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Abstract

In this article, we deal with propositional calculi over a signature containing the
classical implication → with the rules of modus ponens and substitution. For these cal-
culi we consider few recognizing problems such as recognizing derivations, extensions,
completeness, and axiomatizations. The main result of this paper is to prove that
the problem of recognizing extensions is undecidable for every propositional calculus,
and the problems of recognizing axiomatizations and completeness are undecidable for
propositional calculi containing the formula x → (y → x). As a corollary, the problem
of derivability of a fixed formula A is also undecidable for all A. Moreover, we give a
historical survey of related results.

1 Introduction

In 1946, Tarski [24] proposed to consider decision problems for a propositional calculus,
which is defined as a finite set of propositional formulas over some signature with a finite set
of rules of inference. Many important and interesting problems arise for these calculi. For
example, recognizing axiomatizations, i.e., whether a given finite set of formulas constitutes
(axiomatizes) an adequate axiom system for a propositional calculus, recognizing extensions,
i.e., whether a given finite set of formulas derives all theorems of propositional calculus,
recognizing completeness, i.e., whether a given finite set of theorems of propositional calculus
constitutes an adequate axiom system for this calculus, and recognizing derivations, i.e.,
whether a given formula derives from a propositional calculus. In this paper we consider
only propositional calculi with the rules of modus ponens and substitution.

The first undecidable problem for propositional calculi was found by Linial and Post
in 1949 [15]. They proved the undecidability of recognizing completeness for the classical
propositional calculus over the signature {¬,∨}. Note that Linial and Post gave sketch of
proof, the full proof of their result was restored later by Davis [5, pp. 137–142] and Yn-
tema [30]. The Linial and Post theorem is an example of the first undecidable propositional
calculus, i.e., the problem of recognizing derivations is undecidable for this calculus. As a
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corollary of this result, the problems of recognizing axiomatizations and extensions are also
undecidable for the classical propositional calculus.

In 1963, Kuznetsov [14] proved the Linial and Post theorem for the intuitionistic calculus
over the signature {¬,∨,&,→}. Moreover, he obtained a much stronger result, that the
problem of recognizing completeness, as well as the problems of recognizing axiomatisations
and extensions, is undecidable not only for the intuitionistic, but also for every superintu-
itionistic propositional calculus, i.e., a finitely axiomatizable extension of the intuitionistic
calculus. Particularly, the Kuznetsov theorem implies that the intuitionistic propositional
calculus contains undecidable propositional calculi.

Several constructions of undecidable propositional calculi have been obtained. Singletary
in 1964 [25] constructed an undecidable propositional calculus over the signature {¬,→}. In
1965, Gladstone [6] and independently Ihrig [12] constructed propositional calculi for which
the problem of recognizing derivations of formulas is of any required recursively enumerable
degree of unsolvability. Note that Gladstone obtained the same result for every signature
in which the implication is expressed. A much stronger result was obtained by Singletary
in 1968 [26]. He constructed a pure implicational undecidable propositional calculus, i.e.,
calculus over the signature {→} whose axioms are derived from the axiom x → (y → x).

Kuznetsov noticed in [14] that A. A. Markov (Jr.) in 1961 proposed to consider the same
class of recognizing problems for the implicational propositional calculus. In this way, Harrop
in 1964 [9] proved that the problem of recognizing completeness, as well as the problems of
recognizing axiomatisations and extensions, is undecidable for every propositional calculus
containing the formulas x → (y → x) and x → x. Independently, in 1972 Bollman and
Tapia [3] by using Singletary constructions [26] proved the undecidability of the problem of
recognizing extensions for the pure implicational fragment of the intuitionistic propositional
calculus, i.e., the calculus with the following two axioms

x → (y → x), and
(x → (y → z)) → ((x → y) → (x → z)).

In 1994, Marcinkowski [17] obtained a much stronger result: fix an implicational proposi-
tional tautology A that is not of the form B → B for some formula B, then the problem of
recognizing extensions is undecidable for propositional calculus with the single axiom A. If
we combine this with the Tarski result [27, p. 59], we obtain that the problem of recogniz-
ing extensions is undecidable for every finitely axiomatizable extension of the propositional
calculus with axioms x → (y → x) and x → (y → ((x → (y → z)) → z)).

Some recent observations of related results were given in 2014 by Zolin [31] and Bokov [2].
Besides, an interesting observation was found by Chvalovský. He noted that the Linial
and Post theorem for finitely represented superintuitionistic logics easily follows from
Marcinkowski’s construction in [17].

The aim of this paper is to prove that the problem of recognizing extensions is undecidable
for all propositional calculus and to show that a derivation of the formula x → (y →
x) is sufficient for the undecidability of the problems of recognizing axiomatizations and
completeness, i.e., every propositional calculus containing the formula x → (y → x) has
undecidable problems of recognizing axiomatizations and completeness. As a corollary, the
problem, whether a fixed formula A is derivable from a given finite set of formulas by the
rules of modus ponens and substitution, is also undecidable for all formula A, not only of
the form B → B in contrast with the Marcinkowski result. Moreover, we consider a general
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methods of proving that a recognizing problem of propositional calculi is undecidable, and
give a historical survey of related results.

