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Abstract. Initially developed for tasks related to computer graphics,
GPUs are increasingly being used for general purpose processing, in-
cluding scientific and engineering applications. In this contribution, we
have compared the performance of two graphics cards that belong to
the parallel computing CUDA platform with two C++ and Java multi-
threading implementations, using as an example of computation a brute-
force attack on Hitag2, a well known remote keyless entry application.
The results allow us to provide valuable information regarding the com-
pared capabilities of the tested platforms and to confirm that such a
weak encryption system could be broken in less than a day with medium
cost equipment.
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1 Introduccién

In symmetric encryption algorithms, brute-force attacks consist in checking all
possible keys until the correct one is found. In the worst case scenario, all the
keys from the entire key space are tested, while in average it is necessary to
check only half the number of possible keys.

Modern encryption algorithms are designed so that this kind of attack is
infeasible, as the search for the key would take millions of years. Legacy algo-
rithms were also designed with that goal in mind, with the difference that their
designers could not anticipate the spectacular increase in computing capability
that could be employed by organised groups or even individuals in such a task.

For that reason, we have considered that it is of interest to compare the
computing capability provided by several platforms when using a brute-force
approach on legacy algorithms such as Hitag2, which was introduced in 1996
but it still can be found in millions of devices [1]. Besides, the simplicity of
Hitag2 makes it an ideal candidate for its implementation using CUDA, the
parallel computing platform based on GPUs (Graphics Processor Units) created
by NVIDIA. In addition to this, we decided to implement other versions of
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our brute-force application using Java and C++, so we could test their multi-
threading capabilities, where in the case of the C++ implementation we have
used OpenMP, a well-known multi-threading library. In this way, we have been
able to check the latest improvements in Java regarding its performance and
analyse how fast it is compared to a native C++ application. The results allow
us to state that these implementations allow attackers to complete a brute-force
attack against this kind of algorithms in less than a day using publicly available
hardware (in our case, a medium tier CUDA card).

It must be clarified that, given the design of Hitag2, this stream cipher has
been considered insecure for some years [2-5], and as such it can be attacked
using expensive devices such as COPACOBANA [6]. Thus, our goal is not to
show that Hitag2 is insecure, but to compare low and medium cost technologies
that can be used for obtaining the encryption key with a sole computer in the
scope of the protocol used by Hitag2.

In recent years there have been some studies developed by other researchers
about implementing or even breaking cryptographic algorithms using CUDA
technology (see for example [7-10]). However, none of those studies is focused
on Hitag2. Besides, those studies do not compare CUDA implementations with
the Java and C++/OpenMP versions of the algorithm being tested.

This contribution represents an extension of the work presented in [11], which
studied the legacy encryption algorithm KeeLoq instead of Hitag2. In addition
to that, in this study two CUDA cards (GTX 950 and GTX 1070) have been used
instead of only one in order to extend the research to medium cost hardware.

The rest of this paper is organised as follows: In Section 2, we present a brief
overview of the Hitag2 algorithm. Section 3 describes the CUDA, C++/OpenMP,
and Java platforms used in the comparison. In Section 4, we offer a description
of our two implementations for those platforms, including relevant code of the
optimised CUDA version. The results obtained are located in Section 5. Finally,
our conclusions are presented in Section 6.

2 Hitag?2

2.1 Algorithm

Hitag2 is a stream cipher that consists of an internal 48-bit Linear Feedback
Shift Register (LFSR) and a non-linear filter function f, as it can be observed
in Figures 1 and 2. Hitag2 is the successor of Cryptol, another proprietary
encryption algorithm created by NXP Semiconductors specifically for Mifare
Radio Frequency Identification (RFID) tags.

In addition to the 48-bit key, this cipher uses a 32-bit serial number and a
32-bit Initialization Vector (IV). After a set-up phase of 32 cycles, the cipher
works in an autonomous mode where the content of the register defines both the
next encryption bit and how the register is updated. Thus, the total number of
cycles is defined by the length of the bitstream that needs to be encrypted.
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Fig. 1: Hitag2 initialisation phase.
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Fig. 2: Hitag2 operation phase.

