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Abstract

A probabilistic propositional logic, endowed with an epistemic component for asserting
(non-)compatibility of diagonizable and bounded observables, is presented and illustrated
for reasoning about the random results of projective measurements made on a given
quantum state. Simultaneous measurements are assumed to imply that the underlying
observables are compatible. A sound and weakly complete axiomatization is provided
relying on the decidable first-order theory of real closed ordered fields. The proposed
logic is proved to be a conservative extension of classical propositional logic.
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1 Introduction

The origin of quantum logic can be traced back to Garrett Birkhoff and John von Neumann’s
1936 paper (see [BvN36]). Since then, the question of reasoning in logic about quantum
phenomena has been a recurrent research topic.

The introduction of quantum mechanics concepts in formal logic is quite challenging since
there is the need to accommodate the continuous nature of quantum mechanics within the
discrete setting of symbolic reasoning.

There are two main approaches to quantum logic. In the original approach, proposed in
the seminal paper [BvN36], each propositional symbol is an experimental proposition over
a set of compatible observables, that is, a subset of the set of possible results of measuring
them jointly. The denotation of such a propositional symbol is a closed linear subspace
of the Hilbert space at hand. The connectives of the logic reflect the operations in the
lattice of all closed subspaces of a Hilbert space. As a consequence, some classical laws
like distributivity of ∧ and ∨ are no longer valid since the observables associated with the
experimental propositions in those laws may not be necessarily compatible. If they were all
compatible then the classical laws for ∧ and ∨ would be true (see page 831 of [BvN36]).
There have been many investigations on quantum logic based on this approach (see, for
instance, [Har81, Tak81, DCG02, PM08, Har16, Pav16]), including first-order frames and
quantum set theory.
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The other approach, assumes à priori, that all observables involved are compatible with
each other (see [vdMP03, MS06]) and focus on extensions of classical propositional logics with
new constructions for reasoning about particular quantum mechanics notions (inspired by the
way probabilistic reasoning was introduced in classical logic [Hal03, SRS17]). For an overview
of quantum logic according to this approach and quantum structures, see [EGL07, EGL09].

Herein, we address the problem of reasoning about the random results of projective mea-
surements made on a given quantum state. Since the observables involved in the measure-
ments are not necessarily compatible we need also to reason about incompatibility of ob-
servables. This was achieved by defining an epistemic-like operator ⊙α with the intended
meaning it is possible to know the truth value of propositional formula α (that is, the observ-
ables associated with the propositional symbols occurring in α are compatible).

More precisely, we develop a logic (PLQO) where each propositional symbol is an assertion
on the result of a measurement (mathematically described by an observable) and a formula
is a Boolean assertion on the possible results of the measurements associated with its propo-
sitional symbols. The probability of such a formula α being true is expressed in our logic by
∫
α. The present paper generalizes the work in [MS06] namely by presenting a more general

semantics as well as a different calculus coping with both the probabilities and incompatibility
of observables.

We note that the Boolean connectives inside a formula α have the same meaning of the
connectives of the logic in [BvN36]. However, in our logic α only appears in the scope of
either

∫
α or in the scope of ⊙α. When the observables in α are not compatible, the Boolean

connectives in that formula do not play any role since we state that
∫
α@ r is false. The same

applies to ⊙α since the evaluation of this formula corresponds only to checking whether or
not the observables in α are compatible.

As a consequence, our logic is a conservative extension of classical propositional logic in
the sense that we were able to prove that

(⊙α)⊃ (
∫
α = 1) is valid in PLQO iff α is classically valid.

That is, α is always true iff α holds in every state of a quantum system whenever the underlying
observables are compatible.

As in [BvN36] (page 826), we assume that each finite set of compatible observables is
simultaneously diagonalizable, that is, there exists an orthonormal basis of the underlying
Hilbert space composed by common eigenvectors of the observables. This is the case, for
instance, when the observables are defined by pairwise commuting compact self-adjoint oper-
ators (see [Ish95, BEH08, Hal13]).

In Section 2, we briefly review some relevant mathematical concepts underlying quantum
mechanics. Moreover, we define our context namely by assuming, for the purpose of this
work, that each observable is diagonizable and bounded besides being self-adjoint. With the
aim of setting-up the probability context for joint measurements of compatible observables we
define the observable resulting from the product of two given compatible observables. In Sec-
tion 3, we introduce the notion of propositional quantum variable and analyze compatibility
of propositional quantum variables.

After that, in Section 4, we introduce the language of PLQO after recalling some notions of
classical propositional logic as well as of the theory of real closed ordered fields. This language
has two kinds of atomic formulas: ⊙α as referred above, and

∫
α@p with the intended meaning

of it is possible to know the truth value of α and the probability of α being true is @p where @
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is a relational operator. Then, we introduce the notion of quantum interpretation structure
which is composed by a Hilbert space representing the envisaged quantum system, a unit
vector representing the quantum state and the interpretation of each propositional symbol as
a propositional quantum variable. Satisfaction and entailment are then defined. The section
ends by presenting an axiomatization for PLQO capitalizing on the decidability of the theory
of real closed ordered fields. This axiomatization is shown to be strongly sound in Section 5
after establishing some auxiliary results.

In Section 6, we show that the axiomatization is weakly complete starting by proving
a finite-dimensional model existence lemma relating satisfaction of a formula in PLQO with
satisfaction of the translation of the formula in the RCOF interpretation structure having as
domain the set R. Strong completeness is out of question since PLQO is not a compact logic
as we explain in Section 4. Conservativeness of PLQO with respect to classical propositional
logic is discussed in Section 7. Finally, in Section 8, we investigate the epistemic nature of
observability and provide several examples. We conclude the paper in Section 9 with the
global assessment of what was done and future research directions.

2 Preliminaries

Our objective here is to provide a very brief account of what we need to know about the
random results of projective measurements made on a quantum state. For a full account
see [Rud87, Rud91, Ish95, BEH08, Hal13].

Basic notions

Following the mathematical formulation of quantum mechanics, as introduced by Dirac in
1930, [Dir67], and by von Neumann in 1932, [vN55], a quantum system is defined by a
complex separable Hilbert space H. Moreover, a quantum state of the system is represented
by a unit vector in H.

We start by reviewing the concept of projection-valued measure. Given a set Ω and a
σ-algebra B over Ω, a projection-valued measure µ is a map from B to the class of bounded
operators over H having the following properties.

• For each S ∈ B, µ(S) is an orthogonal projection, that is, µ(S)2 = µ(S) and µ(S) is a
self-ajoint operator.

• µ(∅) = 0 and µ(Ω) = IH, where IH is the identity over H.

• Given a countable family {Sj}j∈J of pairwise disjoint elements of B, let

S =
⋃

j∈J

Sj.

Then, for every ψ ∈ H,
µ(S)ψ =

∑

j∈J

µ(Sj)ψ,

where the convergence of the sum is in the norm topology on H, whenever J is countably
infinite.
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• For every S1, S2 ∈ B,
µ(S1 ∩ S2) = µ(S1)µ(S2).

Any projection-valued measure µ and ψ ∈ H induce a positive real-valued measure

µψ : S 7→ 〈ψ, µ(S)ψ〉

over B. Moreover, µ induces a unique linear map

f 7→
∫

Ω
fdµ

that maps each measurable and complex function to an operator on H such that

〈

ψ,

(∫

Ω
f dµ

)

ψ

〉

=

∫

Ω
f dµψ,

for all ψ in {

ψ ∈ H :

∫

Ω
|f(λ)|2dµψ(λ) <∞

}

.

This operator satisfies the following properties:

•
∫

Ω 1S dµ = µ(S) for every S ∈ B;

•
∫

Ω fg dµ =
(∫

Ω f dµ
) (∫

Ω g dµ
)
.

A projective measurement is defined by a self-adjoint operator (aka observable) acting
on H. The possible results of the measurement are the values in the spectrum Ω of the
observable. Clearly, Ω ⊆ R since the operator is self-adjoint. From now on, let B be the
σ-field of the Borel subsets of Ω induced by the usual topology of R.

The spectral theorem tells us that a self-adjoint operator O induces a unique projection-
valued measure µ such that ∫

Ω
idΩ dµ = O,

which is called the spectral representation of O, where idΩ is the identity over Ω. Observe that
we are not imposing that O is a bounded operator. In the sequel, we denote by domO ⊆ H
the domain of O.

The following definition is used in the sequel. If O is a self-adjoint operator and f : Ω→ C

then the image of O by f is the operator

(‡) f(O) =

∫

Ω
f dµ

where µ is the projection-valued measure induced by O.

Observables

The notion of propositional quantum variable, introduced below, assumes that an observable
besides being self-adjoint is also diagonizable. We say that an operator O : H → H is
diagonizable whenever
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• O is a self-adjoint operator;

• O has a countable pure point spectrum σp(O);

• {Projω}ω∈σp(O) is a complete system of eigenprojections of O, that is,

– {ψ ∈ domO : Projωψ = ψ} is the eigenspace of O associated with the eigenvalue
ω, for each ω ∈ σp(O);

–
∑

ω∈σp(O)

Projω = IH.

Then, as shown in [BEH08],
∫

Ω
idΩ dµ = O

where µ is the discrete projection-valued measure such that

µ(S) =
∑

ω∈S∩σp(O)

χS(ω)Projω

for every S ∈ B. Moreover,

Oψ =
∑

ω∈σp(O)

ωProjωψ

for every ψ in the domain of O. That is, O is a suboperator of
∑

ω∈Ω ωProjω. When O is a
bounded operator then

O =
∑

ω∈σp(O)

ωProjω.

For example, all compact operators are diagonizable (see Riesz-Schauder Theorem, see [BEH08],
pp 79). Moreover, there are operators that although not compact are still diagonizable
(see [Hal13] pp 124) as the Hamiltonian of the simple harmonic oscillator whose eigenval-
ues are (n+ 1

2)~ω with n ∈ N (see [Ish95] pp 60 and [BEH08] pp 262).
From now on, we assume that all observables are diagonizable. Moreover, in order to

avoid the problem of domains in unbounded operators, we also assume that all observables
are bounded.

Example 2.1 Consider a spin-12 particle (see [Dir67, Gri14]). The Hilbert space for the spin
is H = C

2. Let Ox, Oy, Oz : H → H be the observables for the x, the y and the z components
of the spin defined by the matrices:

Ox =
1

2
~

[
0 1
1 0

]

Oy =
1

2
~

[
0 −i
i 0

]

Oz =
1

2
~

[
1 0
0 −1

]

,

respectively. The set of eigenvalues is {~2 ,−~

2} for the three operators. Moreover, the or-
thonormal bases induced by Ox, Oy and Oz for C2 are:

{
1√
2

[
1
1

]

,
1√
2

[
1
−1

]}

,

{
1√
2

[
1
i

]

,
1√
2

[
1
−i

]}

,

{[
1
0

]

,

[
0
1

]}

,
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respectively. So Ox, Oy and Oz are diagonalizable observables. For example, the spectral
representation of Ox is as follows:

Ox =
1√
2

[
1
1

]
~

2

〈
1√
2

[
1
1

]

, ·
〉

− 1√
2

[
1
−1

]
~

2

〈
1√
2

[
1
−1

]

, ·
〉

.

It can be easily seen that no pair of these operators commute. However, the total angular
momentum O2 defined as

O2 = O2
x +O2

y +O2
z =

3

4
~

[
1 0
0 1

]

is such that
O2Ox = OxO

2 O2Oy = OyO
2 O2Oz = OzO

2.