This paper is organized as follows. In the next section we introduce the basic terminology
and notation, give a historical survey of known results, and state our main result. Section
3 is devoted to a reduction of undecidable problems for propositional calculi. In the first
part of this section we give a historical survey of methods to prove the undecidability of a
recognizing problems for propositional calculi, describe a general method and illustrate it
by examples. Next, we recall what a tag system is and formally reduce the halting problem
of tag systems to the derivation problem of propositional calculi. In Section 4 we prove our
results. Finally, in Section 5 we give some concluding remarks and discuss further researches

2 Preliminaries and results

We begin with some notation. Let us consider the language consisting of an infinite set
of propositional variables V and the signature Σ, i.e., a finite set of connectives. Letters
x, y, z, u, p, etc., are used to denote propositional variables. Usually connectives are binary
or unary such as ¬, ∨, ∧, or →.

Propositional formulas or Σ-formulas are built up from the signature Σ and propositional
variables V in the usual way. For example, the following notations

x, ¬A, (A ∨B), (A ∧B), (A → B)

are formulas over the signature {¬, ∨, ∧, →}. Capital letters A,B,C, etc., are used to de-
note propositional formulas. Throughout the paper, we will omit the outermost parentheses
in formulas and parentheses assuming the customary priority of connectives.

Let Σ be a signature containing the binary connective of implication →. By a proposi-

tional calculus or a Σ-calculus we mean a finite set P of Σ-formulas referred to as axioms

together with two rules of inference:
1) modus ponens

A, A → B ⊢ B;

2) substitution

A ⊢ σA,

where σA is the substitution instance of A, i.e., the result of applying the substitution σ to
the formula A.

Denote by [P ] the set of derivable (or provable) formulas of a calculus P . A derivation

in P is defined from the axioms and the rules of inference in the usual way. The statement
that a formula A is derivable from P is denoted by P ⊢ A.

Let us introduce the following pre-order relation on the set of all propositional calculus.
We write P1 ≤ P2 (or, equivalently, P2 ≥ P1) if each derivable formula of P1 is also derivable
from P2, i.e., if [P1] ⊆ [P2]. We write P1 ∼ P2 and say that two calculi P1 and P2 are
equivalent if [P1] = [P2]. Finally, we write P1 < P2 if [P1] ( [P2].

Now we formally define the problems of recognizing derivations (Drv), extensions (Ext),
axiomatizations (Axm), and completeness (Cmpl) for a fixed Σ-calculus P0:
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(Drv) given a calculus P , determine whether P0 ≥ P ;

(Ext) given a calculus P , determine whether P0 ≤ P ;

(Axm) given a calculus P , determine whether P0 ∼ P ;

(Cmpl) given a calculus P such that P ≤ P0, determine whether P0 ≤ P .

Denote by ClΣ the classical propositional calculus over a signature Σ, and by IntΣ the
intuitionistic propositional calculus over a signature Σ [13].

The previous results can be summarized as follows.

Theorem 2.1 (Linial and Post, 1949). Axm, Ext, and Cmpl are undecidable for Cl{¬,∨}.

Theorem 2.2 (Kuznetsov, 1963). Fix a calculus P0 ≥ Int{¬,∨,∧,→}, then Axm, Ext, and

Cmpl are undecidable for P0.

Consider the intuitionistic implicational propositional calculus Int{→} with the set of
axioms [10, p.69]:

(A1) x → (y → x),
(A2) (x → (y → z)) → ((x → y) → (x → z)).

The classical implicational propositional calculus Cl{→} is obtained from Int{→} by adding
the Peirce law ((x → y) → x) → x [27, p.52].

Theorem 2.3 (Bollman and Tapia, 1964). Ext is undecidable for Int{→}.

Theorem 2.4 (Marcinkowski, 1994). Fix a {→}-tautology A that is not of the form B → B
for some formula B, then Ext is undecidable for the {→}-calculus {A}.

Since the implicational calculi Cl{→} and Int{→} can be axiomatized by the following
single formulas, as shown by  Lukasiewicz [16] and Meredith [18],

Cl{→} ∼ {((x → y) → z) → ((z → x) → (u → x))}

Int{→} ∼ {((x → y) → z) → (u → ((y → (z → v)) → (y → v)))}

the following result also makes sense.

Corollary 2.5. Axm, Cmpl are undecidable for Cl{→}, and Ext is undecidable for Cl{→}

and Int{→}.

In 1930, Tarski [27] proved that every propositional calculus, which contains the formulas
x → (y → x) and x → (y → ((x → (y → z)) → z)), can be axiomatized by a single
formula. Since these formulas are derivable from Int{→}, we have the following corollary of
the Marcinkowski result.

Corollary 2.6. Fix a calculus P0 ≥ Int{→}, then Ext is undecidable for P0.

Theorem 2.7 (Bokov and Marcinkowski 1, 2014). Fix a calculus P0 ≥ Int{→}, then Axm

and Cmpl are undecidable for P0.

1According to the recent Chvalovský observation.
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It is important to note that Corollary 2.6 and Theorem 2.7 was obtained quite a long
time ago by Harrop [9].