The filter function f consists of three different functions f,, f, and f.. While
fa and fp take as input four bits and produce as output one bit, f. uses five bits
in order to generate the final result in the form of a single bit.

The three functions, which are used both in the initialization phase and the
operation phase, can be modelled as boolean tables allowing easy implementa-
tions, so the output of those functions for the input 4 is the i-th bit of the values
given below:

fald) = (0x2C79);,
fb(l) = (0X6671)i7
fe(i) = (0x7907287B);.

In the initialisation phase (see Figure 1), the register is initially filled with the
32 bits of the serial number and the first 16 bits of the key. If the serial number
is expressed as id; (0 <14 < 31) and the key is expressed as k; (0 < i < 48), the
register bits r; (0 <1 < 47) adopt the following initial state:
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a; = idi (0 S 7 S 31),
asz+; = ki (0 S 7 S 15).

In each cycle, the bit generated by f. is XORed with the corresponding bits
of the IV and the key, generating a bit that is inserted in the register at position
47, shifting in the process the register one bit to the left. The new bit is computed
according to the expression f. @ id; @ k; 16, where 0 < i < 31.

In the operation phase (see Figure 2), the new bit of the keystream is directly
the output of f., while the bit inserted at the register at position 47 in each cycle
is the result of the concatenated XOR operations g @ ro ®r3 B re D r7 ®rg B
716 D 722 D 123 D 126 D T30 D 741 D 142 D 143 D Ta6 D ra7D.

In order to decrypt a data protected with this algorithm, the receiver needs
to know both the key and the IV. Alternatively, decryption can be achieved by
using the key and the result of XORing the values f. and the IV during the
initialisation phase, as it can be deduced from Figure 1. This feature will be
used in our fine-tuned implementation.

2.2 Protocol

Hitag2 has been widely used in automotive Remote Keyless Entry (RKE) and
Passive Keyless Entry (PKE) systems. An RKE system consists of an RF trans-
mitter embedded into a car key that sends a short burst of digital data to a
receiver in the vehicle, where it is decoded. In this context, users have to ac-
tively initiate the authentication process by pressing a button in their car key.
The frequency used by RKE systems is 315 MHz in the US and Japan, and 433
MHz in Europe.

In comparison, in PKE systems users are able to automatically unlock their
cars when they approach the vehicle without having to actively press any button,
as a bidirectional communication takes place beetween the car key and the ve-
hicle when the transmitter is within the system’s range. PKE systems typically
operate at the frequency of 125 KHz.

In the PKE protocol analysed in this contribution, which was reversed engi-
neered and published online in 2008 [12], the communication between a reader
(the vehicle) and a transponder (typically embedded in the car key) starts with
the reader, which sends an authenticate command to the transponder, as illus-
trated in Figure 3.

Upon reception of this command, the transponder replies with a 32-bit mes-
sage containing its serial number. Then, the reader generates a 32-bit IV and
uses that value, together with the 48-bit key belonging to the transponder, in
order to encrypt the hexadecimal value FFFFFFFF, which will be represented
as FFFFFFFF. Next, the reader sends that encrypted element together with the
encrypted IV to the transponder (the encrypted IV, denoted as IV, is the result
of XORing the IV and the first 32 bits provided by the f. function during the
initialisation phase). If the transponder is able to recover the FFFFFFFF value
from the two elements sent by the reader, then it will send as a reply to the
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Fig. 3: Hitag2 protocol.

reader some configuration bytes only known to both of them in encrypted form
[1,13]. In this way, both the reader and the transponder are authenticated by
the other participant in the communication.

This protocol provides an easy attack scheme, as any eavesdropper is able
to obtain both the plaintext and the ciphertext from the protocol’s operation.
Having access to the element IV is not a problem for the attacker, as that value
can be directly used in the decryption.