Thus, O2 and Ox, O
2 and Oy, and O

2 and Oz commute and so, as we shall see later on, they
are compatible observables. Observe that O2 is diagonizable as well. ∇

As we shall see later on each observable and unit vector induce a probability space al-
lowing the calculation of the probabilities of obtaining a certain result after a measurement
of that observable. When performing simultaneous measurements by a finite set of pairwise
commuting observables we need to know the probability space where we can calculate the
probabilities of the joint results. This probability space can be induced by the observable
resulting from the product of the observables at hand (see [Ish95]).

We now define the product of observables starting by introducing the notion of morphism
between observables. Let O1 and O2 be observables and {Proj1ω}ω∈σp(O1) be a complete system
of eigenprojections of O1. A morphism

f : O1 → O2

is a map f : σp(O1)→ C such that f(O1) = O2, where f(O1) is such that

f(O1) =
∑

ω∈σp(O1)

f(ω)Projω.

Proposition 2.2 Let O′ and O′′ be a pair of (diagonizable and bounded) commuting ob-
servables such that

O′ =
∑

ω′∈σp(O′)

ω′Proj′ω′ and O′′ =
∑

ω′′∈σp(O′′)

ω′′Proj′′ω′′ ,

where {Proj′ω′}ω′∈σp(O′) and {Proj′′ω′′}ω′′∈σp(O′′) are complete systems of eigenprojections of
O′ and O′′, respectively. Let

O′ ×O′′ =
∑

(ω′,ω′′)∈σp(O′)×σp(O′′)

λω′ω′′ Proj′ω′Proj′′ω′′

be an operator where λω′ω′′ ∈ (0, 1) such that λω′
1ω

′′
1
6= λω′

2ω
′′
2
for every ω′1, ω

′
2 ∈ σp(O′) and

ω′′1 , ω
′′
2 ∈ σp(O′′) with (ω′1, ω

′′
1 ) 6= (ω′2, ω

′′
2 ). Then,

O′ ×O′′

is a diagonizable and bounded operator such that there are morphisms f ′ : O′×O′′ → O′ and
f ′′ : O′ ×O′′ → O′′.

6



Proof:

We start by proving some auxiliary results.

(a) Proj′ω′Proj′′ω′′ = Proj′′ω′′Proj′ω′ , for every ω′ ∈ σp(O′) and ω′′ ∈ σp(O′′). Observe that, for
every ψ ∈ H,

O′O′′Proj′ω′ψ = O′′O′Proj′ω′ψ = ω′(O′′Proj′ω′ψ)

since O′ and O′′ commute. Hence, O′′Proj′ω′ψ belongs to the eigenspace of O′ associated with
ω′. Therefore,

Proj′ω′O′′Proj′ω′ = O′′Proj′ω′ .

Moreover,
Proj′ω′O′′Proj′ω′ = Proj′ω′O′′.

Therefore,
O′′Proj′ω′ = Proj′ω′O′′.

Similarly,
O′Proj′′ω′′ = Proj′′ω′′O′.

Thus,
O′′Proj′ω′Proj′′ω′′ψ = Proj′ω′O′′Proj′′ω′′ψ = ω′′Proj′ω′Proj′′ω′′ψ

and so Proj′ω′Proj′′ω′′ψ belongs to the eigenspace of O′′ associated with ω′′. Hence,

Proj′′ω′′Proj′ω′Proj′′ω′′ψ = Proj′ω′Proj′′ω′′ψ.

Moreover,
Proj′′ω′′Proj′ω′Proj′′ω′′ψ = Proj′′ω′′Proj′ω′ψ.

Then,
Proj′ω′Proj′′ω′′ = Proj′′ω′′Proj′ω′ .

(b) Proj′ω′Proj′′ω′′ is a projection for every ω′ ∈ σp(O′) and ω′′ ∈ σp(O′′). In fact,

(Proj′ω′Proj′′ω′′)2 = Proj′ω′Proj′′ω′′ ,

using (a) and the fact (Proj′ω′)2 = Proj′ω′ and (Proj′′ω′′)2 = Proj′′ω′′ . Moreover,

(Proj′ω′Proj′′ω′′)∗ = Proj′ω′Proj′′ω′′

also by (a) and the fact (Proj′ω′)∗ = Proj′ω′ and (Proj′′ω′′)∗ = Proj′′ω′′ .

We are now ready to prove the envisaged properties of O′ ×O′′.
(1) O′ ×O′′ is a self-adjoint operator. Observe that:

(O′ ×O′′)∗ =
∑

(ω′,ω′′)∈σp(O′)×σp(O′′)

λω′ω′′ (Proj′ω′Proj′′ω′′)∗.

Note that,
(Proj′ω′Proj′′ω′′)∗ = Proj′ω′Proj′′ω′′

since Proj′ω′Proj′′ω′′ is a projection by (b). Therefore,

(O′ ×O′′)∗ = O′ ×O′′.
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(2) O′ ×O′′ is diagonizable.
(a) It is immediate to see that the spectrum of O′ ×O′′ is countable.
(b) {Proj′ω′Proj′′ω′′ψ : ψ ∈ H} = {ψ ∈ H : O′ × O′′ψ = λω′ω′′ψ}, for each ω′ ∈ σp(O′) and
ω′′ ∈ σp(O′′) such that Proj′ω′Proj′′ω′′ 6= 0. That is,

{Proj′ω′Proj′′ω′′ψ : ψ ∈ H}

is an eigenspace of O′ ×O′′ for the eigenvalue λω′ω′′ . Let ω′1 ∈ σp(O′) and ω′′1 ∈ σp(O′′) such
that Projω′

1
Projω′′

1
6= 0.

(⊆) Assume that Projω′
1
Projω′′

1
ψ ∈ {Projω′

1
Projω′′

1
ψ : ψ ∈ H}. Observe that,

O′ ×O′′Projω′
1
Projω′′

1
ψ =

=
∑

(ω′,ω′′)∈σp(O′)×σp(O′′)

λω′ω′′ Proj′ω′Projω′
1
Proj′′ω′′Projω′′

1
ψ

= λω′
1ω

′′
1
Projω′

1
Projω′′

1
ψ.

(⊇) Assume that ψ ∈ {ψ ∈ H : O′ ×O′′ψ = λω′
1ω

′′
1
ψ}, that is, ψ is such that

O′ ×O′′ψ = λω′
1ω

′′
1
ψ.

That is, 


∑

(ω′,ω′′)∈σp(O′)×σp(O′′)

λω′ω′′ Proj′ω′Proj′′ω′′



ψ = λω′
1ω

′′
1
ψ.

Thus,
ψ = Projω′

1
Projω′′

1
ψ.

Therefore,
ψ ∈ {Projω′

1
Projω′′

1
ψ : ψ ∈ H}.

(c) Proj′ω′Proj′′ω′′ψ is a simultaneous eigenvector of O′ and O′′ with respect to ω′ and ω′′, for
each ψ ∈ H, ω′ ∈ σp(O′) and ω′′ ∈ σp(O′′) such that Proj′ω′Proj′′ω′′ 6= 0. Indeed, let ψ ∈ H,
ω′1 ∈ σp(O′) and ω′′1 ∈ σp(O′′) such that Projω′

1
Projω′′

1
6= 0. Then,

O′Projω′
1
Projω′′

1
ψ =

∑

ω′∈σp(O′)

ω′ Proj′ω′Projω′
1
Projω′′

1
ψ

= ω′1 Projω′
1
Projω′′

1
ψ.

(d) There is a countable orthonormal basis of H composed by eigenvectors of O′ ×O′′ which
are common eigenvectors of both O′ and O′′. Observe that

dimH =
∑

(ω′, ω′′) ∈ σp(O′)× σp(O′′)

Proj′
ω′Proj

′′
ω′′ 6= 0

dim{ψ ∈ H : Proj′ω′Proj′′ω′′ψ}

by (b) and since dim{ψ ∈ H : Proj′ω′Proj′′ω′′ψ} = 0 whenever Proj′ω′Proj′′ω′′ = 0. Then, an
orthonormal basis for H is obtained by joining the orthonormal bases of each eigenspace of
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O′ ×O′′. Moreover, each vector in this basis is also an eigenvector of O′ and O′′ as shown in
(c).

(3) There are morphisms f ′ : O′ × O′′ → O′ and f ′′ : O′ × O′′ → O′′. In fact let f ′ : σp(O
′ ×

O′′) → C and f ′′ : σp(O
′ × O′′) → C be maps such that f ′(λω′ω′′) = ω′ and f ′′(λω′ω′′) = ω′′.

We start by observing that
∑

ω′′∈σp(O′′)

Proj′′ω′′ = IH.

Hence,

f ′(O′ ×O′′) =
∑

(ω′,ω′′)∈σp(O′)×σp(O′′)

f ′(λω′ω′′)Proj′ω′Proj′′ω′′

=
∑

ω′∈σp(O′)

ω′Proj′ω′

∑

ω′′∈σp(O′′)

Proj′′ω′′

=
∑

ω′∈σp(O′)

ω′Proj′ω′IH

= O′.

Similarly, f ′′(O′ ×O′′) = O′′.

(4) O′ × O′′ is a bounded operator. Indeed, its domain is H and it is self-adjoint so it is
bounded (see [Hal13] Corollary 9.9 in page 173). QED

We can say that O′ × O′′ is the observable where the observables O′ and O′′ can be
simultaneously measured. The notation O′×O′′ is justified since O′×O′′ is a binary product
in the category of observables and their morphisms. Indeed, the universal property also holds.
Let g′ : O′′′ → O′ and g′′ : O′′′ → O′′ be morphisms. Let g : σp(O

′′′)→ C be defined as follows:
g(ω′′′) = λg′(ω′′′)g′′(ω′′′). Then, it is immediate to see that g is the unique morphism from O′′′

to O′ ×O′′ such that f ′ ◦ g = g′ and f ′′ ◦ g = g′′.

3 Propositional quantum variables

By a propositional quantum variable we mean a triple Y = (O,D, ↑) where O is an observable
acting on H and D is a finite partition of σp(O) and ↑ ∈ D. We say that Y is defined on H
and takes values in D. For the purpose of this paper, the set ↑ plays the role of verum and
σp(O) \ ↑, denoted by

↓,
plays the role of falsum.

We want to reason about the probability of the measurement of observable O having a
result in either ↑ or ↓ when the system is in a state ψ. In fact, an observable O and a state
ψ induce the probability space (σp(O), ℘σp(O), µψ) where µψ is the probability measure such
that

µψ(ω) = 〈ψ, µ(S)ψ〉 = 〈ψ,Projωψ〉,
where µ is the discrete projection-valued measure induced by O and S is a Borel set such
S∩σp(O) = {ω}. Observe that the value of any Borel set with this property by µ is the same.
Moreover, for every D ⊆ σp(O),

µψ(D) =
∑

ω∈D

µψ(ω) = 〈ψ, µ(S)ψ〉 = 〈ψ,ProjDψ〉,

9



where S is a Borel set such S ∩ σp(O) = D and

ProjD =
∑

ω∈D

Projω.

Now we are ready, given a quantum variable Y = (O,D, ↑) and a state ψ, to define a
random variable

Yψ = ω 7→ Dω : σp(O)→ D,
on (σp(O), ℘σp(O), µψ), where Dω is the element of the partition D to which ω belongs.
Observe that, the probability distribution induced by Yψ on D is such that:

D 7→ Prob (Yψ = D) = µψ(D) : D → [0, 1].