Theorem 2.8 (Harrop, 1964). Fix a calculus P0 ≥ {x → (y → x), x → x}, then Axm,

Ext, and Cmpl are undecidable for P0.

Therefore, in order to prove the undecidability of the recognizing problem for a propo-
sitional calculus P0, we must prove derivations of the formulas x → (y → x) and x → x
from P0. In this paper we show that the second derivation, i.e., the derivation of the formula
x → x, is redundant to prove the undecidability of Axm and Cmpl. Indeed, as it was shown
by Singletary in [26] the derivation of the formula x → (y → x) is sufficient to construct an
undecidable propositional calculus.

Theorem 2.9 (Singletary, 1968). There exists a propositional calculus P0 ≤ {x → (y → x)}
for which Drv is undecidable.

Furthermore, we also prove that the derivation of the formula x → (y → x) is redundant to
prove the undecidability of Ext. Thus, our main result is the following theorem.

Theorem 2.10. Fix a propositional calculus P0, then

(1) Ext is undecidable for P0;

(2) Cmpl is undecidable for P0 if P0 ≥ {x → (y → x)}.

As corollary, we have the undecidability of the problem of recognizing axiomatizations.

Corollary 2.11. Fix a calculus P0 ≥ {x → (y → x)}, then Axm is undecidable for P0.

Moreover, if we take in the theorem 2.10 the propositional calculus P0 = {A} for a Σ-formula
A, then we obtain the undecidability of problem of derivability.

Corollary 2.12. Fix a signature Σ ⊇ {→} and a Σ-formula A, then the following problem

is undecidable:

given a Σ-calculus P , determine whether P ⊢ A.

Particularly, this holds for a formula A of the form B → B for some formula B in contrast
with Theorem 2.4.

3 Reduction of undecidable problems

The typical method of proving a problem to be undecidable is a reduction of famous unde-
cidable problem to this problem. In order to do this, it is sufficient to transform instances of
an undecidable problem into instances of the new problem so that if a solution to the new
problem were found, it could be used to decide the undecidable problem. Since we already
know that no method can decide the old problem, no method can decide the new problem
also.
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3.1 Historical survey

One of the first problems to be proved undecidable is the halting problem of Turing ma-
chines [28]. For example, Harrop [9] and Hughes [11] simulated Turing machines by impli-
cational propositional calculi and reduced the halting problem to the decision problem of a
partial implicational propositional calculus. Note that Hughes used only formulas contain
at most two distinct variable symbols. But in some cases it is more convenient to reduce
other undecidable problems.

Often decision problems for propositional calculi are associated with the word problem
for semi-Thue systems. So, by a reduction of semi-Thue systems Yntema [30] proved the
undecidability of the completeness problem, Gladstone [6] and independently Ihrig [12] con-
structed calculi for which the problem of derivability of formulas is of any required recursively
enumerable degree of unsolvability, Singletary [26] constructed an undecidable implicational
calculus, Boolman and Tapia [3] proved that it is impossible to algorithmically determine
of an arbitrarily given partial propositional calculus whether or not the deduction theorem
holds.

Numerous results were obtained on a simulation of Post normal system [21] with the
undecidable halting problem. For example, Linial and Post [15] noted that the undecidability
of the completeness problem for the classical propositional calculus can be proved by a
reduction of normal system introduced in [22]. In the same way Harrop [8] proved existence of
undecidable propositional calculus, Ratsa [23] proved the undecidability of the expressibility
problem for modal logics. Recently, Zolin [31] obtained the Kuznetsov’s results by a reduction
of tag systems, i.e., a simple form of Post normal systems. A reduction of the halting
problem of tag systems has been proposed by Bokov [1] for a proof of the Linial and Post
theorem and improved in [2] for a proof of the undecidability of some recognizing problems
for propositional calculi with implication.

The above results are combined by using the halting condition of some computational
machine such as Turing machine, semi-Thue system, or Post normal system. Another exam-
ple of these machines is counter machines such as Minsky machines [20]. Chagrov [4] used
Minsky machines to prove the undecidability of some problems of modal logics.

Nevertheless, there are reductions of other undecidable problems, not only the halting
problem of some computational machine. So, Kuznetsov [14] devised a special calculus
of primitive recursive functions, Marcinkowski [17] investigated the entailment problem for
first-order Horn clauses.

3.2 General method and examples

In this section we describe a general method of reduction for undecidable problems of propo-
sitional calculi. First, for a given propositional calculus we must to fix

• a model of computation that is equivalent in its computational power to Turing ma-
chines, such as semi-Thue systems, Post normal systems, tag systems, or Minsky ma-
chines, and

• a procedure of encoding that allows to encode operations of computation used in this
model and their respective costs by a formulas of the propositional calculus.

Next, we must to simulate the model of computation by the inference process of the propo-
sitional calculus.
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As an example, let us consider an abstract computational machine T , which deals with
words over a finite alphabet A. Operations of this machine are a finite set R of pairs of
words over A.

A computation of the machine T on an input word ξ is a sequence of words λ0 = ξ, λ1, . . .
such that every pair (λi, λi+1) is a instance of some operation from R for all i ≥ 0. Note

that computations must be deterministic. We write ξ
T

Z=⇒ ζ if there is a computation
λ0, λ1, . . . , λn, n > 0, such that λ0 = ξ, λn = ζ .

