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Abstract

We introduce a new Gentzen-style framework of grafted hypersequents that combines the for-
malism of nested sequents with that of hypersequents. To illustrate the potential of the framework,
we present novel calculi for the modal logics K5 and KD5, as well as for extensions of the modal
logics K and KD with the axiom for shift reflexivity. The latter of these extensions is also known
as SDL+ in the context of deontic logic. All our calculi enjoy syntactic cut elimination and can be
used in backwards proof search procedures of optimal complexity. The tableaufication of the calculi
for K5 and KD5 yields simplified prefixed tableau calculi for these logic reminiscent of the simplified
tableau system for S5, which might be of independent interest.

1 Introduction

The framework of sequent calculi has proven quite successful in providing analytic calculi for a number of
normal modal logics such as K, KT, or S4 [Wan02]. Unfortunately, there are also a number of reasonably
simple modal logics for which no acceptable cut-free sequent calculus seems to exist. Perhaps, the easiest
way of demonstrating this limitation of the sequent framework is by considering various extensions of
the standard modal logic K that validate the Euclideanness axiom

(5) ♦�p→ �p .

In particular, the logics K5, KD5, and S5 have so far resisted all efforts to provide them with a cut-
free sequent formulation, and for some formats of rules it can even be shown that no such calculus
can exist [LP13]. To overcome this difficulty, several extensions of the sequent framework have been
suggested, including

• the framework of hypersequent calculi, which was introduced independently in [Min74, Pot83,
Avr96] and which provided numerous cut-free formulations for the logic S5, and

• the framework of nested sequents [Brü09, Pog10], which supplies cut-free calculi for all the logics
of the modal cube, including S5, K5, and KD5.

The latter framework is, in fact, more general than the former in the sense that every hypersequent can
be viewed as a nested sequent. As a consequence, nested rules are more complex in that they are allowed
to operate deep inside a given structure. Under a translation of these structures to modal formulae,
this corresponds to rules operating under an unbounded number of nested boxes, in the spirit of deep
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inference. In contrast, hypersequent rules can be called shallow because, under corresponding formula
translations, they operate either directly on formulae or, at worst, under one layer of modalities. In
the usual trade-off between simplicity and expressivity, while the shallow structures of uniform depth
from the hypersequent framework succeed in capturing the logic S5, they do not seem to suffice for the
logics K5 or KD5.

In this article, we propose to combine the benefits of both frameworks by suggesting a novel frame-
work of grafted hypersequents, which is, at the same time, sufficiently expressive to capture the log-
ics K5 and KD5 and sufficiently simple to retain most of the nice properties of the hypersequent frame-
work. In particular, grafted hypersequents employ only shallow inferences.

Our intuitions in constructing this framework have been guided by two main considerations. From
a syntactical point of view, the structures we consider arise from the general study of the connections
between Hilbert-style axioms and rules in sequent-style calculi, including hypersequent calculi [Lel14]. On
the one hand, axioms formed by a disjunction of boxed formulae exactly match the shape of the formula
translation of a hypersequent and, thus, lend themselves to a conversion into rules in this framework. On
the other hand, since the standard formula translation of a single-component hypersequent is a boxed
formula, the soundness of the resulting calculus under this translation seems to require that the rule
�A/A be admissible in the logic under scrutiny. To lift this limitation and be able to capture logics
that lack this property, such as K5 or KD5, it is natural to extend the sequent-like structure by a new
part to be interpreted as an unboxed formula, thus motivating the move to the nested sequent style
setting with minimal nesting. Apart from these purely syntactic considerations, our intuitions have been
guided by the connections with the semantics for the logic in question. Fitting in [Fit12] demonstrated
the correspondence between prefixed tableaux, whose prefixes encode tree-like Kripke frames, and purely
internal nested sequent calculi, which can be viewed as trees of sequents. A similar correspondence
between simplified tableaux for S5 with integer prefixes and hypersequent calculi for S5 has already
been known. Thus, it is natural also from this perspective to reflect the structure of Euclidean Kripke
frames, i.e., totally connected components partially accessible from a single “observer” world, in the
proof structures used.

Informally, the idea is to consider a trunk in the form of a nested sequent of bounded depth1 and
to glue or graft a hypersequent onto its ends. Grafted hypersequent systems are obtained by combining
suitable systems of nested sequent rules applied to the trunk and of hypersequent rules applied to the
grafts. This leads to bounded-depth calculi for the logics K5 and KD5, as well as for the extensions
of K and KD with the axiom

(T�) �(�p→ p)

of shift reflexivity. Apart from syntactic cut elimination, we show how these calculi can be used in
decision procedures of (optimal) complexity for these logics:

• coNP for K5 and KD5;

• PSPACE for the logics of shift reflexivity.

Moreover, extending the well-known correspondence between simplified tableaux and hypersequent cal-
culi for S5 to our setting, we obtain simplified tableaux for K5 and KD5 with integer prefixes of three
different types that closely mirror the semantics for these logics. Using these tableau systems, we obtain
alternative semantic proofs of cut-free completeness for our grafted hypersequent calculi.

Related Work. Finding cut-free internal sequent-style calculi for the logics K5 and KD5 was an open
problem for a rather long time. While such calculi for other modal logics had been around for more than
50 years [OM57], it was not until recently that they were developed for these two logics as well.

Among the earliest approaches are the purported analytic calculi for these logics given by Massacci
in [Mas94] using the framework of prefixed tableaux introduced by Fitting in [Fit72]. In this framework
formulae are prefixed with names representing a world in which the formula holds in the Kripke semantics
for the logics, and the modal rules make essential use of the accessibility structure of the represented
worlds. It was later discovered that in the calculi for K5 and KD5 as given in [Mas94] one crucial rule was
missing, but this was fixed by Goré and Massacci in [Gor99, Mas00]. In the original [Mas94], Massacci

1In this article, this depth is always zero, i.e., the trunk consists of only one sequent that corresponds to the observer
world.

2



also presented prefixed tableau calculi for the logics KT� and SDL+ of shift reflexivity, called the logics
OM and OM + of almost reflexivity there. The prefixed tableaux calculi for all these logics give rise
to decision procedures for the respective logics, and in contrast to our calculi also can be used to show
derivability from a set of global assumptions. However, since prefixed tableaux are essentially nested
sequents upside-down, they do not provide a natural medium for obtaining optimal complexity bounds
either, unlike our grafted hypersequents.2

Perhaps closer than the framework of prefixed tableaux to Gentzen’s original sequent calculus is
Belnap’s framework of display logic [Bel82]. Cut-free calculi for the logics K5 and KD5 in this framework
were introduced by Wansing in [Wan94]. Alternatively, the calculi follow from a more general result by
rewriting the axioms (5) and (D) as axioms of tense logic and then applying Kracht’s algorithm [Kra96]
to convert the resulting formulae into structural rules. However, since the resulting calculi are based
on modal tense logic instead of non-temporal modal logic, they contain a structural connective for the
backwards directed tense modalities as well as for the standard (forward directed) modalities. Thus again
there is no formula translation of the structures occurring in the derivations in the language of standard
(non-temporal) modal logic, and hence the calculi cannot be considered fully internal (see also [Wan02]).
Furthermore, since these calculi do not satisfy the substructure property, it is not clear whether they
can be used in decision procedures for the logics considered here.

The very general results about conversion of first-order frame properties for modal logics into struc-
tural rules of a labelled sequent calculus established by Negri and von Plato in [NP01, Neg05] also can be
used to obtain cut-free calculi for all the logics considered in this article. In this framework formulae are
labelled with worlds, and the sequents also contain a relational part describing the accessibility relation
on these worlds. Thus again the sequents considered do not admit a direct formula translation and the
calculi should not be counted as fully internal. It is also not clear whether the resulting calculi would
yield decision procedures of optimal complexity.

One way to avoid the use of labels which are not part of the object language is to explicitly include
them as first class citizens in the object language, as done in hybrid modal logic (see, e.g., [AtC07]). This
leads to very natural and elegant formulations of terminating tableaux calculi for many extensions of
the hybrid version of modal logic K, including the hybrid versions of the modal logics considered in this
paper [BB09, Bra11]. However, the move to hybrid modal logic results in additional expressivity, since
now the formulae can explicitly refer to names for worlds in a Kripke model. So while tableaux calculi
for the hybrid versions of K5 or KD5 can be used to decide theoremhood in the non-hybrid logics, the
calculi again can not be considered fully internal with respect to the latter.

As a first step towards such fully internal cut-free calculi, standard sequent calculi with a form of the
analytic cut rule for these logics were introduced by Takano in [Tak01]. These calculi contain the obvious
sequent rule for the axiom (5) which adds a boxed context on the right hand side of the standard rule
for modal logic K. It is then shown that the cut rule can be limited to sub-formulae of the conclusion
and formulae of the form �¬�B or ¬�B where �B occurs under a � in the conclusion of the cut. At
about the same time, tableau calculi for a number of modal logics including K5 and KD5 with an analytic
superformula property similar to the limited sub-formula property of the above calculi were introduced
by Nguyen in [Ngu01]. These calculi make use of additional connectives denoting a blocked version of �
and the existence of a predecessor world. Of course, since a restricted form of the cut rule is necessary
in both of these approaches, they cannot be considered cut-free.

The problem of finding calculi for K5 and KD5 which are at the same time fully internal and cut-free
was finally solved by Brünnler’s framework of nested sequents in [Brü06] for K5 and [Brü09] for KD5.
This framework allows for an arbitrary nesting of a structural connective for � which essentially changes
the underlying structures from sequents to trees of sequents. This additional structure is then used to
provide fully internal cut-free calculi for all logics in the modal cube, including the logics K5 and KD5.
Cut-free completeness is shown both by syntactical cut elimination and by a counter-model construction
from a failed proof search. While the calculi thus can be used to decide memberships for these logics, the
provided decision procedure runs in exponential time and thus is of suboptimal complexity. The nested
sequent framework was also independently introduced by Poggiolesi under the name of tree-hypersequents
and using a different notation [Pog09], but the logics we are concerned with here were not covered.

Mints states in [Min97, p. 690] that he used a structure similar to our grafted hypersequents to

2Simplified prefixed tableaux with structure of prefixes simpler than a generic tree have been used successfully to prove
optimal complexity bounds, see, e.g., [Mas00]. Grafted hypersequents can be seen as upside-down versions of simplified
tableaux suitable for K5, which we present in Section 6.
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establish a calculus for the logic S5 in [Min71]. In particular, the formula translation of the structures
considered in [Min97] is exactly our formula translation of the grafted hypersequents. However, while the
credited work [Min71] does present essentially a hypersequent calculus for S5 (which by the way predates
the hypersequent calculi for this logic given by Pottinger [Pot83] or Avron [Avr96] by more than ten
years), we were unable to verify the interpretation of the structures there as analogous to the interpre-
tation of our grafted hypersequents. In his seminal [Avr96], Avron also credits Mints with introducing
a hypersequential calculus for S5 in [Min74, Min92] where one of the components is designated, but we
could only find the hypersequent calculus (in tableau form) both in the Russian original [Min74] and
in the English publication [Min92]. In any case, while it seems clear that Mints considered structures
similar to our grafted hypersequents at some point, none of the calculi considered in all these works deal
with the modal logics K5 or KD5.

The optimal coNP bound on the complexity of the theoremhood problem for the logics K5 and KD5
was established by Halpern and Rêgo in [HR07]. There the authors in fact established a much more
general result to the effect that deciding theoremhood is coNP complete for every logic containing K5
using a small model construction.

Preliminaries and Notation. As usual, the language of modal logic contains a set V of countably
many propositional variables p, q, . . ., the binary Boolean operators ∧,∨,→, the Boolean constant ⊥, and
the modal operator �. Modal formulae are constructed from these operators in the usual way, and are
usually denoted by A,B,C, . . . . We introduce the abbreviations ¬A for A→ ⊥ and ♦A for ¬�¬A and
adopt the standard conventions about omitting brackets: The modal connective � binds stronger than
∧ and ∨ which in turn bind stronger than →. The size of a formula A is the number |A| of symbols
occurring in it. We write N for the set {0, 1, 2, 3, . . . } of natural numbers.

Our calculi are based on finite multisets, i.e., on sets counting multiplicities of elements. Formally,
given a set F , a finite multiset over F is given by a function Γ : F → N with finite support. We usually
write Γ,∆, . . . for finite multisets over the set of modal formulae and use the standard notation A ∈ Γ
for Γ(A) > 0. For A ∈ Γ we also say that A is contained in Γ. If Γ and ∆ are multisets over a set F ,
we write Γ,∆ for the union of Γ and ∆, defined by (Γ,∆)(A) = Γ(A) + ∆(A) for A ∈ F . Finally, for
A ∈ F we also write A for the multiset containing exactly one occurrence of A and nothing else. Using
this notation we standardly denote a finite multiset by the comma-separated list of objects contained in
it, respecting their multiplicities. E.g., we write A,B,A for the multiset Γ with Γ(A) = 2, Γ(B) = 1 and
Γ(C) = 0 for C /∈ {A,B}.

The semantics of the logics we investigate are given as usual in terms of Kripke frames and models.
A Kripke frame is a tuple (W,R) consisting of a set W of possible worlds and an accessibility relation
R ⊆ W ×W on this set. If in a Kripke frame for two worlds w, v ∈ W we have wRv, then we also
say that v is a successor of w. A Kripke model or simply model then is a Kripke frame together with
a valuation σ : V → P(W ) assigning to each propositional variable in V a subset of the set W 6= ∅
of possible worlds. Truth of a formula A in a world w of a Kripke model (W,R, σ) is then written as
(W,R, σ), w  A and is defined recursively, as usual, by the clauses

(W,R, σ), w  p iff w ∈ σ(p)

(W,R, σ), w  �B iff for all v with wRv we have (W,R, σ), v  B

together with the standard clauses for the propositional connectives. If (W,R, σ), w  A, then we also
say that the formula A holds at world w in the model (W,R, σ). If a formula A holds in every world
of a model, then it holds in the model, and if it holds in every model (W,R, σ) based on a particular
Kripke frame (W,R), then it is valid in the Kripke frame (W,R). Dually, a formula A is satisfiable in a
Kripke frame (W,R) if there is a valuation σ : V → P(W ) and a world w ∈ W such that A holds at w
in (W,R, σ). More details can be found, e.g., in [BdRV01].

2 Grafted Hypersequents

The notion of a grafted hypersequent can be seen both as a generalisation of the notion of a hypersequent
and as a restriction of the notion of a nested sequent. Here, as usual, a hypersequent [Avr96] is a structure
Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n, where each component Γi ⇒ ∆i of the hypersequent is an ordinary sequent,
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i.e., a pair of multisets of formulae. The standard formula interpretation of such a structure is the
formula

�
(∧

Γ1 →
∨

∆1

)
∨ · · · ∨�

(∧
Γn →

∨
∆n

)
. (1)

Rules in a hypersequent calculus either modify a single component or transfer formulas between different
components. Importantly, all components have equal status, and the interpretation of each component is
prefixed with the modality �. The latter fact means that the hypersequent framework with the standard
interpretation (1) is suitable mainly for logics in which the rule �A/A is admissible, e.g., for reflexive
modal logics, which validate formulae �A→ A (such as S5).

In contrast, nested sequents [Brü09, Pog10] exchange the homogenuous list structure of hypersequents
for a hierarchical tree structure: a nested sequent is a structure Γ ⇒ ∆, [N1] , . . . , [Nn], where Γ ⇒ ∆
is an ordinary sequent and each Ni is again a nested sequent. The standard formula interpretation of
nested sequents is given recursively as

(
Γ⇒ ∆, [N1] , . . . , [Nn]

)tr
:=
∧

Γ→
∨

∆ ∨�(N1)tr ∨ · · · ∨�(Nn)tr ,

where (Ni)
tr is the standard formula interpretation of the nested sequent Ni. Thus, in particular, the

standard formula interpretation of a hypersequent Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n is the same modulo trivial
propositional reasoning as that of the nested sequent ⇒ [Γ1 ⇒ ∆1] , . . . , [Γn ⇒ ∆n]. While the full
tree structure of nested sequents greatly extends the framework’s expressivity, there are also drawbacks.
The additional structure makes proofs of cut elimination (both in the context-sharing [Brü09] and the
context-splitting [Pog10] formulation) very complex and typically prevents the extraction of optimal
upper bounds on the complexity of decision procedures from cut-free calculi. Moreover, some calculi,
such as the one for the logic K5 given in [Brü09], use rules linking two parts of the structure that might
be arbitrarily far apart in terms of nestings of the structural box [ ].

The main idea for constructing grafted hypersequents is to take an ordinary sequent Γ ⇒ ∆ as a
root or trunk and add or graft a hypersequent H to it. Depending on which framework one is most
comfortable with, these structures can also be viewed as rooted hypersequents, i.e., hypersequents with
a designated root component, or as truncated nested sequents, i.e., nested sequents of bounded depth.
However, since we use hypersequent-style rules to reason in the grafted part of the structure and nested-
sequent-style rules to govern the interaction between the grafted part and the trunk, we choose to use
this terminology. Formal definitions are as follows.

Definition 2.1. A sequent is a pair of multisets Γ and ∆, written as Γ ⇒ ∆. A hypersequent is a
multiset of sequents, written Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n, where each Γi ⇒ ∆i is called a component.
A grafted hypersequent is given by a sequent Γ ⇒ ∆, called its trunk, together with a hypersequent H,
called its crown, and is written as Γ⇒ ∆ || H. If the crown is the empty hypersequent, the double-line
separator can be omitted: a grafted hypersequent Γ ⇒ ∆ is understood as Γ ⇒ ∆ || ∅. Formulae
occurring on the left hand side of the sequent arrow in the trunk or a component of the crown are called
antecedent formulae, those occurring on the right hand side consequent formulae.