We next address what happens when one wants to perform several simultaneous measure-
ments on a given state of the quantum system.

Compatibility of propositional quantum variables

The theory of quantum mechanics tells us that it is possible to measure simultaneously a finite
number of observables O1, . . . , On if only if they are compatible, that is, Oi and Oj commute
for every i, j = 1, . . . , n with i 6= j.

Example 3.1 As seen in Example 2.1, the observables O2 and Ox, O
2 and Oy, and O

2 and
Oz commute and so they are compatible. ∇

Example 3.2 Consider the electron of a hydrogen atom. Then, its Hamiltonian H, total
angular momentum L2, z-component Lz of the angular momentum and z-component Sz of
the spin operator are compatible (see [Ish95] pp 119). Denote the state vectors of a hydrogen
atom by ψnℓmλ, where n > 0, ℓ = 0, . . . , n − 1 and m = −ℓ, . . . , ℓ + 1 are natural numbers
and λ = ±1

2 . These are simultaneous eigenvectors of those observables. The eigenvalues are
as follows:

• Hψnℓmλ = Enψnℓmλ where En = − R
n2 and R is the Rydberg constant (see [Hal13] pp

8);

• L2ψnℓmλ = ℓ(ℓ+ 1)~2ψnℓmλ;

• Lzψnℓmλ = m~ψnℓmλ;

• Szψnℓmλ = λ~ψnℓmλ. ∇

When performing simultaneous measurements of compatible observables O′ and O′′ on a
state ψ, the probability space where we can calculate the probabilities of the joint results is

(σp(O
′ ×O′′), ℘σp(O′ ×O′′), µψ)

induced by O′ ×O′′. Note that,

µψ(λω′ω′′) = 〈ψ,Proj′ω′Proj′′ω′′ψ〉.

10



Moreover, for any
DD′D′′ = {λω′ω′′ : ω′ ∈ D′ and ω′′ ∈ D′′}

where D′ ⊆ σp(O′) and D′′ ⊆ σp(O′′), we have

µψ(DD′D′′) = 〈ψ,
∑

λω′ω′′∈DD′D′′

Proj′ω′Proj′′ω′′ψ〉

= 〈ψ,
∑

ω′∈D′

∑

ω′′∈D′′

Proj′ω′Proj′′ω′′ψ〉

= 〈ψ,
∑

ω′∈D′

Proj′ω′

∑

ω′′∈D′′

Proj′′ω′′ψ〉

= 〈ψ,
(
∑

ω′∈D′

Proj′ω′

)

Proj′′D′′ψ〉

= 〈ψ,Proj′D′Proj′′D′′ψ〉.

We proceed now with the task of bringing the notion of compatibility to the realm of
propositional quantum variables. We say that pqvs Y ′ = (O′,D′, ↑′) and Y ′′ = (O′′,D′′, ↑′′)
are compatible if O′ and O′′ commute. As expected, we say that a finite set of quantum
variables is incompatible if it contains (at least) an incompatible pair. Otherwise, the set
is said to be compatible. Clearly, the empty set is compatible and so is each singleton set.
Moreover, every superset of an incompatible set of quantum variables is also incompatible.

Given compatible pqvs Y ′ = (O′,D′, ↑′) and Y ′′ = (O′′,D′′, ↑′′), we consider the pqv

Y = (O′ ×O′′,D, ↑)

where D is composed by the sets

DD′D′′ = {λω′ω′′ : ω′ ∈ D′ and ω′′ ∈ D′′}

for each D′ ∈ D′ and D′′ ∈ D′′, and ↑ is D↑′↑′′ .
The joint probability distribution of the random variables induced by Y ′ and Y ′′ and

quantum state ψ is such that, for each 〈D′,D′′〉 ∈ D′ ×D′′,

Prob
(
〈Y ′ψ, Y ′′ψ 〉 = 〈D′,D′′〉

)
= Prob(Yψ = DD′D′′) = 〈ψ,Proj′D′Proj′′D′′ψ〉.

If a pair of quantum variables is incompatible, then we cannot, in general, use them
simultaneously for observing the quantum system at hand. This fact will have an enormous
impact on the nature of the envisaged logic. Namely, it is at the heart of the need for an
epistemic component in the logic. Actually, this is the key difference between observing a
probabilistic system and observing a quantum system.

4 Language, semantics and calculi

The objective of this section is to define an enrichment of classical propositional logic (CPL) to
reason about the random results of simultaneously applying observables to a given quantum
state.

11



The idea is to add as little as possible to the classical propositional language. To this end,
we add a constructor for expressing that (the truth value of) a (classical) formula representing
an assertion on the results of simultaneous measurements is knowable and a symbolic construct
for constraining the probability of such a formula.

Concerning CPL we need to adopt some notation and review some concepts and facts.
Let Lc be the classical language built with the propositional symbols in B = {Bj : j ∈ N}

and with tt (verum), using the connectives ¬ (negation) and ⊃ (implication). The other
connectives as well as ff (falsum) are introduced as abbreviations. Concerning non-primitive
connectives, we use ∧ (conjunction), ∨ (disjunction) and ≡ (equivalence) in the paper. It
becomes handy to use Bα for the set of propositional symbols that occur in a formula α.

Recall that a valuation (on A) is a map v : A → {0, 1} where A ⊆ B. Given a valuation
v : A → {0, 1} and A′ ⊆ A we denote by v|A′ the restricton of v to A′. We use v c α for
stating that valuation v : A→ {0, 1}, with Bα ⊆ A, satisfies formula α and ∆ �c α for stating
that ∆ classically entails α. One says that α is a tautology if �c α.

Given a valuation v on A ⊆ B and Bj ∈ A, we denote by

vBj← [d

the valuation such that

vBj← [d(Bi) =

{

v(Bi) if i 6= j

d otherwise.

A propositional symbol Bj is said to be essential for a formula α whenever Bj ∈ Bα and
there exists a valuation v on Bα such that

vBj← [0
c α iff vBj← [1 6c α.

We denote by
eBα

the set of essential propositional symbols for α. Observe that eBα contains only the proposi-
tional symbols that contribute in an essential way to the truth value of α. Clearly, eBα ⊆ Bα.
Moreover, α is a tautology if and only if eBα = ∅. That is, the truth values of the propositional
symbols are irrelevant for determining the truth value of α. The set eBα can be effectively
calculated by finding the algebraic normal form of α and considering its propositional sym-
bols (all of them essential). For more details on algorithms for obtaining the algebraic normal
form see [Zhe27, SP07]. So, from now on, we only work with formulas in the algebraic normal
form. Hence,

eBα = Bα.

Before proceeding with the presentation of the envisaged probabilistic logic of quantum
observations PLQO, we need to adopt some notation and review some facts concerning also
the first-order theory of real closed ordered fields (RCOF), having in mind the use of its terms
for denoting probabilities and other quantities.

Recall that the first-order signature of RCOF contains the constants 0 and 1, the unary
function symbol −, the binary function symbols + and ×, and the binary predicate symbols
= and <. We take the set

X = XN ∪XLc
∪ {xA′ : A′ ⊆ B, |A′| = 2},

12



whereXN = {xk : k ∈ N} andXLc
= {xα : α ∈ Lc}, as the set of variables. By T ◦RCOF we mean

the set of terms in RCOF that do not use variables in XLc
∪ {xA′ : A′ ⊆ B, |A′| = 2} while

TRCOF denotes the set of all terms. As we shall see, the variables in XLc
become handy as fresh

variables in the proposed axiomatization PLQO, for representing within the language of RCOF
the probability of α being true. On the other hand, the variables in {xA′ : A′ ⊆ B, |A′| = 2}
are used for representing whether or not the observables associated with the propositional
symbols in A′ are compatible.

As usual, we may write t1 6= t2 for ¬(t1 = t2), t1 ≤ t2 for (t1 < t2) ∨ (t1 = t2), t1 > t2 for
¬(t1 ≤ t2), t1 ≥ t2 for ¬(t1 < t2), t1 t2 for t1 × t2 and tn for

t× · · · × t
︸ ︷︷ ︸

n times

.

Furthermore, we also use the following abbreviations for any given m ∈ N
+ and n ∈ N:

• m for 1 + · · · + 1
︸ ︷︷ ︸

addition of m units

;

• m−1 for the unique z such that m× z = 1;

• n

m
for m−1 × n.

The last two abbreviations might be extended to other terms, but we need them only for
numerals. We do not notationally distinguish, for the sake of a lighter style, between a
natural number and the corresponding numeral and between each predicate symbol and its
denotation.

In order to avoid confusion with the other notions of satisfaction used herein, we adopt
fo for denoting satisfaction in first-order logic (over the language of RCOF).

Recall also that the theory RCOF is decidable [Tar51]. This fact will be put to good use
in the axiomatization for PLQO (presented at the end of this section). Furthermore, every
model of RCOF satisfies a formula in the RCOF language if and only the formula is a theorem
of RCOF (Corollary 3.3.16 in [Mar02]). We shall take advantage of this result in the semantics
of PLQO for adopting the ordered field R of the real numbers as the model of RCOF.

Language

The language LPLQO of the probabilistic logic of quantum observations PLQO is inductively
defined as follows:

• ⊙α ∈ LPLQO when α ∈ Lc;

•
∫
α@ p ∈ LPLQO when α ∈ Lc, p ∈ T ◦RCOF

and @ ∈ {=, <, 6=,≤, >,≥};

• ϕ1 ⊃ ϕ2 ∈ LPLQO when ϕ1, ϕ2 ∈ LPLQO.

Propositional abbreviations can be introduced as usual. For instance,

¬ϕ for ϕ⊃ (
∫
tt < 1)

and similarly for ∧, ∨ and ≡.
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Semantics

Given a term t in TRCOF and an assignment ρ : X → R, we write tRρ for the denotation of
term t in R for ρ. When t does not contain variables we may use tR for the denotation of t in
R.

By a quantum interpretation structure (in short, quantum structure) we mean a triple

I = (H, ψ,Bj 7→ Bj)

where:

• H is a complex separable Hilbert space;

• ψ is a unit vector in H;

• Bj 7→ Bj is a map that associates to each propositional symbol Bj a propositional
quantum variable Bj = (Oj ,Dj , ↑j) defined on H where |Dj | = 2.

In the sequel, given A ⊆ B and a valuation v : A→ {0, 1}, let

Dv
j =

{

↑j if v(Bj) = 1

↓j otherwise

for each Bj ∈ A. Therefore, we are taking ↑ as true and ↓ as false.
Given α ∈ Lc, let α = {Bj : Bj ∈ Bα}. We say that α is an I-observable formula if

α is a compatible set of propositional quantum variables. Observe that only the essential
propositional symbols are relevant.