The halting condition of the machine T is a finite set H of words over A. We say that
the machine T halts on input ξ if the computation of T on ξ reaches a word from H , i.e.,

ξ
T

Z=⇒ ζ for some ζ ∈ H .
Next, let us consider propositional calculi with modus ponens and substitution. Assume

that we want to prove an undecidability of the following recognizing problem: fix a class
of propositional calculi P and a propositional calculus P0, whether a given calculus P ∈ P
contains P0, i.e., P ≥ P0? In order to prove the undecidability of this problem, we fix
a machine T with the undecidable halting problem. Next, we encode words over A and
construct a propositional calculus for the machine T such that derivations of the codes of
words simulates a computation of T on them.

More precisely, let α be the code of a word α ∈ A∗, and ξ → ζ the code of a operation
(ξ, ζ) ∈ R. Usually, the code of any instance of operation (ξ, ζ) can be obtained from the
code ξ → ζ by substitution. We must construct a propositional calculus PT such that

1. the computation of machine T simulates as follows:

ξ
T

Z=⇒ ζ iff PT , ξ ⊢ ζ;

2. the halting condition of T defines as follows:

T halts on ξ iff PT , ξ ⊢ P0;

3. a calculus obtained from PT by adding the axiom ξ is in P.

Then we obtain that the problem of recognizing, whether P ≥ P0 for a given calculus P ∈ P,
is undecidable, since otherwise the halting problem for T is decidable.

In next sections we describe a process of reduction of the undecidable halting problem
for abstract computational machines to a recognizing problem for propositional calculi in
more details. For this reason, we take the tag system introduced by Post [21] as an example
of computational machine and consider propositional calculi over the signature Σ such that
{→} ⊆ Σ. For a given Σ-calculus P0, tag system T and a word ξ, we will effectively construct
a Σ-calculus PT,P0,ξ such that T halts on the input word ξ if and only if P0 ≤ PT,P0,ξ. Then
the proof of Theorem 2.10 is immediately following from the undecidability of the halting
problem [19].

First let us recall the notion of a tag system.

3.3 Tag systems

Let A be a finite alphabet of letters a1, . . . , am. By A∗ denote the set of all words over A,
including the empty word. For α ∈ A∗, denote by |α| the length of the word α.
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Definition 3.1 (Post, [21]). A tag system is a triple T = 〈A,W, d〉, where A = {a1, . . . , am}
is a finite alphabet of m symbols, W = {ω1, . . . , ωm} ⊆ A∗ is a set of m words, and d ∈ N
is a deletion number. Each words ωi is associated to the letters ai: a1 → ω1, . . . , am → ωm.

We say that T is applicable to a word α ∈ A∗ if |α| ≥ d. The application of T to a word
α ∈ A∗ is defined as follows. Examine the first letter of the word α. If it is ai then

1. remove the first d letters from α, and

2. append to its end the word ωi.

Perform the same operation on the resulting word, and repeat the process as long as the
resulting word has d or more letters. To be precise, if α = aiβγ, |β| = d − 1, and γ ∈ A∗,

then T produces the word γωi from the word aiβγ. Denote this production by aiβγ
T

7−→ γωi.

We write α
T

Z=⇒ β if there are words γ1, . . . , γn, n ≥ 1, such that α = γ1, β = γn, and

γi
T

7−→ γi+1 for all 1 ≤ i ≤ n− 1.
Define the halting problem of tag systems. We say that a tag system T halts on a word

α ∈ A∗ and write this as T (α) ↓ if there exists a word β ∈ A∗ such that α
T

Z=⇒ β and T is
not applicable to β, i.e. |β| < d. The halting problem for a fixed tag system T is, given any
word α ∈ A∗, to determine whether T halts on α.

Theorem 3.2 (Minsky, [19]). There is a tag system T for which the halting problem is

undecidable.

Moreover, Wang [29] showed that this holds even for some tag system T with d = 2 and
1 ≤ |ωi| ≤ 3 for all 1 ≤ i ≤ m. For this reason, throughout the paper we will assume that
all words ωi are nonempty.

3.4 Encoding of letters and words

Let A be a finite set {a1, . . . , am} as above. The set of all nonempty words over A is denoted
by A+. We encode letters and words over A as one variable {→}-formulas. In order to
simulate a tag system over alphabet A correctly, this encoding must be an injective function
between words over A and their codes. As shown in [1], a word-to-formula encoding is related
with difficulties of derivation of a code of one word from a code of other word. Below we
show that it is more convenient to encode a word as a set of formulas. Moreover, we give a
one-to-one (bijective) encoding between words over A and their codes.

Fix a one-variable {→}-formula x̂. As an example of x̂ may be the formula x → x or
x → (x → x). Note that x̂ is an arbitrary {→}-formula with a single variable x. For future
use we introduce a shortcut for the following formula of two variables:

x ◦ y := ((ŷ → ŷ) → ŷ) → (x̂ → ((ŷ → ŷ) → ŷ)). 2

It is obvious that x ◦ y is a substitution instance of the axiom x → (y → x). The following
lemma is needed for the sequel.