As the number of keys is larger than the number of possible ciphertexts
(48 bits versus 32 bits), an attacker will be able to compute many keys which
convert the same plaintext into the same ciphertext. Thus, a brute force attack
such as the one described in this contribution needs an additional step in order
to correlate the keys obtained from several encryption pairs.

3 Programming platforms

3.1 CUDA

In last years, one of the dominant trends in microprocessor architectures has
been the continuous increment of the chip-level parallelism and, as a result of
that, multi-core CPUs (Central Processing Units) providing 8-16 scalar cores are
now commonplace. However, GPUs have been at the leading edge of this drive
towards increased chip-level parallelism, GPGPU being the term that refers to
the use of a GPU card to perform computations in applications traditionally
managed by the CPU. Due to their particular hardware architecture, GPUs are
able to compute certain types of parallel tasks quicker than multi-core CPUs,
which has motivated their usage in scientific and engineering applications [14].
The disadvantage of using GPUs in those scenarios is their higher power con-
sumption compared to that of traditional CPUs [15].
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CUDA is the best known GPU-based parallel computing platform and pro-
gramming model, created by NVIDIA. CUDA is designed to work with C, C++
and Fortran, and with programming frameworks such as OpenACC or OpenCL,
though with some limitations. CUDA organises applications as a sequential
host program that may execute parallel programs, referred to as kernels, on
a CUDA-capable device. The compute capability specifies characteristics such
as the maximum number of resident threads or the amount of shared memory
per multi-processor, which can significantly vary from one version to another
(and, consequently, from one graphics card to another) [16].

In order to work with CUDA applications, the programmer needs to copy
data from host memory to device memory, invoke kernels and then copy data
back from device memory to host memory.

3.2 CH++ and OpenMP

C++ is a programming language designed by Bjarne Stroustrup in 1983, and that
is standardised since 1998 by the International Organization for Standardization
(ISO). The latest version is known as C++17 [17].

OpenMP (Open Multi-Processing) is an Application Programming Interface
(API) that supports shared-memory parallel programming in C, C++, and For-
tran on several platforms, including GNU/Linux, OS X, and Windows. The
latest stable version is 4.5, released on November 2015 [18].

When using OpenMP, the section of code that is intended to run in parallel is
marked with a preprocessor directive that will cause the threads to form before
the section is executed. By default, each thread executes the parallelised section
of code independently. The runtime environment allocates threads to processors
depending on usage, machine load, and other factors.

3.3 Java

The Java programming language was originated in 1990 when a team at Sun
Microsystems was working first in the design and development of software for
small electronic devices, and later in the emerging market of Internet browsing.
Once the first official version of Java was launched in 1996, its popularity started
to increase exponentially.

Currently there are more than 10 million Java developers and, according to
[19], more than 15 billion devices (mainly personal computers, mobile phones,
and smart cards) run Java. On January 2010, Oracle Corporation completed the
acquisition of Sun Microsystems [20], so at this moment the Java technology
is managed by Oracle. The latest version, known as Java 9, was launched in
September 2017.

Between November 2006 and May 2007, Sun Microsystems released most of
the Java components under the GNU (GNU’s Not Unix!) GPL (General Public
License) model through the OpenJDK project [21], so virtually all the pieces of
the Java language are currently free open source software.
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4 Implementations

4.1 First implementation

The first implementation of the brute-force attack is a direct implementation, in
the sense that it completes all the steps needed to be performed by the attacker.
This means that, taking as input the encrypted data and the IV, the imple-
mentation performs the 32 steps of the initialisation phase and the 32 steps of
the operation phase for all the keys that are tests. It is important to point out
that this implementation has been used primarily as a comparison element with
regards to the second implementation.

4.2 Second implementation

The second implementation takes advantage of some peculiarities of the encryp-
tion algorithm and the protocol that allow to increase the performance of the
brute-force attack.