Thus, a grafted hypersequent Γ⇒ ∆ || Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn is essentially the same as the nested
sequent Γ⇒ ∆, [Σ1 ⇒ Π1] , . . . , [Σn ⇒ Πn]. The interpretation of grafted hypersequents is adapted from
the nested sequent setting as well:

Definition 2.2. Let G be a grafted hypersequent Γ ⇒ ∆ || Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn. Its formula

interpretation is the formula ι(G) :=
∧

Γ→ ∨
∆ ∨

n∨
i=1

�
(∧

Σi →
∨

Πi

)
.

Since the structure of a grafted hypersequent only encodes a bounded nesting depth of structural
boxes, grafted hypersequent calculi can still be considered shallow inference calculi, in contrast to e.g.
nested sequent calculi which allow deep inference (with respect to the nesting depth of structural boxes).

3 A Grafted Hypersequent Calculus for K5

The logic we are mainly interested in is the modal logic K5. This logic has a Hilbert-style presentation
given by a complete set of axioms for classical propositional logic in our language of modal logic, by the
axioms

(K) �(A→ B)→ (�A→ �B) and (5) ♦�A→ �A ,
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and by the inference rules modus ponens MP and necessitation nec, shown below, where ` denotes
membership in the logic:

` A ` A→ B
` B MP and ` A

` �A nec .

In semantical terms, it is the logic of Euclidean Kripke frames, i.e., it is the set of all modal formulae valid
in every Kripke-frame (W,R) with the accessibility relation R satisfying ∀x, y, z (xRy ∧ xRz → yRz).
For more details, see, e.g., [BdRV01].

According to the construction of a grafted hypersequent as a trunk with an additional hypersequent
grafted onto it, the rules of the grafted hypersequent calculi are split into two groups: the trunk rules
and the crown rules. The trunk rules consist of the structural and logical rules that govern inferences at
the trunk level and are given in Figure 1. The structural rules and the logical rules for the propositional
connectives at this level are standard. The transfer rules that introduce the connective � on the left or on
the right of the sequent arrow ⇒ follow the treatment of the modality in nested sequent calculi [Pog10].

Crown rules govern inferences in the crown of the grafted hypersequent. While the propositional
crown rules are analogous to the propositional trunk rules, the modal crown rules are modelled after
the hypersequent calculus for the modal logic S5 from [Res07]. This group of the rules is given in
Figure 2. The semantic intuition for why we use the rules for S5 at the crown level is that the class of
Euclidean Kripke frames is the class of frames where the successors of every node form a totally connected
component, i.e., an S5 subframe. Thus, if the trunk sequent is evaluated in a given world, the crown is
evaluated in its successors and as such should follow the inference rules of S5. The syntactic intuition is
that, converting the axioms of K5 into rules using a method similar to the one described in [Lel14] for the
hypersequent framework, we obtain exactly the rules 5 and K from Figure 2. Furthermore, the resulting
system permits the adaption of the general cut elimination proof in [Lel14] to the crown layer, and thus
serves as a blueprint for the construction of further calculi: in principle the modal crown rules could be
exchanged for rules modelled after an arbitrary hypersequent calculus satisfying the sufficient conditions
for cut elimination in op. cit., and the cut elimination proof of Section 4 would still go through. Of
course certain details such as derivability of the axioms of the logic at the trunk level or soundness of
the rules still would need to be checked. Notwithstanding, we do not doubt that it would be possible to
use one of the many other hypersequent calculi for S5 proposed in the literature as basis for the crown
rules, if the cut elimination proof is adapted suitably.

Remark 3.1. One technical peculiarity of the crown rules is that in order to be able to show soundness
of the rule K, we need to stipulate the trunk sequent to be empty, making it necessary to extend this
restriction to all the crown rules. It might seem unexpected that the rule K, which closely resembles
in shape the standard modal nec rule, is not generally sound without this restriction and, moreover,
relies on the Euclideanness of the frame for the soundness proof even in the case of the empty trunk
sequent. The mystery is easy to clarify. The meaning of the K rule under the formula interpretation, in
the simplest case, is that �H ∨��A is inferred from �H ∨�A, an inference clearly invalid for the class
of all Kripke frames.

Finally, the cut rule has two versions: one for the the trunk level and the other for the crown level.
The rules are given in Figure 3. Similar to the crown logical rules, the trunk in the rule Cutc needs to
be empty.

Definition 3.2. The rule set RK5 consists of the rules given in Figure 1 together with the rules given in
Figure 2. We write RK5Cutc for the system with the rule Cutc from Figure 3 added to RK5 and RK5Cut
for the system with the rule Cutt from Figure 3 added to RK5Cutc.

The notions of a derivation, derivability, derivable and admissible rules, etc., are defined in the
standard way. For a grafted hypersequent G we write RK5 ` G if G is derivable in the system RK5,
and analogously for the systems RK5Cutc and RK5Cut. As usual, we sometimes write a double line to
abbreviate multiple applications of the same rule. Following [TS00], in the rules of RK5Cut as given in
Figures 1-3 we call the formulae in the Γ,∆,Σ,Π,Γi,∆i,Σi,Πi or the components of H,H′ the context
formulae or contextual. All non-contextual formulae occurring in the conclusion are called principal,
and all non-contextual formulae in the premisses are called active formulae. Thus in particular the
contracted formulae in the contraction rules and the weakened formulae in the weakening rules are
principal. These notions extend naturally to the level of crown components: all the crown components in
theH are context components, while the non-contextual crown components in the conclusion are principal
components, those in the premisses active components.

6



Figure 1: The trunk rules of the calculus for K5.
The trunk propositional rules:

Γ, A,B ⇒ ∆ || H
Γ, A ∧B ⇒ ∆ || H ∧L

Γ, A⇒ ∆ || H Γ, B ⇒ ∆ || H
Γ, A ∨B ⇒ ∆ || H ∨L

Γ⇒ ∆, A || H Γ, B ⇒ ∆ || H
Γ, A→ B ⇒ ∆ || H

→L

Γ⇒ ∆, A || H Γ⇒ ∆, B || H
Γ⇒ ∆, A ∧B || H ∧R

Γ⇒ ∆, A,B || H
Γ⇒ ∆, A ∨B || H ∨R

Γ, A⇒ ∆, B || H
Γ⇒ ∆, A→ B || H

→R

The trunk initial structures and the transfer rules:

Γ, p⇒ ∆, p || H Init
Γ,⊥ ⇒ ∆ || H ⊥L

Γ⇒ ∆ || H | ⇒ A

Γ⇒ ∆,�A || H �R

Γ⇒ ∆ || H | Σ, A⇒ Π

Γ,�A⇒ ∆ || H | Σ⇒ Π
�L

The trunk structural rules:

Γ, A,A⇒ ∆ || H
Γ, A⇒ ∆ || H CL

Γ⇒ ∆, A,A || H
Γ⇒ ∆, A || H CR

Γ⇒ ∆ || H
Γ,Ω⇒ ∆,Ξ || H W

Figure 2: The crown rules of the calculus for K5
The crown propositional rules:

⇒ || H | Γ, A,B ⇒ ∆

⇒ || H | Γ, A ∧B ⇒ ∆
∧L

⇒ || H | Γ⇒ ∆, A ⇒ || H | Γ⇒ ∆, B

⇒ || H | Γ⇒ ∆, A ∧B ∧R

⇒ || H | Γ, A⇒ ∆ ⇒ || H | Γ, B ⇒ ∆

⇒ || H | Γ, A ∨B ⇒ ∆
∨L

⇒ || H | Γ⇒ ∆, A,B

⇒ || H | Γ⇒ ∆, A ∨B ∨R

⇒ || H | Γ⇒ ∆, A ⇒ || H | Γ, B ⇒ ∆

⇒ || H | Γ, A→ B ⇒ ∆
→L

⇒ || H | Γ, A⇒ ∆, B

⇒ || H | Γ⇒ ∆, A→ B
→R

The crown initial structures and the crown modal rules:

⇒ || H | Γ, p⇒ ∆, p
Init ⇒ || H | Γ,⊥ ⇒ ∆

⊥L

⇒ || H | Σ, A⇒ Π

⇒ || H | �A⇒ | Σ⇒ Π
5

⇒ || H | ⇒ A

⇒ || H | ⇒ �A K

The crown structural rules:

⇒ || H | Ω⇒ Ξ | Ω⇒ Ξ

⇒ || H | Ω⇒ Ξ
EC

⇒ || H
⇒ || H | Ω⇒ Ξ

EW

⇒ || H | Σ, A,A⇒ Π

⇒ || H | Σ, A⇒ Π
ICL

⇒ || H | Σ⇒ Π, A,A

⇒ || H | Σ⇒ Π, A
ICR

⇒ || H | Σ⇒ Π

⇒ || H | Σ,Ω⇒ Π,Ξ
IW

Figure 3: The trunk and crown cut rules

Γ1 ⇒ ∆1, A || H Γ2, A⇒ ∆2 || H′
Γ1,Γ2 ⇒ ∆1,∆2 || H | H′

Cutt
⇒ || H | Σ1 ⇒ Π1, A ⇒ || H′ | Σ2, A⇒ Π2

⇒ || H | H′ | Σ1,Σ2 ⇒ Π1,Π2
Cutc
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Proposition 3.3 (Soundness). All the rules of RK5Cut preserve K5-validity under the formula interpre-
tation, i.e., for each (instance of a) rule of RK5Cut, if ι(P) ∈ K5 for each premiss P of this rule, then
ι(C) ∈ K5 for the conclusion C of this rule.

Proof. By inspection of all the different cases it is shown that whenever ι(C) is not K5-valid, i.e., whenever
¬ι(C) is satisfiable in a Euclidean frame, then also one of the ι(P) is not K5-valid, i.e., one of the ¬ι(P)
is satisfiable. We show this for the modal rules; the cases for the propositional and structural rules,
trunk or crown alike, are standard. Throughout the proof, we use the letter H to denote the side
hypersequent of the rule and write H for the formula ι( ⇒ || H). We also write A ≡K5 B to mean that
(A→ B) ∧ (B → A) ∈ K5.

For the rule 5, assume that the formula interpretation of the conclusion of an instance of 5 is not
K5-valid. Given that

¬ι(⇒ || H | �A⇒ | Σ⇒ Π) ≡K5 ¬H ∧ ♦�A ∧ ♦
(∧

Σ ∧ ¬
∨

Π
)

,

this means that the latter formula holds in a Euclidean model (W,R, σ) at a world w. Then, in particular,
there are worlds v1 and v2 in W with wRv1 and wRv2 such that �A holds at v1 and

∧
Σ∧¬∨Π holds

at v2. Given that v1Rv2 by Euclideanness of R, the formula A holds at v2 and, thus,
∧

Σ ∧ A ∧ ¬∨Π
holds at v2. Given that

¬ι(⇒ || H | Σ, A⇒ Π) ≡K5 ¬H ∧ ♦
(∧

Σ ∧A ∧ ¬
∨

Π
)

,

it follows that the formula interpretation of the premise of this rule does not hold at the world w, meaning
that it is not K5-valid either.

For the rule K, assume that ι( ⇒ || H | ⇒ �A) is not K5-valid, i.e., that ¬H ∧ ♦♦¬A holds in a
Euclidean model (W,R, σ) at a world w. Let v be a world in W such that wRv and ♦¬A holds at v.
Note that ¬H ≡K5

∧
♦Υ for some finite (possibly empty) set Υ of formulas, where ♦Υ := {♦B | B ∈ Υ}.

Since ♦B holds at w for every B ∈ Υ, for every such B there is a u ∈W such that wRu and B holds at
u. By Euclideanness of R, we also have vRu, meaning that ♦B holds at v too. Thus, ¬H ∧ ♦¬A holds
at v, invalidating ι(⇒ || H | ⇒ A).

For the rule �L, assume that ι (Γ,�A⇒ ∆ || H | Σ⇒ Π) is not K5-valid, i.e., that

∧
Γ ∧�A ∧ ¬

∨
∆ ∧ ¬H ∧ ♦

(∧
Σ ∧ ¬

∨
Π
)

holds at a world w of a Kripke model (W,R, σ). Then, using the standard Kripke semantics for K,

∧
Γ ∧ ¬

∨
∆ ∧ ¬H ∧ ♦

(∧
Σ ∧A ∧ ¬

∨
Π
)

also holds at the world w, invalidating ι (Γ⇒ ∆ || H | Σ, A⇒ Π).
The case of the rule �R is trivial because the formula interpretations of the premiss and the conclusion

of the rule are clearly logically equivalent.

To enhance the readability of the derivations we introduce the following rule as an abbreviation,
which allows us to merge two components in the crown:

Lemma 3.4. The rule
⇒ || H | Γ⇒ ∆ | Σ⇒ Π

⇒ || H | Γ,Σ⇒ ∆,Π
merge

is derivable in RK5.

Proof. Every application of the rule merge can be replaced by the following derivation:

⇒ || H | Γ⇒ ∆ | Σ⇒ Π

⇒ || H | Γ,Σ⇒ ∆,Π | Γ,Σ⇒ ∆,Π
IW

⇒ || H | Γ,Σ⇒ ∆,Π
EC
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Spelling out the abbreviation of ¬A as A → ⊥ it is also easy to see that the trunk- and crown-level
rules for negation

Γ⇒ ∆, A || H
Γ,¬A⇒ ∆ || H

¬L
Γ, A⇒ ∆ || H

Γ⇒ ∆,¬A || H
¬R

⇒ || H | Σ⇒ Π, A

⇒ || H | Σ,¬A⇒ Π
¬L

⇒ || H | Σ, A⇒ Π

⇒ || H | Σ⇒ Π,¬A
¬R

are derivable in RK5. Thus, from now on we use these rules to abbreviate the corresponding derivations.
In order to get a feel for the derivations in this calculus it is instructive to show completeness. In order to
do so, we first show that the generalised axioms with arbitrary formulae instead of propositional variables
are derivable. This enables us to formulate derivations of the axioms of K5 without having to construct
them fully up to the atomic initial sequents.

Lemma 3.5 (Generalised axioms). For every formula A the grafted hypersequents Γ, A⇒ ∆, A || H and
⇒ || H | Γ, A⇒ ∆, A are derivable in RK5.

Proof. We first show the claim at the crown level by induction on the complexity of A. If the main
connective is propositional, the proof is standard. In the modal case we have a derivation

⇒ || H | B ⇒ B

⇒ || H | �B ⇒ | ⇒ B
5

⇒ || H | �B ⇒ | ⇒ �B K

⇒ || H | �B ⇒ �B
merge

⇒ || H | Γ,�B ⇒ ∆,�B IW
(2)

of ⇒ || H | Γ,�B ⇒ ∆,�B from ⇒ || H | B ⇒ B, which is derivable by the induction hypothesis.
To apply the same reasoning on the trunk level we only need to replace the above derivation by

⇒ || H | B ⇒ B

�B ⇒ || H | ⇒ B
�L

�B ⇒ �B || H �R

Γ,�B ⇒ ∆,�B || H W

where ⇒ || H | B ⇒ B is derived using the claim for the crown level.

The completeness proof for RK5Cut now proceeds by deriving all the axioms of K5 both at the trunk
level and at the crown level, showing that the necessitation rule is admissible, and simulating modus
ponens using cuts. Deriving each axiom twice, at the crown level in addition to the trunk level, may
seem redundant. However, this is necessary to show admissibility of the necessitation rule.

Theorem 3.6 (Completeness with Cut). Every K5 theorem is derivable in RK5Cut, i.e., RK5Cut ` ⇒ A
for every A ∈ K5.

Proof. We show a stronger statement that RK5Cut ` ⇒ A and RK5Cut ` ⇒ || ⇒ A by a simultaneous
induction on the Hilbert-style derivation of A in K5. We omit the standard derivations of propositional
axioms. An instance �(B → C)→ (�B → �C) of (K) at the trunk level is derived by

⇒ || B ⇒ C,B
Lem. 3.5 ⇒ || B,C ⇒ C

Lem. 3.5

⇒ || B,B → C ⇒ C
→L

�(B → C),�B ⇒ || ⇒ C
�L

�(B → C),�B ⇒ �C �R

⇒ �(B → C)→ (�B → �C)
→R

An instance ♦�B → �B = ¬�¬�B → �B of (5) at the trunk level is derived by

⇒ || B ⇒ B
Lem. 3.5

⇒ || �B ⇒ | ⇒ B
5

⇒ || ⇒ ¬�B | ⇒ B
¬R

⇒ �B,�¬�B �R

¬�¬�B ⇒ �B ¬L
⇒ ¬�¬�B → �B →R
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An instance �(B → C)→ (�B → �C) of (K) at the crown level is derived by

⇒ || B ⇒ C,B
Lem. 3.5 ⇒ || B,C ⇒ C

Lem. 3.5

⇒ || B,B → C ⇒ C
→L

⇒ || �(B → C)⇒ | �B ⇒ | ⇒ C
5

⇒ || �(B → C)⇒ | �B ⇒ | ⇒ �C K

⇒ || �(B → C),�B ⇒ �C
merge

⇒ || ⇒ �(B → C)→ (�B → �C)
→R

(3)

An instance ¬�¬�B → �B of (5) at the crown level is derived by

⇒ || B ⇒ B
Lem. 3.5

⇒ || �B ⇒ | ⇒ B
5

⇒ || ⇒ ¬�B | ⇒ B
¬R

⇒ || ⇒ �¬�B | ⇒ �B K

⇒ || ⇒ �¬�B,�B
merge

⇒ || ¬�¬�B ⇒ �B
¬L

⇒ || ⇒ ¬�¬�B → �B
→R

If �B is inferred from B by nec, then RK5Cut ` ⇒ || ⇒ B by the induction hypothesis for the crown.
Hence, RK5Cut ` ⇒ �B and RK5Cut ` ⇒ || ⇒ �B by the rules �R and K respectively.