Lemma 3.3. x ◦ y and (x ◦ y) → z are not unifiable.

2Note that ŷ is the substitution instance of x̂ with replacing x by y.
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The proof is straightforward and left to the reader.
Now we define the notion of code of a letter. First, let us fix a unique variable p. Then

the code of a letter ai ∈ A, for 1 ≤ i ≤ m, is a formula:

ai :=
(
p → (p → . . . (p
︸ ︷︷ ︸

i

→ p))
)
◦ p. (1)

Since x ◦ y is a substitution instance of the axiom x → (y → x), we have the following
lemma.

Lemma 3.4. x → (y → x) ⊢ a, for every letter a ∈ A.

In order to encode a word, i.e. finite sequence of letter, we must define an operation of
concatenation for letters. For this reason, we introduce a shortcut x · y as an abbreviation
for the formula ((x → x) → x) ◦ y. Thus we come to the following definition.

Definition 3.5. (Zolin, [31]) An alphabetic formula over the alphabet A, or an A-formula

for short, is an arbitrary {·}-formula over the codes of letters from A. Formally, a is a
A-formula for each letter a ∈ A, and if A, B are A-formulas then so is A · B.

An example of an alphabetic formula is (a · (c · e)) · (e · a). It is easily seen that every A-
formula is associated with a word over A. To every A-formula A we associate its word(A) ∈
A+ by induction: word(a) := a for each letter a ∈ A, and word(A ·B) := word(A)word(B).
For example, the A-formulas (a · e) · (c · a) and (a · (e · c)) · a are associated with the same
word aeca.

Let us introduce some notation that will be useful later. Given a formula A, denote by
A∗ the set of all substitution instances of A. Similarly, given a set M of formulas, denote by
M∗ the set

M∗ :=
⋃

A∈M

A∗.

We call two formulas A and B unifiable if A∗ ∩B∗ 6= ∅. For example, formulas x → (y → z)
and (y → z) → x are unifiable, but formulas x → (y → x) and (y → x) → x are not
unifiable.

Lemma 3.6. No two distinct A-formulas are unifiable.

Proof. By induction on the definition of an A-formula A.
Let A be the code of a letter ai ∈ A. There are two cases:

1) If B is the code of a letter aj ∈ A, then i 6= j. Denote by Ci the following formula

p → (p → . . . (p
︸ ︷︷ ︸

i

→ p)).

Then A is the formula Ci ◦ p and B is the formula Cj ◦ p. Since Ci and Cj are not unifiable
for i 6= j, we conclude that A and B are not unifiable.

2) Let B is a formula B1 · B2 for some A-formulas B1 and B2. Then A is the formula
Ci ◦ p and B is the formula ((B1 → B1) → B1) ◦B2. Since the formulas Ci and (x → x) → x
are not unifiable for all i, 1 ≤ i ≤ m, we have that A and B are not unifiable, .

Now let A = A1 ·A2 for some A-formulas A1 and A2, so it can be assumed that B = B1 ·B2

for some A-formulas B1 and B2. If A, B are unifiable, then also A1, B1 and A2, B2 are
unifiable. By induction hypothesis, A1 = B1 and A2 = B2. Hence, A = B.

This completes the proof of the lemma.
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Finally, we define the code of a word α ∈ A+ as the finite set α consisting of all A-formulas
associated with the word α. Formally,

α := {A | A is a A-formula such that word(A) = α}.

Note that the code of a letter a ∈ A is the formula defined as in (1), but the code of a
single-letter word a ∈ A+ is the set consisting of the code of letter a. Throughout this
paper, we will use the same notation for the code of a letter and the code of a single-letter
word.

As an example, {a · c} is the code of the word ac, {a · (c · e), (a · c) · e} is the code of the
word ace, and {a · (c · (e · c)), a · ((c · e) · c), ((a · c) · (e · c)), (a · (c · e)) · c, ((a · c) · e) · c} is
the code of the word acec, where a, c, e ∈ A.

Since every A-formula is a substitution instance of the axiom x → (y → x), we have the
following generalization of Lemma 3.4.

Lemma 3.7. x → (y → x) ⊢ α, for every word α ∈ A+.

Similarly, we call two codes α and γ unifiable if α∗ ∩ γ∗ 6= ∅. Lemma 3.6 implies:

Corollary 3.8. No two distinct codes are unifiable.

Now we introduce the following convention. In order to simplify a notation of formulas,
we will use an abbreviation α for some word α ∈ A+ as a part of formulas. For example, a
formula α → x is a shortcut for the following set of formulas

{A → x | A ∈ α},

and a formula α · x → x · β is a shortcut for the set

{(A · x) → (x · B) | A ∈ α, B ∈ β}.

Note that all alphabetic formulas are one-variable formulas with the same variable p, so we
substitute the same formula in different occurrences of alphabetic formulas. As an example
of this substitution let us consider a formula A of the form

α[p] · x → x · β[p],

where square brackets denote a dependence on variables or subformulas. Then a substitution
instance of A is any formula of the form

α[B] · C → C · β[B]

for some formulas B and C.

