermore, we provide a novel characterisation of
resolution-based grounded semantics.

Starting with the seminal work by Dung, the area of argumentation has evolved to one of
the most active research branches within Artificial Intelligence. Dung’s abstract argumentation
frameworks, where arguments are seen as abstract entities which are just investigated with
respect to how they relate to each other, in terms of “attacks”, are nowadays well understood
and deferent semantics (i.e., the selection of sets of arguments which are jointly acceptable)
have been proposed. In fact, there seems to be no single “one suits all” semantics, but it turned
out that studying a particular setting within various semantics and to compare the results is a
central research issue within the field. Different semantics give rise to different computational
problems, such as deciding whether an argument is acceptable with respect to the semantics
under consideration, that require different approaches for solving these problems.

This broad range of semantics for abstract argumentation demands for a unifying framework
for representing and reasoning with the various semantics. Such a unifying framework would
allow us to see what the various semantics have in common, in what they differ, and ideally,
it would offer generic methods for solving the computational problems that arise within the
various semantics. Such a unifying framework should be general enough to accommodate most
of the significant semantics, but simple enough to be decidable and computationally feasible.
End quote

Properties (P1)—(P4) mentioned above hold for this case. See also the discussion in Section 5.1
above. Our own interpretation is object level and gives the argumentation network a meaning in
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terms of strong negation N. As we mention in Section 5.1, the meta-level interpretation has to
translate ‘x attacks y’ as is, by providing a predicate letter ‘R’ for attack and write xRy. The meta-
level interpretation does not give a meaning to R. Our interpretation writes x — Ny for the attack
of x on y. So when x and y are instantiated by, e.g. wffs x=« and y=p, we get a meaning for
the attack of « on B, namely the meaning our logic gives to « — N . The paper of Dvorak cannot
write ‘@RB’, but even if it could do so, it would have to wait for us to say to Dvorak et al. what we
mean by ‘o attacks 8’ and then Dvorak ef al. would try to say it formally in monadic second-order
classical logic.

The other paper of Dvorak, paper [24], also provides a more propositional meta-language to
describe more tightly higher level argumentation network. Properties (P1)—(P4) above still apply.
The emphasis here is on (P3).

To quote the authors’ own words:

Begin quote:

This paper reconsiders Modgil’s Extended Argumentation Frameworks (EAFs) that extend
Dung’s abstract argumentation frameworks by attacks on attacks. This allows to encode pref-
erences directly in the framework and thus also to reason about the preferences themselves.
As a first step to reduction-based approaches to implement EAFs, we give an alternative (but
equivalent) characterisation of acceptance in EAFs. Then we use this characterisation to provide
EAF encodings for answer set programming and propositional logic. Moreover, we address an
open complexity question and the expressiveness of EAFs.

End quote.

The authors of [24] use propositional encoding of the argumentation network. This is still meta-
level. To explain briefly what is the difference: while predicate logic would formalize ‘x attacks y’
as ‘xRy’, using a predicate R, the propositional encoding uses a propositional atom 7, ,. You need a
new atom for each pair x,y. So r,, =T means that x does attack y and r,,=_L means that x does
not attack y.

So for example to formalize:

 (For all x), if (x is ‘in’ iff all its attackers are ‘out’)

We can write in predicate logic:

* Vx[Oin(x) < VyY(YRX — Qou(y))]

or in propositional logic

* /\xeS [)C <~ /\yeS(rx,y - _'y)]

The advantage of the use of 7, , is that we can say directly that x does not attack y, i.e. we can
write =7, ,,. Our logic CNN cannot do that. Although we can represent in our logic ‘x attacks y’ as
‘x— Ny’ and use it to calculate extensions, we cannot represent ‘x does not attack y’ as ‘—(x — Ny)’,
because x may be out, i.e. —x is true, and so x — Ny is true, even though x does not attack y. We
shall remedy this in Part 2 of this article. Note also that using direct naming of attacks via xRy or
7y, we can also formalize higher level attacks of the form z attacks 7, ,.

So to summarize, paper [24] is also a meta-level interpretation geared towards supplying algo-
rithms.