The rule MP is simulated in the crown by means of the grafted hypersequent ⇒ || B,B → C ⇒ C
derived above and the rule Cutc, whereas in the trunk we use the rule Cutt and the analogous derivation
of B,B → C ⇒ C.

While this establishes completeness of the calculus with the cut rule, we are mainly interested in
cut-free completeness of the system. As usual there are two ways of showing this. The first is purely
syntactical and relies on proving a cut elimination theorem, stating that derivations using the cut rule
can be transformed into derivations not using this rule. While proving a cut elimination theorem is often
quite tedious, it provides deep insights into the calculus since it gives a constructive step-by-step method
to eliminate applications of the cut rule. We will follow this path in the next section, culminating in
Thm. 4.13 at the end of the next section.

The second method is to provide a semantic proof of cut-free completeness, usually achieved by
showing how to construct a counter-model from a failed proof search. This method provides insights
of its own, since it connects the calculus to the semantics more directly. However, a more natural
setting for this kind of proofs is that of prefixed tableaux [FM98]. We will explore this direction by
making use of an analogue of the correspondence between nested sequent calculi and prefixed tableaux
established in [Fit12]. Since this correspondence is seen clearest for grafted hypersequent calculi in which
the structural rules are admissible, we postpone this exploration to Sec. 6, until after the modification
of the calculus for K5 to this effect in Sec. 5. The reader who is not interested in the intricacies of cut
elimination but only in cut-free completeness of the calculus is therefore advised to skip the description
of cut elimination starting with Definition 4.5 of the next section and continue with Sec. 5 instead.

4 Cut Elimination

While the fact that grafted hypersequents can be used to give a calculus which is sound and in the
presence of the cut rules complete for the logic K5 is perhaps not so surprising, it might be more
remarkable that it is possible to show admissibility of the cut rules for this calculus. Of course this
result is highly desirable, since it entails the subformula property for the calculus and thus provides the
basis for a decision procedure via backwards proof search. The proof of cut elimination itself has several
ingredients. At its core lies the fact that the formulation of the crown rules with the empty root sequent
entails a layering of the derivations into the crown layer modifying only the crown part at the top of
the proof tree, followed by a layer involving the trunk rules only. This is further strengthened by the
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following lemma stating that the bottom layer of the proof tree can be assumed to be divided into the
transfer layer in which formulae are transferred from the crown to the trunk using the transfer rules
and the trunk layer in which only non-modal trunk rules are applied. The first step to seeing this is the
following observation.

Lemma 4.1. In any derivation in RK5Cutc, no trunk rule from Figure 1 occurs above any crown rule
from Figure 2 nor above Cutc.

Proof. Follows directly from the fact that the trunk is empty in all the crown rules and the fact that no
rule moves formulae from the trunk to the crown.

Moreover, the transfer rules can be permuted upwards over all the other trunk rules.

Lemma 4.2. In any derivation in RK5Cutc or in RK5, the rule �L can be permuted upwards over every
trunk rule and the rule �R can be permuted upwards over every trunk rule other than �L. All the
permutations are depth-preserving.

Proof. Both rules �L and �R replace a formula in the crown with another formula in the trunk. The
reason they can be permuted upwards over all the other trunk rules is that the latter operate exclusively
on formulae in the trunk (all principal and active formulae are in the trunk), have no context restrictions,
and do not modify the context. It should also be noted that neither �L nor �R restricts the trunk
context. (Strictly speaking, the permutation of a transfer rule over a trunk initial structure means that
the transfer rule disappears, leaving another instance of the same initial structure.)

To permute �L upwards over �R, use the transformation

....
Γ⇒ ∆ || H | Σ, A⇒ Π | ⇒ B

Γ⇒ ∆,�B || H | Σ, A⇒ Π
�R

Γ,�A⇒ ∆,�B || H | Σ⇒ Π
�L

 

....
Γ⇒ ∆ || H | Σ, A⇒ Π | ⇒ B

Γ,�A⇒ ∆ || H | Σ⇒ Π | ⇒ B
�L

Γ,�A⇒ ∆,�B || H | Σ⇒ Π
�R

It is also easy to see that any two applications of �L are permutable and any two applications of �R are
permutable. It is, however, impossible to permute �R upwards over �L if their active formulae belong
to the same sequent in the crown. Since the rule permutations are local, the depth of the derivations is
not increased.

The previous two lemmata allow us to reorder derivations so that they are layered in a specific way.

Definition 4.3 (Normal derivations). A derivation in RK5 or RK5Cutc is called normal if

1. no crown rule occurs below a trunk rule,

2. �L does not occur below any trunk rules other than �L, and

3. �R does not occur below any trunk rules other than �L and �R.

Proposition 4.4 (Layering of derivations). If a grafted hypersequent G is derivable in RK5 (resp. in
RK5Cutc) with a derivation of depth n, then it is derivable in RK5 (resp. in RK5Cutc) with a normal
derivation of depth at most n.

Proof. By permuting upwards topmost instances of rules violating the proposition using Lemma 4.1 and
Lemma 4.2.

Thus w.l.o.g. we may assume that all derivations are normal, i.e., layered in such a way that in every
branch we have from top to bottom:

the crown layer (possibly with applications of Cutc),

applications of �L,

applications of �R,

the trunk layer.
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Moreover, if a branch has no crown layer, it has only the trunk layer. This layering of the derivations
enables us to eliminate the two cut rules Cutt and Cutc in two stages. First we show how to eliminate
Cutc in the crown using techniques from the hypersequent framework. Then we essentially run a cut
elimination proof from the nested sequent (or standard sequent) framework to eliminate Cutt in the
trunk, reducing principal Cutt-cuts on boxed formulae to Cutc-cuts in the crown which are eliminated
using the results of the first stage.

We first give a description of the procedure to eliminate Cutc in the crown. The method is based
on the cut elimination proof for extensions of the fuzzy logic MTL with truth stresser modalities given
in [CMM10] and generalised in [Lel14]. The method uses the following notion.

Definition 4.5 (Cut rank). Let D be a derivation in RK5Cut or in RK5Cutc. The cut rank of D is the
maximum over sizes of all cut formulae in D and is denoted by ρ(D). If D is cut-free, we set ρ(D) := 0.

The proof proceeds by first shifting a topmost Cutc on a cut formula with the largest size upwards
into the left premiss using a generalised induction hypothesis that, similar to a one-sided version of
multicut, one occurrence of the cut formula in the right premiss can be cut against several occurrences of
the cut formula in the left premiss. Once this Cutc reaches the place where the cut formula is introduced
in the left premiss, we start shifting the Cutc upwards into the right premiss, using another generalised
induction hypothesis that one occurrence of the cut formula in the left premiss can be cut against several
occurrences of the cut formula in the right premiss. This last step is captured in the following lemma,
where, for a formula A and a natural number n > 0, we write An for A, . . . , A︸ ︷︷ ︸

n times

.

Lemma 4.6 (Shift Right). For positive natural numbers n,m1, . . . ,mn, let DL and DR be derivations
in RK5Cutc of grafted hypersequents

⇒ || HL | Γ⇒ ∆, A and ⇒ || HR | Σ1, A
m1 ⇒ Π1 | · · · | Σn, A

mn ⇒ Πn

respectively such that the last applied rule in DL is not structural, the displayed occurrence of A is
principal in it, ρ(DL) < |A|, and ρ(DR) < |A|. Then there is a derivation D in RK5Cutc of the grafted
hypersequent

⇒ || HL | HR | Γ,Σ1 ⇒ ∆,Π1 | · · · | Γ,Σn ⇒ ∆,Πn (4)

such that ρ(D) < |A|.

Proof. The proof is by induction on the depth of the derivation DR, distinguishing cases based on the
main connective of A and on the last applied rule in DR. By by the same reasoning as used in Lemma 4.1
this rule must have been a crown rule.

Since the proof is very similar to the one given in [CMM10] and, apart from the (empty) trunk, is an
instance of the general proof contained in [Lel14], here we only provide details for the cases where the
formula A is of the form �B. In particular, in these cases the last applied rule in DL must have been K
and, hence, both Γ and ∆ are empty. The remaining cases are handled similarly.

If the last applied rule in DR was Init or ⊥L, then none of the occurrences of �B is principal in it
and (4) is another instance of the same rule.

If the last applied rule r in DR was the rule K, the rule Cutc with the cut formula simpler than A, or
a propositional rule, then, since the rule 5 is the only non-structural rule introducing a boxed formula in
an antecedent, again none of the occurrences of �B are principal in this application. Thus, we first apply
the induction hypothesis to the premiss(es) of r and then apply the same rule, followed by structural
rules if necessary, to obtain (4). For instance, if the last applied rule in DR was K:

D′R....
⇒ || H′R | Σ1,�Bm1 ⇒ Π1 | · · · | Σn,�Bmn ⇒ Πn | ⇒ C

⇒ || H′R | Σ1,�Bm1 ⇒ Π1 | · · · | Σn,�Bmn ⇒ Πn | ⇒ �C K

12



we would obtain

DL....
⇒ || HL | ⇒ �B

D′R....
⇒ || H′R | Σ1,�Bm1 ⇒ Π1 | · · · | Σn,�Bmn ⇒ Πn | ⇒ C

⇒ || HL | H′R | Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn | ⇒ C
IH

⇒ || HL | H′R | Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn | ⇒ �C K

where IH signifies the application of the induction hypothesis, D′R is DR without the last application of
the rule K, and H′R is HR without the component ⇒ �C.

The case where the last applied rule in DR was the rule 5 or a structural rule with none of the
displayed occurrences of �B principal is similar. The case where the last applied rule was EC or ICL

with at least one of the displayed occurrences of �B principal is taken care of by the induction hypothesis.
The argument for the remaining structural rules is standard and left to the reader.

The case somewhat peculiar to our system is the one where the last applied rule in DR was the rule 5
introducing one of the displayed �B. Then the derivation DR ends with

D′R....
⇒ || HR | Σ1,�Bm1 ⇒ Π1 | · · · | Σn−2,�Bmn−2 ⇒ Πn−2 | Σn,�Bmn , B ⇒ Πn

⇒ || HR | Σ1,�Bm1 ⇒ Π1 | · · · | Σn−2,�Bmn−2 ⇒ Πn−2 | �B ⇒ | Σn,�Bmn ⇒ Πn
5

(Here mn can also be zero, making Σn ⇒ Πn a part of HR.) In the other premiss, since �B was principal
in the last rule application in DL, the latter ends with

D′L....
⇒ || HL | ⇒ B

⇒ || HL | ⇒ �B K

In order to derive (4), which has the form

⇒ || HL | HR | Σ1 ⇒ Π1 | Σ2 ⇒ Π2 | · · · | Σn−2 ⇒ Πn−2 | ⇒ | Σn ⇒ Πn ,

we first eliminate those displayed instances of �B that are contextual in the application of the rule
5 (if any) by performing a cross cut, i.e., by applying the induction hypothesis to the premiss of this
application and the conclusion of DL. This yields a derivation of the grafted hypersequent

⇒ || HL | HR | Σ1 ⇒ Π1 | Σ2 ⇒ Π2 | · · · | Σn−2 ⇒ Πn−2 | Σn, B ⇒ Πn ,

To remove the extra B, we cut it against ⇒ || HL | ⇒ B and remove possible duplicates of sequents
in HL caused by the cross cut by means of EC:

⇒ || HL | HR | Σ1 ⇒ Π1 | Σ2 ⇒ Π2 | · · · | Σn−2 ⇒ Πn−2 | Σn ⇒ Πn .

It remains to use EW to add the sequent ⇒ . Since the size of the new cut formula B is smaller than
the size of the original cut formula �B, this yields the desired derivation.

The idea of shifting cuts up on the left is similarly captured in the proof of the following lemma,
which also makes use of the Shift Right Lemma.

Lemma 4.7 (Shift Left). For positive natural numbers n,m1, . . . ,mn, let DL and DR be derivations in
RK5Cutc of grafted hypersequents

⇒ || HL | Γ1 ⇒ ∆1, A
m1 | · · · | Γn ⇒ ∆n, A

mn and ⇒ || HR | Σ, A⇒ Π

respectively such that ρ(DL) < |A| and ρ(DR) < |A|. Then there is a derivation D in RK5Cutc of the
grafted hypersequent

⇒ || HL | HR | Γ1,Σ⇒ ∆1,Π | · · · | Γn,Σ⇒ ∆n,Π

such that ρ(D) < |A|.
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Proof. The proof is by induction on the the depth of the derivation DL. Once again, all the rules applied
in DL must have been crown rules. Since the proof again is essentially the one from [CMM10, Lel14] and
since all the cases where no displayed occurrence of the formula A is principal in the last rule application
in DL are analogous to the proof of the Shift Right Lemma, we only give the case where A is the formula
�B and one occurrence of it is principal in the last applied rule in DL. In this case the derivation DL

ends with
D′L....

⇒ || HL | Γ1 ⇒ ∆1,�Bm1 | · · · | Γn−1 ⇒ ∆n−1,�Bmn−1 | ⇒ B

⇒ || HL | Γ1 ⇒ ∆1,�Bm1 | · · · | Γn−1 ⇒ ∆n−1,�Bmn−1 | ⇒ �B K

If n = 1, then we can directly apply the Shift Right Lemma 4.6. Otherwise, we first perform a cross cut
by applying the induction hypothesis to the premiss of this rule K, and then apply K to the result:

D′L....
⇒ || HL | Γ1 ⇒ ∆1,�Bm1 | · · · | Γn−1 ⇒ ∆n−1,�Bmn−1 | ⇒ B

DR....
⇒ || HR | Σ,�B ⇒ Π

⇒ || HL | HR | Γ1,Σ⇒ ∆1,Π | · · · | Γn−1,Σ⇒ ∆n−1,Π | ⇒ B
IH

⇒ || HL | HR | Γ1,Σ⇒ ∆1,Π | · · · | Γn−1,Σ⇒ ∆n−1,Π | ⇒ �B K

Since now there is only one displayed occurrence of the formula �B which is moreover principal in the last
applied rule, we can use the Shift Right Lemma 4.6 for the cut formula �B, applied to the conclusions
of this derivation and of DR, obtaining a derivation of

⇒ || HL | HR | Γ1,Σ⇒ ∆1,Π | · · · | Γn−1,Σ⇒ ∆n−1,Π | HR | Σ⇒ Π .

It now only remains to remove duplicate sequents using EC.

As an immediate consequence we obtain the procedure to eliminate applications of the crown cut
rule Cutc by repeated applications of the Shift Left Lemma.

Theorem 4.8 (Crown Cut Elimination). The system RK5Cutc enjoys Cutc-elimination.

Proof. A derivation D is turned into a cut-free derivation using a double induction on the cut rank ρ(D)
of D and on the number of applications of Cutc with cut formulae of size ρ(D). Each topmost application
of Cutc with a cut formula of size ρ(D) can be reduced to cuts with cut formulae of smaller size by
using the Shift Left Lemma 4.7, thereby either preserving the cut rank and decreasing the number of
applications of Cutc with cut formulae of size ρ(D) or decreasing the cut rank.

This gives us consistency of the crown rules of our calculus.

Corollary 4.9. RK5Cutc 0⇒ || ⇒ and RK5Cutc 0⇒ .

Proof. Assume towards a contradiction that one of the above grafted hypersequents were derivable in
RK5Cutc. By the Crown Cut Elimination Theorem, it would then also be derivable in RK5. It is easy to
see, however, that ⇒ cannot be a conclusion of any non-trivial rule of RK5. Similarly, writing [ ⇒ ]n

for

n-times︷ ︸︸ ︷
⇒ | · · · | ⇒ , the grafted hypersequent ⇒ || [⇒ ]n with n > 0 can be obtained in RK5 either by EW

from ⇒ || [⇒ ]n−1 or by EC from ⇒ || [⇒ ]n+1. Since none of ⇒ || [⇒ ]n for n > 0 are initial grafted
hypersequents, ⇒ || ⇒ is not derivable either.

In preparation for the trunk cut elimination proof we formulate a slightly more general version of
crown cut elimination.

Lemma 4.10. For positive natural numbers n,m1, . . . ,mn, if

RK5 ` ⇒ || HL | Γ1 ⇒ ∆1, A
m1 | · · · | Γn ⇒ ∆n, A

mn and RK5 ` ⇒ || HR | Σ, A⇒ Π ,

then
RK5 ` ⇒ || HL | HR | Γ1,Σ⇒ ∆1,Π | · · · | Γn,Σ⇒ ∆n,Π .
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Proof. Since the derivations of the two given grafted hypersequents are cut free, their cut rank is 0 <
|A|. Thus, applying the Shift Left Lemma 4.7 gives a derivation D in RK5Cutc of the desired grafted
hypersequent with ρ(D) < |A|, and applying Theorem 4.8 yields a cut-free derivation.

Remark 4.11. Since the rules of the system RK5 considered here do not include any restrictions on the
context, in this particular case it would also be possible to reverse the order of the Shift Lemmata in the
proof of crown cut elimination, i.e., to first shift cuts upwards into the derivation of the right premiss,
and then into that of the left premiss. However, to emphasise the connection to the hypersequent cut
elimination proofs contained in [CMM10, Lel14] we chose to keep this order.