A quantum structure I assigns a probability to any formula α ∈ Lc such that α is a
compatible set as follows:

ProbI(α) =
∑

v : Bα → {0, 1}

v c α

Prob
(
〈(Bj1)ψ, . . . , (Bjk

)ψ〉 = 〈Dv
j1 , . . . ,D

v
jk
〉
)

=
∑

v : Bα → {0, 1}

v c α

〈ψ,Projj1Dv
j1

. . .ProjjkDv
jk

ψ〉.

assuming that Bα = {Bj1 , . . . , Bjk}. We prove in Section 5 that ProbI is indeed a probability

assignment (see [Ada98, SRS17]) when the formula at hand involves only a compatible set of
observables according to I, that is, a map P on Lc satisfying the following (Adams) principles:

P1 0 ≤ P (α) ≤ 1;

P2 If �c α then P (α) = 1;

P3 If α �c β then P (α) ≤ P (β);

P4 If �c ¬(β ∧ α) then P (β ∨ α) = P (β) + P (α).
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In [SRS17] we showed that P3 follows from P1, P2 and P4.
As we proceed to explain, a quantum structure I tells us, among other things, which are

the knowable classical formulas in the sense that they do not involve incompatible sets of
quantum variables.

Given a quantum structure I and an assignment ρ : X → R, satisfaction of formulas by
I and ρ is inductively defined as follows:

• Iρ  ⊙α whenever α is I-observable;

• Iρ 
∫
α@ p whenever Iρ  ⊙α and ProbI(α) @ pRρ;

• Iρ  ϕ1 ⊃ ϕ2 whenever Iρ 6 ϕ1 or Iρ  ϕ2.

We may omit the reference to the assignment ρ whenever the PLQO formula in hand does
not include variables. For examples illustrating satisfaction, see Section 8.

Let Γ ⊆ LPLQO and ϕ ∈ LPLQO. We say that Γ entails ϕ, written Γ � ϕ, whenever, for
every quantum structure I and assignment ρ, if Iρ  γ for each γ ∈ Γ then Iρ  ϕ. As
expected, ϕ is said to be valid when � ϕ.

Observe that entailment in PLQO is not compact. Indeed, since R is Archimedean and
⊙B1 is valid, {

∫
B1 ≤

1

n
: n ∈ N

}

�
∫
B1 = 0.

However, there is no finite subset Ψ of {
∫
B1 ≤ 1

n : n ∈ N} such that

Ψ �
∫
B1 = 0.

Calculus

The PLQO calculus combines propositional reasoning with RCOF reasoning. We intend to
use the RCOF reasoning to a minimum, namely to prove assertions like

(β1 ∧ · · · ∧ βk)⊃ β

where β1, . . . , βk, β are PLQO literals. To this end, we need to introduce some preliminary
material. Given U ⊆ A ⊆ B where A is finite, we use the abbreviation

φUA for




∧

Bj∈U

Bj



 ∧




∧

Bj∈A\U

¬Bj



 ,

when A 6= ∅, and, for tt, otherwise. Note that each classical formula φUA identifies the valuation
on A that assigns true to the propositional symbols in U and assigns false to the propositional
symbols in A \ U .

Given a propositional formula α, we denote by

Q⊙α

the RCOF formula ∧

A′ ⊆ Bα

|A′| = 2

xA′ = 0,
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and by

Q
∫
α

the RCOF formula




∧

U⊆Bα

0 ≤ xφUBα
≤ 1



 ∧




∑

U⊆Bα

xφUBα
= 1



 ∧








∧

A′ ⊆ Bα

U ′ ⊆ A′

x
φU

′

A′
=

∑

U ⊆ Bα

U ∩ A′ = U ′

xφUBα







∧







xα =

∑

v : Bα → {0, 1}

v c α

x
φ
{Bj∈Bα:v(Bj)=1}

Bα







.

We proceed to explain the meaning of each conjunct of formula Q
∫
α. The idea is that each

variable xγ represents the probability of γ being true in a particular quantum structure which,
according to the definition, is the sum of the probabilities of obtaining the results induced by
the valuations that satisfy γ when performing the measurements associated with the formula
(assuming that the underlying observables are compatible). When γ is φUBα

there is a unique
valuation on Bα that satisfies γ and so we can look at xγ as the probability of obtaining the
results induced by that valuation. The conjunct

∧

U⊆Bα

0 ≤ xφUBα
≤ 1

imposes that the probability of obtaining the results induced by each possible valuation on A
is in the interval [0, 1]. The conjunct

∑

U⊆Bα

xφUBα
= 1

expresses that the sum of those probabilities is one. The conjunct

xφU′

A′
=

∑

U ⊆ Bα

U ∩ A′ = U ′

xφUBα

is a marginal probability condition, and the conjunct

xα =
∑

v : Bα → {0, 1}

v c α

x
φ
{Bj∈Bα:v(Bj)=1}

Bα

expresses that the probability of αi being true in a quantum structure is the sum of the
probabilities of obtaining the results induced by each valuation that satisfies the formula.

With respect to Q⊙α, each variable xA′ is intended to represent whether or not the
observables associated with the propositional symbols in A′ are compatible.
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We are now ready to define an equivalent RCOF formula for each PLQO formula. Given
a formula β of PLQO of the form

∫
α@ p or ⊙α or ¬⊙α, let βRCOF be the RCOF formula







Q⊙α ∧Q
∫
α ∧ (xα @ p) if β is

∫
α@ p

Q⊙α ∧Q
∫
α if β is ⊙α

¬Q⊙α if β is ¬⊙α.

Moreover, we define ϕRCOF, where ϕ is a formula of PLQO, inductively as follows:

• ϕRCOF is βRCOF whenever ϕ is either
∫
α@ p or ⊙α or ¬⊙α;

• ϕRCOF is ϕRCOF
1 ⊃ ϕRCOF

2 whenever ϕ is ϕ1 ⊃ ϕ2 and is not of the form ¬⊙α.

The calculus for PLQO embodies classical reasoning and makes use of RCOF theorems. It
contains the following axioms and rules, assuming that ϕ1, ϕ2 are formulas and β1, · · · , βk, β
are formulas of the form ⊙α, or ¬⊙α or

∫
α@ p:

TT
ϕ1

provided that ϕ1 is a tautological formula;

MP

ϕ1

ϕ1 ⊃ ϕ2

ϕ2
;

RR
(β1 ∧ · · · ∧ βk)⊃ β

provided that

∀








k∧

j=1

βRCOF
j



⊃ βRCOF





is a theorem of RCOF.

Axioms TT and rule MP extend classical reasoning to PLQO formulas. Rule RR import
all we need from RCOF for deriving PLQO assertions on quantum observability.

Examples

We start by showing that
⊢ (⊙α1)≡ (⊙α2)

provided that �c α1≡α2, that is, observability is preserved by classical equivalence. Observe
that eBα1 = eBα2 since �c α1 ≡ α2. Thus, Bα1 = Bα2 . Hence,

Q⊙α1 is Q⊙α2 and Q
∫
α1 is Q

∫
α2

and so,

∀((Q⊙α1 ∧Q
∫
α1)⊃ (Q⊙α2 ∧Q

∫
α2)
)
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1 ∀((Q⊙α1 ∧Q
∫
α1)⊃ (Q⊙α2 ∧Q

∫
α2)
)

RCOF

2 (⊙α1)⊃ (⊙α2) RR 1

3 ∀((Q⊙α2 ∧Q
∫
α2)⊃ (Q⊙α1 ∧Q

∫
α1)
)

RCOF

4 (⊙α2)⊃ (⊙α1) RR 3

5 ((⊙α1)⊃ (⊙α2))⊃ (((⊙α2)⊃ (⊙α1))⊃ ((⊙α1)≡ (⊙α2))) TT

6 ((⊙α2)⊃ (⊙α1))⊃ ((⊙α1)≡ (⊙α2)) MP 2, 5

7 (⊙α1)≡ (⊙α2) MP 4, 6

Figure 1: ⊢ (⊙α1)≡ (⊙α2) provided that �c α1 ≡ α2.

and
∀((Q⊙α2 ∧Q

∫
α2)⊃ (Q⊙α1 ∧Q

∫
α1)
)

are theorems of RCOF. Thus, we have the derivation in Figure 1.
As another example, we now prove that

⊢ ⊙ tt,

that is, that tt is always observable. Indeed,

∀(tt⊃ (⊙ tt)RCOF
)

is a theorem of RCOF since (⊙ tt)RCOF is Q⊙ tt ∧Q
∫
tt which is tt. Therefore, by RR, we have

that ⊙ tt is a theorem.
As a consequence of these two examples, every tautology is observable taking into account

the two given examples.
Finally, we prove that

⊙(B1 ∧B2) ⊢
∫
(B1 ∧B2) ≥ 0.

We start by verifying that

∀((⊙(B1 ∧B2))
RCOF ⊃ (

∫
(B1 ∧B2) ≥ 0)RCOF

)

is a theorem of RCOF. Indeed,

• (⊙(B1 ∧B2))
RCOF is Q⊙(B1∧B2) ∧Q

∫
B1∧B2 ;

• (
∫
(B1 ∧B2) ≥ 0)RCOF is Q⊙(B1∧B2) ∧Q

∫
B1∧B2 ∧ (xB1∧B2 ≥ 0).

Thus, we have the derivation in Figure 2.
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1 ⊙(B1 ∧B2) HYP

2 ∀(⊙(B1 ∧B2))
RCOF⊃ (

∫
(B1 ∧B2) ≥ 0)RCOF

)

RCOF

3 (⊙(B1 ∧B2))⊃ (
∫
(B1 ∧B2) ≥ 0) RR 2

4
∫
(B1 ∧B2) ≥ 0 MP 1, 3

Figure 2: ⊙(B1 ∧B2) ⊢
∫
(B1 ∧B2) ≥ 0.

5 Strong soundness

In this section we show that the calculus for PLQO is strongly sound, starting by proving
some auxiliary results namely that ProbI is a probability assignment.

Let I be a quantum structure, A ⊆ B a set such that {Bj : Bj ∈ A} is a compatible set
of propositional quantum variables and v a valuation on A. Given an orthonormal basis U of
H composed of common eigenvectors of the observables in {Bj : Bj ∈ A} (observe that we
assume that observables are diagonizable and bounded), we denote by

Uv

the set {u ∈ U : Oju = λju, λj ∈ Dv
Bj
, Bj ∈ A}.

Proposition 5.1 Given a quantum structure I, sets A ⊆ A′ ⊆ B such that {Bj : Bj ∈ A′} is
a compatible set of propositional quantum variables, an orthonormal basis U of H composed
of common eigenvectors of the observables in {Bj : Bj ∈ A′}, and v : A→ {0, 1}, then

{Uv′ : v′ : A′ → {0, 1} and v′|A = v}

is a partition of Uv.

Proof:

(1) Uv′1 ∩ Uv′2 = ∅ for every v′1, v′2 : A′ → {0, 1} such that v′1|A = v and v′2|A = v and v′1 6= v′2.

Indeed, suppose, by contradiction that Uv′1 ∩Uv′2 6= ∅. Let u
′ ∈ Uv′1 ∩Uv′2 . Since v

′
1 6= v′2 then

there is Bj′ ∈ A′ such that v′1(Bj′) 6= v′2(Bj′). Hence D
v′1
Bj′
6= D

v′2
Bj′

and so D
v′1
Bj′
∩Dv′2

Bj′
= ∅.

Thus, there is no λj′ such that Oj′u
′ = λj′u

′ and λj′ ∈ Dv′1
Bj′

and λj′ ∈ Dv′2
Bj′

contradicting the

assumption that u′ ∈ Uv′1 and u′ ∈ Uv′2 .
(2) Uv ⊆

⋃

v′:A′→{0,1},v′|A=v Uv′ .