The paper of Doutre ef al. [21] is also meta-level, using propositional logic. It is also geared
towards algorithms. To quote the authors:
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Begin quote:

We provide a logical analysis of abstract argumentation frameworks and their dynamics. Fol-
lowing previous work, we express attack relation and argument status by means of propositional
variables and define acceptability criteria by formulas of propositional logic. We here study
the dynamics of argumentation frameworks in terms of basic operations on these propositional
variables, viz. change of their truth values. We describe these operations in a uniform way with
in well known variant of propositional Dynamic Logic PDF: the Dynamic Logic of Proposi-
tional Assignments, DL-PA. The atomic programs of DL-PA are assignments of propositional
variables to truth values, and complex programs can be built by means of the connectives of
sequential and nondeterministic composition and test. We start by showing that in DL-PA, the
construction of extensions can be performed by a DL-PS program that is parameterized by
the definition of acceptance. We then mainly focus on how the acceptance of one or more
arguments can be enforced and show that this can be achieved by changing the truth values of
the propositional variables describing the attack relation in a minimal way.

End quote.

The paper of Grossi [38] is also meta-level, but it uses modal logic as the meta-level language.
The schematic situation is described in Figure 34 by the embedding schema of [E and E*] into [S,
and S ] which in turn are embedded into [T and T*]. Here E is argumentation networks, S, is modal
logic, S5 is an expansion which contains extra connectives of modal logic to compensate for the
lack of quantifiers. T is classical predicate logic. « is the extra ‘quantifier’ connectives imported by
Grossi into modal logic to enable Grossi to interpret argumentation. The basic modal accessibility
is taken by Grossi to be the inverse of the attack relation:

* x attacks y means x is an accessible world to y.

The situation is best described by Grossi’s own words below. You can immediately see that Grossi
focusses on the (P4) aspects of the translation:

Begin quote:

The paper presents a study of abstract argumentation theory from the point of view of modal
logic. The key thesis upon which the paper builds is that argumentation frameworks can be
studied as Kripke frames. This simple observation allows us to import a number of techniques
and results from modal logic to argumentation theory, and opens up new interesting avenues for
further research. The paper gives a glimpse of the sort of techniques that can be imported, dis-
cussing complete calculi for argumentation, adequate model-checking and bisimulation games
and sketches an agent for future research at the interface of modal logic and argumentation
theory.

End quote.

The paper of Besnard, Doutre and Herzig, Encoding argument graphs in logic is a meta-level
paper discussing properties (specification) which any meta-level interpretation should satisfy. For
example, the interpretations of papers [21, 24, 25, 38] should be checked to see if they satisfy the
principles outlined in paper [11]. Paper [11] is a meta-meta-level paper. We quote the authors’ own
description of their paper:

Begin quote.
Argument graphs are a common way to model argumentative reasoning. For reasoning or
computational purposes, such graphs may have to be encoded in a given logic. This paper
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aims at providing a systematic approach for this encoding. This approach relies upon a general,
principle-based characterisation of argumentation semantics.

In order to provide a method to reason about argument graphs [22], Besnard and Doutre first
proposed encodings of such graphs and semantics in propositional logic [10]. Further work by
different authors following the same idea was published later ...However, all these approaches
wee devoted to specific cases in the sense that for each semantics, a dedicated encoding was
proposed from scratch. We aim here at a generalisation, by defining a systematic approach
to encoding argument graphs (which are digraphs) and their semantics in a logic . Said
differently, our objective is to capture the extensions under a given semantics of an argument
graph in a given logic (be it propositional logic or any other logic). We hence generalise the
approach originally introduced in [10] by parametrizing the encoding in various ways, including
principles defining a given semantics.

We consider abstract arguments first, and then provide guidelines to extend the approach to
structured arguments (made up of a support that infers a conclusion).

End quote.