To eliminate cuts at the root level we now essentially run Gentzen’s original reductive cut elimination
proof for the sequent calculus [Gen34]. The proof eliminates applications of the trunk multicut rule

Γ⇒ ∆, An || HL Σ, Am ⇒ Π || HR

Γ,Σ⇒ ∆,Π || HL | HR
MCutt ,

which allows to cut several instances of the cut formula at the same time. It is clear that in presence of
contraction the trunk multicut rule is derivable using a normal cut Cutt. Moreover, since the rule Cutt
is just an instance of the multicut rule MCutt, it is clear that eliminating trunk multicuts is equivalent
to eliminating normal trunk cuts.

Theorem 4.12 (Trunk Cut Admissibility). For positive natural numbers m and n, if

RK5 ` Γ⇒ ∆, An || HL and RK5 ` Σ, Am ⇒ Π || HR ,

then
RK5 ` Γ,Σ⇒ ∆,Π || HL | HR . (5)

In other words, MCutt is admissible in RK5.

Proof. Let DL and DR be derivations of Γ ⇒ ∆, An || HL and RK5 ` Σ, Am ⇒ Π || HR respectively.
Using Proposition 4.4 we may assume that both derivations are normal, i.e., layered in such a way that
all the trunk propositional and trunk structural rules occur below the transfer rules, which in turn occur
below the crown rules. Since the trunk is not empty in the endsequents of both DL and DR, it follows
that the last rule applied in each of them was a trunk rule.

The proof is by double induction on |A| (outer induction) and on the sum of depths of DL and DR

(inner induction). If none of the displayed occurrences of A in the conclusion of DL is principal in the
last rule rL applied in DL or if none of the displayed occurrences of A in the conclusion of DR is principal
in the last rule rR applied in DR, then the induction hypothesis can be applied to the premiss(es) of DL

and the conclusion of DR or to the conclusion of DL and the premiss(es) of DR respectively, after which
an application of rL or rR respectively yields (5).

If one of rL or rR is a structural rule with at least one of the displayed occurrences of A being principal,
the treatment is standard and left to the reader.

It remains to consider the cases when both rL or rR are logical rules or initial structures introducing
one of the displayed occurrences of A. The cases when A is a propositional variable or when the main
connective in A is Boolean are standard and left to the reader: we only provide details for the case of
A = �B. In this case, rL was an application of �R and rR was an application of �L. Since DL and DR

are normal, there are only applications of �L, �R, and crown rules above rL in DL and there are only
applications of �L and crown rules above rR in DR.

If any of the �R applications above rL introduce a formula other than one of the displayed occurrences
of A = �B, it can be permuted all the way down towards the endsequent of DL as described in the
proof of Lemma 4.2 transforming DL to D′L of the same depth. Since then the last rule of the D′L does
not introduce any of the displayed A’s, we can apply considerations of the previous cases. Similarly, if
any of the �L applications above rR introduce a formula other than one of the displayed occurrences
of A = �B, it also can be permuted all the way down towards the endsequent of DR without affecting
the depth of the derivation, and then apply the reasoning of the previous cases. Finally, if any of the
�L applications above rL does not affect the crown components active in one of the �R rules, it can
be permuted all the way down towards the endsequent without changing the depth of the derivation,
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after which the previous considerations are applied. Since this permutation has not been described in
our layering proposition, we present it here: the derivation

D1
L....

�Γ′ ⇒ || H′L | Λ, C ⇒ Υ | Ξ1 ⇒ B | · · · | Ξn ⇒ B

�Γ′,�C ⇒ || H′L | Λ⇒ Υ | Ξ1 ⇒ B | · · · | Ξn ⇒ B
�L

�Γ′,�C,�Ξ1, . . . ,�Ξn ⇒ || H′L | Λ⇒ Υ | [⇒ B]n
�L

�Γ′,�C,�Ξ1, . . . ,�Ξn ⇒ �Bn || H′L | Λ⇒ Υ
�R

where [H]` is an abbreviation for H | · · · | H︸ ︷︷ ︸
` times

, is replaced with

D1
L....

�Γ′ ⇒ || H′L | Λ, C ⇒ Υ | Ξ1 ⇒ B | · · · | Ξn ⇒ B

�Γ′,�Ξ1, . . . ,�Ξn ⇒ || H′L | Λ, C ⇒ Υ | [⇒ B]n
�L

�Γ′,�Ξ1, . . . ,�Ξn ⇒ �Bn || H′L | Λ, C ⇒ Υ
�R

�Γ′,�C,�Ξ1, . . . ,�Ξn ⇒ �Bn || H′L | Λ⇒ Υ
�L

Thus, we consider only the case when all the �R applications above rL and all the �L applications above
rR introduce the displayed A = �B and when all the �L applications above rL add formulae to the
crown components created by the �R rules (when looking upward). This means that ∆, Σ, and Π are
empty, whereas Γ = �Ξ1, . . . ,�Ξn contains only formulae introduced by �L rule applications. Tracing
the occurrences of the cut formula up to directly above the transfer layer we see that DL and DR have
the forms

D1
L....

⇒ || HL | Ξ1 ⇒ B | · · · | Ξn ⇒ B

�Ξ1, . . . ,�Ξn ⇒ || HL | [⇒ B]
n �L

�Ξ1, . . . ,�Ξn ⇒ �Bn || HL
�R

D0
R....

⇒ || H′R | Ω1, B
m1 ⇒ Θ1 | · · · | Ωk, B

mk ⇒ Θk

�Bm ⇒ || H′R | Ω1 ⇒ Θ1 | · · · | Ωk ⇒ Θk
�L

respectively, where some of Ξj ’s can be empty, m = m1 + · · ·+mk, and all mi > 0.
Our goal in this case is to derive (5), which has the form

�Ξ1, . . . ,�Ξn ⇒ || HL | H′R | Ω1 ⇒ Θ1 | · · · | Ωk ⇒ Θk

To achieve this goal we first contract the duplicate displayed occurrences of B in each crown component
of the endsequent of D0

R, obtaining a derivation D1
R in RK5 of the form

D0
R....

⇒ || H′R | Ω1, B
m1 ⇒ Θ1 | · · · | Ωk, B

mk ⇒ Θk

⇒ || H′R | Ω1, B ⇒ Θ1 | · · · | Ωk, B ⇒ Θk
ICL

Thus,

RK5 ` ⇒ || HL || Ξ1 ⇒ B | · · · | Ξn ⇒ B , (6)

RK5 ` ⇒ || H′R | Ω1, B ⇒ Θ1 | · · · | Ωk, B ⇒ Θk . (7)

By Lemma 4.10 applied to (6) and the leftmost displayed occurrence of B in (7)

RK5 ` ⇒ || HL | H′R | Ξ1,Ω1 ⇒ Θ1 | · · · | Ξn,Ω1 ⇒ Θ1 | Ω2, B ⇒ Θ2 | · · · | Ωk, B ⇒ Θk
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Applying Lemma 4.10 k − 1 more times, each time to (6) and the leftmost displayed occurrence of B in
the result of the previous application, we obtain

RK5 ` ⇒ || [HL]
k | H′R | Ξ1,Ω1 ⇒ Θ1 | · · · | Ξn,Ω1 ⇒ Θ1 | · · · | Ξ1,Ωk ⇒ Θk | · · · | Ξn,Ωk ⇒ Θk

It is now easy to derive (5) in RK5 as follows:

⇒ || [HL]
k | H′R | Ξ1,Ω1 ⇒ Θ1 | · · · | Ξn,Ω1 ⇒ Θ1 | · · · | Ξ1,Ωk ⇒ Θk | · · · | Ξn,Ωk ⇒ Θk

(�Ξ1, . . . ,�Ξn)k ⇒ || [HL]
k | H′R | [Ω1 ⇒ Θ1 | · · · | Ωk ⇒ Θk]

n
�L

�Ξ1, . . . ,�Ξn,⇒ || [HL]
k | H′R | [Ω1 ⇒ Θ1 | · · · | Ωk ⇒ Θk]

n
CL

�Ξ1, . . . ,�Ξn ⇒ || HL | H′R | Ω1 ⇒ Θ1 | · · · | Ωk ⇒ Θk
EC

where Γ` is an abbreviation of

` times︷ ︸︸ ︷
Γ, . . . ,Γ.

Theorem 4.13 (Completeness of the Cut-Free System). The system RK5Cut enjoys full cut elimination.
In particular, every K5 theorem is derivable in RK5.

Proof. A derivation D is turned into a cut-free derivation using an induction on the combined number
of applications of Cutc and Cutt. Each topmost application of Cutc (with no Cutt above it either) can
be eliminated by using Theorem 4.8 and each topmost application of Cutt (with no Cutc above it either)
can be eliminated by using Theorem 4.12.

As usual from the cut elimination theorem we obtain consistency of the logic. We can also use it
to show that certain formulae such as the axioms (D), formulated as �⊥ → ⊥ or (T) �A → A are not
theorems of the logic.

Corollary 4.14. None of the grafted hypersequents ⇒ , ⇒ �⊥ → ⊥, or ⇒ �p → p is derivable in
RK5Cut.

Proof. In Corollary 4.9, we already proved that ⇒ is not derivable in RK5Cutc. The statement now
follows from the fact that RK5 = RK5Cutc = RK5Cut.

To show that grafted hypersequents ⇒ �A→ A are not derivable for A being ⊥ or a propositional
variable, we assume the contrary and consider an arbitrary derivation of such a grafted hypersequent
in RK5, which exists by Theorem 4.13. Its endsequent can be obtained by W from ⇒ , which is not
derivable, or by CR from ⇒ �A → A,�A → A, or by →R from �A ⇒ A. Note that the rule �L is
not applicable to �A because the crown is empty. Continuing with this line of reasoning, only grafted
hypersequents of the form

�A, . . . ,�A︸ ︷︷ ︸
n

⇒ �A→ A, . . . ,�A→ A︸ ︷︷ ︸
k

, A, . . . , A︸ ︷︷ ︸
l

can occur in the derivation because the crown remains empty. Given that A is ⊥ or a propositional
variable, no other rule can ever be applied and no initial structure can ever be reached because the
unboxed A never occurs in the antecedent of the trunk.

5 Contraction, Decidability, Complexity

Now that we have established cut elimination for the calculus RK5, our goal is to use this calculus in
a decision procedure for the logic K5. The main challenge is to bring the complexity of this decision
procedure down to the optimal complexity: While it is known by semantic arguments that the logic K5
is decidable in coNP (and in fact every extension of K5 is as well [HR07]), the (few) existing unlabelled
sequent-style calculi used in decidability proofs for this logic either make use of analytic cuts [Ngu01,
Tak01] or more complicated structures such as nested sequents [Brü09], resulting in a higher complexity.

The general idea for the decision procedure based on our grafted-sequent calculus for K5 is to employ
backwards proof search: starting with a grafted hypersequent G, check whether there is a rule which
could have been applied last to derive G and recursively check that all its premisses are derivable. In
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Figure 4: The rules R∗K5 obtained by Kleene’ing the calculus RK5

Some sample trunk and crown propositional rules:

Γ, A→ B ⇒ ∆, A || H Γ, A→ B,B ⇒ ∆ || H
Γ, A→ B ⇒ ∆ || H →∗L

Γ, A⇒ ∆, A→ B,B || H
Γ⇒ ∆, A→ B || H →∗R

⇒ || H | Γ, A→ B ⇒ ∆, A ⇒ || H | Γ, A→ B,B ⇒ ∆

⇒ || H | Γ, A→ B ⇒ ∆
→∗L

⇒ || H | Γ, A⇒ ∆, A→ B,B

⇒ || H | Γ⇒ ∆, A→ B
→∗R

The modal rules:

Γ⇒ ∆,�A || H | ⇒ A

Γ⇒ ∆,�A || H �∗R
Γ,�A⇒ ∆ || H | Σ, A⇒ Π

Γ,�A⇒ ∆ || H | Σ⇒ Π
�∗L

⇒ || H | Γ,�A⇒ ∆ | Σ, A⇒ Π

⇒ || H | Γ,�A⇒ ∆ | Σ⇒ Π
5∗

⇒ || H | Γ⇒ ∆,�A | ⇒ A

⇒ || H | Γ⇒ ∆,�A K∗
⇒ || H | Γ,�A,A⇒ ∆

⇒ || H | Γ,�A⇒ ∆
T∗

terms of alternating Turing machines [CKS81] the step of checking whether there is a rule which could
have been applied to derive G can be thought of as an existential guessing step, while checking that
all the premisses of the rule application are derivable amounts to a universal choosing step. We show
that we can fix the order of applications of rules, thereby eliminating the need for existential guessing
steps, which leaves us only with universal choosing steps. This enables us to reduce the complexity from
alternating polynomial time (or polynomial space) to the desired coNP. Of course, in order to be able
to handle the grafted hypersequents occurring in a derivation efficiently, we also need to show that their
size is bounded. For this we need to be able to eliminate applications of the contraction rules, since
these rules allow for a potentially unbounded increase in the size of the grafted hypersequent (when
seen bottom-up). To show admissibility of the contraction rules we use Kleene’s Trick, a method first
introduced by Kleene in the construction of the G3-type sequent systems for classical and intuitionistic
logic [Kle52]. The idea is to copy the relevant parts of the conclusion in a logical rule into the premisses,
so that contractions in the conclusion of this rule can be permuted into its premisses. In order to prevent
unnecessary blow-up of the structures we omit components of the hypersequent part which can be derived
from other components using internal weakenings. Finally, to deal with external contractions involving
both principal components of the 5 rule, we add the missing rule. Perhaps not surprisingly this turns out
to be the crown version of the standard T rule for reflexive modal logics. This procedure is analogous
to adding missing rules to a rule set by internally contracting formulae in the premisses and conclusion
so that it satisfies the closure condition of [NP01, Neg05] respectively the contraction closure condition
of [Lel14].

Definition 5.1 (Modified rules). The modified rules implementing Kleene’s trick are given in Figure 4.
The rule set including these rules together with initial structures Init and ⊥L both in the trunk and in
the crown, as well as the trunk weakening rule W, is called R∗K5.

Again, in the rules of R∗K5 we call all the formulae in the Γ,∆,Σ,Π and in the components in H
the contextual formulae, we call all non-contextual formulae in the conclusion the principal formulae,
and all non-contextual formulae in the premisses the active formulae. In particular the copies of the
principal formulae in the premisses are active formulae. The notions of contextual, principal, and active
components are as for the system RK5. Note that the rule set R∗K5 includes neither the contraction rules
EC, ICL, ICR, CL, or CR nor the weakening rules EW or IW. The trunk weakening rule W, however, is
necessary since the crown rules can only be applied with the empty trunk. It would also be possible to
add two new transfer rules analogous to �∗R and �∗L but with empty trunk in the premisses to obtain a
system where the trunk weakening rule W is admissible as well. However, in view of the fact that trunk
weakening in general is unproblematic, we prefer the system with one structural rule instead of two new
logical rules. The resulting crown rules then essentially strike a middle ground between the modal rules
of the modified hypersequent system for S5 used in the semantic completeness proof in [Res07] and those
given in [Pog10, Chapter 9]: they contain the Kleene’d version of the �R rule as in the former (which is
replaced with the un-Kleene’d version in the latter) and use the T∗ rule of the latter (which, in presence
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of external structural rules, is superfluous in the former). The �∗L rule is present in both calculi. Since
we have omitted components in the crown which can be derived from other components using internal
weakening IW, we need to show depth-preserving admissibility of IW before we can show admissibility
of contraction.

Lemma 5.2 (Admissibility of internal and external weakening). The rules IW and EW of crown internal
weakening and external weakening are depth-preserving admissible in R∗K5.

Proof. Standard by induction on the depth of the derivation. The additional context in the rules 5∗

and K∗ ensures that the application of internal weakening can be shifted into the premiss.

Lemma 5.3 (Admissibility of contraction). The rule EC of external contraction, as well as the rules
ICL, ICR CL, and CR of internal trunk and crown contraction, is depth-preserving admissible in R∗K5.

Proof. The admissibility of internal crown and trunk contraction is shown as usual by an induction on
the depth of the derivation. For instance, to contract the principal formula in the conclusion of an
application of the rule 5∗ shown below left, we apply the the induction hypothesis to the premiss of
this application (without increasing the depth) and then use another application of the rule 5∗ as shown
below right:

....
⇒ || H | Γ,�A,�A⇒ ∆ | Σ, A⇒ Π

⇒ || H | Γ,�A,�A⇒ ∆ | Σ⇒ Π
5∗

....
⇒ || H | Γ,�A,�A⇒ ∆ | Σ, A⇒ Π

⇒ || H | Γ,�A⇒ ∆ | Σ, A⇒ Π
IH

⇒ || H | Γ,�A⇒ ∆ | Σ⇒ Π
5∗

Similarly, the admissibility of external contraction is shown by induction on the depth of the derivation,
where the additional copy of the principal component in the premiss of the rules 5∗ and K∗ ensures that
a contraction involving this component and a context component can be shifted into the premiss of the
rule. If the last applied rule was a crown propositional rule, 5∗, �∗L, or T∗, to contract its principal
component with a context component we need to use Lemma 5.2. For instance, to contract the principal
component in the conclusion of an application of T∗

....
⇒ || H | Γ,�A⇒ ∆ | Γ,�A,A⇒ ∆

⇒ || H | Γ,�A⇒ ∆ | Γ,�A⇒ ∆
T∗

by Lemma 5.2 we apply the internal crown weakening (without increasing the depth), then use the
induction hypothesis (again without increasing the depth), and then use another application of T∗:

....
⇒ || H | Γ,�A⇒ ∆ | Γ,�A,A⇒ ∆

⇒ || H | Γ,�A,A⇒ ∆ | Γ,�A,A⇒ ∆
adm. IW

⇒ || H | Γ,�A,A⇒ ∆
IH

⇒ || H | Γ,�A⇒ ∆
T∗

(8)

The most non-trivial case is when the two principal components of 5∗ are contracted. This is treated as
follows, illustrating why the addition of the rule T∗ to the system was necessary:

....
⇒ || H | Γ,�A⇒ ∆ | Γ,�A,A⇒ ∆

⇒ || H | Γ,�A⇒ ∆ | Γ,�A⇒ ∆
5∗

....
⇒ || H | Γ,�A⇒ ∆ | Γ,�A,A⇒ ∆

⇒ || H | Γ,�A,A⇒ ∆ | Γ,�A,A⇒ ∆
adm. IW

⇒ || H | Γ,�A,A⇒ ∆
IH

⇒ || H | Γ,�A⇒ ∆
T∗

Now we can use the previous two lemmata to establish equivalence of the modified calculus with the
original one.
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Theorem 5.4 (Equivalence of RK5 and R∗K5). For every grafted hypersequent G we have that G is
derivable in RK5 iff it is derivable in R∗K5.