Indeed, let u ∈ Uv. Then, for every Bj ∈ A we have Oju = λju and λj ∈ Dv
Bj

. Let

v′ : A′ → {0, 1} be the valuation such that

v′(Bj′) =

{

1 if λj′ ∈ ↑j′
0 otherwise

for each Bj′ ∈ A′ and λj′ such that Oj′u = λj′u. Then, it is immediate to see that u ∈ Uv′ by
definition of v′. It remains to show that v′|A = v. Indeed, let Bj ∈ A. There are two cases.
(a) v′|A(Bj) = 1. Then, Oju = λju and λj ∈ ↑j. Hence, Dv

Bj
= ↑j since u ∈ Uv. So,
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v(Bj) = 1.

(b) v′|A(Bj) = 0. We omit the proof since it is similar to (1).

(3) Uv′ ⊆ Uv for every v′ : A′ → {0, 1} such that v′|A = v. Let v′ : A′ → {0, 1} be an arbitrary
valuation such that v′|A = v. Let u′ ∈ Uv′ . Then, for every Bj′ ∈ A′ we have Oj′u

′ = λj′u
′

and λj′ ∈ Dv′
Bj′

. Let Bj ∈ A. Hence, Oju′ = λju
′ and λj ∈ Dv′

Bj
. Observe that v′(Bj) = v(Bj).

So Dv′
Bj

= Dv
Bj
. Therefore, u′ ∈ Uv. QED

Note that, given a quantum structure I = (H, ψ,Bj 7→ Bj), a set {Bj1 , . . . , Bjk} such that
{Bji : 1 ≤ i ≤ k} is a compatible set, an orthonormal basis U of H composed of common
eigenvectors of the observables in {Bji : 1 ≤ i ≤ k} and a valuation v : {Bj1 , . . . , Bjk} →
{0, 1}, then

ProjjkDv
jk

. . .Projj1Dv
j1

ψ is
∑

u∈Uv

〈ψ,u〉u.

Proposition 5.2 Given a quantum structure I = (H, ψ,Bj 7→ Bj), α ∈ Lc such that α
is a compatible set, an orthonormal basis U of H composed of common eigenvectors of the
observables in α, then

ProbI(α) =
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

.

Proof:

Assume without loss of generality that Bα = {B1, . . . , Bk}. Then,

ProbI(α) =
∑

v : Bα → {0, 1}

v c α

Prob (〈(B1)ψ, . . . , (Bk)ψ〉 = 〈Dv
1 , . . . ,D

v
k〉)

=
∑

v : Bα → {0, 1}

v c α

〈ψ,ProjDv
k
. . .ProjDv

1
ψ〉

=
∑

v : Bα → {0, 1}

v c α

〈ψ,
∑

u∈Uv

〈ψ,u〉u〉

=
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

.

QED

Proposition 5.3 Given a quantum structure I = (H, ψ,Bj 7→ Bj) and α, γ ∈ Lc such that
Bγ ⊆ Bα and α is a compatible set, then α �c γ implies ProbI(α) ≤ ProbI(γ). Moreover,
γ �c α implies ProbI(γ) ≤ ProbI(α).

Proof:

Let U be an orthonormal basis of H composed of common eigenvectors of the observables in
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α.

We start by showing that α �c γ implies ProbI(α) ≤ ProbI(γ). Assume that α �c γ. Then,

ProbI(α) =
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

≤
∑

v : Bα → {0, 1}

v c γ

(
∑

u∈Uv

〈ψ,u〉2
)

=
∑

v : Bγ → {0, 1}

v c γ









∑

v′ : Bα → {0, 1}

v′|Bγ
= v

∑

|u′〉∈Uv′

〈ψ,u′〉2









=
∑

v : Bγ → {0, 1}

v c γ

(
∑

u∈Uv

〈ψ,u〉2
)

(∗)

= ProbI(γ)

where (∗) follows from Proposition 5.1.

We now show that γ �c α implies ProbI(γ) ≤ ProbI(α). Assume that γ �c α. Then,

ProbI(γ) =
∑

v : Bγ → {0, 1}

v c γ

(
∑

u∈Uv

〈ψ,u〉2
)

=
∑

v : Bγ → {0, 1}

v c γ









∑

v′ : Bα → {0, 1}

v′|Bγ
= v

∑

|u′〉∈Uv′

〈ψ,u′〉2









(∗)

=
∑

v : Bα → {0, 1}

v c γ

(
∑

u∈Uv

〈ψ,u〉2
)

≤
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

= ProbI(α)

where (∗) follows from Proposition 5.1. QED

Proposition 5.4 Given a quantum structure I = (H, ψ,Bj 7→ Bj), ProbI is a probability
assignment for every formula α ∈ Lc such that α is a compatible set.
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Proof:

(1) 0 ≤ ProbI(α) ≤ 1, for every formula α such that α is a compatible set. Let U be an
orthonormal basis of H composed of common eigenvectors of the observables in α. Then,

ProbI(α) =
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

≥ 0

and

ProbI(α) =
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

≤
∑

v:Bα→{0,1}

(
∑

u∈Uv

〈ψ,u〉2
)

=
∑

u∈U

〈ψ,u〉2 (∗)

= 1,

where (∗) holds, by Proposition 5.1 since {Uv : v : Bα → {0, 1} is a partition of U .

(2) If �c α then ProbI(α) = 1, for every formula α such that α is a compatible set. Let
U be an orthonormal basis of H composed of common eigenvectors of the observables in α.
Assuming that α is a tautology, then

ProbI(α) =
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

=
∑

v:Bα→{0,1}

(
∑

u∈Uv

〈ψ,u〉2
)

=
∑

u∈U

〈ψ,u〉2 (∗)

= 1,

where (∗) holds, by Proposition 5.1 since {Uv : v : Bα → {0, 1} is a partition of U .

(3) If α �c β then ProbI(α) ≤ ProbI(β), for every formulas α and β such that α and β
are compatible sets. Assume that α �c β. Then, since propositional logic has the Craig
interpolation property there is γ such Bγ ⊆ Bα ∩ Bβ and α �c γ and γ �c β. Then, by
Proposition 5.3, ProbI(α) ≤ ProbI(γ) and ProbI(γ) ≤ ProbI(β).

(4) If �c ¬(β ∧ α) then ProbI(β ∨ α) = ProbI(β) +ProbI(α), for every formulas α and β such
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that α ∪ β is a compatible set. Assume that �c ¬(β ∧ α). Then,

ProbI(β ∨ α) =
∑

v : Bβ∨α → {0, 1}

v c β ∨ α

(
∑

u∈Uv

〈ψ,u〉2
)

=
∑

v′ : Bα ∪Bβ → {0, 1}

v′ c β ∨ α




∑

|u′〉∈Uv′

〈ψ,u′〉2




=
∑

v′ : Bα ∪Bβ → {0, 1}

v′ c β




∑

|u′〉∈Uv′

〈ψ,u′〉2


 +

∑

v′ : Bα ∪ Bβ → {0, 1}

v′ c α




∑

|u′〉∈Uv′

〈ψ,u′〉2


 (∗)

=








∑

v : Bβ → {0, 1}

v c β

∑

u∈Uv

〈ψ,u〉2








+








∑

v : Bα → {0, 1}

v c α

∑

u∈Uv

〈ψ,u〉2








(∗∗)

= ProbI(β) + ProbI(α)

where (∗) holds by Proposition 5.1 and (∗∗) holds by the hypothesis �c ¬(β ∧ α). QED

Proposition 5.5 Given a quantum structure I = (H, ψ,Bj 7→ Bj), sets A
′ ⊆ A ⊆ B such

that {Bj : Bj ∈ A} is a compatible set, then

ProbI(φ
U ′

A′ ) =
∑

U ⊆ A

U ∩A′ = U ′

ProbI(φ
U
A)

for every U ′ ⊆ A′.

Proof:

Assume, without loss of generality that, A = {B1, . . . , Bn}, A′ = {B1, . . . , Bk} and U ′ =
{B1, . . . , Bℓ} where k ≤ n and ℓ ≤ k. Observe that:

ProbI(φ
U ′

A′ ) =
∑

v : A′ → {0, 1}

v c φU
′

A′

〈ψ,Proj1Dv
1
. . .ProjkDv

k
ψ〉

= 〈ψ,Proj1↑ . . .Projℓ↑Projℓ+1
↓ . . .Projk↓ψ〉

= 〈ψ,Proj1↑ . . .Projℓ↑Projℓ+1
↓ . . .Projk↓

(Projk+1
↑ +Projk+1

↓ ) . . . (Projn↑ + Projn↓ )ψ〉
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=
∑

(Dk+1,....Dn)∈{↑,↓}n−k

〈ψ,Proj1↑ . . .Projℓ↑Projℓ+1
↓ . . .Projk↓

Projk+1
Dk+1

. . .ProjnDn
ψ〉

=
∑

(Dk+1,....Dn)∈{↑,↓}n−k

ProbI(φ
U ′∪{Dj :Dj=↑ and j=k+1,...,n}
A )

=
∑

U ⊆ A

U ∩A′ = U ′

ProbI(φ
U
A)

QED

Now we are ready to show that the proposed axiomatization of PLQO is strongly sound.

Proposition 5.6 The logic PLQO is strongly sound.

Proof:

We only check that axiom RR is sound since the proof of the others is straightforward.

Rule (RR). Let I be a quantum structure and ρ : X → R be an assignment. Assume that

Iρ  β1 ∧ · · · ∧ βk
and that

∀








k∧

j=1

βRCOF
j



⊃ βRCOF



 (∗)

is in RCOF. Let ρ′ : X → R be an assignment such that ρ′(x) = ρ(x) for x ∈ XN,

ρ′(xα) = ProbI(α)

for every α ∈ Lc such that α is a compatible set of observables in I, and

ρ′(x{Bi,Bj}) =

{

0 if {Bi, Bj} is a compatible set of observables in I

1 otherwise

for every Bi, Bj ∈ B(β1∧···∧βk)⊃β. We start by showing that

Rρ′ fo β
RCOF
j ,

for j = 1, . . . , k. We consider three cases:

(1) βj is ⊙αj . Then, βRCOF
j is

Q⊙αj ∧Q
∫
αj .

Recall that Iρ  ⊙αj . Hence, αj is I-observable, that is αj is a compatible set of observables
in I. Thus,

ρ′(x{Bi1
,Bi2
}) = 0

for every distinct Bi1 , Bi2 ∈ Bαj
. Therefore,

Rρ′ fo Q
⊙αj .
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Moreover, Rρ′  Q
∫
αj . In fact,

(a) 0 ≤ ρ′(xφUBαj

) ≤ 1. Let U ⊆ Bαj
. Since

ρ′(xφUBαj

) = ProbI(φ
U
Bαj

)

then 0 ≤ ρ′(xφUBαj

) ≤ 1 by Proposition 5.4.

(b)
∑

U⊆Bαj
ρ′(xφUBαj

) = 1. Observe that

∨

U⊆Bαj

φUBαj

is a tautology and so

ProbI(
∨

U⊆Bαj

φUBαj
) = 1

by Proposition 5.4. Since, for distinct U1, U2 ⊆ Bαj
,

�c ¬(φU1
Bαj
∧ φU2

Bαj
),

then, by Proposition 5.4,
∑

U⊆Bαj

ProbI(φ
U
Bαj

) = 1.

Thus,
∑

U⊆Bαj

ρ′(xφU
Bαj

) = 1.