3.5 Simulation of tag systems

For a given tag system T we construct a propositional {→}-calculus PT such that the deriva-
tion of codes of words in PT simulates productions of words in T .

Let T = 〈A,W, d〉, where A = {a1, . . . , am}, W = {ω1, . . . , ωm}, and d ∈ N. Recall that
all ωi are assumed to be nonempty. Denote by PT a {→}-calculus with the following groups
of axioms.
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Productions of the tag system T :

(T1) aiα · x → x · ωi

(T2) aiα → ωi

for all α ∈ A+, |α| = d− 1, 1 ≤ i ≤ m;

Transformation rules :

(R1) x · (y · z) → (x · y) · z

(R2) (x · y) · z → x · (y · z)

(R3) (x · (y · z)) · u → ((x · y) · z) · u

(R4) ((x · y) · z) · u → (x · (y · z)) · u

Define two subsystems of the calculus PT :

T := T1 ∪ T2, R := R1 ∪ R2 ∪ R3 ∪ R4.

Since they are rather weak and not even capable to derive A → C from A → B and B → C,
we introduce the following useful notation: P ⊢ A ⇒ B if and only if there are formulas
C0 = A, C2, . . . , Cn−1, Cn = B, n ≥ 0, such that P ⊢ Ci → Ci+1 for all 0 ≤ i ≤ n− 1.

Since every formula A · B is a substitution instance of the axiom x → (y → x), we have
the following lemma.

Lemma 3.9. PT ≤ {x → (y → x)}.

Now we prove some properties of the calculus PT .

3.5.1 Derivability of the T -productions

Here we show that the calculus PT can “simulate” productions of the tag system T . At the
beginning let us prove auxiliary lemmas.

Lemma 3.10. R ⊢ A ⇒ α, for all α ∈ A+ and A ∈ α.

Proof. Let α = a1 . . . an. Since all axioms in R are invertible, i.e., B → A ∈ R whenever
A → B ∈ R, it is sufficient to prove that

R ⊢ A ⇒ −→α ,

where −→α is the following formula a1 · (a2 · . . . · (an−1 · an)).
Without loss of generality it can be assumed that n ≥ 3. We split up the proof into two

steps. First, we will show that there exists an alphabetic formula B such that

R ⊢ A ⇒ B ·
−→
ξ ,

where ξ ∈ A+ and α = βξ, for β = word(B). Next, we will prove that

R ⊢ B ·
−→
ξ ⇒

−→
βξ

by induction on |β|.
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Proof of the first step: Since n ≥ 3, there is an integer k ≥ 1, nonempty words
α1, . . . , αk, ξ and alphabetic formulas A1, . . . , Ak such that α = α1 . . . αkξ,

A = A1 · (A2 · . . . · (Ak ·
−→
ξ )),

and word(Ai) = αi, for 1 ≤ i ≤ k. Denote by B the following formula (((A1 ·A2)·A3)·. . .·Ak),
then we have

R ⊢ A ⇒ B ·
−→
ξ

by a multiple application of axiom (R1).
Proof of the second step: By induction on |β|, where β = word(B). If |β| = 1, then

the formulas B ·
−→
ξ and

−→
βξ are identical.

Now let |β| ≥ 2, so there is an integer m ≥ 1, a letter a ∈ A, and nonempty words
β1, . . . , βm such that β = β1 . . . βma and

B = B1 · (B2 · . . . · (Bm · a)),

for some alphabetic formulas B1, . . . , Bm such that word(Bi) = βi, 1 ≤ i ≤ m. Denote by C
the following formula (((B1 · B2) · B3) . . . ·Bm). Then we derive in R:

B ·
−→
ξ

(R3)
=⇒ (C · a) ·

−→
ξ

(R2)
−→ C ·

−→
aξ

IH
=⇒

−→
βξ

where the first derivation is a multiple application of axiom (R3), the second derivation is a
single application of axiom (R2), and the last derivation uses induction hypothesis for the
word γ such that γ = word(C). Note that γ is exactly the word β1 . . . βm. The lemma is
proved.

Lemma 3.11. If ξ
T

7−→ ζ then PT ⊢ ξ ⇒ ζ, for all ξ, ζ ∈ A+.

Proof. Since T is applicable to ξ, we have |ξ| ≥ d. Therefore, ξ = aiαβ and ζ = βωi, where
|α| = d− 1 and |β| ≥ 0.

If |β| = 0, then PT ⊢ ξ → ζ by the axiom (T2).
Let |β| > 0, so we derive in PT :

ξ
L

=⇒ aiα · β
(T1)
−→ β · ωi

L
=⇒ ζ

where the first and last derivations are due to Lemma 3.10, and the second derivation is the
substitution instance of the axiom (T1). The lemma is proved.

Corollary 3.12. If ξ
T

Z=⇒ ζ then PT ⊢ ξ ⇒ ζ, for all ξ, ζ ∈ A+.

The proof is trivial by definition of the tag system.

3.5.2 Production of the PT -derivations

Here we show that the tag system T can produce, on the input word, the words whose codes
have derivations in PT . As a preliminary let us introduce some notation and prove auxiliary
lemmas.

