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Abstract

In this paper, we construct an undecidable 3-variable superintuitionistic proposi-

tional calculus, i.e., a finitely axiomatizable extension of the intuitionistic propositional

calculus with axioms containing only 3 variables. Since there are no 2-variable super-

intuitionistic propositional calculi, this is the minimal possible number of variables.

1 Introduction

Decidability is the important property of propositional calculi, it means that the set of
their derivable formulas (or theorems) can be effectively determined. A natural question
is how to separate classes of decidable and undecidable calculi. On the other hand, since
undecidable propositional calculi can be used as a base for obtaining “negative” results
to various algorithmic problems, it is of interest to find the simplest possible calculus of
that class. There are many possible ways to separate decidable and undecidable calculi. A
significant and simplest way is to describe the number of variables in their axioms.

In 1949, Linial and Post [10] found the first undecidable propositional calculus. In 1975,
Hughes and Singletary [9] proved that there is an undecidable propositional calculus with
axioms containing 3 variables. In 1976, Hughes [8] constructed an undecidable implicational
propositional calculus using axioms in 2 variables. Finally, Gladstone in 1979 [7] proved that
every 1-variable propositional calculus is decidable.

The first undecidable superintuitionistic propositional calculus was built in 1978 by She-
htman [15, 16]. Axioms of this calculus contain 7 variables. Later Chagrov in 1994 [4] did the
same using axioms with only 4 variables. In [5, Sections 16.9] he noted that it is unknown
whether there exist undecidable superintuitionistic propositional calculi with axioms in 2 or
3 variables.

In [6] Gladstone proved that the following formula

A = (p → q) → ((q → r) → (p → r))
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is not derivable from the set of all 2-variable tautologies by modus ponens and substitution.
Since A is an intuitionistic tautology, therefore a 2-variable propositional calculus cannot
derive all intuitionistic tautologies. If we combine this with Gladstone’s result for 1-variable
propositional calculi, we get that there are no undecidable superintuitionistic propositional
calculi with axioms containing less than 3 variables. The aim of this paper is to construct
an undecidable 3-variable superintuitionistic propositional calculus.

This paper is organized as follows. In the next section we introduce the basic terminology
and notation. In Section 3 we state and prove our main result. Finally, in Section 4 we give
some concluding remarks and discuss further directions of research.

2 Definitions

In this section, we recall definitions of the intuitionistic propositional calculus and Kripke
semantics. For more details we refer the reader to [5].

First, we introduce some notation. Let us consider the language consisting of an infinite
set of propositional variables V, brackets, and the signature Σ = {⊥,∧,∨,→}, where ⊥
is the constant symbol, ∧, ∨ and → are binary connectives. Letters p, q, x, y, etc., are
used to denote propositional variables. We define ¬, ↔ and ⊤ as the usual abbreviations:
¬A := A → ⊥, A ↔ B = (A → B) ∧ (B → A), and ⊤ = ¬⊥.

Propositional formulas or Σ-formulas are built up from the signature Σ, propositional
variables from V, and brackets in the usual way. For example, the following notations

x, ¬A, (A ∧B), (A ∨B), (A → B)

are formulas if A, B are formulas. Capital letters A,B,C, etc., are used to denote proposi-
tional formulas. Throughout the paper, we omit some parentheses in formulas whenever it
does not lead to confusion.

By a propositional calculus or a Σ-calculus we mean a finite set P of Σ-formulas referred
to as axioms together with two rules of inference:

1) modus ponens

A, A → B ⊢ B,

2) substitution
A ⊢ σA,

where σA is a substitution instance of A, i.e., the result of applying a substitution σ to the
formula A.

Denote by [P ] the set of derivable (or provable) formulas of a calculus P . A derivation

in P is defined from the axioms and the rules of inference in the usual way. The statement
that a formula A is derivable from P is denoted by P ⊢ A.

Let us introduce the following pre-order relation on the set of all propositional calculi.
We write P1 ≤ P2 (or, equivalently, P2 ≥ P1) if each derivable formula of P1 is also derivable
from P2, i.e., if [P1] ⊆ [P2]. We write P1 ∼ P2 and say that two calculi P1 and P2 are
equivalent if [P1] = [P2]. Finally, we write P1 < P2 if [P1] ( [P2].

An intuitionistic Kripke frame is a pair F = 〈W,R〉 consisting of a nonempty set W and
a partial order R on W , which is reflexive, transitive and antisymmetric, i.e., F is just a
partially ordered set. The elements of W are called the points (or worlds) of the frame F,
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and the relation R is called the accessibility relation. If for some w,w′ ∈ W the relation
wRw′ holds, we say that w′ is accessible from w or w sees w′. We write w ≤R w′ (or w′ ≥R w)
iff wRw′.

A valuation in an intuitionistic frame F = 〈W,R〉 is a map V associating with each
propositional variable p ∈ V some (possibly empty) subset V(p) of W such that, for every
w ∈ V(p) and every w′ ∈ W , w ≤R w′ implies w′ ∈ V(p).

An intuitionistic Kripke model is a pair M = 〈F,V〉, where F is an intuitionistic frame
and V is a valuation in F.

Let M = 〈F,V〉 be an intuitionistic Kripke model and w be a point in the frame F =
〈W,R〉. By induction on the construction of a formula A we define a relation (M, w) |= A,
which is read as A is true at w in M:

(M, w) 6|= ⊥
(M, w) |= p ⇐⇒ w ∈ V(p);
(M, w) |= A ∧B ⇐⇒ (M, w) |= A and (M, w) |= B;
(M, w) |= A ∨B ⇐⇒ (M, w) |= A or (M, w) |= B;
(M, w) |= A → B ⇐⇒ for all w′ ∈ W such that w ≤R w′,

(M, w′) |= A implies (M, w′) |= B.

From the definition it follows that

(M, w) |= ⊤
(M, w) |= ¬A ⇐⇒ for all w′ ∈ W such that w ≤R w′, (M, w′) 6|= A.

If (M, w) |= A does not hold, i.e., (M, w) 6|= A, we say that A is refuted at the point w in

M.
We say that A is valid in a model M = 〈F,V〉 defined on a frame F = 〈W,R〉 if

(M, w) |= A for all w ∈ W ; if A is valid in M, we write M |= A. We say that A is valid

in a frame F = 〈W,R〉 if A is valid in every model based on F; if A is valid in F, we write
F |= A. We say that A is true at a point w in a frame F if (M, w) |= A for every model M
defined on F; if A is true at the point w in frame F, we write (F, w) |= A. If M is fixed we
write w |= A instead of (M, w) |= A.