The first improvement consists in directly using the IV element (instead of
using the original IV), as that data can be easily obtained by the attacker during
one of the steps of the protocol. By using the IV, the attacker does not need to
complete the initialisation phase for each key, replacing that operation by the
XOR of the IV and a 32-bit portion of the key (bits 16 to 47) in order to produce
the 32 bits that are located in the right-hand side of the register at the start
of the operation phase. Using this improvement, the running time is practically
halved.

The second improvement derives from the fact that the plaintext is known
to the attacker and its value is the aforemention hexadecimal value FFFFFFFF.
As in the operation phase each round of the algorithm generates a bit of the
keystream, it is possible to discard a candidate key as soon as the keystream
bit generated by one round does not generate a bit 1 when XORed with the
corresponding bit of the encrypted value. This means that, in most cases, only
a few rounds of the operation phase are completed in comparison with the full
32 rounds that were completed for each key in the first implementation. By
introducing this feature, we have been able to roughly divide the running time
by 16.

The code displayed in Listing 1.1 contains the details of second version of
the CUDA kernel, where one key is tested by each thread.

5 Results

The tests whose results are presented in this section were completed using the
following equipment [22]:

— A PC with an Intel Core i7 processor model 3370 at 3.40 GHz.

— A GeForce GTX 950 card, which is a low tier GPU with 768 processor cores,
a base clock of 1024 MHz, a memory bandwith of 105.6 GB/s, and a floating
point performance of 1.85 TeraFLOPS [23].
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#define bit(x,n) (((x)>>(n))&1)

#define g4(x,a,b,c,d) (bit(x,a) + bit(x,b)*2 + bit(x,c)*4 + bit(x,d)*8)
#define f5(a,b,c,d,e) (a + b*2 + cx4 + d*8 + ex16)

#define fa 0x2C79

#define fb 0x6671

#define fc 0x7907287B

__global__ void hitag2_en(uint32_t *ciphertext, uint64_t xkey,
uint32_t *plaintext, uint64_t *numtot, uint64_t *serial, uint32_t *enciv)

{

uint64_t index = blockIdx.x*blockDim.x + threadldx.x;
uint64_t z = *key + index;
uint32_t bl, b2, b3;

bool fail = false;
uint64_t LFSR = 0;
uint32_t bstream = 0;

uint32_t result = 0;

// Phase 1: Initilisation

LFSR = (((z & OxFFFF00000000)>>32) + ((*xserial)<<16)) & OxFFFFFFFFFFFF;
LFSR ((LFSR<<32)"(((uint64_t)*enciv)&OxFFFFFFFF) "~ (z&0xFFFFFFFF))
& OxFFFFFFFFFFFF;

// Phase 2: Decryption

for (uint32_t i = 0; i < 32; i++)

{
bl = bit(fc, f5(bit(fa, g4 (LFSR, 45, 44, 42, 41)),
bit(fb, g4(LFSR, 39, 35, 33, 32)),
bit(fb, g4(LFSR, 30, 26, 24, 21)),
bit(fb, g4(LFSR, 19, 18, 16, 14)),
bit(fa, g4(LFSR, 13, 4, 3, 1))));
b2 = (*ciphertext>>(31-i))&0x01;
b3 = (*plaintext>>(31-1i))&0x01;
if ((b1°b2) != Db3)
{
fail = true;
break;
}
bstream <<= 1;
bstream += bl;
LFSR = (LFSR << 1) +
((bit (LFSR, 47)) - (bit(LFSR, 45)) "~ (bit(LFSR, 44)) ~
(bit (LFSR, 41)) ~ (bit(LFSR, 40)) ~ (bit(LFSR, 39)) -~
(bit (LFSR, 31)) ~ (bit(LFSR, 25)) ~ (bit(LFSR, 24)) -~
(bit (LFSR, 21)) ~ (bit(LFSR, 17)) ~ (bit(LFSR, 6)) ~
(bit (LFSR, 5)) ~ (bit(LFSR, 4)) ~ (bit(LFSR, 1)) ~
(bit (LFSR, 0)));
}
result = bstream -~ (*plaintext);
__syncthreads();
if (1 fail)
{
*key = z;
}