9.5 Comparison with the paper [3] of Arieli and Caminada

To explain what Arieli and Caminada are doing and to evaluate and compare it with our article, let
us start with the meta-level point of view of Dvorak [25] and the discussion in Section 5.1 above. We
know that the Caminada labelling has three values {in, out, und}. The meta-level approach which
interprets argumentation in monadic second-order classical predicate logic, would use variables
x,y,z... for arguments and the binary predicate R for the attack relation and three unary predicates
01,0 and Q, for the values in, out and undecided respectively. See Section 5.1. The axioms of
AR, Qo, 01, 0») say in predicate logic, among other things, that each x gets exactly one value. We
are now ready to lead, step by step, from the above to the Arieli and Caminada paper.

Let us start from a given (S, R). For each a € S, consider Q;(a), Qy(a) and O-(a) as atomic propo-
sitions of the classical propositional calculus. Since these are all connected with the letter ‘a” we
can change notation and write

 a* for Qi(a)
* a” for Qy(a)
* a’ for Oy(a)

Since we know that exactly one of the above can be true, we can forget about a’ and use only the
pair (a*,a”). We have:

e If aisin, then we have a™=T,a = L.
e Ifaisoutwehavea™=1,a" =T.
e If a= undecided, we have a™=1,a " = 1.

We must add the restriction that we can never have botha™=T anda==T.
We thus have turned the logic with Q(x), Qo(x), 0-(x) into a 3-valued logic with values t=
(1,0),f=(0,1) and ?=(0,0), where these values mean as follows:

e x=t means x is ‘in’, or equivalently x™ =T and x~ = L or equivalently (x*,x™)=(T, L) or
equivalently Q1(x) A—=Qy(x)=T.

« x=1f means x is ‘out’, or equivalently x* =1 and x~ =T or equivalently (x*,x)=(L, T) or
equivalently —=Q;(x) A Qy(x)=TT.
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« x=? means x is undecided or equivalently x* =x~=_1 or equivalently (x*,x~)=(L, L) or
equivalently —=Q;(x) A—=Qy(x)=T.

The value x™ =x~ =T is forbidden.

We now have a propositional calculus with three values {t, f,?} and a reduction of each proposition
x into two propositions x,x~, such that x=(x",x”) and the restriction on the assignments on
{xT,x~|x €S} which says that x* =x~ =T is forbidden.

If we add to this version of classical propositional calculus quantifiers over propositions Vx, 3x,x €
S, we get the system of [3].

We can also turn the pairs (x,x ) into a lattice calculus. Note that we have
x=(x",x7)= (say) (x1,x2)
= (", x) =(x,x1).
But also we can write similarly for y and get:
x=01(x)A—Qo(x) =(x1,X2)
y=010)A=00(»)=1,y2)-

Therefore

XAY

Q1) A G)A=Qo(x)A=Qo(y)
Q1A )A(Qo(x)V Qo))

We therefore get as a rule of the calculus

x1,2) A1L,Y2) =1 AYL X2 VIR).

We get other rules in a similar fashion.*

Now that we have reduced the idea of [3] to the meta-level system of [25], we can read the
quotation word by word from [3] and understand it in a new light. We have changed the notation
slightly. [3] uses L’ for undecided, we use ‘?” so as not to confuse our readers.

Begin quote.

Three-valued Semantics and Signed Formulas. As indicated previously, our purpose in this
paper is to provide a this, logic-based, perspective on argumentation frameworks, and to relate
it to the two other points of view presented in the two previous subsections. [Gabbay note:
these are 2.1: Extension based semantics and 2.2: labelling based semantics.] In this section we
define the framework for doing so, using signed theories. Following [1], we introduce these
theories in the context of three-valued semantics (see leo [4]).

Consider the truth values ¢ (‘true’), f (‘false”) and ? (‘neither true nor false’). A natural ordering,
reflecting differences in the ‘measure of truth’ of else elements, is f <? <¢. The meet (mini-
mum) A, join (maximum) V and the order reversing involution —, define by —t=f,—f =¢ and
—?="7, are taken to be the basic operators on < for defining eh conduction, disjunction, and
the negation connectives (respectively) of Kleene’s well-known three-valued logic (see [42]).
Another operator which will be useful in the sequel is defined as follows: a D b=t if €{f,?}
and a D b=> otherwise (see [2] for some explanations why this operator is useful for defining

“In Part 2 we shall compare with Gabbay’s 1985 (published in 2012 as [31]).
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an implication connective). The truth tales of these basic connectives are given below.

vt f 2 Al f 2 ol £ o

tlt t t tlt f 2 tf f 2 t|f
floe o s fpe ot ft
21t 2?2 ? 201? f? 20t t t ?717?