We define the intuitionistic propositional calculus Int as the smallest propositional cal-
culus containing the following set of axioms:

(→1) p → (q → p)
(→2) (p → (q → r)) → ((p → q) → (q → r))
(∧1) p ∧ q → p
(∧2) p ∧ q → q
(∧3) p → (q → p ∧ q)
(∨1) p → p ∨ q
(∨2) q → p ∨ q
(∨3) (p → r) → ((q → r) → (p ∨ q → r))
(¬1) (p → q) → ((p → ¬q) → ¬p)
(¬2) p → (¬p → q)

It is well known that

Int ⊢ A ⇐⇒ F |= A, for every Kripke frame F.
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By a superintuitionistic propositional calculus we mean a propositional calculus obtained
from Int by adding a finite set of new axioms. If M is a finite set of propositional formulas,
then a propositional calculus obtained from Int by adding new axioms M is denoted by
Int+M . Since

Int+ {A1, . . . , An} ∼ Int+ A1 ∧ . . . ∧ An,

we can assume that a superintuitionistic propositional calculus is a calculus Int+A for some
intuitionistic propositional formula A.

3 Main result

Our main result is the following theorem.

Theorem 3.1. There is a 3-variable intuitionistic propositional formula A such that Int+A
is undecidable.

First, we recall what a Minsky machine is and encode configurations of a Minsky machine
by superintuitionistic propositional formulas. Next, we construct a Kripke model refuting all
codes of derivable configurations. Finally, we encode instructions of a Minsky machine M
by a single superintuitionistic formula AM and formally reduce the configuration problem of
M to the derivation problem of a superintuitionistic propositional calculus Int+ AM.

3.1 Minsky machine

There are many algorithmic formalisms to prove the undecidability of a propositional cal-
culus [3]. For example, the undecidability of a calculus contained in the classical [1], in-
tuitionistic [2] propositional calculus or in another subcalculus [3] can be easily proved by
using tag systems. But for extensions of the intuitionistic propositional calculus, this is
very hard [12, 17]. For this reason, in order to prove the undecidability of superintuition-
istic propositional calculi we will use an algorithmic formalism which is called Minsky ma-

chines [11]. In [5] Chagrov mentioned that it is the most convenient formalism for being
simulated by modal and intuitionistic formulas.

In accordance with [5] we define a Minsky machine as a finite set of instructions for
transforming triples 〈s,m, n〉 of natural numbers, called configurations, where s is the number
of the instruction to be executed at the next step (referred to as the current machine state),
and m,n ∈ N 1. Each instruction has one of the following four forms:

s 7→ 〈t, 1, 0〉 , s 7→ 〈t,−1, 0〉 / 〈u, 0, 0〉 ,
s 7→ 〈t, 0, 1〉 , s 7→ 〈t, 0,−1〉 / 〈u, 0, 0〉 ,

where s, t, u are the machine states. Note that all Minsky machines are assumed to be
deterministic, i.e., they may not contain distinct instructions with the same numbers.

As an example, let us consider the applying of first two instructions. The instruction

s 7→ 〈t, 1, 0〉

1We assume that N = {0, 1, 2, . . .}.
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transforms 〈s,m, n〉 into 〈t,m+ 1, n〉, and the instruction

s 7→ 〈t,−1, 0〉 / 〈u, 0, 0〉

transforms 〈s,m, n〉 into 〈t,m− 1, n〉 if m > 0 and into (u,m, n) if m = 0. The meaning of
the others is defined analogously.

Let M be a Minsky machine, then the notation 〈s,m, n〉
M
7−→ 〈t, k, l〉 means that the

configuration 〈t, k, l〉 is obtained from 〈s,m, n〉 by applying an instruction of machine M

once. We write 〈s,m, n〉
M
7=⇒ 〈t, k, l〉 if the configuration 〈t, k, l〉 is obtained from 〈s,m, n〉 by

applying instructions of machine M in finitely many steps (possibly, in 0 steps). Particularly,

we always have 〈s,m, n〉
M
7=⇒ 〈s,m, n〉.

The configuration problem for a Minsky machine M and a configuration 〈s,m, n〉 is, given

a configuration 〈t, k, l〉, to determine whether 〈s,m, n〉
M
7=⇒ 〈t, k, l〉.

Theorem 3.2 (Minsky, [11]). There exist a Minsky machine M and a configuration 〈s,m, n〉
for which the configuration problem is undecidable.

Let M be a Minsky machine and 〈s0, m0, n0〉 a configuration for which the configuration
problem is undecidable.

3.2 Encoding of configurations

Let p, q and r be three distinct propositional variables. Now we define some propositional
formulas using only variables p, q, r, which encode configurations of Minsky machines. Note
that some basic ideas of defining these formulas was found in [5] and [13].

First, let us define the following groups of propositional formulas constructed from vari-
ables p, q and r. If

S−2[x] = ¬x, S−1[x] = T−2[x] → x,

T−2[x] = ¬¬x, T−1[x] = S−1[x] → S−2[x] ∨ T−2[x],

Si[x] = Ti−1[x] → Si−1[x] ∨ Ti−2[x],

Ti[x] = Si[x] → Si−1[x] ∨ Ti−1[x],

for all i ≥ 0, then we define
Groups (A0) and (B0):

A0
i = Si+3[r], B0

i = Ti+3[r] for all i ≥ −5.