Listing 1.1: Portion of code belonging to the CUDA implementation.
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— A GeForce GTX 1070 card, which is a medium tier GPU with 1920 processor
cores, a base clock of 1506 MHz, a memory bandwith of 256.3 GB/s, and a
floating point performance of 6.46 TeraFLOPS [24].

While the CUDA and C++/OpenMP applications have been compiled with
Visual Studio 2010 and 2017 (the application for the older GeForce GTX 950
was compiled with Visual Studio 2010), the Java application has been compiled
with NetBeans 8.0 using the JDK (Java Development Kit) version 1.8.0-141.

In all the tests that have been performed, each application had to check the
first 234 possible keys (an arbitrary value large enough in order to obtain valid
conclusions) using an encryption/decryption pair generated with the following
values:

— Serial number: 0x87654321.
— IV: 0x75B5DEG65.

— Plaintext: OxFFFFFFFF.
— Ciphertext: 0x1CE18551.

5.1 Results of the first implementation

Table 1 shows the running time in seconds of the C++/OpenMP and Java
implementations when using a different number of concurrent threads. Tables 2
and 3 show the running time of the fist CUDA application when executed on
the GeForce GTX 950 with different grid sizes and a constant block size of 512
and 1024, respectively. Finally, Tables 4 and 5 include the running time of the
fist CUDA application when executed on the GeForce GTX 1070 with different
grid sizes and a constant block size of 512 and 1024, respectively.

Table 1: Running time in seconds using the C++ and Java multi-threaded first imple-
mentation.

|Number of threads| 1 | 2 | 4 | 8 | 16 | 32 |
C++ 18126.60(9084.68|4625.80|3749.45|3748.61|3747.32
Java 17548.88|8461.70(4496.55|3744.72|3694.46|3817.03

Table 2: Running time in seconds using the first CUDA implementation with a block
size of 512 on the GeForce GTX 950 card.

|Grid size [ 512 [ 1024 [ 2048 | 4096 | 8192 [16384]
|Running time[197.62[196.72]194.92[193.97[193.65]193.43]
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Table 3: Running time in seconds using the first CUDA implementation with a block
size of 1024 on the GeForce GTX 950 card.

|Grid size [ 512 [ 1024 [ 2048 | 4096 | 8192 |16384]
|[Running time[194.93]193.68]192.72[192.22[191.96]191.87]

Table 4: Running time in seconds using the first CUDA implementation with a block
size of 512 on the GeForce GTX 1070 card.

Grid size 512 | 1024 | 2048 | 4096 | 8192 |16384
Running time|53.33|50.68|49.39|48.63(48.30|48.12

Table 5: Running time in seconds using the first CUDA implementation with a block
size of 1024 on the GeForce GTX 1070 card.

|Grid size | 512 [1024]2048]4096 [8192]16384]
|[Running time[51.38]49.60]48.90]48.51[48.32[48.21 |

5.2 Results of the second implementation

Table 6 shows the running time in seconds of the C++/OpenMP and Java
implementations when using a different number of concurrent threads in the
second implemenation. Tables 7 and 8 show the running time of the second
CUDA application when executed on the GeForce GTX 950 with different grid
sizes and a constant block size of 512 and 1024, respectively. Finally, Tables 9
and 10 include the running time of the second CUDA application when executed
on the GeForce GTX 1070 with different grid sizes and a constant block size of
512 and 1024, respectively.

Figure 4 shows a graphic representation of the best running time obtained
with the second implementation by each platform.