Proof. First we show that every rule of RK5 is admissible in R∗K5. For the missing structural rules this
has been shown in Lemma 5.2 and Lemma 5.3. For all the crown and trunk propositional rules, as well
as for the transfer rules, of RK5, to use the corresponding rule of R∗K5, it is sufficient to use W or the
admissible IW to add the principal formula to the premiss(es). The crown modal rules 5 and K are
translated as

⇒ || H | Σ, A⇒ Π

⇒ || H | �A⇒ | Σ, A⇒ Π
adm. EW

⇒ || H | �A⇒ | Σ⇒ Π
5∗

and

⇒ || H | ⇒ A

⇒ || H | ⇒ �A | ⇒ A
adm. EW

⇒ || H | ⇒ �A K∗

respectively using the admissible external weakening EW.
Now we show that every rule of R∗K5 is derivable in RK5. For all the trunk and crown propositional

rules, as well as for the transfer rules, of R∗K5, first the corresponding rule of RK5 is used and then the
duplicate of the principal formula is contracted by CL, CR, ICL, or ICR. The crown modal rules 5∗ and
K∗ are translated as

⇒ || H | Γ,�A⇒ ∆ | Σ, A⇒ Π

⇒ || H | Γ,�A⇒ ∆ | �A⇒ | Σ⇒ Π
5

⇒ || H | Γ,�A⇒ ∆ | Γ,�A⇒ ∆ | Σ⇒ Π
IW

⇒ || H | Γ,�A⇒ ∆ | Σ⇒ Π
EC

and

⇒ || H | Γ⇒ ∆,�A | ⇒ A

⇒ || H | Γ⇒ ∆,�A | ⇒ �A K

⇒ || H | Γ⇒ ∆,�A | Γ⇒ ∆,�A IW

⇒ || H | Γ⇒ ∆,�A EC

respectively. Finally, the rule T∗ is derived as follows:

⇒ || H | Γ,�A,A⇒ ∆

⇒ || H | �A⇒ | Γ,�A⇒ ∆
5

⇒ || H | Γ,�A⇒ ∆ | Γ,�A⇒ ∆
IW

⇒ || H | Γ,�A⇒ ∆
EC

The fact that the contraction rules are admissible in R∗K5 allows us to restrict the grafted hyperse-
quents in the backwards proof search procedure to structures based on sets instead of multisets.

Definition 5.5 (Set-based structures). A set-based sequent is a pair Γ⇒ ∆ of sets Γ,∆ of formulae. A
set-based hypersequent is a set of set-based sequents. A set-based grafted hypersequent Γ ⇒ ∆ || H is a
set-based sequent Γ⇒ ∆ together with a set-based hypersequent H.

The rules of R∗K5 apply to set-based grafted hypersequents as usual, reading set union ∪ for the
comma , and for the hypersequent bar |.
Remark 5.6. In the set-based setting, the T∗ rule becomes an instance of the 5∗ rule.

To abbreviate notation we introduce the notion of subsumption of one set-based grafted hypersequent
by another. The idea is that one such structure is subsumed by another if each of the components in the
crown are components in the crown of the other or derived from such components using weakening, and
similarly for the trunk. Formally:

Definition 5.7 (Subsumption). A set-based grafted hypersequent Γ ⇒ ∆ || H is subsumed by another
set-based grafted hypersequent Σ⇒ Π || H′ if

• Γ ⊆ Σ and ∆ ⊆ Π

• for every Ω⇒ Θ ∈ H there is a Ω′ ⇒ Θ′ ∈ H′ such that Ω ⊆ Ω′ and Θ ⊆ Θ′.

We then also write Γ⇒ ∆ || H ⊆ Σ⇒ Π || H′.
Thus if a grafted hypersequent G is subsumed by another grafted hypersequent G′, then it is possible

to derive G′ from G using only the structural rules, i.e., the different forms of weakening.

Theorem 5.8 (Decidability and complexity). The backwards proof search algorithm for K5 given as
Algorithm 1 decides membership in K5 and can be implemented in coNP.
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Algorithm 1: Decision procedure for K5

Input: a set-based grafted hypersequent Γ⇒ ∆ || H
Output: Is ι(Γ⇒ ∆ || H) ∈ K5?

1 set Γ1 := Γ, ∆1 := ∆, H1 := H;
2 repeat
3 set Γ2 := Γ1, ∆2 := ∆1, H2 := H1;
4 apply modified propositional trunk rules backwards to each unprocessed trunk formula in

Γ1 ⇒ ∆1 || H1, universally choosing one of the premisses for branching rules, and label these
formulae processed ;

5 until Γ1 ⇒ ∆1 || H1 ⊆ Γ2 ⇒ ∆2 || H2;
6 if Γ1 ⇒ ∆1 || H1 is a trunk initial structure then
7 halt and accept;
8 end
9 apply �∗R backwards to each formula �A ∈ ∆1 in Γ1 ⇒ ∆1 || H1 such that it is not the case that
⇒ || ⇒ A ⊆ Γ1 ⇒ ∆1 || H1;

10 apply �∗L backwards to each �A ∈ Γ1 and each component of H1 in Γ1 ⇒ ∆1 || H1;
11 apply W backwards to Γ1 ⇒ ∆1 || H1 to obtain ⇒ || H1;
12 repeat
13 set H2 := H1;
14 apply modified propositional crown rules backwards to each unprocessed crown formula in

⇒ || H1, universally choosing one of the premisses for branching rules, and label these
formulae processed ;

15 apply K∗ backwards to each consequent formula �A in ⇒ || H1 such that it is not the case
that ⇒ || ⇒ A ⊆ ⇒ || H1;

16 apply 5∗ backwards to each antecedent formula �A and each component of ⇒ || H1

(including the component with �A itself);
17 if ⇒ || H1 is a crown initial structure then
18 halt and accept;
19 end

20 until ⇒ || H1 ⊆ ⇒ || H2;
21 halt and reject
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Proof. It is easy to see that all the rules of R∗K5, except for W, are invertible because they can be read
backwards as weakenings, which we proved to be admissible. It is also easy to see that all the possible
trunk rules are applied before the application of W in Line 11, that no crown rules can be applied before
Line 11, and that all the possible crown rules are applied after Line 11. (Here we take into account the
fact that no branch of a shortest derivation can visit a grafted hypersequent subsumed by a prior grafted
hypersequent from this branch because of depth-preserving admissibility of weakening rules.) Thus, the
correctness of the algorithm follows from the completeness of RK5 (Theorem 4.13) and the equivalence
of RK5 and R∗K5 (Theorem 5.4).

To see that the complexity of the procedure is indeed coNP, consider a run of the procedure with input
G. Given that the algorithm does not use any existential guessing, it is sufficient to demonstrate that
each universal-choice branch requires polynomial time. Since all the rules in R∗K5 have the subformula
property, every set-based grafted hypersequent occurring in a derivation of the given grafted hypersequent
G contains only subformulae of formulae occurring in G. If the size of G is n, there are at most n such
subformulae and, thus, every set-based sequent containing only subformulae of G contains at most 2n
formulae. Since all the trunk propositional rules do not decrease the number of formulae occurring in the
trunk, since the repeat-loop that starts in Line 2 is terminated after no new formulae are added, and
since each formula in the trunk enjoys at most one propositional rule application before being labelled
processed, there are at most 2n applications of the trunk propositional rules in Line 4 and indeed in
the whole repeat-loop starting in Line 2. Since the rule �∗R introduces a new crown component from
a consequent formula occurring in the trunk, there are at most n applications of �∗R in Line 9 that
introduce at most n new components, making the total number of sequents in the crown at most 2n.
Thus, for each of at most n antecedent boxed formula in the trunk the rule �∗L is used at most 2n
times as described in Line 10, and there are at most 2n2 applications of �∗L overall. The only steps that
create new crown components within the repeat-loop that starts in Line 12 are the applications of K∗

in Line 15. Since for each boxed subformula of a formula occurring in G at most one crown component
would be created by either �∗R or K∗, we can evaluate the total number of applications of �∗R in Line 9
and K∗ in Line 15 as at most n and the total number of components in the crown at any point in the
running of the algorithm as at most 2n. Thus, there are at most 4n2 formulas that can occur in the
crown in various components: 2n2 antecedent formulas and 2n2 consequent ones. This means that the
propositional crown rules are applied at most 4n2 times in Line 14 and that the rule 5∗ is applied at
most 4n3 times: to a combination of each of at most 2n2 antecedent formulas with each of at most 2n
components.

To summarize, the total number of rule instances applied for each branch of universal choices is
O(n3) steps and it is easy to see that each rule instance can be processed in polynomial time. The whole
procedure can, thus, be implemented on a polynomially bounded alternating Turing machine which
makes only universal choosing steps. Therefore, the problem of deciding whether a given set-based
grafted hypersequent is derivable in R∗K5 is in the complexity class AΠp

1 = coNP [CKS81].

6 Semantic Completeness via Simplified Prefixed Tableaux for K5

In this section, we provide an alternative semantic proof of completeness for our grafted hypersequents.
The benefit of such a proof lies in its simplicity and in the alternative representation of grafted hyperse-
quents in the form of simplified prefixed tableaux, which may be of independent interest.

Much like grafted hypersequents for K5 and KD5 are a generalisation of hypersequents for S5, which
are known to correspond to the simplified prefixed tableaux for S5 (see, e.g., [FM98, p. 54]), the prefixed
tableaux corresponding to grafted hypersequents can be obtained by generalising these simplified prefixed
tableaux. For the lack of better terms, we would call the resulting system grafted tableaux.

Unlike the rest of the paper, we do not intend this section to be self-contained. It is, after all, an
alternative proof of our main result, which can be skipped at will. The reader is expected to know
standard prefixed tableaux for modal logics in general and the simplified system for S5 in particular. All
the necessary information can be found in the highly readable [FM98], whose terminology and notation
we adopt in the following.

However, unlike [FM98], we employ signed formulae, i.e., modal formulae signed either T or F .
Semantically, formulae signed T are thought of as true and those signed F as false. Syntactically, T -
signed formula correspond to antecedent formulae, whereas F -signed formulae are consequent formulae.
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Figure 5: Grafted tableau K5-rules. Here ` is any prefix, c and c′ are crown prefixes, n is a limb prefix,
and n is a twig prefix.

` : FA ∨B
` : FA
` : FB

` : TA ∨B
` : TA | ` : TB

` : FA ∧B
` : FA | ` : FB

` : TA ∧B
` : TA
` : TB

` : FA→ B
` : TA
` : FB

` : TA→ B
` : FA | ` : TB

• : F�A
n : FA

n new • : T�A
n : TA

n occurs c : F�A
n : FA

n new
c : T�A
c′ : TA

c′ occurs

The natural question of whose antecedent or consequent, is addressed by the prefix. However, to make
the tableaux formulation more natural as a stand-alone system, we depart a little bit from the grafted
hypersequents as follows. There, we had two types of components, the unique trunk and the components
of the crown. The absence of a weakening rule in the prefixed tableaux format suggests to further
partition the crown into the lower part, called limbs and upper part called twigs. Accordingly, we define
three types of prefixes:

Definition 6.1 (Prefixes). Grafted tableaux contain three types of prefixes: the unique trunk prefix •,
limb prefixes denoted by thick natural numbers 0,1,2, etc., and twig prefixes denoted by thin natural
numbers 0, 1, 2, etc. To avoid ambiguity, within one tableau proof, each number is used either as a limb
or as twig prefix, but not as both, i.e., we never use n and n for the same number n within one proof.
We use ` to denote an arbitrary prefix and c or c′ to denote an arbitrary crown prefix, i.e., any prefix
other than the trunk prefix.

To distinguish boxed formulae with the two signs F and T , following the standard terminology, we
call a signed formula of the form ` : F�A a possibility formula, one of the form ` : T�A a necessity
formula.

Definition 6.2 (Grafted tableau system for K5). The rules of the grafted tableau calculus for K5 can
be found in Figure 5. The conjunctive and disjunctive rules in the first row consist of the standard
propositional rules applied to an arbitrary prefix. The last rule in the second row is exactly the S5
necessity rule from [FM98, Def. 2.3.7] (it is restricted to crown prefixes only because the trunk prefix is
not used for S5) and is called the crown necessity rule. The S5 possibility rule from [FM98, Def. 2.3.6]
is modified in that the new prefix created from a crown prefix must be a twig prefix; it is the third rule
in the second row and is called the crown possibility rule. Finally, two more rules are added: the trunk
necessity rule that propagates the unboxed part of a true boxed formula in the trunk to the limbs (but
not to the twigs) and the trunk possibility rule that creates a new limb prefix from a false boxed formula
in the trunk.

A grafted K5-tableau for S is any object constructed from an initial finite set S of prefixed signed
formulae not containing twig prefixes by means of grafted tableau K5-rules. (The restriction to limb
crown prefixes in initiating sets ensures that twig prefixes can only appear in the presence of at least one
limb prefix.)

The closure conditions for a branch are standard: for some label ` the branch must either contain
both ` : TA and ` : FA or contain ` : T⊥. A tableau is closed when all its branches are closed. A
grafted tableau proof of a formula A is a closed tableau for {• : FA}. As usual, a branch is open if it is
not closed, and analogously a tableau is open if it is not closed, i.e., if it contains an open branch.

Example 6.3. As an illustration, Example a below shows a grafted K5-tableau proof of the shifted
transitivity axiom �(�B → ��B). The open grafted K5-tableau in Example b below shows that the
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transitivity axiom 4 itself, �B → ��B, is not generally valid in K5.3

Example a

• : F�(�B → ��B) a.1.
1 : F�B → ��B a.2.
1 : T�B a.3.
1 : F��B a.4.
2 : F�B a.5.
3 : FB a.6.
2 : TB a.7.
3 : TB a.8.

Example b

• : F�p→ ��p b.1.
• : T�p b.2.
• : F��p b.3.
2 : F�p b.4.
3 : F p b.5.
2 : T p b.6.

In Example a, formula a.2. is from a.1. by the trunk possibility rule, creating the new limb prefix 1.
Formulae a.3. and a.4. are from a.2. by a propositional rule. Formula a.5. is from a.4. by the crown
possibility rule, creating the new twig prefix 2. Similarly, formula a.6. is from a.5. by the same rule,
creating the twig prefix 3. Formulae a.7. and a.8. are from a.3. by the crown necessity rule. The only
branch in the tableau is closed by a.6. and a.8.

Example b is essentially the same, but now the step corresponding to the crucial inference yielding
line a.8. is not possible anymore, since the twig prefix 3, which could be accessed from the limb prefix 1
in Example a, cannot be accessed from the trunk prefix • here.

Before showing how our hypersequent crown from the previous sections separates into the lower limbs
and upper twigs, we prove completeness of this grafted tableaux system (and, thereby, cut admissibility
for it) with respect to K5. The simplicity of the argument is the main point of this section. We start
with soundness.

Definition 6.4 (K5-Satisfiability). A set S of prefixed signed formulae is K5-satisfiable if there exists a
Euclidean model (W,R, σ) and a mapping θ from the set of prefixes of S ∪ {•} to W such that:

1. for each limb prefix n occurring in S, we have θ(•)Rθ(n);

2. for arbitrary crown prefixes c and c′ occurring in S (possibly identical), we have θ(c)Rθ(c′);

3. for each ` : TA ∈ S, we have (W,R, σ), θ(`)  A;

4. for each ` : FA ∈ S, we have (W,R, σ), θ(`) 1 A.

As always, a grafted tableau branch is K5-satisfiable if the set of prefixed signed formulae occurring on
this branch is satisfiable. A grafted tableau is K5-satisfiable if one of its branches is.

It is quite clear that a closed grafted tableau is not satisfiable. The proof of this fact is trivial rather
than standard. The main lemma necessary for soundness is

Lemma 6.5 (Soundness lemma). Any K5 rule applied to a K5-satisfiable grafted K5-tableau yields a
K5-satisfiable grafted K5-tableau.

Proof. We only consider the non-propositional rules from the second row of Figure 5. Let B be a K5-
satisfiable branch of a given grafted K5-tableau.

For the trunk necessity rule, assume that • : T�A is present on B, that n is a limb prefix occurring
on B, and that θ witnesses the satisfiability of B. In particular, θ must be defined on both • and n. Then
(W,R, σ), θ(•)  �A and θ(•)Rθ(n). Thus, (W,R, σ), θ(n)  A, meaning that adding n : TA to B does
not spoil its satisfiability. The case of the crown necessitation rule is analogous.