Let C1 = A0
0 and C2 = B0

0 , then
Groups (A1) and (B1):

A1
i = Si+3[p], B1

i = Ti+3[p] for i ∈ {−3,−4,−5},

A1
−2 = B1

−3 → A1
−3 ∨B1

−4, A1
−1 = B1

−2 → A1
−2 ∨B1

−3,

B1
−2 = A1

−3 → C1 ∨ B1
−3, B1

−1 = A1
−2 → A1

−3 ∨B1
−2,

A1
i = C2 ∧B1

i−1 → C1 ∨ A1
i−1 ∨ B1

i−2,

B1
i = C2 ∧A1

i−1 → C1 ∨ A1
i−2 ∨ B1

i−1, for all i ≥ 0;
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Groups (A2) and (B2):

A2
i = Si+3[q], B2

i = Ti+3[q] for i ∈ {−3,−4,−5},

A2
−2 = B2

−3 → A2
−3 ∨B2

−4, A2
−1 = B2

−2 → A2
−2 ∨B2

−3,

B2
−2 = A2

−3 → C2 ∨ B2
−3, B2

−1 = A2
−2 → A2

−3 ∨B2
−2,

A2
i = C1 ∧B2

i−1 → C2 ∨ A2
i−1 ∨ B2

i−2,

B2
i = C1 ∧A2

i−1 → C2 ∨ A2
i−2 ∨ B2

i−1, for all i ≥ 0.

Note that the groups (A0), (B0) contain only variable r, (A1), (B1) contain only variables r,
p, and (A2), (B2) contain only variables r, q. Now we define formulas encoding configurations
of the Minsky machine M.

Group (E):

Es,m,n = A0
3s+2 ∧B0

3s+2 ∧A1
m+1 ∧ B1

m+1 ∧ A2
n+1 ∧ B2

n+1 →

→ A0
3s+1 ∨B0

3s+1 ∨ A1
m ∨ B1

m ∨A2
n ∨B2

n,

for all s,m, n ≥ 0. The formula Es,m,n is called the code of a configuration 〈s,m, n〉.
Denote by (A) and (B) the following sets of formulas:

(A) = (A0) ∪ (A1) ∪ (A2),
(B) = (B0) ∪ (B1) ∪ (B2),

and by M the set of formulas:

M = (A) ∪ (B) ∪ (E).

3.3 Kripke model refuting codes of derivable configurations

In this section, we construct a Kripke model M = 〈F,V〉 refuting all formulas from M , i.e.,
for every formula from M , there exists a unique maximal point, at which this formula is
refuted.

First, let us define the following equivalence relation ∼M on the set of all configurations
{〈s,m, n〉 | s,m, n ≥ 0}:

〈s,m, n〉 ∼M 〈t, k, l〉 ⇌ 〈s,m, n〉
M
7=⇒ 〈t, k, l〉 and 〈t, k, l〉

M
7=⇒ 〈s,m, n〉 .

Denote by [s,m, n] the equivalence class of a configuration 〈s,m, n〉:

[s,m, n] = {〈t, k, l〉 | 〈s,m, n〉 ∼M 〈t, k, l〉}.

The set of all equivalence classes of relation ∼M is denoted by EM.

Let us define the relation
M
7=⇒ on the set of equivalence classes EM:

[s,m, n]
M
7=⇒ [t, k, l] ⇌ 〈s,m, n〉

M
7=⇒ 〈t, k, l〉 .

Greek letters α, β, γ, etc., are used to denote equivalence classes. Denote by α0 the equiva-
lence class of the initial configuration 〈s0, m0, n0〉, i.e., α0 = [s0, m0, n0].
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Now we define a Kripke frame F = 〈W,R〉 as follows. Let

⋃

i≥−5,
j∈{0,1,2}

{aji , b
j
i} ∪

⋃

α∈EM:

α0
M
7=⇒α

{eα}.

To define the accessibility relation R on W , we consider the following groups of relations:
Group Rj

i , i ≥ −4, j ∈ {0, 1, 2}:

Rj
−4 =

{〈

aj−4, a
j
−5

〉

,
〈

bj−4, a
j
−5

〉

,
〈

bj−4, b
j
−5

〉}

,

Rj
−3 =

{〈

aj−3, a
j
−4

〉

,
〈

aj−3, b
j
−5

〉

,
〈

bj−3, a
j
−4

〉

,
〈

bj−3, b
j
−4

〉}

,

R0
i =

{〈

a0i , a
0
i−1

〉

,
〈

a0i , b
0
i−2

〉

,
〈

b0i , a
0
i−1

〉

,
〈

b0i , b
0
i−1

〉}

for all i ≥ −2 and

R1
−2 =

{〈

a1−2, a
1
−3

〉

,
〈

a1−2, b
1
−4

〉

,
〈

b1−2, a
0
0

〉

,
〈

b1−2, b
1
−3

〉}

,

R2
−2 =

{〈

a2−2, a
2
−3

〉

,
〈

a2−2, b
2
−4

〉

,
〈

b2−2, b
0
0

〉

,
〈

b2−2, b
2
−3

〉}

,

Rj
i =

{〈

aji , a
j
i−1

〉

,
〈

aji , b
j
i−2

〉

,
〈

bji , a
j
i−2

〉

,
〈

bji , b
j
i−1

〉}

for all i ≥ −1, j ∈ {1, 2};

Group Rs,m,n, s,m, n ≥ 0, α0
M
7=⇒ [s,m, n]:

Rs,m,n =
{〈

e[s,m,n], a
0
3s+1

〉

,
〈

e[s,m,n], b
0
3s+1

〉

,
〈

e[s,m,n], a
1
m

〉

,
〈

e[s,m,n], b
1
m

〉

,
〈

e[s,m,n], a
2
n

〉

,
〈

e[s,m,n], b
2
n

〉}

.

Let
R′ =

⋃

i≥−4,
j∈{0,1,2}

Rj
i ∪

⋃

s,m,n≥0:

α0
M
7=⇒[s,m,n]

Rs,m,n ∪
⋃

α,β∈EM:

α
M
7=⇒β

{〈eα, eβ〉}.

We take as R the reflexive and transitive closure of R′.
Let us define a valuation V of the Kripke model M = 〈F,V〉 in the following way:

(M, w) 6|= r ⇐⇒ w ≤R a0−4 or w ≤R b0−5;

(M, w) 6|= p ⇐⇒ w ≤R a1−4 or w ≤R b1−5;

(M, w) 6|= q ⇐⇒ w ≤R a2−4 or w ≤R b2−5.

The model M is depicted on Figure 1. Now we prove some basic semantic properties of the
Kripke model M.

Lemma 3.3. Let w be a world of M, then

w 6|= Aj
i ⇐⇒ w ≤R aji ,

w 6|= Bj
i ⇐⇒ w ≤R bji

for all i ≥ −4 and j ∈ {0, 1, 2}.