The truth values may also be represented by pairs of two-valued components of the lattice
({0,1},0<1) as follows: t=(1,0),/ =(0,1),?=(0,0). This representation may be intuitively
understood as follows: If a formula v is assigned the value (x,y), then x indicates whether
should be accepted and y indicates whether v should be rejected. As shown in the next lemma,
the basic operators considered above may also be expressed in terms of this representation by
pairs.

Lemma 11. Let x1,x,,y1,2 €{0, 1}. Then:

e, YD)V (x2,12) =(x1 VX2, 11 AV2),
LY A 2, Y2) =1 AX2, Y1 VY2),
(x1,¥1) D (x2,y2) = (—x1 VX2,X1 AY2),

~(,»)=0,x).

In our context, the three values above are used for evaluating formulas in a propositional
language L, consisting of a set of atomic formulas Atoms(L£), the propositional constants t and
f, and logical symbols —, A, V,D. We denote the atomic formulas of £ by p,q,r, formulas by
¥, ¢ and sets of formulas (theories) by 7, S. the set of all atoms occurring in a formula ¥ is
denoted by Atoms(yr) and Atoms(7)={Atoms(y)|y €T is the set of all the atoms occurring
in the theory 7. Now, a valuation v i s a function that assigns to each atomic formula a truth
value from {z,f,?}, and v(t)=¢,v(f)=f. Any valuation is extended to complex formulas in
the obvious way. In particular, v(y o) =v()ov(¢) for every o€ {—,A,V,D}. A valuation v
satisfies ¥ off v(y)=t. A valuation that satisfies every formula in 7 is a model of T. The set
of models of T is denoted by mod(T).

Definition 12. Let £ be a propositional language with set of atoms Atoms(L). A signed alphabet
Atoms=(L) is a set that consists of two symbols p*,p~ for each atom p e Atoms(C). The
language over Atoms® (L) is denoted by £L*. A value v for £* is called coherent, if there is no
p € Atoms(L) such that both v(p™)=1 and v(p~)=1.

End quote.

We now compare with our system CN. We have a two world modal intuitionistic logic and our
values are as follows

e x= in means x A —Nx
e x= out means —x ANx
¢ x= undecided means —x A —Nx

If we let x* =x and x~ = Nx, we get the system of Arieli and Caminada

e x=iniff (x*,x7)=(T,L) iff xA=Nx=T
e x=outiff (x*,x7)=(L, T)iff ~xANx=T.
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e x=und iff &xT,x7)=(L, L) iff =xA=Nx=T
e (x*,x7)=(T, T)isnotallowed. This means that x A Nx is not allowed. This is our intuitionistic
restriction - Nx — —x.

To summarize the comparison, Arieli and Caminada turn argumentation into a Kleene 3 valued
logic and manipulate it in the meta-level using Arieli’s [1, 2, 4] lattice theoretic methods. Our article
manipulates it in the object level in a modal intuitionistic logic.

The perceptive reader might ask whether the paper of Arieli and Caminada carries any message or
point of view, beyond the mathematical manipulation of truth values? In comparison, the message of
our article is that it is object level, translating the attack relation xRy into x — Ny, where N is strong
negation embedded in a modal intuitionistic logic. What is the message of [3]? What can it be used
for? Our answer to this question is that the Arieli-Caminada paper is very important in the context
where a calculus of degrees of undecided is needed. If we need to build an argumentation method for
an application area with many degrees of undecided, then we need a calculus for undecided values
and we can follow the lead of [3].

Consider Figure 35. We need to be able to assign a value to x in Figure 35, given the variety of
undecided values of the attackers of x, namely y1,..., V.

