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1. Motivation 

In the German dialectological literature of the last century, there are several recurring 

ideas concerning the relation between the meaning of a lexical variable (i.e. a semantic 

concept)1 and the way in which its variants (i.e. a concept’s designations) are distributed 

in space. They are mainly based on observations of regularities in the corpora of maps 

the authors in question had at hand, and can be seen as attempts to systematize the vast 

amount of seemingly unstructured lexical distributions. However, the accounts that they 

give are somewhat fragmentary, as they are mostly based on individual observations 

that lack the support of hard quantitative evidence, and the explanations provided are, 

on the whole, not very methodical.2 The main themes that can be distinguished in the 

relevant literature are the following: 

• Concepts belonging to the fields of agriculture, crafts or household tend to have a 

richly varied terminology with variants that are clearly distributed in space. 

The reason that is given for this is mainly cultural: Purportedly, in these domains cultural practices 

are spatially limited and the readiness to adopt cultural influences varies from region to region, 

which readily leads to the formation of distinct variant areas. 

Cf. Wenzel (1930, p. 13); Bach (1950, p. 174). 

• Concepts that belong to the field of child language tend to have a broad range of 

variants that are dispersed irregularly in space. 

It is assumed that children have a strong tendency to alter words playfully due to their play instinct 

and their untamed imagination (not to be confused with the idea of inadvertent imperfect learning 

or altered replication3). 

Cf. Wenzel (1930, pp. 59, 66); Bach (1950, pp. 173–174); Hildebrandt (1983, p. 1364); Lötscher 

(2005, p. 304). 
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• Concepts that implicate a certain emotional involvement, are expressive, or convey 

notions of affect, have a tendency to develop small, heterogeneous areas.  

It is argued that expressiveness and emotionality foster creative innovations and spontaneous 

modifications of existing forms, which leads to the beginnings of spatial diversity,4 also impeding the 

emergence of uniform areas. Examples typically given are obscene expressions, terms of 

superstition, and – strangely – some plant and animal names, which again is ascribed to the 

imaginative power of children. 

Cf. Wenzel (1930, p. 59); Bach (1950, pp. 170–174); Hildebrandt (1983, p. 1364); Lötscher (2005, 

p. 310). 

• More general and prototypical concepts tend to have larger, more homogeneous 

areas than specific or marginal ones. 

One of the reasons given for this is that it is easier to distinguish between prototypes than between 

different entities of similar makeup, simply because the latter tend to share more common 

characteristics. For instance, it is rather easy to tell apples and pears apart, but it is not so easy to 

distinguish between different apple varieties. Thus, more specific terms have a disposition to be 

mixed up easily because the concepts they refer to are confused easily, which results in 

heterogeneous geographical distributions. Prototypes and general terms, on the other hand, 

represent rather clear-cut and distinct concepts, which allows them to develop regular spatial 

distributions. 

Cf. Bach (1950, p. 170–172); Hildebrandt (1983, pp. 1333, 1364); Lötscher (2005, pp. 304–305, 310; 

2010). 

There are several other alleged patterns of associations between meaning and spatial 

distribution brought up by different authors, but there are noticeable differences 

between them and they are sometimes even contradictory. However, most authors seem 

to be in general agreement about the four different patterns named above. These 

patterns illustrate the way in which the issue of spatially relevant lexical properties has 

been dealt with so far theoretically. If the claims made by Wenzel, Bach, Hildebrandt and 

Lötscher are justified, it should be possible to substantiate them by way of statistical 

hypothesis testing. It should also be possible to test whether there are any connections 

between meaning and spatial distribution that go beyond those postulated so far. 