Proof. By induction on i ≥ −4.
Induction base consists of the following cases:

1) i = −4. Let x0 = r, x1 = p, and x2 = q.
Since w 6|= xj iff w ≤R aj−4 or w ≤R bj−5, we have that Aj

−4 is refuted at aj−4 and Bj
−4 is

refuted at bj−4. Therefore, w 6|= Aj
−4 if w ≤R aj−4 and w 6|= Bj

−4 if w ≤R bj−4.
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a0−5 b0−5

a0−4 b0−4

a0−3 b0−3

a0−2 b0−2

a0−1 b0−1

a00 b00

a01 b01

a02 b02

a03 b03. . .

a03s b03s

a03s+1 b03s+1

a03s+2 b03s+2
. . .

a1−5 b1−5

a1−4 b1−4

a1−3 b1−3

a1−2 b1−2

a1−1 b1−1

a10 b10. . .

a1m−1 b1m−1

a1m b1m

a1m+1 b1m+1
. . .

a2−5 b2−5

a2−4 b2−4

a2−3 b2−3

a2−2 b2−2

a2−1 b2−1

a20 b20. . .

a2n−1 b2n−1

a2n b2n

a2n+1 b2n+1
. . .

e[s,m,n]

Figure 1: Kripke model M.
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If w 6|= Aj
−4, then there exists a point w′ ≥R w such that w′ |= ¬¬xj and w′ 6|= xj . By

definition of the valuation V, we have either w′ ≤R aj−4 or w′ ≤R bj−5. Since w′ |= ¬¬xj ,
therefore for all point w′′ ≥R w′ there is a point w′′′ ≥R w′′ such that w′′′ |= xj . It is clear
that w′ �R bj−5. Hence, w ≤R aj−4.

If w 6|= Bj
−4, then there exist points w′ ≥R w and w′′ ≥R w such that w′ |= xj and

w′′ |= ¬xj . By definition of the valuation V, we have w′ �R aj−4, w
′ �R bj−5, and w′′ = bj−5.

If w′ ≤R aj
′

−5 or w
′ ≤R bj

′

−5 for some j′ ∈ {0, 1, 2}\{j}, then w ≤R e[s,m,n] for some s,m, n ≥ 0

and therefore w ≤R bj−4. Otherwise, w′ = aj−5. Note that there is a unique point w′′′ ≥R w

such that w′′′ ≤R aj−5, w
′′′ ≤R bj−5, and w′′′ |= Aj

−4. It is easily seen that w′′′ = bj−4 and

therefore w ≤R bj−4.
2) i = −3.
Note that w 6|= Aj

−3 if w ≤R aj−4, w ≤R bj−5, w �R bj−4 and w 6|= Bj
−3 if w ≤R aj−4,

w ≤R bj−4, w �R aj−3. Since a
j
−3 and bj−3 are unique maximal points satisfying this condition,

we have that w 6|= Aj
−3 if w ≤R aj−3 and w 6|= Bj

−3 if w ≤R bj−3.

If w 6|= Aj
−3, then there exists a point w′ ≥R w such that w′ 6|= Aj

−4, ¬¬xj and w′ |= Bj
−4.

So, w′ ≤R aj−4 and w′ �R bj−4. Since w′ 6|= ¬¬xj , there is a point w′′ ≥R w′ such that

w′′ |= ¬xj . It is clear that w′′ = bj−5. Evidently, the model M contains only one point aj−3

satisfying the following condition: w′ ≤R aj−4, w
′ ≤R bj−5 and w′ �R bj−4. Hence, w ≤R aj−3.

If w 6|= Bj
−3, then there exists a point w′ ≥R w such that w′ 6|= Aj

−4, Bj
−4 and w′ |= Aj

−3.

Then w′ ≤R aj−4, w
′ ≤R bj−4 and w′ �R aj−3. Evidently, the model M contains only one point

bj−3 satisfying this condition. Therefore, w ≤R bj−3.
3) i = −2 and j ∈ {1, 2}.
We have that w 6|= Aj

−2 if w ≤R aj−3, w ≤R bj−4, w �R bj−3 and w 6|= Bj
−2 if w ≤R c,

w ≤R bj−3, w �R aj−2, where c = a00 for j = 1 and c = b00 for j = 2. Since aj−2 and bj−2 are

unique maximal points satisfying this condition, we have that w 6|= Aj
−2 if w ≤R aj−2 and

w 6|= Bj
−2 if w ≤R bj−2.

If w 6|= Aj
−2, then there exists a point w′ ≥R w such that w′ 6|= Aj

−3, Bj
−4 and w′ |= Bj

−3.

So, w′ ≤R aj−3, w
′ ≤R bj−4, and w′ �R bj−3. It is clear that the model M contains only one

point aj−2 satisfying this condition. Hence, w ≤R aj−2.

If w 6|= Bj
−2, then there exists a point w′ ≥R w such that w′ 6|= Cj , Bj

−3 and w′ |= Aj
−3.

Then w′ ≤R c, w′ ≤R bj−3 and w′ �R aj−3, where c = a00 if j = 1 and c = b00 if j = 2.

Evidently, the model M contains only one point bj−2 satisfying this condition. Therefore,

w ≤R bj−2.
4) i = −1 and j ∈ {1, 2}. This case easily follows by analogy.

Induction step: assume that i ≥ −2 if j = 0 and i ≥ 0 if j ∈ {1, 2}. Without loss of
generality, we can consider the case j = 1. The cases j = 0 and j = 2 are proved by analogy.

By induction assumption, we have that w 6|= A1
i if w ≤R a00, a

1
i−1, b

1
i−2, w �R b00, b

1
i−1 and

w 6|= B1
i if w ≤R a00, a

1
i−2, b

1
i−1, w �R b00, a

1
i−1. Since a1i and b1i are unique maximal points

satisfying this condition, we have that w 6|= A1
i if w ≤R a1i and w 6|= B1

i if w ≤R b1i .
If w 6|= A1

i , then there exists a point w′ ≥R w such that w′ 6|= C1, A1
i−1, B1

i−2 and
w′ |= C2, B

1
i−1. By induction hypothesis, we obtain that w′ ≤R a1i−1, w

′ ≤R b1i−2, and w′ �R

b1i−1. So, w′ = a1i and w ≤R a1i by definition of the accessibility relation R. Analogously, if
w 6|= B1

i , then w ≤R b1i . The lemma is proved.
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Lemma 3.4. Let w be a world of M, then

w 6|= Es,m,n ⇐⇒ w ≤R e[s,m,n]

for all s,m, n ≥ 0 such that α0
M
7=⇒ [s,m, n].