(c) ρ′(xφU′

A′
) =

∑

U ⊆ Bαj

U ∩ A′ = U ′

ρ′(xφUBαj

) for every A′ ⊆ Bαj
and U ′ ⊆ A′. Observe that

ρ′(xφU′

A′
) = ProbI(φ

U ′

A′ )

=
∑

U ⊆ Bαj

U ∩ A′ = U ′

ProbI(φ
U
Bαj

) (∗)

=
∑

U ⊆ Bαj

U ∩ A′ = U ′

ρ′(xφUBαj

)

where (∗) holds by Proposition 5.5.

(d) ρ′(xαj
) =

∑

v : Bαj
→ {0, 1}

v c αj

ρ′(x
φ
{Bj∈Bαj

:v(Bj)=1}

Bαj

). Observe that

�c αj ≡








∨

v : Bαj
→ {0, 1}

v c αj

φ
{Bj∈Bαj

:v(Bj)=1}

Bαj
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and that

�c ¬(φ
{Bj∈Bαj

:v1(Bj)=1}

Bαj
∧ φ{Bj∈Bαj

:v2(Bj)=1}

Bαj
)

for every distinct pair v1, v2 : Bαj
→ {0, 1}. Thererefore, by Proposition 5.4, the thesis

follows.

(2) βj is
∫
αj @ pj. Then, β

RCOF
j is

Q⊙αj ∧Q
∫
αj ∧ (xαj

@ p).

Recall that Iρ 
∫
αj @ pj. Then Iρ  ⊙αj . Thus, by (1),

Rρ′ fo Q
⊙αj ∧Q

∫
αj .

So it is enough to prove that
Rρ′ fo xαj

@ pj.

Since Iρ 
∫
αj @ pj, then

ProbI(αj) @ pRj .

Thus,
ρ′(xαj

) @ pRj

and so, Rρ′ fo xαj
@ pj.

(3) βj is ¬⊙αj. Then, βRCOF
j is

Q¬⊙αj .

Recall that Iρ  ¬⊙αj. Hence, αj is not an I-observable. Then, there are Bi, Bj ∈ Bαj
such

that {Bi, Bj} is an incompatible set of observables in I. So,

ρ′(x{Bi,Bj}) = 1.

Therefore,
Rρ′ fo ¬Q⊙αj .

Moreover, by definition of ρ′,

Rρ′ fo









∧

A′ ⊆ Bαj

|A′| = 2

xA′ ≥ 0









.

In this way, we conclude the proof of

Rρ′ fo

k∧

j=1

βRCOF
j .

Returning to the main proof, observe that, by (*),

Rρ′ fo





k∧

j=1

βRCOF
j



⊃ βRCOF,
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so
Rρ′ fo β

RCOF.

It remains to prove that Iρ  β. There are three cases:

(1) β is ⊙α. Hence,
Rρ′ fo Q

⊙α ∧Q
∫
α.

Therefore, ρ′(x{Bi1
,Bi2
}) = 0 for every distinct Bi1 , Bi2 ∈ Bα. Thus, by definition of ρ′,

{Bi1 , Bi2} is a compatible set of quantum variables. Therefore, α is a compatible set of
quantum variables, that is α is an I-observable formula and so Iρ  ⊙α.
(2) β is

∫
α@ p. Thus,

Rρ′ fo Q
⊙α ∧Q

∫
α ∧ (xα @ p).

Therefore, similarly to (1), Iρ  ⊙α. Moreover, ρ′(xα) @ pRρ. Hence, by definition of ρ′,

ProbI(α) @ pRρ

and so Iρ 
∫
α@ p.

(3) β is ¬⊙α. Thus,
Rρ′ fo Q

¬⊙α.

Hence, ρ′(x{Bi1
,Bi2
}) = 1 for some distinct Bi1 , Bi2 ∈ Bα. Thus, by definition of ρ′, {Bi1 , Bi2}

is not a compatible set of quantum variables. Therefore, α is not a compatible set of quantum
variables, that is α is not an I-observable formula and so Iρ 6 ⊙α. Thus, Iρ  ¬⊙α. QED

6 Weak completeness

The objective of this section is to show that PLQO is weakly complete. That is, for every
formula ϕ ∈ LPLQO, if � ϕ then ⊢ ϕ. There is no hope that there is a finitary calculus for
which PLQO is strongly complete since, as we referred above, PLQO is not compact.

We prove the weak completeness by contrapositive, that is, if 6⊢ ϕ then 6� ϕ. Hence,
assuming that ϕ is not derivable, we show that there is a quantum structure that falsifies
ϕ. With this purpose in mind, we start by defining a generic quantum structure that will be
relevant not only for weak completeness but also for conservativeness.

Given a finite set B′ ⊆ B, NC ⊆ B′ × B′ and a map f : {0, . . . , 2|B′| − 1} → C such that
NC is irreflexive and symmetric, and

√
√
√
√
√

2|B
′|−1∑

j=0

f(j)f(j) = 1,

let
IB

′,NC,f = (H, ψ,Bj 7→ Bj)

be such that

• H is C2|B
′|+2|NC| and fix

{ζv0 , . . . , ζv
2|B

′ |−1
} ∪

⋃

A∈NC

{ζA• , ζA•}
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as a basis for H where vk : B
′ → {0, 1} is the valuation Bj 7→ bj where bj is the j-th bit

in the binary decomposition of k (assuming left padding by zeros);

• ψ is
2|B

′|−1∑

j=0

f(j) ζvj ;

• For each Bj ∈ B′, Bj = (Oj , {{0, 1}, {0, 1}c}, {0, 1}) with

Oj =




∑

{vk:vk(Bj )=1}

ζvk〈 ζvk , · 〉



 +




∑

{vk :vk(Bj )=0}

−ζvk〈 ζvk , · 〉



+




∑

{(Bi,Bj)∈NC:j<i}

ζ(Bi,Bj)
•
•
〈 ζ(Bi,Bj)

•
•
, · 〉



+




∑

{(Bi,Bj)∈NC:j>i}

ζ(Bi,Bj)•
〈 ζ(Bi,Bj)•

, · 〉



+




∑

{A∈NC:Bj /∈A}

ζA• 〈 ζA• , · 〉 + ζA• 〈 ζA• , · 〉





where

ζ(Bi,Bj)
•
•
=

√

1

2
ζ(Bi,Bj)

• +

√

1

2
ζ(Bi,Bj)•

;

• For Bj /∈ B′, choose for Oj an arbitrary observable on H, for Dj any partition of σp(Oj)
with two elements and for ↑j one of them.

Observe that the chosen basis for the Hilbert space H of IB
′,NC,f is a finite set including

vectors representing the valuations over the finite set B′ of propositional symbols and vectors
assigned to the non compatible pairs in NC. The map f corresponds to the “mass” of each
valuation. So, the quantum state |ψ〉 is a superposition of the valuation vectors each weighted
by its mass. The operator Oj associated with a propositional symbol Bj ∈ B′ is the sum of
several operators:

• Projection
∑

{vk :vk(Bj)=1} ζvk〈 ζvk , · 〉 stating that the vectors associated with the valu-
ations that satisfy Bj are eigenvectors with eigenvalue 1.

• Operator
∑

{vk :vk(Bj)=0}−ζvk〈 ζvk , · 〉 stating that the vectors associated with the valu-
ations that do not satisfy Bj are eigenvectors with eigenvalue −1.

• Projections
∑

{(Bi,Bj)∈NC:j<i} ζ(Bi,Bj)
•
•
〈 ζ(Bi,Bj)

•
•
, · 〉,∑{(Bi,Bj)∈NC:j>i} ζ(Bi,Bj)•

〈 ζ(Bi,Bj)•
, · 〉

referring to the incompatible pairs where Bj appears which were defined so that Oi and
Oj are not compatible (observe that that the two vectors ζ(Bi,Bj)

• and ζ(Bi,Bj)•
associ-

ated with the pair (Bi, Bj) are eigenvectors with eigenvalues 0 and 1, respectively).

• Projection
∑

{A∈NC:Bj /∈A}
ζA•〈 ζA• , · 〉+ ζA• 〈 ζA• , · 〉 stating that the vectors referring to

the incompatible pairs where Bj does not appear are eigenvectors with eigenvalue 1.
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So, Oj is an observable since it is a diagonizable, bounded and self-adjoint operator.
The next result states that the pairs of propositional symbols in NC correspond to incom-

patible quantum variables in IB
′,NC,f and vice-versa.

Proposition 6.1 Let Bℓ, Bm ∈ B′ be distinct variables. Then, {Bℓ, Bm} is not a compatible
set of quantum variables in IB

′,NC,f iff (Bℓ, Bm) ∈ NC.

Proof:

(←) Assume that (Bℓ, Bm) ∈ NC and that ℓ < m. Observe that

Oℓ =




∑

{vk:vk(Bℓ)=1}

ζvk〈 ζvk , · 〉



 +




∑

{vk :vk(Bℓ)=0}

−ζvk〈 ζvk , · 〉



+




∑

{(Bi,Bℓ)∈NC:ℓ<i,i 6=m}

ζ(Bi,Bℓ)
•
•
〈 ζ(Bi,Bℓ)

•
•
, · 〉



+

ζ(Bm,Bℓ)
•
•
〈 ζ(Bm,Bℓ)

•
•
, · 〉 +




∑

{(Bi,Bℓ)∈NC:ℓ>i}

ζ(Bi,Bℓ)•
〈 ζ(Bi,Bℓ)•

, · 〉



+




∑

{A∈NC:Bℓ /∈A}

ζA• 〈 ζA• , · 〉+ ζA• 〈 ζA• , · 〉





and

Om =




∑

{vk :vk(Bm)=1}

ζvk〈 ζvk , · 〉



 +




∑

{vk :vk(Bm)=0}

−ζvk〈 ζvk , · 〉



+




∑

{(Bi,Bm)∈NC:m<i}

ζ(Bi,Bm)••
〈 ζ(Bi,Bm)••

, · 〉



+

ζ(Bm,Bℓ)•
〈 ζ(Bm,Bℓ)•

, · 〉 +



∑

{(Bi,Bm)∈NC:m>i,i 6=ℓ}

ζ(Bi,Bm)•
〈 ζ(Bi,Bm)•

, · 〉



+




∑

{A∈NC:Bm /∈A}

ζA• 〈 ζA• , · 〉+ ζA• 〈 ζA• , · 〉



 .

We now show that
OmOℓ 6= OℓOm.
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Indeed,

OmOℓ =




∑

{vk:vk(Bℓ)+vk(Bm)6=1}

ζvk〈 ζvk , · 〉



+




∑

{vk :vk(Bℓ)+vk(Bm)=1}

−ζvk〈 ζvk , · 〉



+




∑

{(Bi,Bℓ)∈NC:ℓ<i,i 6=m}

ζ(Bi,Bℓ)
•
•
〈 ζ(Bi,Bℓ)

•
•
, · 〉



+

√

1

2
ζ(Bm,Bℓ)•

〈 ζ(Bm,Bℓ)
•
•
, · 〉 +




∑

{(Bi,Bℓ)∈NC:ℓ>i}

ζ(Bi,Bℓ)•
〈 ζ(Bi,Bℓ)•

, · 〉



+




∑

{(Bi,Bm)∈NC:m<i}

ζ(Bi,Bm)••
〈 ζ(Bi,Bm)••

, · 〉



+




∑

{(Bi,Bm)∈NC:m>i,i 6=ℓ}

ζ(Bi,Bm)•
〈 ζ(Bi,Bm)•

, · 〉



+




∑

{A∈NC:Bℓ,Bm /∈A}

ζA• 〈 ζA• , · 〉 + ζA• 〈 ζA• , · 〉



 .