For the trunk possibility rule, assume that • : F�A is present on B, that n is a new limb prefix for B,
and that θ witnesses the satisfiability of B. In particular, θ must be defined on • but not on n. Then
(W,R, σ), θ(•) 1 �A. Thus, there must exist a world w ∈ W such that (W,R, σ), w 1 A and θ(•)Rw.
It is easy to show using Euclideanity of R that θ(c)Rw and wRθ(c) for each crown prefix c occurring
on B and that wRw (one should remember that twig prefixes cannot appear on a branch that has no
limb prefixes). Thus, θ′ := θ ∪ {(n, w)} witnesses the satisfiability of B extended with n : FA. The case
of the crown possibility rule is even simpler since the requirement that the new world be accessible from
θ(•) is not applicable anymore.

3Since there exist formulae B making �B → ��B valid, we disprove it for the case of an atomic B = p.
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Corollary 6.6 (Tableau soundness). If A is not K5-valid, no grafted K5-tableau for • : FA can close.

Proof. It is sufficient to show that the tableau initiated with the single formula • : FA is satisfiable.
Since A is not valid, there must exist a Euclidean model (W,R, σ) and a world w ∈ W such that
(W,R, σ), w 1 A. It remains to note that θ := {(•, w)} witnesses the satisfiability of this tableau because
no conditions on the accessibility are imposed in the absence of crown prefixes.

As is often the case with modal tableaux, it is generally impossible to truly complete a tableau. For
instance, in Example 6.3b, it is still possible to create new limb prefixes out of b.3. and new twig prefixes
out of b.4. Hence, we use the weaker notion of saturation:

Definition 6.7 (Saturation). A grafted K5-tableau is called K5-saturated if, for every branch that is
not closed, the following conditions are fulfilled:

1. if a prefixed signed formula other than a possibility or necessity formula occurs on the branch, the
applicable rule has been applied to it on the branch;

2. if a trunk necessity formula occurs on the branch, the trunk necessity rule has been applied to it
on the branch for each limb prefix n that occurs on the branch;

3. if a crown necessity formula occurs on the branch, the crown necessity rule has been applied to it
on the branch for each crown prefix c that occurs on the branch;

4. if a trunk possibility formula • : F�A occurs on the branch, n : FA occurs on the branch for some
limb prefix n;

5. if a crown possibility formula c : F�A occurs on the branch, n : FA occurs on the branch for some
twig prefix n;

It is easy to see that the grafted K5-tableau in Example 6.3b is K5-saturated.

Lemma 6.8 (Saturation termination). For any grafted K5-tableau, any run of the following non-
deterministic systematic procedure terminates and leads to a K5-saturated grafted K5-tableau.

Systematic procedure. Non-deterministically pick an open branch and a formula from this branch that
violates the K5-saturation conditions on the branch and apply the rule (or, in case of ` : T�A formulae,
several necessity rules) to ensure that this formula does not violate the K5-saturation conditions on this
branch anymore.

Proof. The proof is quite standard and is omitted here. The argument used on the sequent side in our
Algorithm 1 for grafted hypersequents from the previous section is essentially a variant of this systematic
procedure with a more restrictive order of rule applications.

The key lemma, from which completeness is a simple corollary, is the following:

Lemma 6.9 (Completeness lemma). In any open K5-saturated grafted K5-tableau, at least one branch
is K5-satisfiable.

Proof. An open K5-saturated grafted K5-tableau must contain an open branch, which must satisfy all
the K5-saturation conditions. The model and the witnessing function are constructed out of this branch
as follows. The set of possible worlds W is the set of prefixes occurring on this branch, so the witnessing
function is simply the identity function on W . The accessibility relation is defined as follows:

R := {(•,n) | n occurs on the branch} ∪ {(c, c′) | c and c′ occur on the branch} .

Finally, we define the valuation σ by

` ∈ σ(p) ⇐⇒ ` : T p is present on the branch

for each propositional variable p ∈ V and any prefix ` occurring on the branch. It is a simple exercise
to check that this model is Euclidean and that the identity function on W witnesses the satisfiability of
the branch.
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Corollary 6.10 (Tableau completeness). If A is K5-valid, it has a grafted tableau proof in the system
for K5.

Proof. By Lemma 6.8, the single-node tableau • : FA can be saturated by using the systematic procedure.
Were the resulting tableau open, by Lemma 6.9 it would have contained a K5-satisfiable branch. Since
every branch begins at the root • : FA, in particular, we would have (W,R, σ), θ(•) 1 A for some
Euclidean model (W,R, σ), contradicting the K5-validity of A. Thus, the resulting saturated tableau is
closed and is a grafted tableau proof of A.

As usual, this semantic completeness proof for the simplified prefixed tableaux calculus is char-
acteristically simpler than the syntactic completeness proof for the grafted hypersequent calculus by
cut-elimination. For the reader who is not interested in the intricacies of the cut elimination proof,
we now provide bidirectional translations between grafted hypersequents and grafted tableaux to make
this simpler proof a shortcut for proving cut admissibility for the grafted hypersequent system. More
precisely, we give the translation between grafted tableaux and the Kleene’d version of the grafted hyper-
sequent calculus R∗K5 from Figure 4, shown to be equivalent to RK5 in Theorem 5.4, whereby all sequent
components are treated as set based.

Before we delve into the technical details of the bidirectional translation, it might make sense to
explain how grafted tableaux differ from grafted hypersequents and talk about the pitfall they both are
trying to avoid, each by means more natural to their area. The pitfall is transitivity. We have already
observed in Remark 3.1 that the rule K is not generally sound if the trunk is allowed to contain formulae.
Allowing that would amount to postulating transitivity of the modal logic. However, unlike destructive
tableaux, prefixed tableaux do not have tools for removing trunk formulae from the branch the way the
weakening rule W does on the sequent side (seen bottom-up).

Not willing to mix the two types of tableaux, we opted for introducing the third type of sequent
components/prefixes instead. This is again supported by the semantic intuition since all the non-root
worlds in a connected rooted K5 model are divided into worlds directly accessible from it, and worlds
accessible from it in no less than two steps. We call the former limbs as they are closer to the trunk
and the latter twigs because they are growing out of limbs or other twigs but not out of the trunk. Note
that all the non-root worlds in this connected model, limbs and twigs alike, still form a totally-connected
cluster, within which transitivity is satisfied. Thus, the only world that may violate transitivity is the
root. In other words, the only situation we need to prevent is when a necessity formula from the trunk
directly affects a twig, i.e., a world created out of another crown world rather than out of the trunk.

On the sequent side, this is achieved by forcing an order on the rules: no crown rule is applied and,
hence, no twig is created, while there are formulae, in particular, necessity formulae, in the trunk. The
benefit of this approach is in minimising the number of structural connectives used to distinguish the
types of sequent components. On the tableau side, we do this explicitly, allowing trunk necessity formulas
to affect limbs but not twigs. This approach enables us to dispense with the (somewhat ad hoc) ordering
requirements by letting the different types of prefixes take care of the structural distinctions.

Theorem 6.11 (Equivalence). A grafted hypersequent

Γ⇒ ∆ || Σ1 ⇒ Π1 | . . . | Σn ⇒ Πn

is derivable in R∗K5 (with set-based sequent components) iff there is a closed grafted K5-tableau for

{• : TA | A ∈ Γ} ∪ {• : FB | B ∈ ∆} ∪
n⋃

j=1

(
{ij : TC | C ∈ Σi} ∪ {ij : FD | D ∈ Πi}

)
, (9)

where i1 < · · · < in for n ≥ 0.

Proof (sketch): In this sketch, we rely on the standard view of tableaux as upside-down refutations of
sequents, which we do no flesh out in detail.

From sequents to tableaux. From a derivation of the grafted hypersequent Γ ⇒ ∆ || Σ1 ⇒ Π1 |
. . . | Σn ⇒ Πn in R∗K5 we construct a closed grafted K5-tableau for (9) by mimicking the applied grafted
hypersequent rules (from conclusion to initial sequents) by grafted tableaux rules. It is clear from the
comparison of rules in Figure 4 with those in Figure 5 that each application of one of these grafted
hypersequent rules can be mirrored by the corresponding grafted tableaux rule, with branching rules
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Figure 6: The correspondence between Kleene’d grafted non-propositional hypersequent rules and grafted
tableau rules

R∗K5 K5 tableau

�∗L trunk necessity
�∗R trunk possibility
W —
5∗ crown necessity, c 6= c′

T∗ crown necessity, c = c′

K∗ crown possibility

corresponding to branching rules. The only rule of R∗K5 without a tableau analog is W (note that it is
depicted in Figure 1 rather than Figure 4). We provide the table of rule correspondences in Figure 6.

By the same argument as in the proof of Lemma 4.1, it is clear that in any derivation inR∗K5, the order
of rule applications along each branch is as follows: trunk rules, then W, then crown rules. Given the
absence of twig prefixes in (9) and the fact that new twig prefixes are only created by the crown possibility
rule, i.e., after all �∗L rules along the branch have already been translated, there is no mismatch between
the scopes of the 5∗ rule applicable to any crown component and the trunk necessity rule applicable
only to limb prefixes. Indeed, when �∗L rules are translated into tableau rules, limb prefixes are the only
crown prefixes present.

Since each branch of a grafted hypersequent proof ends with an initial structure, each branch in the
corresponding grafted tableau is closed, making it a grafted tableau proof.

Note that in the process of translating the grafted hypersequent derivation into a grafted tableau
proof in general also new twig labels will be introduced, while they are not allowed to occur in (9).
This is not a problem, however, since (9) corresponds only to the conclusion of a grafted hypersequent
derivation, while the twig labels introduced in the tableau correspond to additional crown components
introduced in the grafted hypersequent derivation.

From tableaux to sequents. Due to the layering of sequent derivations, not every tableau proof
can be translated directly. We first need to permute trunk rules to precede crown rules in the construction
of the tableau. Assume that there is a closed grafted K5-tableau T for a set S of prefixed signed formulae
that contains no twig prefixes. We use Lemma 6.8 to construct a K5-saturated tableau T ′ for the same
set S using the systematic procedure in such a way that first all formulae with the prefix • that violate
the saturation conditions are processed, and only when no such formulae remain, do we start to process
formulae with crown prefixes. Since any systematic procedure terminates, there must be a moment in
the construction of T ′ when all •-formulae are saturated. While trunk propositional formulae and trunk
possibility formulae are saturated once and for all, trunk necessity formulae could potentially become
unsaturated again if a new limb prefix was introduced. For that to happen, however, one would need a
new trunk possibility formula, which could only be produced by a trunk propositional rule, and all such
rules have already been applied previously. Thus, the tableau T ′ indeed is a saturated tableau for S
with trunk rules preceding crown rules along each branch. Let us call such tableaux normal.

We now argue that this saturated tableau T ′ must also be closed. Indeed, were it open, it would have
been satisfiable by Lemma 6.9. In particular, the set S would have been satisfiable. But a satisfiable
initial tableau for S then could not have lead to the non-satisfiable closed tableau T for S we started
with. This contradiction with Lemma 6.5 shows that our saturated normal tableau T ′ is only saturated
because it is closed. This is not a problem, however, since it is a closed normal tableau we needed to be
able to translate into sequents.

The translation then works in the reverse direction to the sequent-to-tableaux translation, with
the same correspondence between rules, only used in the opposite direction. Along each branch, at the
boundary between the trunk and crown tableau rules, the corresponding grafted hypersequent derivation
has a W rule removing all trunk formulae, thus, giving green light to use the crown hypersequent rules
corresponding to crown tableau rules now that the trunk is empty.

Given the (usual) close relationship between the sequent-style and tableau-style systems, we strongly
believe that the decidability proof and complexity estimates could have been equally well established
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using the grafted tableau system. Some would argue that the tableau environment is, in fact, more
suitable for the task. However, we make it a point to show that optimal complexity can be achieved by
means of sequent-like calculi, which, admittedly, are suboptimal in terms of compactness of notation.

7 Extensions and Modifications

So far we restricted our investigations to a grafted hypersequent calculus for the logic K5. However, the
framework of grafted hypersequents is more general than that and allows to capture other logics as well.
The idea of the calculus for K5 was to have rules from a nested sequent setting governing the behaviour
of the trunk of a grafted hypersequent and rules from a hypersequent setting governing the behaviour
of the crown. In the case of K5 the trunk rules corresponded to the standard modal logic K, while the
crown rules were those of S5, in close analogy with the semantic intuition that K5 is the logic of frames
where all successor states of a state are part of an S5-subframe, i.e., are part of a clique. Thus, to vary
the calculus we have two main options: varying its trunk rules or its crown rules. As an example for the
first option, we consider the logic KD5, followed by an example for the second option in the form of a
calculus for the logic of shift-reflexive frames.

7.1 A Calculus for KD5

The logic KD5 extends the logic K5 with the additional axiom (D) = ♦> ≡K5 �⊥ → ⊥ = ¬�⊥ and
is the logic of Euclidean and serial frames, i.e., of Euclidean frames additionally satisfying the frame
property ∀x∃y xRy. As mentioned in the introduction, constructing a grafted hypersequent calculus
for this logic is of independent interest, since together with K5 it is one of the logics captured in the
nested sequent framework (yielding a decision procedure of suboptimal complexity) for which so far no
calculus in a simpler framework, such as that of hypersequents, could be found. In order to construct
a grafted hypersequent calculus for this logic we need to add rules to the calculus RK5 to ensure that
(D) is derivable both in the trunk and in the crown (the latter is necessary in the completeness proof for
future use of nec, see the proof of Theorem 3.6). However, the following derivation shows, that without
adding any extra rules we already have RK5 ` ⇒ || ⇒ ¬�⊥:

⇒ || ⊥ ⇒ ⊥L

⇒ || �⊥ ⇒ | ⇒ 5

⇒ || �⊥ ⇒ | �⊥ ⇒ IW

⇒ || �⊥ ⇒ EC

⇒ || ⇒ ¬�⊥
¬R

Thus, it suffices to add another transfer rule that allows to derive the axiom (D) in the trunk. For this
we borrow the following rule �D

L from the nested sequent setting [Pog09, Pog10]:

Γ⇒ ∆ || H | A⇒
Γ,�A⇒ ∆ || H �D

L

The calculi for the logic KD5 are defined as

RKD5 := RK5 ∪ {�D
L} and RKD5Cut := RK5Cut ∪ {�D

L} .

Then by extending the soundness and completeness arguments of Section 3 in a straightforward way we
obtain:

Theorem 7.1 (Soundness and Completeness). For every formula A we have:

RKD5 ` ⇒ A =⇒ A ∈ KD5 =⇒ RKD5Cut ` ⇒ A

Proof. Soundness of all the rules apart from �D
L is shown as in the proof of Proposition 3.3. For the

rule �D
L, assume that the negation of the formula interpretation of its conclusion is satisfiable, i.e., that

writing H for ι(⇒ || H) the formula

¬ι(Γ,�A⇒ ∆ || H) ≡KD5

∧
Γ ∧�A ∧ ¬

∨
∆ ∧ ¬H
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holds in a serial and Euclidean model (W,R, σ) at world w, where A ≡KD5 B naturally means that
(A→ B)∧ (B → A) ∈ KD5. Since R is serial there is a world v ∈W with wRv. Further, since �A holds
at w, we have that A holds at v and ♦A holds at w. Therefore, the formula

¬ι(Γ⇒ ∆ || H | A⇒ ) ≡KD5

∧
Γ ∧ ¬

∨
∆ ∧ ¬H ∧ ♦A

holds at world w.
For completeness, as we have seen, the axiom (D) is derivable on the hypersequent level. It is also

derivable in the trunk as follows:

⇒ || ⊥ ⇒ ⊥L

�⊥ ⇒ �D
L

⇒ ¬�⊥ ¬R

Since all the remaining axioms are derivable and MP and nec preserve derivability as shown in the proof
of Theorem 3.6, completeness follows.

The next step is to show cut elimination for RKD5 via an extension of the arguments for RK5.

Theorem 7.2 (Cut elimination for RKD5). The rules Cutt and Cutc are admissible in RKD5.

Proof. It is easy to show that the new rule �D
L can be permuted over all other trunk rules except for

the rule �L, and over other instances of �D
L rules. It is also easy to show that both �R and �L can be

permuted over the new rule �D
L. This entails the following layering of the derivations in RKD5 ∪ {Cutc}:

the crown layer (possibly with applications of Cutc),

applications of �L,

applications of �R and �D
L,

the trunk layer.

The analogue of Definition 4.3 for normal derivations, thus, instead of Clause 3 has the clause

3′. �R and �D
L do not occur below any trunk rules other than �L, �R, and �D

L

and the analogue of Proposition 4.4 is shown straightforwardly. Since the crown rules of RKD5 are exactly
those of RK5, it is also clear that the proofs of Shift Right Lemma 4.6 and of Shift Left Lemma 4.7, as well
as of cut elimination for Cutc (Theorem 4.8), of the non-derivability of ⇒ || ⇒ and ⇒ (Corollary 4.9),
and of the generalized Cutc-elimination (Lemma 4.10) go through as before.

To show the admissibility of the trunk cut rule Cutt we need to extend the argument in the proof of
Theorem 4.13. Using the depth-preserving permutability of �R and �D

L over each other, we assume that
DL and DR are structured from top to bottom in different ways:

DL: the crown layer, then �L, then �R, then �D
L, then the trunk layer;

DR: the crown layer, then �L, then �D
L, then �R, then the trunk layer.

The case of the last applied rule being a propositional or structural trunk rule works as before. The case
when rL or rR is an application of �D

L with none of the the displayed occurrences of A being principal
is processed in the similar way. The main differences lie in the case when A = �B and both rL and
rR introduce one of the displayed occurrences of A because now rR can be an application of either �L

(as before) or �D
L. The case when rR is an application of �L is, in fact, exactly the same as in the cut

elimination proof for RK5 because in this case, �D
L rules do not occur above either rL or rR due to our

choice of layering for the corresponding derivations. Thus, we only consider in detail the case when rR
is an application of �D

L. As before, if one of the �D
L rules above rR introduces a formula other than a

displayed occurrence of A, it can be permuted downwards and dealt with by the induction hypothesis on
the combined depth of the derivations. So we assume that all �D

L rules introduce displayed occurrences
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of A. Further, if one of the �L rules above rR does not affect any of the crown components created by
the �D

L rules, it can be permuted downwards in a depth-preserving way as follows: the derivation

D1
R....