The proof is trivial by definition of the accessibility relation R. Finally, we prove the key
lemma of this section.

Lemma 3.5. If (F, w) 6|= Es,m,n, then e[s,m,n] ∈ W and w ≤R e[s,m,n] for all s,m, n ≥ 0.

Proof. Let M′ = 〈F,V′〉 be a Kripke model such that (M′, w) 6|= Es,m,n. Since w 6|= Es,m,n,
there is a point w′ ≥R w such that the formulas A0

3s+1, B
0
3s+1, A

1
m, B

1
m, A

2
n, B

2
n are refuted

at w′, and the formulas A0
3s+2, B

0
3s+2, A

1
m+1, B

1
m+1, A

2
n+1, B

2
n+1 are true at w′.

Denote by wa
s and wb

s points of the frame F such that

1. wa
s ≥R w′, wa

s |= B0
3s, and wa

s 6|= A0
3s, B

0
3s−1;

2. wb
s ≥R w′, wb

s |= A0
3s+1, and wb

s 6|= A0
3s, B

0
3s.

It is clear that these points exist.
If wa

s or wb
s are in {a0n, b

0
n} for some n ≥ −5, then a0−5 ∈ V′(r), a0−4, b

0
−5 /∈ V′(r). By

analogy with Lemma 3.3, it is not hard to prove that wa
s = a03s+1, w

b
s = b03s+1 by induction

on s ≥ 0.
Let wa

s and wb
s are not in {a0n, b

0
n} for all n ≥ −5. Then there are n ≥ −5 and j ∈ {1, 2}

such that wa
s or w

b
s are in {ajn, b

j
n}. Evidently, either a

0
−5 /∈ V′(r), a0−4 ∈ V′(r), or b0−5 /∈ V′(r).

We need to consider the following cases:

1. aj−5 /∈ V′(r). In this case, A0
−4 is refuted at a00 if j = 1 and b00 if j = 2. Then it can

easily be seen that a0−5, b
0
−5 ∈ V′(r) and a00 /∈ V′(r). If bj−5 /∈ V′(r), then B0

−4 is true

at wa
s , w

b
s, which is impossible. If bj−5 ∈ V′(r), then B0

−4 is refuted at aj−3, b
j
−4 and

therefore A0
−3 is true at wa

s , w
b
s, which is impossible. Hence aj−5 ∈ V′(r).

2. bj−5 ∈ V′(r). In this case, B0
−4 is refuted at bj−2. Then A0

−3 is true at wa
s , w

b
s, which is

impossible. Hence bj−5 /∈ V′(r).

3. aj−4 ∈ V′(r). In this case, A0
−4 is refuted at a00 if j = 1 and b00 if j = 2. As the above,

we have that a0−5, b
0
−5 ∈ V′(r) and a00 /∈ V′(r). Then B0

−4 is refuted at aj−3, b
j
−4 and

therefore A0
−3 is true at wa

s , w
b
s, which is impossible. Hence aj−4 /∈ V′(r).

So, we have that aj−5 ∈ V′(r) and aj−4, b
j
−5 /∈ V′(r). Then A0

−4 is refuted at aj−4 and B0
−4 is

refuted at bj−4. It can easily be proved by induction on s ≥ 0 that wa
s = aj4s+2 and wb

s = bj4s+3.

Therefore, if wa
s = aj14s+2 and wb

s = bj24s+3 for some j1, j2 ∈ {1, 2}, then w′ ≤R aj24s+3 and
therefore A0

3s+2 is refuted at w′, which is impossible. Hence wa
s or wb

s are in {a0n, b
0
n} for some

n ≥ −5 and therefore a0−5 ∈ V′(r), a0−4, b
0
−5 /∈ V′(r).

Since C1 is refuted at w1 if w1 ≤R a00 and C2 is refuted at w2 if w2 ≤R b00, we have that,
for a given i ≥ 0 and j ∈ {1, 2}, the formulas Aj

i , B
j
i are refuted at ajk, b

j
k for some k ≥ 0

and true at aj
′

k , b
j′

k for all k ≥ 0, j′ ∈ {0, 1, 2} \ {j} by analogy with the above. Therefore,
a1−5 ∈ V′(p), a1−4, b

1
−5 /∈ V′(p) and a2−5 ∈ V′(q), a2−4, b

2
−5 /∈ V′(q).
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Now if we recall the proof of Lemma 3.3, then we obtain that w′ ≤R a03s+1, w
′ ≤R b03s+1,

w′ ≤R a1m, w
′ ≤R b1m, w

′ ≤R a2n, w
′ ≤R b2n and w′ �R a03s+2, w

′ �R b03s+2, w
′ �R a1m+1,

w′ �R b1m+1, w
′ �R a2n+1, w

′ �R b2n+1. Evidently, the frame F contains a unique maximal
point e[s,m,n] satisfying this condition. Hence e[s,m,n] ∈ W and w ≤R w′ ≤R e[s,m,n]. The
lemma is proved.

3.4 Key formulas

In this section, we consider the key formulas depending on variables p, q, r. First, let us
define the following formulas Fk = Fk[p, q, x, y] and Gk = Gk[p, q, x, y] in variables p, q, x
and y:

F0 = p,
G0 = q,
F1 = y ∧ q → x ∨ p,
G1 = y ∧ p → x ∨ q, and
Fk = y ∧Gk−1 → x ∨ Fk−1 ∨Gk−2,
Gk = y ∧ Fk−1 → x ∨Gk−1 ∨ Fk−2, for all k ≥ 2.

Now we introduce the following key formulas:

F 1
k [p, q] = Fk[p, q, C1, C2],

G1
k[p, q] = Gk[p, q, C1, C2],

F 2
k [p, q] = Fk[p, q, C2, C1],

G2
k[p, q] = Gk[p, q, C2, C1].

Note that the formulas Fm
k and Gm

k are depending on three variables p, q, and r, for all
k ≥ 0 and m ∈ {1, 2}.