To this end, it is necessary to quantify the spatial patterns that are expected to be of 

relevance. Lee and Kretzschmar (1993) have proposed measuring the ‘spatial clustering’ 

of variants. Then, ‘Combinations of words may be put together either by experiments or 

by prior understanding of relations among words. For example, it may be possible to 
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observe significant spatial clustering of whole groups of variants from semantic fields 

such as the vocabulary of farming, or of the household.’5 Speelman and Geeraerts 

(2008)6 have taken a slightly different approach: they measure the ‘heterogeneity’ of 

lexical spatial distributions by taking into account the number of variants of a concept, 

the spatial expanse of their occurrence and their dispersion across space. By means of 

linear regression analysis, they can show that, for instance, the ‘negative affect’ of a 

concept on the whole increases the heterogeneity of its distribution, which partly 

corroborates the third of the assertions quoted above. It appears, however, that there 

are not only one, but two characteristics that could play a role in assessing spatial 

distributions: the size of the variants’ areas of occurrence, and the degree of interference 

from other variants within these areas. For this reason a more detailed analysis of 

geographical variation might prove worthwhile.  

This article attempts to shed new light on the question of whether and to what extent 

there is a relation between a lexical variable’s meaning and the spatial distribution of its 

variants. By looking at the variation of a lexical variable, not at the meanings that a 

single word can have, this question is tackled from an onomasiological perspective. 

While this study is explicitly focusing on lexical variation, this is not a typical area of 

interest in dialectology (esp. of German), primarily because variation on the lexical level 

is generally perceived to be less systematic than on other linguistic levels (e.g. phonetic 

variation).7 One of the objectives of this article is to investigate whether there is a 

systematic dimension to lexical variation in space, and whether there is a relation 

between the meaning of a concept and the way in which its designations are distributed 

in space. To this end, indices are calculated that describe the size of the variants’ areas 

and their internal uniformity (Sections 3 and 4). It is then tested whether significant 

values of these indices occur in particular subject areas (Section 5 and 6). Subsequently, 

the findings are used to set up an explanatory framework that allows them to be 

accounted for in terms of language variation and change in space (Section 7). It should 

be emphasized that the focus of this study is mainly on methodological advancement, as 

it aims to provide the necessary tools for testing and interpreting relationships between 

linguistic properties and types of spatial distributions. 
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2. Data 

The analyses discussed in this article have been performed using data from the 

Sprachatlas von Bayerisch-Schwaben (SBS), which was developed and compiled at the 

University of Augsburg under the direction of Werner König during the years 1984–

2005. Comprising 14 volumes with a total of approximately 2,700 maps, it documents 

the dialectal variation in the administrative region of Bavarian Swabia (southern 

Germany) and adjoining areas. For the elicitation of the data, between one and six 

informants were interviewed at 272 record locations. Intended to record the most 

original state of the dialects still accessible, the typical informant is born between 1900 

and 1930 and has a farming or crafting background (men and women were interviewed 

indifferently).8 The onomasiological lexical variation was elicited using a catalogue of 

questions, each aiming at a specific concept or lexical variable. Typically, each question 

regarding a lexical item in the questionnaire corresponds to a lexical map in the SBS.9 
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Fig. 1: Original point-symbol map “Kartoffelkraut” (‘potato 

haulm’) of the SBS (vol. VIII, p. 294)  

Fig. 2: Legend for the original point-symbol 

map “Kartoffelkraut” (‘potato haulm’) of the 

SBS (vol. VIII, p. 295) 

Figure 1 is a reproduction of an original point-symbol map from the SBS, the map for 

the lexical variable ‘potato haulm’ (“Kartoffelkraut”). Fig. 2: Legend for the original 

point-symbol map “Kartoffelkraut” (‘potato haulm’) of the SBS (vol. VIII, p. 295) is the 

legend for this map, which gives explanations for the symbols used and some additional 

information. Please note that the symbols only indicate whether a variant has been 

recorded at a location or not; information about their rank or relative frequency is not 

given. 