On the other hand,

OℓOm =




∑

{vk:vk(Bℓ)+vk(Bm)6=1}

ζvk〈 ζvk , · 〉



+




∑

{vk :vk(Bℓ)+vk(Bm)=1}

−ζvk〈 ζvk , · 〉



+




∑

{{Bi,Bm}∈NC:m<i}

ζ(Bi,Bm)••
〈 ζ(Bi,Bm)••

, · 〉



+

√

1

2
ζ(Bm,Bℓ)

•
•
〈 ζ(Bm,Bℓ)•

, · 〉 +




∑

{(Bi,Bm)∈NC:m>i,i 6=ℓ}

ζ(Bi,Bm)•
〈 ζ(Bi,Bm)•

, · 〉



+
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∑

{(Bi,Bℓ)∈NC:ℓ<i,i 6=m}

ζ(Bi,Bℓ)
•
•
〈 ζ(Bi,Bℓ)

•
•
, · 〉



+




∑

{(Bi,Bℓ)∈NC:ℓ>i}

ζ(Bi,Bℓ)•
〈 ζ(Bi,Bℓ)•

, · 〉



+




∑

{A∈NC:Bℓ,Bm /∈A}

ζA• 〈 ζA• , · 〉 + ζA• 〈 ζA• , · 〉



 .

Hence

OmOℓ −OℓOm =
1

2

(

ζ(Bm,Bℓ)•
〈 ζ(Bm,Bℓ)

• , · 〉 − ζ(Bm,Bℓ)
• 〈 ζ(Bm,Bℓ)•

, · 〉
)

6= 0.

Therefore, {Bm, Bℓ} is not a compatible set of quantum variables.

(→) Assume that (Bℓ, Bm) /∈ NC. Then,

Oℓ =




∑

{vk:vk(Bℓ)=1}

ζvk〈 ζvk , · 〉



 +




∑

{vk :vk(Bℓ)=0}

−ζvk〈 ζvk , · 〉



+




∑

{(Bi,Bℓ)∈NC:ℓ<i}

ζ(Bi,Bℓ)
•
•
〈 ζ(Bi,Bℓ)

•
•
, · 〉



+




∑

{(Bi,Bℓ)∈NC:ℓ>i}

ζ(Bi,Bℓ)•
〈 ζ(Bi,Bℓ)•

, · 〉



+




∑

{A∈NC:Bℓ /∈A}

ζA• 〈 ζA• , · 〉+ ζA• 〈 ζA• , · 〉





and

Om =




∑

{vk :vk(Bm)=1}

ζvk〈 ζvk , · 〉



+




∑

{vk :vk(Bm)=0}

−ζvk〈 ζvk , · 〉



+




∑

{(Bi,Bm)∈NC:m<i}

ζ(Bi,Bm)••
〈 ζ(Bi,Bm)••

, · 〉



+




∑

{(Bi,Bm)∈NC:m>i}

ζ(Bi,Bm)•
〈 ζ(Bi,Bm)•

, · 〉



+




∑

{A∈NC:Bm /∈A}

ζA• 〈 ζA• , · 〉+ ζA• 〈 ζA• , · 〉



 .
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Hence,

OmOℓ =




∑

{vk :vk(Bℓ)+vk(Bm)6=1}

ζvk〈 ζvk , · 〉



+




∑

{vk :vk(Bℓ)+vk(Bm)=1}

−ζvk〈 ζvk , · 〉



+




∑

{(Bi,Bm)∈NC:m<i}

ζ(Bi,Bm)••
〈 ζ(Bi,Bm)••

, · 〉



+




∑

{(Bi,Bm)∈NC:m>i}

ζ(Bi,Bm)•
〈 ζ(Bi,Bm)•

, · 〉



+




∑

{(Bi,Bℓ)∈NC:ℓ<i}

ζ(Bi,Bℓ)
•
•
〈 ζ(Bi,Bℓ)

•
•
, · 〉



+




∑

{(Bi,Bℓ)∈NC:ℓ>i}

ζ(Bi,Bℓ)•
〈 ζ(Bi,Bℓ)•

, · 〉



+




∑

{A∈NC:Bℓ,Bm /∈A}

ζA• 〈 ζA• , · 〉+ ζA• 〈 ζA• , · 〉



 .

On the other hand,

OℓOm =




∑

{vk :vk(Bℓ)+vk(Bm)6=1}

ζvk〈 ζvk , · 〉



+




∑

{vk :vk(Bℓ)+vk(Bm)=1}

−ζvk〈 ζvk , · 〉



+




∑

{(Bi,Bm)∈NC:m<i}

ζ(Bi,Bm)••
〈 ζ(Bi,Bm)••

, · 〉



+




∑

{(Bi,Bm)∈NC:m>i}

ζ(Bi,Bm)•
〈 ζ(Bi,Bm)•

, · 〉



+




∑

{(Bi,Bℓ)∈NC:ℓ<i}

ζ(Bi,Bℓ)
•
•
〈 ζ(Bi,Bℓ)

•
•
, · 〉



+
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∑

{(Bi,Bℓ)∈NC:ℓ>i}

ζ(Bi,Bℓ)•
〈 ζ(Bi,Bℓ)•

, · 〉



+




∑

{A∈NC:Bℓ,Bm /∈A}

ζA• 〈 ζA• , · 〉+ ζA• 〈 ζA• , · 〉



 .

Therefore,
OmOℓ −OℓOm = 0.

Therefore, {Bm, Bℓ} is a compatible set of quantum variables. QED

We now proceed towards the weak completeness of the calculus. We start by proving a
finite dimensional model existence lemma showing that we can move back and forth between
satisfaction of certain RCOF formulas and satisfaction of PLQO formulas.

Proposition 6.2 Let β1, . . . , βk be formulas of PLQO of the form ⊙α, ¬⊙α,
∫
α@ p and ρ

be an assignment over R such that

Rρ fo Q
∫
αj ,

for each j such that βj is either of the form ⊙αj or
∫
αj@pj. Then, there is a finite dimensional

quantum structure I such that

Iρ 

k∧

j=1

βj iff Rρ fo

k∧

j=1

βRCOF
j .

Proof: Consider two cases:
(1) There is j = 1, . . . , k such βj is either of the form ⊙αj or

∫
αj @ pj. Let B′ is ∪kj=1Bβj .

Assume without loss of generality that B′ is the set {B1, . . . , B|B′|}. Consider the quantum
structure

I = IB
′,NC,f

where
NC = {(Bi, Bj) : ρ(x{Bi,Bj}) 6= 0, Bi, Bj ∈ B′, i 6= j}

and

f(j) =
√

ρ(x
φ
Uj

B′

)

where Uj = {Bi ∈ B′ : vj(Bi) = 1} for each j = 0, . . . , 2|B
′| − 1 and each valuation vj is as

defined in IB
′,NC,f .

We now prove that
Iρ  βj iff Rρ fo β

RCOF
j

for each j = 1, . . . , k.

There are three cases to consider:

(a) βj is ⊙α. Recall that (⊙α)RCOF is Q⊙α ∧Q
∫
α.

(←) Assume that Rρ fo Q
⊙α∧Q

∫
α. Hence, Rρ fo xA′ = 0 for every A′ ⊆ Bα with |A′| = 2
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since Rρ fo Q
⊙α. We must show that α = {Bj : Bj ∈ Bα} is a compatible set of quantum

variables. Let {Bi, Bj} be a set of quantum variables in α. Observe that (Bi, Bj) /∈ NC.
Thus, by Proposition 6.1, {Bi, Bj} is a compatible set of quantum variables. Thus, Iρ  ⊙α.
(→) Assume that Rρ 6fo (⊙α)RCOF. Then, Rρ 6fo Q

⊙α since, by hypothesis,

Rρ fo Q
∫
α.

Then, there is {Bℓ, Bm} ⊆ Bα such that

ρ(x{Bℓ,Bm}) 6= 0.

Hence, (Bℓ, Bm) ∈ NC. Thus, by Proposition 6.1, {Bm, Bℓ} is not a compatible set of quantum
variables. Therefore, also α is not a compatible set of quantum variables and so α is not an
I-observable formula. Thus, Iρ 6 ⊙α.

(b) βj is
∫
α@ p. Recall that (

∫
α@ p)RCOF is Q⊙α ∧Q

∫
α ∧ (xα @ p). Observe that

ProbI(α) =
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

(∗)

=
∑

v : Bα → {0, 1}

v c α








∑

v′ : B′ → {0, 1}

v′|Bα
= v

〈ψ, ζv′〉2








(∗∗)

=
∑

v : Bα → {0, 1}

v c α








∑

v′ : B′ → {0, 1}

v′|Bα
= v

ρ(x
φ
{Bk∈B′:v′(Bk)=1}

B′

)








=
∑

v : Bα → {0, 1}

v c α

ρ(x
φ
{Bj∈Bα:v(Bj)=1}

Bα

)

= ρ(xα)

since Rρ fo Q
∫
α, (*) holds by Proposition 5.2 and (**) holds since

Uv ∩ {ζv0 , . . . , ζv
2|B

′ |−1
} = {v′ : v′ : B′ → {0, 1} and v′|Bα = v}

and
〈ψ,u〉 = 0

for each u ∈ ⋃A∈NC{ζA• , ζA•}.

(←) Assume that Rρ fo β
RCOF
j . Therefore,

Rρ fo Q
⊙α ∧Q

∫
α ∧ (xα @ p)
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and following a similar reasoning to the one in (a), we can conclude that Iρ  ⊙α. Moreover,
ρ(xα) @ pRρ. Then,

ProbI(α) = ρ(xα) @ pRρ.

So Iρ  βj.

(→) Assume that Rρ 6fo β
RCOF
j . Since, by hypothesis, Rρ fo Q

∫
α, there are only two cases

to consider.

(i) Rρ 6fo Q
⊙α. Then, by (a), Iρ 6 ⊙α and so Iρ 6 βj .

(ii) Rρ 6fo xα @ p. Hence,
ProbI(α) = ρ(xα) 6@ pRρ.

Therefore, Iρ 6 βj .

(c) βj is ¬⊙α. Recall that (¬⊙α)RCOF is ¬Q⊙α. Hence,

Rρ fo (¬⊙α)RCOF

iff

Rρ fo ¬Q⊙α
iff

Rρ fo ¬(Q⊙α ∧Q
∫
α)

iff

Rρ fo ¬(⊙α)RCOF

iff

Rρ 6fo (⊙α)RCOF

iff

Iρ 6 ⊙α
iff

Iρ  ¬⊙α.

Therefore,
Rρ fo β1 ∧ · · · ∧ βk

iff

Rρ fo β1 . . . Rρ fo βk

iff

Iρ  β1 . . . Iρ fo βk

iff

Iρ  β1 ∧ · · · ∧ βk
as we wanted to show. QED

Theorem 6.3 The logic PLQO is weakly complete.

Proof:

Let ϕ ∈ LPLQO. Assume that 6⊢ ϕ. We proceed to show that 6� ϕ. First observe that ¬ϕ
must be consistent because otherwise from ¬ϕ one would be able to derive every formula,
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including in particular, ϕ, and so ⊢ (¬ϕ)⊃ϕ, and in that case one would have ⊢ ϕ. Observe
that there are conjunctions η1, . . . , ηℓ of literals of the form ⊙α, ¬⊙α and

∫
α@ p such that

⊢ (¬ϕ)≡
ℓ∨

i=1

ηi.