�Γ′,�Bm′′ ⇒ || H′R | Ω1, C,B
i1 ⇒ Θ1 | Ω2, B

i2 ⇒ Θ2 | · · · | Ωz, B
iz ⇒ Θz | Ψ1, B

j1 ⇒ | · · · | Ψk, B
jk ⇒

�Γ′,�C,�Bm′′ ⇒ || H′R | Ω1, B
i1 ⇒ Θ1 | · · · | Ωz, B

iz ⇒ Θz | Ψ1, B
j1 ⇒ | · · · | Ψk, B

jk ⇒
�L

�Γ′,�C,�Ψ1, . . . ,�Ψk,�Bm′ ⇒ || H′R | Ω1 ⇒ Θ1 | · · · | Ωz ⇒ Θz | [B ⇒ ]k
�L

�Γ′,�C,�Ψ1, . . . ,�Ψk,�Bm ⇒ || H′R | Ω1 ⇒ Θ1 | · · · | Ωz ⇒ Θz
�D

L

where z > 0, k > 0, m = m′ + k = m′′ + i1 + · · ·+ iz + j1 + · · ·+ jk, all jx’s and i2, . . . , iz are positive,
i1 ≥ 0, and some of the Ψt can be empty, is replaced with

D1
R....

�Γ′,�Bm′′ ⇒ || H′R | Ω1, C,B
i1 ⇒ Θ1 | Ω2, B

i2 ⇒ Θ2 | · · · | Ωz, B
iz ⇒ Θz | Ψ1, B

j1 ⇒ | · · · | Ψk, B
jk ⇒

�Γ′,�Ψ1, . . . ,�Ψk,�Bm′ ⇒ || H′R | Ω1, C ⇒ Θ1 | Ω2 ⇒ Θ2 | · · · | Ωz ⇒ Θz | [B ⇒ ]k
�L

�Γ′,�Ψ1, . . . ,�Ψk,�Bm ⇒ || H′R | Ω1, C ⇒ Θ1 | Ω2 ⇒ Θ2 | · · · | Ωz ⇒ Θz
�D

L

�Γ′,�C,�Ψ1, . . . ,�Ψk,�Bm ⇒ || H′R | Ω1 ⇒ Θ1 | · · · | Ωz ⇒ Θz
�L

So once again, the induction hypothesis on the combined depth of the derivations suffices. As follows
from all these considerations, it is sufficient to consider the case when DL has the form

D1
L....

⇒ || HL | Ξ1 ⇒ B | · · · | Ξn ⇒ B

�Ξ1, . . . ,�Ξn ⇒ || HL | [⇒ B]
n �L

�Ξ1, . . . ,�Ξn ⇒ �Bn || HL
�R

and DR has the form

D0
R....

⇒ || H′R | Ω1, B
i1 ⇒ Θ1 | · · · | Ωz, B

iz ⇒ Θz | Ψ1, B
j1 ⇒ | · · · | Ψk, B

jk ⇒
�Ψ1, . . . ,�Ψk,�Bm′ ⇒ || H′R | Ω1 ⇒ Θ1 || · · · | Ωz ⇒ Θz | [B ⇒ ]k

�L

�Ψ1, . . . ,�Ψk,�Bm ⇒ || H′R | Ω1 ⇒ Θ1 || · · · | Ωz ⇒ Θz
�D

L

where z ≥ 0, k > 0, m = m′ + k = i1 + · · ·+ iz + j1 + · · ·+ jk, all ix’s and jy’s are positive, and some of
the Ψt can be empty.

Our goal is to derive

�Ξ1, . . . ,�Ξn,�Ψ1, . . . ,�Ψk ⇒ || HL | H′R | Ω1 ⇒ Θ1 | · · · | Ωz ⇒ Θz (10)

To achieve this goal we first construct a derivation D1
R by contracting the duplicate B’s:

D0
R....

⇒ || H′R | Ω1, B
i1 ⇒ Θ1 | · · · | Ωz, B

iz ⇒ Θz | Ψ1, B
j1 ⇒ | · · · | Ψk, B

jk ⇒
⇒ || H′R | Ω1, B ⇒ Θ1 | · · · | Ωz, B ⇒ Θz | Ψ1, B ⇒ | · · · | Ψk, B ⇒

ICL

and then apply the analogue of Lemma 4.10 k+ z times: the first time to the endsequent of DL and the
leftmost displayed occurrence of B in the endsequent of D1

R, each consecutive time to the endsequent of
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DL and to the leftmost displayed occurrence of B in the result of the previous application. As the result
we obtain the derivability in RKD5 of

⇒ || [HL]
k+z | H′R | Ξ1,Ω1 ⇒ Θ1 | · · · | Ξn,Ω1 ⇒ Θ1 | · · · | Ξ1,Ωz ⇒ Θz | · · · | Ξn,Ωz ⇒ Θz |

| Ξ1,Ψ1 ⇒ | · · · | Ξn,Ψ1 ⇒ | · · · | Ξ1,Ψk ⇒ | · · · | Ξn,Ψk ⇒

Since all the formulas from the Ξx and from the Ψy can be transferred to the trunk by �L rules with
�D

L used for the last formula in each Ξx,Ψy ⇒ to remove the component itself, removing duplicates by
means of contraction rules would suffice in order to derive (10), except for the cases when one of the
Ξx,Ψy ⇒ has the form ⇒ . If at least one such crown component is present it is to be weakened to any
other existing non-empty crown component and contracted with it, after which the derivation proceeds
as just described. The only problem, therefore, might occur when the only crown components are the
empty ones, i.e., of the form ⇒ . Even in this case, if z > 0 or if at least one of HL and H′R is not
empty, then the extra empty components can be contracted with those present in (10). Thus, the only
remaining case could be when DL and DR had the forms

D1
L....

⇒ || [⇒ B]
n

⇒ �Bn �R

and

D0
R....

⇒ || [B ⇒ ]
m

�Bm ⇒ �D
L

respectively. However, this would mean that we can derive ⇒ || ⇒ , which we have shown to be
impossible.

Having established cut elimination, again we would like to use the calculus in a decision procedure
for the logic KD5. The strategy is the same as in the case of K5: we first modify the (cut-free) calculus
so as to make contraction admissible. This allows us to consider set-based grafted hypersequents, and
a slight modification in the backwards proof search algorithm for K5 will give us the decidability and
complexity result. The modified rules of the calculus R∗KD5 are those of the calculus R∗K5 together with

the modified version �D
L

∗
of the �D

L rule given by:

Γ,�A⇒ ∆ || H | A⇒
Γ,�A⇒ ∆ || H �D

L

∗

As in the case of R∗K5 we then show admissibility of internal and external weakening and the contraction
rules and equivalence of the two calculi.

Lemma 7.3 (Admissibility of internal and external weakening and contraction). The rules IW, EW,
and EC, as well as ICL, ICR and CL,CR are depth-preserving admissible in R∗KD5.

Proof. As before. The additional rule �D
L

∗
is treated like the rule �∗L.

Theorem 7.4 (Equivalence of RKD5 and R∗KD5.). A grafted hypersequent G is derivable in RKD5 iff it is
derivable in R∗KD5.

Proof. As for Theorem 5.4.

The decision procedure for the logic KD5 is the straightforward adaption of the one for K5 from
Algorithm 1. The only difference is the additional Line 9.D inserted between Line 9 and Line 10 that
corresponds to the additional rule �D

L

∗
.

9.D apply �D
L

∗
backwards to the each formula �A ∈ Γ1 in Γ1 ⇒ ∆1 || H1 such that it is not the case

that ⇒ || A ⇒ ⊆ Γ1 ⇒ ∆1 || H1

Theorem 7.5. The backwards proof search procedure given by the modified algorithm decides validity in
KD5 and can be implemented in coNP.
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Figure 7: Additional grafted tableau rule for KD5. As before, n is a limb prefix.

• : T�A
n : TA

n new

Figure 8: The crown modal rules of the calculi for shift reflexivity

⇒ || H | A1, . . . , An ⇒ B

⇒ || H | �A1, . . . ,�An,Γ⇒ �B,∆
Kn

⇒ || H | Γ, A⇒ ∆

⇒ || H | Γ,�A⇒ ∆
T

Proof. A straightforward adaption of the proof of Theorem 5.8. Concerning the complexity (and again
writing n for the number of subformulae of the input grafted hypersequent), the additional step of
applying the rule �D

L

∗
backwards in Line 9.D introduces at most n new crown components in at most n

applications of �D
L. Thus, the total number of crown components at any moments becomes at most 3n

instead of 2n for K5. Thus, the rule �L is used at most 3n2 times instead of 2n2, there are at most 6n2

applications of crown propositional rules, and each rule 5∗ is applied at most 9n3 times. It is clear that
the asymptotic behavior of the algorithm is, however, unaffected.

As in the case of K5 our grafted hypersequent calculus can be recast into the tableau framework by
adding to the grafted tableau system for K5 the special necessity rule from Figure 7. Soundness and
completeness, as well as translations between this grafted tableaux system and R∗KD5, are essentially the
same as for the case of K5, with the additional new case left to the reader as an easy exercise.

Remark 7.6. Note that it is more common in tableau systems to postulate seriality by allowing to add
• : T♦A to a branch containing • : T�A (see, e.g., [FM98, Def. 2.3.1]). For our language, however, after
the defined connectives are unfolded, this would mean adding • : T�(A → ⊥) → ⊥. Given that the
latter yields exactly the same result but with an overhead, including an additional closed branch, we saw
no reason to violate analyticity just to conform to the historical consensus.

7.2 Calculi for Shift Reflexivity

As an example for the second possibility of varying the calculus we construct grafted hypersequent
calculi for logics of shift reflexive frames, which are also called secondary reflexive or almost reflexive.
This property is given axiomatically by the axiom

(T�) �(�A→ A)

and semantically by the frame condition ∀w∀v(wRv → vRv), i.e., the property that every successor is
reflexive. We write KT� for the logic given by the normal modal logic K together with the axiom (T�),
and KDT� for the extension of this logic with the seriality axiom (D), which, predictably, is the logic of
shift reflexive and serial frames. Under a deontic interpretation of the � as the modality O (read: “It is
obligatory that. . . ”), the logic KDT� is also known as the logic SDL+, a very natural extension of the
standard deontic logic SDL (= KD) [McN14]. In order to construct grafted hypersequent calculi for these
logics, we now graft a hypersequent calculus for the logic KT onto a nested sequent calculus for the logic
K or KD respectively.

Definition 7.7 (RKT� and RKDT�). The calculus RKT� contains the trunk rules of RK5 as given in
Figure 1 and the crown rules of RK5 as given in Figure 2, except that the rules K and 5 from Figure 2
are replaced with new crown modal rules Kn for every n ≥ 0 and T as given in Figure 8. The calculus
RKDT� contains the rules of RKT� together with the additional rule �D

L from Section 7.1.

The notions of contextual, principal and active formulae and components are defined as expected,
with the exception that we call the formulae occurring in Γ,∆ in the rules Kn the weakening context. Note
that the rules Kn and T from Figure 8 do not make use of the hypersequent mechanism. In particular,
only one hypersequent component is principal in their conclusion: they are sequent-style rules in a
hypersequent setting. Thus, by standard arguments it can be shown that a grafted hypersequent ⇒ || H
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is derivable in RKT� or RKDT� , iff ⇒ || Γ⇒ ∆ is derivable in the same system for some Γ⇒ ∆ ∈ H iff∧
Γ→ ∨

∆ is derivable in the modal logic KT for some Γ⇒ ∆ ∈ H.4 This would seem to suggest that
it suffices to graft a sequent calculus for KT instead of a hypersequent calculus onto the nested calculus
for K or KD respectively. However, this would necessitate a modification of the transfer rule �R, which
introduces a new crown component after each application. Since we would like to emphasise the uniform
character of our approach, we are unwilling to make this modification.

As usual, we define RKT�Cut and RKDT�Cut to be RKT� and RKDT� respectively extended with both
cut rules Cutt and Cutc.

Soundness and completeness of the calculi are established readily.

Theorem 7.8 (Soundness and completeness with cut). For every formula D we have:

RKT� ` ⇒ D =⇒ D ∈ KT� =⇒ RKT�Cut ` ⇒ D
RKDT� ` ⇒ D =⇒ D ∈ KDT� =⇒ RKDT�Cut ` ⇒ D

Proof. For soundness, again we show that all the rules preserve validity under the formula interpretation,
which was proved for the propositional rules and most of the transfer rules in Proposition 3.3 and for
the rule �D

L for serial frames in Theorem 7.1. For the rule T, a straightforward argument shows that if
the negation of a conclusion of an instance of T is satisfied on a shift reflexive frame at world w, then
so is the negation of the premiss. For the rules Kn, suppose that the negation of the conclusion of an
instance of the rule Kn is satisfied in a shift reflexive (and serial in the case of KDT�) model, i.e., there
is a model M = (W,R, σ) with shift reflexive (and serial) R and a world w ∈W such that the formula

¬ι(⇒ || H | �A1, . . . ,�An,Γ⇒ �B,∆) ≡KT� ¬H ∧ ♦




n∧

j=1

�Aj ∧
∧

Γ ∧ ¬�B ∧ ¬
∨

∆




holds at w in M, where A ≡KT� B means that (A → B) ∧ (B → A) ∈ KT� and H := ι( ⇒ || H).
Note that ¬H ≡KT�

∧
♦Υ for some finite (possibly empty) set Υ of formulas. Then for every B ∈ Υ,

there is a vB ∈ W such that wRvB and M, vB  B. In addition, there is a x ∈ W such that wRx
and M, x 

∧n
j=1�Aj ∧

∧
Γ ∧ ¬�B ∧ ¬∨∆. Further, there must exist a y ∈ W such that xRy and

M, y 
∧n

j=1Aj ∧ ¬B. Now for a fresh world z /∈ W let M∗ be the model (W ∪ {z}, R∗, σ∗) where
R∗ := R ∪ {(z, vB) : B ∈ Υ} ∪ {(z, y)} and the valuation σ∗ is the same as σ on worlds of W and is
arbitrary on z. Since the frame underlying M is shift reflexive, the frame underlying M∗ is shift reflexive
as well, and if the former frame is serial, then so is the latter. Moreover, since the new world z is not
accessible from any world, for any world w ∈ W and any formula C, we have M, w  C iff M∗, w  C.
In particular, M∗, vB  B for each B ∈ Υ. Since M∗, z  ♦B for every B ∈ Υ, we have M∗, z  ¬H.

Similarly, M∗, y 
∧n

j=1Aj ∧ ¬B and, hence, M∗, z  ♦
(∧n

j=1Aj ∧ ¬B
)

. Summarizing,

¬ι(⇒ || H | A1, . . . , An ⇒ B) ≡KT� ¬H ∧ ♦




n∧

j=1

Aj ∧ ¬B




holds at world z in M∗, and, thus, the negation of the premiss of this instance of Kn is satisfied in a shift
reflexive (and serial) model.

For completeness, again we first show by induction on the complexity of the formula A that generalised
axioms, i.e., the grafted hypersequents

Γ, A⇒ ∆, A || H and ⇒ || H | Σ, A⇒ Π, A

are derivable in both calculi. The only necessary modification to the proof of Lemma 3.5 is that the case
of boxed formulae in the crown is handled by a single application of K1 instead of the derivation (2).
Then again we derive all the axioms of KT� or of KDT� respectively both in the crown and in the trunk
and use the two cut rules to simulate MP. The rule nec in the trunk is still simulated by using the

4Here KT is the logic of reflexive frames obtained by adding the axiom (T) to K, see [BdRV01].
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induction hypothesis for the crown and the rule �R, whereas nec in the crown now has to be processed
by K0 instead of K. To derive the new axiom (T�) in the trunk and crown, we append the derivation

⇒ || A⇒ A
gen. Init

⇒ || �A⇒ A
T

⇒ || ⇒ �A→ A
→R

by the rule �R or K0 respectively. In addition, to derive the axiom (K) in the crown we have to modify
the middle of the derivation (3) from the proof of Theorem 3.6: the sequence of rules 5, K, and merge is
replaced with a single application of K2.

Cut elimination is then shown by the obvious adaption of the Shift Left Lemma and the Shift Right
Lemma.

Theorem 7.9 (Cut elimination for RKT� and RKDT�). The rules Cutt and Cutc are admissible in RKT�
and RKDT� .

Proof. The layering of the derivations is established as for RK5 (see Proposition 4.4). In the proof of the
analogue of the Shift Right Lemma 4.6, the case when the last rule applied in DR was T and it did not
introduce any of the formulae to be cut presents no difficulties and is handled again by the induction
hypothesis. The same situation for a rule Kk can only mean that all occurrences of the formulae to be
cut in the principal sequent of Kk were part of the weakening context, meaning that the same result can
be achieved by weakenings with a prior cross cut if necessary. For A = �B and the main case of one of
the occurrences to be cut being a principal formula in DR we now have some Kk as the last rule applied
in DL and either K` or T as the last rule applied in DR. For the case of T we have

D′L....
⇒ || HL | C1, . . . , Ck ⇒ B

⇒ || HL | �C1, . . . ,�Ck,Γ
′ ⇒ �B,∆ Kk

and
D′R....