Besides, we define the following auxiliary formulas:

Pi,j = (C2 → C1 ∨ A1
i ∨ B1

i−1) ∧ (C1 → C2 ∨ A2
i ∨B2

i−1),
Qi,j = (C2 → C1 ∨ A1

i−1 ∨ B1
i ) ∧ (C1 → C2 ∨ A2

i−1 ∨B2
i ),

for all i, j ≥ −1. The following lemma is describing the basic properties of the key formulas.

Lemma 3.6. For all i, j ≥ −1, k ≥ 1 and m ∈ {1, 2},

Int ⊢ Fm
k [Pi,j, Qi,j] ↔ Am

n+k,
Int ⊢ Gm

k [Pi,j, Qi,j ] ↔ Bm
n+k,

where

n =

{

i, m = 1;
j, m = 2.

Proof. By induction on k ≥ 1. Without loss of generality, we can assume that m = 1. The
basis of induction consists of two cases: k = 1 and k = 2.

Induction base: k = 1. In this case we have

F 1
1 [Pi,j, Qi,j ] = C2 ∧Qi,j → C1 ∨ Pi,j,

G1
1[Pi,j, Qi,j ] = C2 ∧ Pi,j → C1 ∨Qi,j .
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It can easily be checked that the following derivations holds in Int:

Int ⊢ C2 ∧ B1
i → C2 ∧Qi,j , Int ⊢ C1 ∨ Pi,j → (C2 → C1 ∨A1

i ∨ B1
i−1),

Int ⊢ C2 ∧ A1
i → C2 ∧ Pi,j, Int ⊢ C1 ∨Qi,j → (C2 → C1 ∨ A1

i−1 ∨ B1
i ).

Hence,
Int ⊢ F 1

1 [Pi,j, Qi,j] → A1
i+1,

Int ⊢ G1
1[Pi,j, Qi,j] → B1

i+1.

Conversely, since the formulas A1
i−1 → A1

i and B1
i−1 → B1

i are derivable from Int, we
have

Int, A1
i+1 ⊢ C1 ∨A1

i−1 ∨B1
i → (C2 → C1 ∨ A1

i ∨B1
i−1),

Int, B1
i+1 ⊢ C1 ∨A1

i ∨B1
i−1 → (C2 → C1 ∨ A1

i−1 ∨B1
i )

and therefore the following derivations holds in Int:

Int, A1
i+1 ⊢ C2 ∧ (C2 → C1 ∨ A1

i−1 ∨B1
i ) → Pi,j,

Int, B1
i+1 ⊢ C2 ∧ (C2 → C1 ∨ A1

i ∨B1
i−1) → Qi,j.

Hence,
Int ⊢ A1

i+1 → F 1
1 [Pi,j, Qi,j],

Int ⊢ B1
i+1 → G1

1[Pi,j , Qi,j].

Induction base: k = 2. In this case we have

Int ⊢ F 1
2 [Pi,j, Qi,j] ↔ (C2 ∧ B1

i+1 → C1 ∨A1
i+1 ∨Qi,j),

Int ⊢ G1
2[Pi,j, Qi,j] ↔ (C2 ∧A1

i+1 → C1 ∨B1
i+1 ∨ Pi,j).

Furthermore, it follows easily that:

Int ⊢ C2 ∧ B1
i → Qi,j , Int ⊢ Qi,j → (C2 → C1 ∨ A1

i+1 ∨ B1
i ),

Int ⊢ C2 ∧ A1
i → Pi,j, Int ⊢ Pi,j → (C2 → C1 ∨A1

i ∨ B1
i+1).

Hence,
Int ⊢ F 1

2 [Pi,j, Qi,j] ↔ A1
i+2,

Int ⊢ G1
2[Pi,j, Qi,j] ↔ B1

i+2.

Induction step is straightforward and left to the reader. The lemma is proved.

3.5 Encoding of the Minsky machine

Now we encode instructions of the Minsky machine M as superintuitionistic formulas such
that derivations from Int and these formulas are simulate transformations of M.

First, let us define the following formulas containing only tree variables p, q, r:

Ês,i,j = A0
3s+2 ∧ B0

3s+2 ∧ F 1
i+1 ∧G1

i+1 ∧ F 2
j+1 ∧G2

j+1 →

→ A0
3s+1 ∨ B0

3s+1 ∨ F 1
i ∨G1

i ∨ F 2
j ∨G2

j ,

Ês,0,∗ = A0
3s+2 ∧ B0

3s+2 ∧A1
1 ∧B1

1 → A0
3s+1 ∨ B0

3s+1 ∨ A1
0 ∨B1

0 ∨ q,

Ês,∗,0 = A0
3s+2 ∧ B0

3s+2 ∧A2
1 ∧B2

1 → A0
3s+1 ∨ B0

3s+1 ∨ p ∨ A2
0 ∨ B2

0 ,

Ês,0,0 = Es,0,0,

where s ≥ 0, i, j ≥ 1. By Lemma 3.6, we have the following evident lemma.
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Lemma 3.7. For all s,m, n ≥ 0,

Int ⊢ Es,m,n ↔



























Ês,i,j[Pm−i,n−j, Qm−i,n−j], 1 ≤ i ≤ m+ 1,
1 ≤ j ≤ n+ 1;

A2
n+1 ∧ B2

n+1 → Ês,0,∗[p, A
2
n ∨ B2

n], m = 0, n ≥ 1;

A1
m+1 ∧ B1

m+1 → Ês,∗,0[A
1
m ∨ B1

m, q], m ≥ 1, n = 0;

Ês,0,0, m = 0, n = 0.

Let

ϕ(x) =







x− 1, x ≥ 1;
0, x = 0;
0, x = ∗.

Now we prove that if the Kripke frame F refutes Ês,i,j then it refutes Ês,i,j at a point e[s,m,n]

for some m ≥ ϕ(i), n ≥ ϕ(j) such that α0
M
7=⇒ [s,m, n].

Lemma 3.8. If (F, w) 6|= Ês,i,j, then w ≤R e[s,m,n] for some m ≥ ϕ(i), n ≥ ϕ(j) such that

α0
M
7=⇒ [s,m, n].