Since ¬ϕ is consistent, at least one of the disjuncts must also be consistent. Let ηm be one
such consistent disjunct. Assume that ηm is

β1 ∧ · · · ∧ βk

where each βj is a literal. For proving that 6� ϕ it is enough to show that ¬ϕ is satisfiable.
Hence, it is enough to show that there is one satisfiable disjunct. Indeed, ηm is satisfiable as
we proceed to prove. Towards a contradiction, assume that there are no I and ρ such that
Iρ  ηm holds. Then, by Proposition 6.2, there would not exist ρ such that

Rρ fo

∧

j:βj is either⊙αjor
∫
αj@pj

Q
∫
αj ∧

k∧

j=1

βRCOF
j .

So, there would not exist ρ such that

Rρ fo

k∧

j=1

βRCOF
j .

Hence, we would have

∀








k∧

j=1

βRCOF
j



⊃ ffRCOF



 ∈ RCOF.

Then, by RR, we would establish
ηm ⊢ ff

in contradiction with the consistency of ηm. QED

7 Conservativeness

In this section, we show that PLQO is a conservative extension of classical propositional logic
modulo a translation of classical propositional formulas into the language of PLQO.

Proposition 7.1 Let α ∈ Lc. Then

⊙α �
∫
α = 1 iff �c α.

Proof:

(→) Assume that ⊙α �
∫
α = 1. Consider the quantum structure

I = IBα,∅,f
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where f(j) =
√

1
2|Bα| for every j = 0, . . . , 2|Bα| − 1, and an arbitrary assignment ρ over R.

Thus, by Proposition 6.1, {Bm, Bℓ} is a compatible set of quantum variables for I for every
Bm, Bℓ ∈ α. Therefore,

Iρ  ⊙α.
Hence, by the hypothesis, Iρ 

∫
α = 1. Then, ProbI(α) = 1. Observe that, by Proposi-

tion 5.2,

ProbI(α) =
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

and that
∑

u∈Uv

〈ψ,u〉2 = 1

2|Bα|
,

for each v : Bα → {0, 1}, because Uv = {ζv}. Thus, since
∑

v : Bα → {0, 1}

v c α

(
∑

u∈Uv

〈ψ,u〉2
)

= 1

we have that {v : v : Bα → {0, 1}} = {v : v : Bα → {0, 1}, v c α}. Therefore, α is a
tautology.

(←) Assume that �c α. Let I be a quantum structure and ρ an arbitrary assignment over R.
Assume Iρ  ⊙α. Since ProbI is a probability assignment by Proposition 5.4, ProbI(α) = 1
and so Iρ 

∫
α = 1. QED

Then, writing
α∗ for (⊙α)⊃ (

∫
α = 1),

for the translation of classical formula α into the language of PLQO, the following corollary
holds.

Proposition 7.2 Let α ∈ Lc. Then

� α∗ iff �c α.

8 Epistemic nature of observability

We now analyse the epistemic aspects of quantum reasoning of observability in PLQO following
the steps in [HS15]. Recall that ⊙α intuitively means that it is possible to do a simultaneous
measurement over the essential propositional symbols of α in order to know its truth value.
With this in mind, we discuss the behaviour of ⊙ with respect to the propositional connectives.

We start by considering the law

((⊙α1) ∧ (⊙α2))≡ (⊙(α1 ∧ α2))

which is characteristic of an epistemic operator (see for instance [MvdH95]). Observe that
there are classical formulas α1 and α2 such that

6� ((⊙α1) ∧ (⊙α2))≡ (⊙(α1 ∧ α2)).
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Indeed, consider the quantum structure I1 defined in Example 8.1 and let α1 be B1 and α2

be B2.

Example 8.1 Recall Example 2.1. Let

I = (C2, ψ,Bj 7→ Bj)

be the quantum structure where

• B1 is a propositional quantum variable such that O1 is the observable Ox for the x
component of a spin-12 particle;

• B2 is a propositional quantum variable such that O2 is the observable Oy for the y
component of a spin-12 particle;

• B3 is a propositional quantum variable such that O3 is the observable O2 for the total
angular momentum of a spin-12 particle.

Hence, B1 and B2 are not compatible. Therefore,

I 6 ⊙(B1 ∧B2).

On the other hand, I  ⊙(B1) and I1  ⊙(B2) and so

I 6 ((⊙B1) ∧ (⊙B2))≡ (⊙(B1 ∧B2)).

However,
I  ((⊙B1) ∧ (⊙B3))≡ (⊙(B1 ∧B3))

since B1 and B3 are compatible.
Finally, there is no surprise at all due to the intended meaning of ⊙ that the following

distributive law
(⊙(α1 ∧ (α2 ∨ α3)))≡ ((⊙(α1 ∧ α2) ∨ (⊙(α1 ∧ α3)))

does not hold. In fact,

I 6 (⊙(B3 ∧ (B1 ∨B2))) ≡ ((⊙(B3 ∧B1) ∨ (⊙(B3 ∧B2)))

holds. ∇

In the same vein, we can show that

((⊙α1) ∨ (⊙α2))≡ (⊙(α1 ∨ α2))

is satisfiable for some classical formulas α1 and α2 but does not hold in general, and the same
for the law

((⊙α1)⊃ (⊙α2))⊃ (⊙(α1 ⊃ α2)).

Concerning other laws of epistemic logic, note that the introspection axioms cannot be
considered in our setting since the language of PLQO does not allow formulas with nested ⊙
operators. On the other hand, the knowledge axiom

(⊙α)⊃ α∗
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holds in general for any tautology α.
Finally, observe that the formula

(⊙α)≡ (⊙(¬α))
holds in general since eBα = eB¬α. Indeed, assume that Bj ∈ eBα. Then, for every valuation
v on Bα,

vBj← [0
c α iff vBj← [1 6c α.

Hence,
vBj← [0

c ¬α iff vBj← [1 6c ¬α.
taking into account v is also a valuation on B¬α. So, Bj ∈ eB¬α. Similarly, for the other
inclusion.

A similar epistemic behaviour occurs for example for the operator Mdefined as an abbre-
viation of

∫
α > 0. The intuitive meaning of Mα is that α is observable and possibly true.

Since, Mα can be seen as a conjunction involving ⊙α, then, as a consequence of the previ-
ous discussion, it is immediate to extrapolate its behaviour with respect to the propositional
connectives. On the other hand,

6� (Mα)≡ (M(¬α))
when α is a tautology. In fact, when α is a tautology, Mα holds but M(¬α) does not hold
since although ⊙(¬α) holds we have

∫¬α = 0. However, � (Mα) ≡ (M(¬α)) when both α
and ¬α are not tautologies.

9 Concluding remarks

Probabilistic reasoning about quantum observability was introduced into classical proposi-
tional logic by developing the logic PLQO. The semantics of PLQO was given by quantum
structures each one composed by a Hilbert space representing the quantum system together
with a unit vector representing the current state plus the interpretation of each propositional
symbol as a propositional quantum variable over a diagonizable and bounded observable.
The logic was axiomatized by relying on the decidable theory of real closed ordered fields and
shown to be strongly sound and weakly complete. Furthermore, PLQO was proved to be a
conservative extension of classical propositional logic (modulo a suitable translation). The
epistemic nature of the observability operator ⊙ was discussed. Although ⊙ satisfies at least
in part some epistemic properties, it is of a different nature of other quantum-like epistemic
operators, like for instance those in [BS10], defined for different purposes.

Concerning future work, we intend to extend the logic to cope with unbounded opera-
tors. Moreover, we intend to investigate the consequence of discarding the assumption that
simultaneous measurements imply compatibility of observables.

Furthermore, it seems worthwhile to study other meta-properties of PLQO starting with
decidability and complexity of the decision problem. We expect this complexity to be much
lower than the complexity of RCOF theoremhood since we only need to recognize RCOF

theorems of a very simple clausal form.
Strong completeness of the PLQO axiomatization is not possible becauseR is an Archimedean

real closed ordered field which led to a non compact entailment. Relaxing the semantics may
open the door to establishing strong completeness.

Finally, it seems worthwhile to analyze the observability operator ⊙ as an analog of the
consistency operator in some paraconsistent and paracomplete logics [CCM07].
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[BEH08] J. Blank, P. Exner, and M. Havĺıček. Hilbert Space Operators in Quantum Physics.
Theoretical and Mathematical Physics. Springer, New York; AIP Press, New York,
second edition, 2008.

[BS10] A. Baltag and S. Smets. Correlated knowledge: an epistemic-logic view on quan-
tum entanglement. International Journal of Theoretical Physics, 49(12):3005–
3021, 2010.

[BvN36] G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Annals of

Mathematics, 37(4):823–843, 1936.

[CCM07] W. Carnielli, M. E. Coniglio, and J. Marcos. Logics of formal inconsistency. In
D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 14,
pages 1–93. Springer, 2007.

[DCG02] M. L. Dalla Chiara and R. Giuntini. Quantum logics. In D. Gabbay and F. Guen-
thner, editors, Handbook of Philosophical Logic, volume 6, pages 129–228. Springer,
2002.

[Dir67] P. A. M. Dirac. The Principles of Quantum Mechanics. Oxford University Press,
(revised) fourth edition, 1967.

[EGL07] K. Engesser, D. Gabbay, and D. Lehmann, editors. Handbook of Quantum Logic

and Quantum Structures: Quantum Structures. Elsevier, 2007.

[EGL09] K. Engesser, D. Gabbay, and D. Lehmann, editors. Handbook of Quantum Logic

and Quantum Structures: Quantum Logic. Elsevier, 2009.

[Gri14] R. B. Griffiths. The new quantum logic. Foundations of Physics, 44(6):610–640,
2014.

[Hal03] J. Y. Halpern. Reasoning about Uncertainty. MIT Press, 2003.

[Hal13] B. Hall. Quantum Theory for Mathematicians. Springer, Graduate Texts in Math-
ematics, 2013.

[Har81] G. M. Hardegree. An axiom system for orthomodular quantum logic. Studia

Logica, 40(1):1–12, 1981.

40



[Har16] C. Hartonas. First-order frames for orthomodular quantum logic. Journal of

Applied Non-Classical Logics, 26(1):69–80, 2016.

[HS15] A. B. Henriques and A. Sernadas. Epistemic nature of quantum reasoning.
Preprint, IST - U Lisboa, 1049-001 Lisboa, Portugal, 2015.

[Ish95] C. J. Isham. Lectures on Quantum Theory: Mathematical and Structural Founda-

tions. Imperial College Press, 1995.

[Mar02] D. Marker. Model Theory: An Introduction, volume 217 of Graduate Texts in

Mathematics. Springer-Verlag, 2002.

[MS06] P. Mateus and A. Sernadas. Weakly complete axiomatization of exogenous quan-
tum propositional logic. Information and Computation, 204(5):771–794, 2006.

[MvdH95] J.-J. Meyer and W. van der Hoeck. Epistemic Logic for AI and Computer Science.
Cambridge University Press, 1995.

[Pav16] M. Pavičić. Classical logic and quantum logic with multiple and common lattice
models. Advances in Mathematical Physics, pages Art. ID 6830685, 12, 2016.
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