⇒ || HR | Σ1,�Bm1 ⇒ Π1 | · · · | Σn−1,�Bmn−1 ⇒ Πn−1 | Σn,�Bmn−1, B ⇒ Πn

⇒ || HR | Σ1,�Bm1 ⇒ Π1 | · · · | Σn−1,�Bmn−1 ⇒ Πn−1 | Σn,�Bmn ⇒ Πn
T

Using the induction hypothesis on the depth of DR we obtain a derivation of

⇒ || HL | HR | �C1, . . . ,�Ck,Γ
′,Σ1 ⇒ ∆,Π1 | · · · | �C1, . . . ,�Ck,Γ

′,Σn−1 ⇒ ∆,Πn−1 |
| �C1, . . . ,�Ck,Γ

′,︸ ︷︷ ︸
if mn > 1

Σn, B ⇒ ∆,︸︷︷︸
if mn > 1

Πn

Further, using Cutc for B of a smaller size with the premiss of the Kk rule we obtain a derivation of

⇒ || HL | HL | HR | �C1, . . . ,�Ck,Γ
′,Σ1 ⇒ ∆,Π1 | · · · | �C1, . . . ,�Ck,Γ

′,Σn−1 ⇒ ∆,Πn−1 |
| C1, . . . , Ck,�C1, . . . ,�Ck,Γ

′,︸ ︷︷ ︸
if mn > 1

Σn ⇒ ∆,︸︷︷︸
if mn > 1

Πn

From this grafted hypersequents, it is sufficient to first use k instances of T to box all C ′is and then use
contractions (and weakenings if mn = 1) to obtain a derivation of the desired result:

⇒ || HL | HR | �C1, . . . ,�Ck,Γ
′,Σ1 ⇒ ∆,Π1 | · · · | �C1, . . . ,�Ck,Γ

′,Σn ⇒ ∆,Πn

For the case of the last applied rule in DR being K` (note that ` > 0) we have

D′R....
⇒ || HR | Σ1,�Bm1 ⇒ Π1 | · · · | Σn−1,�Bmn−1 ⇒ Πn−1 | F1, . . . , Fj , B

`−j ⇒ D

⇒ || HR | Σ1,�Bm1 ⇒ Π1 | · · · | Σn−1,�Bmn−1 ⇒ Πn−1 | Σ′n,�F1, . . . ,�Fj ,�Bmn ⇒ �D,Π′n
K`

34



where j < ` and `− j ≤ mn. Using the induction hypothesis on the depth of DR we obtain a derivation
of

⇒ || HL | HR | �C1, . . . ,�Ck,Γ
′,Σ1 ⇒ ∆,Π1 | · · · | �C1, . . . ,�Ck,Γ

′,Σn−1 ⇒ ∆,Πn−1 |
| F1, . . . , Fj , B

l−j ⇒ D

Further, using Cutc for B of a smaller size with the premiss of the Kk rule we obtain a derivation of

⇒ || HL | HL | HR | �C1, . . . ,�Ck,Γ
′,Σ1 ⇒ ∆,Π1 | · · · | �C1, . . . ,�Ck,Γ

′,Σn−1 ⇒ ∆,Πn−1 |
| C1, . . . , Ck, F1, . . . , Fj ⇒ D

From this grafted hypersequents, it is sufficient to first use Kk+j for the last crown component with
antecedent weakened by Γ′,Σ′n ⇒ ∆,Π′n and and then use contractions to obtain a derivation of the
desired result:

⇒ || HL | HR | �C1, . . . ,�Ck,Γ
′,Σ1 ⇒ ∆,Π1 | · · · | �C1, . . . ,�Ck,Γ

′,Σn−1 ⇒ ∆,Πn−1 |
| �C1, . . . ,�Ck,Γ

′,Σ′n,�F1, . . . ,�Fj ⇒ ∆,�D,Π′n
In the proof of the analogue of the Shift Left Lemma 4.7, the case where A is the formula �B and

one occurrence of it is principal in the last applied rule in DL, which must be Kk is as follows. In this
case the derivation DL ends with

D′L....
⇒ || HL | Γ1 ⇒ ∆1,�Bm1 | · · · | Γn−1 ⇒ ∆n−1,�Bmn−1 | C1, . . . , Ck ⇒ B

⇒ || HL | Γ1 ⇒ ∆1,�Bm1 | · · · | Γn−1 ⇒ ∆n−1,�Bmn−1 | �C1, . . . ,�Ck,Ω⇒ �B,Λ
Kk

If n = 1, then we can directly apply the analogue of Shift Right Lemma 4.6. Otherwise, we first perform
a cross cut by applying the induction hypothesis to the premiss of this rule Kk, and then apply Kk to
the result:

D′L....
⇒ || HL | Γ1 ⇒ ∆1,�Bm1 | · · · | Γn−1 ⇒ ∆n−1,�Bmn−1 | C1, . . . , Ck ⇒ B

DR....
⇒ || HR | Σ,�B ⇒ Π

⇒ || HL | HR | Γ1,Σ⇒ ∆1,Π | · · · | Γn−1,Σ⇒ ∆n−1,Π | C1, . . . , Ck ⇒ B
IH

⇒ || HL | HR | Γ1,Σ⇒ ∆1,Π | · · · | Γn−1,Σ⇒ ∆n−1,Π | �C1, . . . ,�Ck,Ω⇒ �B,Λ
Kk

Since now there is only one displayed occurrence of the formula �B which is moreover principal in the
last applied rule, we can use the analogue of the Shift Right Lemma 4.6 for the cut formula �B, applied
to the conclusions of this derivation and of DR, obtaining a derivation of

⇒ || HL | HR | Γ1,Σ⇒ ∆1,Π | · · · | Γn−1,Σ⇒ ∆n−1,Π | HR | �C1, . . . ,�Ck,Ω,Σ⇒ Λ,Π .

It now only remains to remove duplicate sequents using EC.
Finally, root level cuts are eliminated as in the proof of Theorem 4.13 or Theorem 7.2 for the serial

case.

The strategy for obtaining a decision procedure using the calculi RKT� and RKDT� is the same as
for the calculi RK5 and RKD5: first modify the rules using Kleene’s Trick to ensure admissibility of the
structural rules and thus equivalence to set-based grafted hypersequents, then perform backwards proof
search on these structures. The modified versions of the rules Kn and T are given in Figure 9 (the second
rule is identical to the rule we had to add in Figure 4 in order to make the Kleene’d systems complete
for K5 and KD5). Again, the principal component in the rule T is not copied into the premiss, since
it is subsumed by the active component of the premiss. Then the modified rule sets R∗KT�

and R∗KDT�
contain the rules of the calculi R∗K5 and R∗KD5 respectively, with the rules K∗n and T∗ instead of K∗ and
5∗. Unlike these previous cases, we also add the rule of external weakening EW. This is not, strictly
speaking, necessary because this rule would have been admissible otherwise. We include it primarily to
be used in the algorithm for the backward proof search. Then as above we obtain:
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Figure 9: The Kleene’d rules for the calculi R∗KT�
and R∗KDT�

⇒ || H | �A1, . . . ,�An,Γ⇒ �B,∆ | A1, . . . , An ⇒ B

⇒ || H | �A1, . . . ,�An,Γ⇒ �B,∆
K∗n

⇒ || H | Γ,�A,A⇒ ∆

⇒ || H | Γ,�A⇒ ∆
T∗

Lemma 7.10 (Admissibility of internal weakening and contraction). The rules IW and EC, as well as
ICL, ICR, CL, and CR are depth-preserving admissible in R∗KT�

and R∗KDT�
.

Proof. Again we first show depth-preserving admissibility of IW by induction on the depth of the deriva-
tion. This is then used to show admissibility of the contraction rules. In particular, the admissibility of
EC with last applied rule T∗ is shown exactly the same way as in (8) in the proof of Lemma 5.3. The
remaining cases are standard, except that one may need to use the induction hypothesis twice for the
admissibility of ICL, if the last applied rule was K∗n.

Theorem 7.11 (Equivalence of the calculi). Let G be a grafted hypersequent. Then

1. G is derivable in RKT� iff it is derivable in R∗KT�

2. G is derivable in RKDT� iff it is derivable in R∗KDT�
.

Proof. As above.

For the decision procedure we need to modify the algorithm slightly. This is due to the fact that in
contrast to the hypersequent calculus for the logic S5 which we used at the crown level of the calculi
RK5 and RKD5, in the calculus for KT used at the crown level of the calculi RKT� and RKDT� we cannot
fix the order of the rule applications. Thus we need to existentially guess the last applied modal rule,
as captured in Line 21 of the decision procedure for KT� given as Algorithm 2. For the logic KDT� we
add Line 9.D from p. 31 between lines 9 and 10 as before.

Remark 7.12. Algorithm 2 could also be modified to a slightly more efficient version: In Line 9 it would
be sufficient to existentially guess only one consequent formula �A from the trunk and apply rule �∗R
backwards to it. Then the existential guessing step of Line 12 becomes superfluous, and instead of first
creating many crown components and then deleting all but one of these we would only create one in
the first place. While this would slightly increase efficiency, for the sake of greater transparency in the
correctness proof we chose the current formulation.

Theorem 7.13 (Decidability and complexity). The backwards proof search procedure for the calculi
R∗KT�

and R∗KDT�
given in Algorithm 2 decides the validity problem for the logics KT� and KDT�

respectively and can be implemented in PSPACE.

Proof. As before, all the rules of R∗K5, except for W and K∗` , are invertible and it can be seen that all
the possible trunk rules are applied before the application of W in Line 11, that no crown rules can
be applied before Line 11, and that all the possible crown rules are applied after Line 11. The ability
to choose one crown component in Line 12 follows from our earlier observation that hypersequents are
not necessary to deal with the crown. Every time after the repeat-loop of Line 14 terminates, the only
remaining applicable rules are instances of K∗` . Completeness is guaranteed by existentially choosing
among sufficiently many possibilities to subsume all other possible applications of these rules, i.e., those
when some of the boxed formulae in Σ1 are not taken to be principal. Finally, the ability to use
EW to remove the old component after an application of K∗` follows from the same observation about
hypersequents not being necessary to deal with the crown and the fact that deleting the newly created
component would simply cancel the preceding application of K∗` . Thus, the correctness of the algorithm
follows from the completeness of RKT� and RKDT� and the equivalence of RKT� and RKDT� to R∗KT�
and R∗KDT�

respectively (Theorem 7.11).
For the complexity, again we write n for the size of the input. Since the part of the procedure before

Line 12 is the same as in Algorithm 1 or in the algorithm for R∗KD5, the number of rule applications up
to this point in Algorithm 2 or in its modification for KDT� again is O(n2) and the resulting grafted
hypersequent has at most 2n crown components. Thus there are at most 2n possibilities for the existential
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Algorithm 2: Decision procedure for KT�
Input: a set-based grafted hypersequent Γ⇒ ∆ || H
Output: Is ι(Γ⇒ ∆ || H) ∈ KT�?

1 set Γ1 := Γ, ∆1 := ∆, H1 := H;
2 repeat
3 set Γ2 := Γ1, ∆2 := ∆1, H2 := H1;
4 apply modified propositional trunk rules backwards to each unprocessed trunk formula in

Γ1 ⇒ ∆1 || H1, universally choosing one of the premisses for branching rules, and label these
formulae processed;

5 until Γ1 ⇒ ∆1 || H1 ⊆ Γ2 ⇒ ∆2 || H2;
6 if Γ1 ⇒ ∆1 || H1 is a trunk initial structure then
7 halt and accept;
8 end
9 apply �∗R backwards to each formula �A ∈ ∆1 in Γ1 ⇒ ∆1 || H1 such that it is not the case that
⇒ || ⇒ A ⊆ Γ1 ⇒ ∆1 || H1;

10 apply �∗L backwards to each �A ∈ Γ1 and each component of H1 in Γ1 ⇒ ∆1 || H1;
11 apply W backwards to Γ1 ⇒ ∆1 || H1 to obtain ⇒ || H1;
12 existentially guess a crown component Σ1 ⇒ Π1 ∈ H1 and apply EW backwards to ⇒ || H1

several times to obtain ⇒ || Σ1 ⇒ Π1;
13 repeat
14 repeat
15 set Σ2 := Σ1, Π2 := Π1;
16 apply modified propositional crown rules and T∗ backwards to each unprocessed crown

formula in ⇒ || Σ1 ⇒ Π1, universally choosing one of the premisses for branching rules,
and label these formulae processed ;

17 until ⇒ || Σ1 ⇒ Π1 ⊆ ⇒ || Σ2 ⇒ Π2;
18 if ⇒ || Σ1 ⇒ Π1 is a crown initial structure then
19 halt and accept;
20 end
21 existentially guess a formula �B ∈ Π1 and apply the rule K∗l backwards to ⇒ || Σ1 ⇒ Π1 with

this �B and all the boxed formulae from Σ1 as principal formulae, where l is the number of
such formulae, to obtain ⇒ || Σ1 ⇒ Π1 | Φ⇒ B;

22 apply EW backwards to ⇒ || Σ1 ⇒ Π1 | Φ⇒ B to obtain ⇒ || Φ⇒ B;
23 set Σ1 := Φ, Π1 := {B};
24 until 0 = 1;
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guessing step in Line 12 and the rule W is applied no more than 2n − 1 times. Note that in Line 12
the algorithm halts and rejects if the crown is empty. Immediately after Line 12 there is only one
crown component left, containing at most 2n formulae in total. The rest of the algorithm is essentially
backwards proof search in a sequent calculus for the logic KT. The repeat loop of Line 14 applies no
more than 2n rule instances because it processes each formula in the only crown component no more
than once. There are no more than n possibilities to choose a formula from the consequent in Line 21.
Note that the algorithm halts and rejects if the consequent contains no boxed formulae. Finally, the
repeat loop of Line 13 terminates after at most n cycles because the maximal modal nesting depth of
the new component created in Line 21 is strictly smaller than that of the other component deleted in
the next line. Thus the total running time is polynomial in the size of the input, and since we alternate
between universal choices and existential guesses, the algorithm runs in alternating polynomial time, i.e.,
the problem is in PSPACE [CKS81].

Since a modal formula A is a theorem of the modal logic KT iff the formula �A is a theorem of
modal logic KT� (and analogously for KDT�), and since the decision problem for KT is known to be
PSPACE-complete [Lad77], it is clear that the complexity bound witnessed by the algorithm is in fact
optimal.

Remark 7.14. The closest prefixed tableaux systems for the logics of this section seem to be Massacci’s
calculi from [Mas94], which correspond to nested sequents rather than to our grafted hypersequents.
To mimic the calculi of this section better, the shape of the rules Kn (with or without ∗) suggests the
use of destructive tableaux. However, this path leads, in our opinion to only slight modifications of the
standard destructive tableaux for T, whose modal rules consist of the general destructive rule for K and
the non-destructive T rule for capturing reflexivity (see, e.g., [Fit83, Ch. 2, Sect. 1]):

• for KT�, the use of the non-destructive T rule should be restricted until after the first application
of a destructive rule;

• for SDL+, in addition, the use of the destructive rule for D should be (optionally) permitted before
the destructive rule for K is used for the first time.

Such destructive systems are closer to the proof search Algorithm 2 than to the actual grafted hyperse-
quent calculi and do not seem to be too novel. For this reason, as well as to keep the size of the paper
reasonable, we refrain from providing their detailed descriptions.

8 Conclusion

In this article we have presented a novel proof-theoretic framework based on grafting a hypersequent
calculus on top of a bounded-depth nested sequent calculus. In this framework we obtained natural
cut-free calculi for the modal logics K5 and KD5 as well as calculi for extensions of K or KD with the
axiom for shift reflexivity. The latter extension constitutes a calculus for the important deontic logic
SDL+. For all the calculi we established syntactical cut elimination, admissibility of the structural rules
in a slightly modified version of the calculi, and decidability of the derivability problem via backwards
proof search. Notably, all the decision procedures are of optimal complexity, in particular, those for
the logics K5 and KD5 are in coNP. To the best of our knowledge our calculi for these logics are
the first analytic sequent-style formulations that give rise to decision procedures of optimal complexity.
Further, we developed simplified prefixed tableaux calculi corresponding to the grafted hypersequent
calculi, resulting in alternative semantic proofs of cut-free completeness.

Future work. We plan to extend and generalise these particular results in several different directions.
For the first direction, we would like to investigate whether the methods developed here on the basis of
specific examples can be used to handle logics of a bigger family uniformly. As one approach, it should be
possible to plug in the generic cut elimination proof for hypersequent calculi from [Lel14] for the crown
level part of the cut elimination proof for grafted hypersequents. As long as the crown level versions of
the standard modal rules stay sound, this should give rise to analytic grafted hypersequent calculi for
all extensions of K or KD with axioms of the form

∨n
i=1�ϕi where the ϕi have modal nesting depth at

most one and only contain negative occurrences of boxes. As another approach, we plan to investigate
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strengthenings and modifications of the nested sequent part of the calculi, e.g., to handle transitive
logics or calculi where the nested sequent part has depth greater than one. E.g., we conjecture that
the framework of grafted hypersequents should be able to capture the modal logic of shift euclideanity
axiomatised by the boxed version �(♦�p→ �p) of axiom (5) by considering the system for K5 given in
this paper adapted to grafted hypersequents where the trunk has depth 1 instead of depth 0. For the
second direction, we would like to see whether the methods for proving limitative results about which
logics cannot be captured by rules of a certain format from [LP13, Lel14] can be transfered to the grafted
hypersequent framework. A very interesting question as raised by one of the reviewers then would be
to investigate whether the depth of the trunk necessary to capture a modal logic gives rise to a natural
hierarchy of logics. Finally, it would be interesting to see whether the grafted hypersequent framework
can be adapted to capture multi-modal or first-order modal logics.
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