Our system CNN is not general enough for this purpose. We are committed to the intuitionistic
restriction, so we can have undecided values like (L, T, T, T),(L, L, T, T)(L, L, 1, T)andnomore,
for a 4-world modal model. The Arieli-Caminada approach can handle more, many more values,
for example they can have (L, T,L1,T), etc.

Imagine a highly divergent group of witnesses of a tragic event. They are all undecided and
contradicting and unreliable for a multitude of reasons. The traditional extension-based semantics,
as well as the Caminada labelling based semantics will give them all undecided. This is not what we
need. We need a calculus of undecided that will tell us something better. The equational approach
[27] will give numbers, the modal provability [30] might give us several options for undecided, but
these papers put forward fixed approaches derived from a fixed points of view serving some other
methodological aims. The fact that they also yield several undecided values is only a side effect.
Same applies to our logic CNNk. These system are not intended as calculi for undecided values and
they offer no flexibility. We need an approach which can generate alternative calculi of undecided
which can be tailored for different applications. The Arieli-Caminada paper is a start. We leave this
research to a future paper.

It is regrettable that Arieli and Caminada took their paper in the (traditional) direction of generating
extensions. It is time for all of us to get out of this way of thinking, which is nothing but a barrier
to our imagination.

y1 = und, Ym = und,,

x = what undecided?

Fic. 35.
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9.6 Comparing with paper [18]—Methods for solving reasoning problems in
abstract argumentation. A survey

[18] is an excellent survey of methods for computing extensions. It divides the approaches into two:

(1) Direct methods.
(2) Reduction methods, where the argumentation systems are translated into other systems which
have good computational facilities which can be used to calculate extensions.

So the paper [18] considers translations only as means of calculating extensions. In comparison,
we consider translations as means of giving new and different meaning to the attack relation.
In the authors own words, for example, they say

Begin quote.

The underlying idea of the reduction approach is to exploit existing efficient software which
has originally been developed for other purposes. To this end, one has to formalize the reason-
ing problems within other formalisms...In this approach, the resulting argumentation systems
directly benefit from the high level of sophistication today’s systems reached...In the remain-
der of Section 3 we shall present the concepts behind other reduction-based approaches, for
instance, the equational approach as introduced by Gabbay in [27] and the reductions to monadic
second order logic as proposed in [25].

We will not consider the vast collection of extensions to Dung’s frameworks, like,? value-based,
bipolar, extended, constrained, temporal, practical, and fibring argumentation frameworks, as
well as argumentation frameworks with recursive attacks, argumentation context systems, and
abstract dialectical frameworks. We also exclude abstract argumentation with uncertainty or
weights here.

End quote.

So to continue our comparison with paper [18], we highlight the fact that the interest of the authors
of paper [18] in the current paper (as well as in papers [25] and [27], e.g.) is limited solely to the
question of how these papers provide means to compute extensions.

10 Conclusion and future research

In this article, we introduced a modal logic CNN with strong negation N playing the role of modality.
The semantics has two possible worlds, here (actual world #) and there (possible world s) with

tENA iff sE—4
SENA iff tE—A4

and with the restriction that for atoms ¢ we have
tEq implies sFq.

We showed how to translate any abstract argumentation frame 4 into CNN via a theory A 4 of
CNN in such a way that all the models of A 4 give exactly the complete extensions of A.

Many properties and operations on .4 (such as joint attacks, higher level attacks, bipolar argu-
mentation, and more) become very simple when done in CNN.

Editorial comment: we omit the references in this list
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Further research postponed to Part 2 of this article includes the following topics:

(1) Translate Assumption Based Argumentation (ABA) into CNN.

(2) Use intuitionistic logic as a basis for CNN (call it INN) and see how to obtain intuitionisitc
based argumentation. In fact, given any logic L defined by rules of the type used in ASPIC,
we can form LNN and translate ASPIC (for L) into LNN.

This will give us a better understanding of ASPIC and in fact also allow us to define a
generalization of Assumption Based Argumentation.

(3) Fully investigate ADF (Abstract Dialectical Frameworks) in CNN.

(4) It is easy to define predicate argumentation using predicate CNN. Simply use predicate
CNN and allow instantiations of any (S, R) with classical predicate wffs. Translate ¢ —
as ¢ — Nyr. The semantics of predicate CNN will give us the complete extensions for the
network.