Proof. Let M′ = 〈F,V′〉 be a Kripke model such that (M′, w) 6|= Ês,i,j. Since w 6|= Ês,i,j,
there is a point w′ ≥R w such that the formulas A0

3s+1 and B0
3s+1 are refuted at w′, and

the formulas A0
3s+2 and B0

3s+2 are true at w′. By the proof of Lemma 3.5, we have that

w ≤R w′ ≤R e[s,m,n] for some m,n ≥ 0 such that α0
M
7=⇒ [s,m, n]. It is clear that m = 0 if

i = 0 and n = 0 if j = 0. Hence, in order to prove the lemma it is sufficient to show that
m ≥ i− 1, n ≥ j − 1 for some i ≥ 1, j ≥ 1.

If i ≥ 1, then the formulas F 1
i , G

1
i are refuted at w′ and the formulas F 1

i+1, G
1
i+1 are true

at w′. Now we prove that if F 1
k is refuted at a point f 1

k and G1
k is refuted at a point g1k, then

f 1
k ≤R c1k+l−1 and g1k ≤R d1k+l−1 for some l ≥ 0 and {c, d} = {a, b}. By induction on k ≥ 1.
Induction base: k = 1. In this case, there are points wf ≥R f 1

1 and wg ≥R g11 such that

1. C1 is refuted at wf , wg, then the Kripke frame F contains pathes of length 5 from wf ,
wg to maximal points and therefore wf ≤R cj10 and wg ≤R dj20 for some j1, j2 ∈ {0, 1, 2}
and c, d ∈ {a, b};

2. C2 is true at wf , wg, therefore wf �R b0−1, wg �R b0−1 by the proof of Lemma 3.5;

3. wf ∈ V′(q) \V′(p) and wg ∈ V′(p) \V′(q), therefore wf , wg are incomparable points.

Thus, wf = c1i′ and wg = d1j′ for some i′, j′ ≥ 0 such that |i′ − j′| < 2, and {c, d} = {a, b}.
Induction base: k = 2. In this case, there are points wf ≥R f 1

2 and wg ≥R g12 such that

1. F 1
1 is refuted at wf and G1

1 is refuted at wg, therefore wf ≤R c1i′, wg ≤R d1j′;

2. F 1
1 is true at wg and G1

1 is true at wf , therefore wf �R d1j′, wg �R c1i′;

3. wf , wg /∈ V′(p) ∪V′(q), therefore wf 6= c1i′, wg 6= d1j′.
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Thus, wf = c1i′′, wg = d1j′′ and (wf , d
1
j′), (c

1
i′, wg) and (wf , wg) are pairs of incomparable

points. So, we have
i′ < i′′ < j′ + 2,

j′ < j′′ < i′ + 2.

Since |i′− j′| < 2, it can easily be checked that i′ = j′ = l and i′′ = j′′ = l+1 for some l ≥ 0.
Induction step: k > 2. Let the induction assumption be satisfied for all 2 ≤ k′ < k,

then there are points wf ≥R f 1
k and wg ≥R g1k such that

1. F 1
k−1, G

1
k−2 are refuted at wf , therefore wf ≤R c1k+l−2, wf ≤R d1k+l−3;

2. G1
k−1, F

1
k−2 are refuted at wg, therefore wg ≤R d1k+l−2, wg ≤R c1k+l−3;

3. G1
k−1 is true at wf and F 1

k−1 is true at wg, therefore wf �R d1k+l−2 and wg �R c1k+l−2.

Thus, wf = c1k+l−1 and wg = d1k+l−1.
Since F 1

i , G1
i are refuted at w′ and the formulas F 1

i+1, G1
i+1 are true at w′, we have

w′ ≤R c1i+l−1, w
′ ≤R d1i+l−1 and w′ �R c1i+l, w

′ �R d1i+l. Therefore, m = i+ l − 1 ≥ i− 1.
If j ≥ 1, then the proof are similar. Hence, n ≥ j − 1. The lemma is proved.

Next, we define the formula Ax(I) simulating the instruction I of the Minsky machine M:

1. If I is an instruction of the form s 7→ 〈t, 1, 0〉, then Ax(I) is the following formula

Êt,2,1 → Ês,1,1;

2. If I is s 7→ 〈t, 0, 1〉, then Ax(I) is

Êt,1,2 → Ês,1,1;

3. If I is s 7→ 〈t,−1, 0〉 / 〈u, 0, 0〉, then Ax(I) is

(Êt,1,1 → Ês,2,1) ∧ (Êu,0,∗ → Ês,0,∗);

4. If I is s 7→ 〈t, 0,−1〉 / 〈u, 0, 0〉, then Ax(I) is

(Êt,1,1 → Ês,1,2) ∧ (Êu,∗,0 → Ês,∗,0),

and the formula Ax(M) simulating the behavior of M itself:

Ax(M) =
∧

I∈M

Ax(I).

Lemma 3.9. F |= Ax(M).

Proof. In order to prove the lemma it is sufficient to show that

F |= Ax(I)

for each instruction I. We need to consider the following 4 cases.
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Case 1: I is an instruction of the form s 7→ 〈t, 1, 0〉, i.e.,

Ax(I) = Êt,2,1 → Ês,1,1.

If (F, w) 6|= Ax(I), then there is a Kripke model M′ = 〈F,V′〉 such that (M′, w) |= Êt,2,1

and (M′, w) 6|= Ês,1,1. By Lemma 3.8, w ≤R e[s,m,n] for some m ≥ 0 and n ≥ 0 such that

α0
M
7=⇒ [s,m, n]. If we recall the proofs of Lemmas 3.5 and 3.8, we obtain that the following

statements hold in M′

1. A0
3t+1, B

0
3t+1 are refuted at a03t+1, b

0
3t+1 and A0

3t+2, B
0
3t+2 are true at them;

2. F 1
2 , G

1
2 are refuted at c1m+1, d

1
m+1 and F 1

3 , G
1
3 are true at them, where {c, d} = {a, b};

3. F 2
1 , G

2
1 are refuted at c2n, d

2
n and F 2

2 , G
2
2 are true at them, where {c, d} = {a, b}.