Given α ∈ A+, denote by Tα the set of all A-formulas whose words have productions of
the tag system T on the input word α:

Tα = {A | A is a A-formula such that α
T

Z=⇒ word(A)}.

It is clear that α ⊆ Tα for all α ∈ A+.
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Lemma 3.13. P ∗
T ∩ T ∗

α = ∅, for all α ∈ A+.

The proof is trivial by application of Lemma 3.3.
For any propositional calculus P , denote by 〈P 〉 the set of propositional formulas obtained

from P by applying modus ponens and substitution once:

〈P 〉 := {B | A,A → B ∈ P for some formula A}∪

{σA | A ∈ P and σ is a substitution} .

Furthermore, let 〈P 〉0 = P and
〈P 〉n+1 = 〈〈P 〉n〉

for n ≥ 0. It follows easily that 〈P 〉n ⊆ 〈P 〉n+1 for all n ≥ 0 and the set [P ] of all derivable
formulas of the calculus P can be represented as

[P ] = 〈P 〉∞ =
⋃

n≥0

〈P 〉n .

Let A be a formula derivable from P . We say that A has the derivation height n, if A ∈ 〈P 〉n
and A /∈ 〈P 〉n−1.

The following theorem describes formulas derivable from the calculus PT and the code of
a nonempty word α ∈ A+.

Lemma 3.14. [PT ∪ α] = P ∗
T ∪ T ∗

α for all α ∈ A+.

Proof. It is evident that
P ∗
T ∪ T ∗

α ⊆ [PT ∪ α]

by Lemma 3.10 and Corollary 3.12, so we only prove by induction on the derivation height
n ≥ 0 that

〈PT ∪ α〉n ⊆ P ∗
T ∪ T ∗

α .

If n = 0, then 〈PT ∪ α〉0 = PT ∪ α. Clearly, α ⊆ T ∗
α and all axioms of PT are in P ∗

T .
Let the induction assumption be satisfied for some n ≥ 1. Since the right-hand side of

the inclusion is closed under substitution, we only consider the case of a formula B obtained
by modus ponens from some formulas A, A → B ∈ 〈PT ∪ α〉n. By induction hypothesis,

〈PT ∪ α〉n ⊆ P ∗
T ∪ T ∗

α .

It is easily shown that P ∗
T ∩ T ∗

α = ∅ due to Lemma 3.13. Hence either A or A → B are
in T ∗

α, since otherwise A is both a substitution instance of x ◦ y and x ◦ y → z, which is
impossible by Lemma 3.3. If A → B ∈ T ∗

α, then A is a substitution instance of the formula
(y → y) → y. However, A ∈ P ∗

T ∩ T ∗
α, which is impossible, because all formulas in P ∗

T and
T ∗
α are not unifiable with (y → y) → y. Therefore, A ∈ T ∗

α and A → B ∈ P ∗
T .

Now we show that B ∈ T ∗
α. Since A ∈ T ∗

α, then A ∈ γ∗ for some word γ ∈ A+ such that

α
T

Z=⇒ γ. Note that A → B is a substitution instance of some axiom in PT , so we need to
consider the following two cases.

Case 1. A → B is a substitution instance of an axiom in T. Then A is a substitution
instance of the formula aiα1 · C or aiα1 for some letter ai ∈ A, a word α1 ∈ A∗ with
|α1| = d − 1, and a formula C. Since A ∈ γ∗, we have that C is a alphabetic formula.
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Therefore, by Lemma 3.6 there is a unique word α2 ∈ A∗ such that γ = a1α1α2. It is clear
that α2 = word(C) and B is the substitution instance of the alphabetic formula C ·ωi or ωi.

Thus, B ∈ η∗ for η = α2ωi and γ
T

7−→ η.
Case 2. A → B is a substitution instance of an axiom in R. Since the formula A is a

substitution instance of an alphabetic formula C ∈ γ and the set of alphabetic formulas γ is
closed under application modus ponens and the axioms R, we have that also B ∈ γ∗.

These cases exhaust all possibilities and so we have that B ∈ η∗ for some word η ∈ A∗

such that γ
T

Z=⇒ η. Hence B ∈ T ∗
α, since α

T
Z=⇒ γ by induction hypothesis. The proof is

completed.

Now we prove that the code of each nonempty word over A derivable from PT and α is
the code of a word produced from α by the tag system T .

Corollary 3.15. If PT ⊢ ξ ⇒ ζ then ξ
T

Z=⇒ ζ, for all ξ, ζ ∈ A+.

Proof. Let PT ⊢ ξ ⇒ ζ, so ζ ∈ [PT ∪ξ]. Then ζ ∈ P ∗
T ∪T ∗

ξ by Lemma 3.14. Since ζ /∈ P ∗
T due

to Lemma 3.3, we have that ζ ∈ T ∗
ξ and so ξ

T
Z=⇒ ζ by definition of the set Tξ. The lemma

is proved.

3.5.3 Halting condition

Above we shown that derivations in the propositional calculus PT can simulate productions
in the tag system T . Now we describe how to perform the halting condition of tag system T
on input words. For this reason, we consider a propositional calculus P0 and the following
group of axioms.