(5) Investigate bipolar networks and CNN, as discussed in CC7.

(6) Investigate in detail iterated disjunctive attacks in CNN of the kind of Figure 31.

(7) The logic CNN is based on two possible worlds ¢ (actual world) and s (s is accessible to 7).
We can investigate the possibility of adding more worlds to the chain, say use 3 worlds #
(actual), s (accessible to ¢) and s’ (accessible to s).

Define

tENA iff sE—A4
SENA iff s’ F—A4
S'ENA iff tE—A.

This new system (call it CNN3) might allow us to do the following:

(a) have several grades of undecided, see the comparison in Section 9.2

(b) allow for attacks of a node x on another network A,.

(c) allow us to use truth in the middle node as a meta-level vehicle to express properties of
extensions, (since NN refers to the actual world from the middle node). We can force
the models to yield, e.g., only preferred extensions.

(d) Investigate the connection with Logic Programming.

(e) allow us to formalize in the object level the notion of ‘x does not attack y’.

(8) Following the connection with Logic Programming and David Pearce’s Equilibrium Logic
[45], we investigate whether Pearce’s logic can implement argumentation network similarly
to the way CNN does.

(9) Extend the negation as failure approach of [31] to argumentation and compare with this
paper and with [3].

We shall investigate these possibilities in Part 2.
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Appendix: Formal definition of the modal logic CNIN

In this section , we change the syntax of CNN slightly. Besides the classical connectives and the
connective N, we add a constant t for the actual world. This helps with completeness proofs. We
should call, if we want to be strict , the modified system with the slightly different name, say, CNN¥,
but we are not going to bother.

DEermiTION A.1
A model for CNN is a pair ({1,2},v) where v assigns subsets of {1,2} to atomic propositions such
that if 1 ev(p) then 2 e v(p)

DEFINITION A.2
If M ={{1,2},v) is a model of CNN then define truth in M as follows, (where m=1,2 and ¢ is the
propositional constant for world 1).

s ME,piff mev(p)

- ME,T

s M¥E, L

e ME, tiff m=1

e MFE,—Aiff M¥#, A

e ME,AANBiff ME,Aand MF, B

e ME,,AVBiff ME,, A or MF,, B

e ME,A— Biff M¥,A or MF,,B

e MFE, NA iff either m=1and MF¥, A, orm=2 and M¥, 4

Write M E A when M F,, A for all m (i.e. m=1 or m=2); write F,,4 when M F,, 4 for all M; and
write F A when M F,, 4 for every m and every M.

Intuitively, a model is a finite linear ordering of worlds—in the sense of familiar possible world
semantics for modal logic—where logical connectives are defined as usual and an atomic proposition
p is true at a world, then it is true at all ‘later’ worlds. The new connective N has the semantics that
NA is true at a world if and only if 4 is false as the ‘next” world where, in the case of interpreting
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N, ‘next’ cycles back to the first world at the last world (so NA is true at the last world when 4 is
false at the first).

The condition on atomic propositions ensures that N is a kind of negation, at least for atomic
propositions interpreted at the first world. If M, Np then M, p and so M ¥, p. Moreover the
condition on interpreting N ensures that M =; NNp — p as M | NNp implies M ¥ Np implies M | p.

DEFINITION A.3
The theorems of CNN are defined as follows:

tautologies
(K) N(AAB)<>NAVNB (A) t—(p—>N-p))
(F) —NA<N-4 (T) t<Nt
(C) A— NNA
A A—B 4
B R =

For a set I" we write I' A4 when there are 4;...4, €I" such that (4, A---AA4,) — A.

Lemma A 4
A — B implies - NB— NA, and A4 < B implies - NA <> NB,

Proor. The first part follows by the following derivation:

FA—B assumption

F—=(4AA—B) tautologies and (MP)
FN—=—=(AA—=B) (N)

FN(AA—B) tautologies, (MP) and (F')
FNAVN—-B (K)

FNAvV-—NB tautologies, (MP) and (F')
+NB— NA tautologies and (MP)

It is worth expanding one of the steps further: HF N——C implies by (F) that H—=N—-C; also, -
—NC — N—C is a consequence of (F'). So, using tautologies and (MP), -—=N—-C — ——NC thence
F—=N—-C— NC . Therefore - N——(4 A—B) implies =N (4 A—B).