Since
〈s,m, n〉

M
7−→ 〈t,m+ 1, n〉 ,

we have that e[t,m+1,n] ∈ W and e[s,m,n] ≤R e[t,m+1,n]. Hence Êt,2,1 is refuted at w, which

contradicts to that (M′, w) |= Êt,2,1. Therefore, (F, w) |= Ax(I).
Case 2: I is an instruction of the form s 7→ 〈t, 0, 1〉. The proof is analogous.
Case 3: I is an instruction of the form s 7→ 〈t,−1, 0〉 / 〈u, 0, 0〉, i.e.,

(Êt,1,1 → Ês,2,1) ∧ (Êu,0,∗ → Ês,0,∗).

Let (F, w) 6|= Ax(I). Then there is a Kripke model M′ = 〈F,V′〉 such that

(M′, w) 6|= (Êt,1,1 → Ês,2,1), (Êu,0,∗ → Ês,0,∗).

It is clear that if (M′, w) 6|= Ês,2,1, then (M′, w) 6|= Êt,1,1. Let (M
′, w) 6|= Ês,0,∗ for some point

w ∈ W , then by Lemma 3.8 w ≤R e[s,0,n] for some n ≥ 0 such that α0
M
7=⇒ [s, 0, n]. If we

recall the proofs of Lemmas 3.5 and 3.8 again, we obtain that

1. A0
3u+1, B

0
3u+1 are refuted at a03u+1, b

0
3u+1 and A0

3u+2, B
0
3u+2 are true at them;

2. A1
0, B

1
0 are refuted at a10, b

1
0 and A1

1, B
1
1 are true at them.

Since
〈s, 0, n〉

M
7−→ 〈u, 0, n〉 ,

we have that e[u,0,n] ∈ W and e[s,0,n] ≤R e[u,0,n]. Hence (M′, w) 6|= Êu,0,∗ and therefore
(F, w) |= Ax(I).

Case 4: I is an instruction of the form s 7→ 〈t, 0,−1〉 / 〈u, 0, 0〉. The proof is similar.
Thus, F |= Ax(I) for each instruction I ∈ M. The lemma is proved.
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3.6 Reduction of configuration problem

In this section we formally reduce the configuration problem of the Minsky machine M to
the derivation problem of the superintuitionistic propositional calculus Int+ Ax(M).

Lemma 3.10. Int+ Ax(M) ⊢ Et,k,l → Es0,m0,n0
iff 〈s0, m0, n0〉

M
7=⇒ 〈t, k, l〉.

Proof. If Int+ Ax(M) ⊢ Et,k,l → Es0,m0,n0
, then

F |= Et,k,l → Es0,m0,n0

by Lemma 3.9. If we recall that Es0,m0,n0
is refuted at e[s0,m0,n0], then we obtain that Et,k,l is

also refuted at e[s0,m0,n0]. By Lemma 3.5, e[t,k,l] ∈ W and

e[s0,m0,n0] ≤R e[t,k,l].

Therefore, 〈s0, m0, n0〉
M
7=⇒ 〈t, k, l〉 by definition of Kripke frame F.

Conversely, if 〈s0, m0, n0〉
M
7=⇒ 〈t, k, l〉, then there exists a finite sequence 〈si, mi, ni〉,

0 ≤ i ≤ µ, such that 〈sµ, mµ, nµ〉 = 〈t, k, l〉 and

〈si, mi, ni〉
M
7−→ 〈si+1, mi+1, ni+1〉

for all i, 0 ≤ i < µ. Let 〈si+1, mi+1, ni+1〉 be a result of applying of an instruction I ∈ M.
We need to consider the following 4 cases.

Case 1: I is an instruction of the form s 7→ 〈t, 1, 0〉. Then mi+1 = mi+1 and ni+1 = ni.
By Lemma 3.7, we have

Int ⊢ Esi+1,mi+1,ni+1
↔ Êsi+1,2,1[Pmi−1,ni−1, Qmi−1,ni−1],

Int ⊢ Esi,mi,ni
↔ Êsi,1,1[Pmi−1,ni−1, Qmi−1,ni−1].

Therefore Int+ Ax(M) ⊢ Esi+1,mi+1,ni+1
→ Esi,mi,ni

Case 2: I is an instruction of the form s 7→ 〈t, 0, 1〉. The proof is analogous.
Case 3: I is an instruction of the form s 7→ 〈t,−1, 0〉 / 〈u, 0, 0〉. If mi+1 = mi − 1 ≥ 0

and ni+1 = ni. By Lemma 3.7, we have

Int ⊢ Esi+1,mi+1,ni+1
↔ Êsi+1,1,1[Pmi−2,ni−1, Qmi−2,ni−1],

Int ⊢ Esi,mi,ni
↔ Êsi,2,1[Pmi−2,ni−1, Qmi−2,ni−1].

If mi+1 = mi = 0 and ni+1 = ni. By Lemma 3.7, we have

Int ⊢ Esi+1,mi+1,ni+1
↔

(

A2
ni+1 ∧B2

ni+1 → Êsi+1,0,∗[p, A
2
ni
∨ B2

ni
]
)

,

Int ⊢ Esi,mi,ni
↔

(

A2
ni+1 ∧B2

ni+1 → Êsi,0,∗[p, A
2
ni
∨ B2

ni
]
)

.

Therefore Int+ Ax(M) ⊢ Esi+1,mi+1,ni+1
→ Esi,mi,ni

.
Case 4: I is an instruction of the form s 7→ 〈t, 0,−1〉 / 〈u, 0, 0〉. The proof is similar.
Thus, Int + Ax(M) ⊢ Esi+1,mi+1,ni+1

→ Esi,mi,ni
for all i, 0 ≤ i < µ. The lemma is

proved.

Since the configuration problem for the Minsky machine M and the initial configuration
〈s0, m0, n0〉 is undecidable by Theorem 3.2, we have that the derivation problem for the
superintuitionistic propositional calculus Int+ Ax(M) is also undecidable. This completes
the proof of Theorem 3.1.
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4 Conclusion and further research

In this paper, we established that there is an undecidable superintuitionistic propositional
calculus using axioms in only 3 variables. Since there are no undecidable superintuitionistic
propositional calculi with axioms containing less than 3 variables, therefore a natural and
interesting question is there an intuitionistic propositional formula A containing less than 3
variables for which the superintuitionistic propositional calculus Int+ A is undecidable. In
this respect, we note that every intermediate logic axiomatised by a 1-variable formula has
the finite model property [18] and therefore decidable, but there exists an intermediate logic
axiomatised by a 2-variable formula, which is Kripke incomplete [14].
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