The halting condition for the tag system T :

(H) α → A for all α ∈ A+, |α| < d, A ∈ P0.

Denote by PT,P0
the calculus PT ∪ H, and by PT,P0,ξ the calculus PT ∪H ∪ ξ. Let the tag

system T halts on the input word ξ, we take the minimal n ≥ 0 such that 〈PT,P0,ξ〉n contains
at least one substitution instance of element of the code for some word ζ ∈ A+ with |ζ | < d:

Nξ := min
{

n ≥ 0 | ζ
∗
∩ 〈PT,P0,ξ〉n 6= ∅, for some ζ ∈ A+ with |ζ | < d

}

.

If T does not halt, then we put Nξ := ∞. We have the following generalization of Lem-
ma 3.14.

Lemma 3.16. 〈PT,P0,ξ〉Nξ
⊆ P ∗

T,P0
∪ T ∗

ξ .

Proof. Clearly, it is sufficient to consider the case of the proof of Lemma 3.14 for which
A → B is a substitution instance of axioms (H). But this case is impossible, since otherwise
we would have that 0 < |γ| < d. This contradicts to the fact that

γ∗ ∩ 〈PT,P0,ξ〉n 6= ∅

and n < Nξ. The lemma is proved.

Now we prove the key lemma of this section.
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Lemma 3.17. Fix a propositional calculus P0, then the tag system T halts on input ξ if and

only if PT,P0,ξ ≥ P0, for all ξ ∈ A+.

Proof. By definition, if the tag system T halts on an input word ξ ∈ A+, then ξ
T

Z=⇒ ζ for
some word ζ ∈ A+ such that |ζ | < d. Since

PT ⊢ ξ ⇒ ζ

by Corollary 3.12, the code ζ of ζ is derivable from PT and ξ. If we recall that PT,P0
contains

the axioms ζ → A for each A ∈ P0, we obtain that PT,P0,ξ ⊢ A and so PT,P0,ξ ≥ P0.
Conversely, let PT,P0,ξ ≥ P0. Recall that the formula x ◦ y is built up with using a fixed

formula x̂ as follows:

x ◦ y = ((ŷ → ŷ) → ŷ) → (x̂ → ((ŷ → ŷ) → ŷ)).

Since x̂ is an arbitrary one-variable {→}-formula, we may assume that every formula in
P0 is not a substitution instance of x ◦ y or x ◦ y → z. On the other hand, all formulas
having derivations in PT,P0,ξ of a height less or equal Nξ is a substitution instances of x ◦ y
or x ◦ y → z by Lemma 3.16. Hence, if T does not halt on input ξ, then Nξ = ∞ and,
therefore, PT,P0,ξ � P0. This contradiction completes the proof.

4 The proof of Theorem 2.10

4.1 Undecidability of recognizing extensions

If Ext is decidable for a Σ-calculus P0, then the following problem is decidable: given
a tag system T and a word ξ ∈ A, determine whether P0 ≤ PT,P0,ξ. By Lemma 3.17,
the decidability of the last problem for the calculus P0 is equivalent to the decidability of
the halting problem for the tag system T . Since the halting problem of tag systems is
undecidable by Theorem 3.2, this contradiction completes the proof of undecidability of
recognizing extensions.

4.2 Undecidability of recognizing completeness

If {x → (y → x)} ≤ P0, then PT,P0,ξ ≤ P0 by Lemmas 3.7 and 3.9. Hence the problem of
recognizing completeness of P0 reduces to the problem of recognizing extensions of P0, which
is undecidable. This completes the proof of the theorem.

5 Conclusion and further research

In this paper, we established the undecidability of the problem of recognizing extensions for
all propositional calculus, and the undecidability of the problem of recognizing completeness,
as well as axiomatizations, for all propositional calculus whose theorems contain the formula
x → (y → x). These results were obtained for the signatures containing the symbol of
implication →. It is easily shown that the proofs remain valid, with minor changes, if we
consider a signature, which does not contain the symbol →, but there is some propositional
formula having x, y as sole variables, whose truth-table interpretation is “x implies y”.
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The other observation is that we can redefine encoding of letters and words by using the
formula x → (F → x) instead of the formula x → (y → x), where F is an arbitrary formula
not containing the variable x. If we replace the key formula x ◦ y with the following formula

((ŷ → ŷ) → ŷ) → (F̂ [x] → ((ŷ → ŷ) → ŷ)),

where F̂ [x] is the substitution instance of F by replacing all occurrences of variables with
a fixed one-variable formula x̂, we obtain the following interesting generalization of Theo-
rem 2.10.

Theorem 5.1. Fix a propositional formula F not containing the variable x and a proposi-

tional calculus P0 ≥ {x → (F → x)}, then Axm and Cmpl are undecidable for P0.

We leave the proof to the reader.
A natural and interesting question arises with respect to this generalization: there is an

enumerable set of propositional formulas M for which the condition [P0] ∩M 6= ∅ holds if
and only if Axm and Cmpl are undecidable for P0. Since Gladstone in [7] proved that
Drv is decidable for every one-variable propositional calculus, it seems to be interesting
to consider only formulas containing two or more variables. Theorem 5.1 shows that two-
variables formulas are sufficient.
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