The rest of the lemma follows from the fact that 4 <> B is short for (4 — B)A(B— A). [ |

THEOREM A.5
B <« C implies - A[p/B] < A[p/C]

Proor. By induction on 4 using A.4. [ |

THEOREM A.6
FAiff CNNHA

Proor. For the right-left direction it is a simple matter to verify, by induction on derivations, that
CNN 4 entails that for any M and any m, M =, 4.

For the right left direction we argue that if X is consistent then there is an M such that, for every
AeX, MF, A for m=1 and m=2. First, since CNN ¥ 4 then using familiar methods, we can find a
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set I' that is consistent with respect to CNN and maximal in the sense that BeT" or B¢T for every
B. Moreover, we have that I' 4 implies 4 €I’

Now, consider the set A={B|N—-BeT'}.If B,—~Be€ A then both N—-Bel and N-—BeTl, and so
by A.S5, (F) and tautological reasoning, —=NB, NB € I" which is impossible as I" is consistent. Also,
since "NBeTl or NBeT, it follows that N—Bel or NBeI', and so Be A or mBe€ A. We conclude
that A, like I, is maximal and consistent.

Now, by the definition of A and the fact it is maximal consistent, NB eI implies B¢ A; and if
NB¢T then N—Bel and so B A. Also, if BeT then, by (C), NNBeT and so N——B el which
implies that —NB € A thence NB ¢ A; and conversely, if B¢I" then =B eI and so NN—B eI" which
implies N-NB eI thence NB € A. We conclude that

() BeT iff NB¢A and BeAiff NBel

We now describe a model M using I and A. Suppose that te ", and set v(p)={1,2} iff peI and
v(p)={2} iff pe A. Then, as teT, if peT then by (4), N-pel and so pe A. Thus M is indeed a
model as defined in A.1.

We now verify, by induction on 4, that MF A iff AeT and M, 4 iff Ae A

* If 4 is atomic the result follows by the definition of M.

* If 4 is t then, by assumption, te I". Moreover, making use of (T), te" iff Nte D iff -NtgT
iff N—t¢T. If follows that te [ iff tZ A.

* If A is a truth functional connective (i.e. is not ), then the result follows easily by the induction
hypothesis and the maximal consistency of I' and A.

» Suppose A4 is NB. Then using (7) above we have:

ME{Aiff ME| NB ME, A iff M=, NB
iff M ¥, B iff M¥, B
iff B€A ind. hyp. iff B¢l ind. hyp.
iff NBeT () iff NBe A ()
iffAel’ iffAe A

This completes the induction.
The argument is similar if we suppose te A. Therefore, if X is consistent, then there is a model
M such that MEA forall 4e X. | |

THEOREM A.7
If 4 does not contain t, nor any subformula of the form NB unless B is atomic, then CNF4 iff
CNNHFt— A4.

Proor. Given A.6, CNNHt— A4 iff F A4.
For any M, the function % over the atomic formulae of CN such that:

h(p)=1iff MF,p and h(Np)=1iff MF Np

is clearly a truth assignment satisfying item 4 of 2.1, and moreover by an easy induction on 4, M = 4
implies #F A (as hF... is characterised in 2.1).
On the other hand, if /4 is a truth assignment according to 2.1, define v — and so M — as follows:

{1,2} ifh(p)=1
vip)={ @ if W(Np)=1
{2} otherwise
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(note that the same numbers have different functions here: the 1 of the assertion A(p)=1 acts as a
propositional truth value of 2.1; the 1 of the assertion v(p) ={1,2} acts as a possible world). An easy
induction on A verifies that 7= A4 implies M F; 4.

Therefore, there is an 4 such that 2F A4 iff there is an M such that M A. It follows from this that
CNI-4 iff CNN -t — 4. [
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