6 Conclusions

In this contribution we have compared the computer capability of several hard-
ware and software technologies using as an example a cryptographic brute-force
attack on the legacy algorithm Hitag2. More specifically, we have compared two
versions of a CUDA application, a C++ implementation using the OpenMP li-
brary, and a Java application that uses the multi-threading capabilities provided
by the language.

These tests have shown that, with the best configuration in each case, the
native C++/OpenMP application provides a performance only slightly better
than the performance of the interpreted Java code. Given that the code of each
language was very similar, the most probable explanation is the use of basic data
types in both cases, which allowed us to avoid slow-performance Java classes
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Table 6: Running time in seconds using the C++ and Java multi-threaded second
implementation.

|Number0fthreads| 1 | 2 | 4 | 8 | 16 | 32 |

C++ 543.08|277.27|167.64|127.85|123.57|119.97
Java 525.89|268.76|161.10(132.67|123.96{121.29

Table 7: Running time in seconds using the second CUDA implementation with a block
size of 512 on the GeForce GTX 950 card.

|Grid size | 512 [1024][2048[4096[8192[16384]
|Running time[11.20]8.96]8.31]7.68]7.40] 7.25 |

Table 8: Running time in seconds using the second CUDA implementation with a block
size of 1024 on the GeForce GTX 950 card.

|Grid size  [512[1024]2048]4096[8192[16384]
|Running time|9.29]8.37]7.75[7.45]7.34] 7.25 |

Table 9: Running time in seconds using the second CUDA implementation with a block
size of 512 on the GeForce GTX 1070 card.

|Grid size  [512]1024]2048]4096|8192[16384]
|Running time[5.16]3.81]3.03[2.73]2.54] 2.43 |

Table 10: Running time in seconds using the second CUDA implementation with a
block size of 1024 on the GeForce GTX 1070 card.

|Grid size  [512]1024]2048]4096]8192]16384]
|Running time[3.90]3.32[2.77]2.58]2.45] 2.38 |

such as BigInteger. In addition to that, it is important to take into account
that Java’s JIT (Just-In-Time) compiler improves the performance by compiling
Java bytecodes into native machine code at run time [25], which would also
help to explain the similarity of its performance to the one obtained with the
C++/0OpenMP code. As the multi-threading capabilities are available in Java
by default, without having to add any third-party library, it can be stated that
Java is a viable alternative to C++ for this kind of developments.

Regarding the increase in the performance when commanding more threads,
the tests show that the improvement is tightly related to the number of physical
cores, not to the number of logical cores (the processor used in the tests has 4
physical cores and 8 logical cores).
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Fig. 4: Running time comparison.

Considering all the results, it is clear the superiority of CUDA cards with
respect to advanced CPUs for certain intensive computing tasks. The best re-
sult obtained with the GeForce GTX 1070 provides a performance almost 50
times better than that of the C+4/OpenMP implementation when using the
full capacity of the i7 3370 processor.

Even in the case of using some of the most powerful CPUs avaliable today,
such as Intel’s i9-7980XE (18 physical cores with a price around 2,000 dollars) or
AMD’s Ryzen Threadripper 1950X (16 physical cores with a price around 1,000
dollars), the performance would not achieve by far the levels obtained with a
CUDA card comparatively cheaper.

Regarding the comparison between the two CUDA devices, the results are
aligned with the technical capabilities of the cards such as the number of cores,
the memory bandwidth and the floating-point performance rate. In both cases,
the best results are obtained when using a bigger grid size, which allows to
perform less calls to the CUDA code and avoid some latency issues.

Using the best result obtained with the CUDA versions, it can be extrapo-
lated that the whole set of 24® keys could be tested in less than half a day. This
result could be vastly improved when using other CUDA cards such as the Tesla
P100 (which has 3584 processor cores and a floating point performance of 10.6
TeraFLOPS), GeForce GTX 1080 Ti (3584 processor cores and 11.3 TeraFLOPS)
or TITAN V (5120 processor cores and 14.9 TeraFLOPS) [26,27].
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