For the present study, a sub-corpus of 735 lexical variables has been selected, which 

covers the majority of the onomasiological lexical maps of the SBS. For the 

categorization of the raw data with respect to lexical criteria, the original classification 

performed by the authors of the SBS was used, who arranged the individual records in 

variants with different degrees of abstraction (e.g. by denoting them with similar 

symbols), of which the highest degree was used for the present purpose: Thus, lexically 

related records (e.g. forms that consist of the same lexemes but have a different 

morphological configuration, such as Kraut and Kräuterich in the example above) were 

assigned to the same variant; purely phonetic differences were ignored completely.10 As 

the methods that are introduced in Sections 3 and 4 require nominal-scale lexical data, 

taking into account gradual relatedness was not expedient. For further processing and 

analysis, the data they were converted into an SQL database format. In the database, one 

or more entries per variable are assigned to each of the 272 localities. Each entry 

corresponds to one distinct response given by the informant(s). Thus, whether or not a 

variant has been recorded at a location is documented, but no further information, e.g. 

about the variants’ relative frequencies, is available. Accordingly, the working data in the 

database consist of information about the occurrence or non-occurrence of variants at 

272 individual locations. 

The locations being geo-referenced, the individual records can be related to each 

other in terms of geographical proximity, which is essential in order to make statements 

about the geographical distribution of the recorded variants and to discern meaningful 

distributional patterns. These goals are achieved by applying methods from 

Geostatistical Dialectometry. 
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3. Geostatistical Dialectometry 

Dialectometry has acknowledged the fact that the information obtained in dialect 

surveys is sometimes unreliable, in the sense that individual records are susceptible to 

all sorts of sources of errors, to the extent that the data about individual variant 

distributions can be so sketchy that they are unsuitable for analysis. Especially if one 

assumes that a considerable amount of local variation is to be expected at a given point 

in space, a small number of records per location are insufficient material for the 

assessment of its lectal variation. The approach that traditional dialectometry takes to 

cope with this problem is to aggregate many variants’ geographical distributions in 

order ‘to compensate for the noisiness of individual distributions’,11 which is also a 

means of finding general spatial patterns in the data. By taking many distributions into 

account at the same time, the weak points of their individual representations in the data 

are balanced out. However, this way of proceeding renders it impossible to make any 

statements about the relations between the distributions of single variables or their 

alignment with extra-linguistic constraints,12 as the aggregation reduces the many 

dimensions of diatopic variation to only one that accounts for the overall dialectal 

variation but not for the inter-feature variability within the collection of variables. 

The recent advances in the field of Geostatistical Dialectometry13 that have been 

achieved in a collaboration of the Department for German Linguistics at the University of 

Augsburg and the Institute for Stochastics at Ulm University14 are the result of an effort 

to eliminate the blind spot of dialectometry concerning individual variants’ 

distributions.15 Geostatistical Dialectometry tries to take the individual geographical 

configurations of linguistic variables and their variants into account.16 It also 

acknowledges the need to compensate for the unavoidable inaccuracy inherent in raw 

geolinguistic data, which fails to reproduce the subtleties of geographical and local 

variation, but its approach aims to preserve the features’ individuality and the whole of 

the relevant variation. Treating the records as mere statistical samples, it tries to assess 

a record’s reliability by taking into account the variants recorded in the area 

surrounding the record in question. Thus, the variance in the data is stabilized not by 

utilizing evidence from other variables, but evidence from other records of the same 

variable in the record’s neighbourhood. Stray outliers are regarded as less reliable 
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sources of information than records that are surrounded and thus “backed” by records 

of the same variant. This is done by applying intensity estimation (which is closely 

related to kernel density estimation) to the geo-referenced data points.17 This method 

utilizes the degree of geographical proximity to estimate the mutual relevance that the 

records at two locations have for one another in order to calculate an occurrence 

probability (or estimated relative frequency) for each variant at every location. This 

way, a relative-frequency graded area-class map18 can be generated out of non-

frequency data recorded at isolated points in the plane, providing the basis for further 

analyses. (Instead of using geographical distance, linguistic distance measures can also 

be employed,19 which prevents dialect islands and sharp dialect boundaries from being 

“smoothed over”. In this article, however, geographical distances are used, as the aim of 

the procedure is the quantification of very general distribution patterns and not the 

detailed reproduction of variant distributions.) 
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Fig. 3: Occurrence map of 

the variant Kraut of the 

variable ‘potato haulm’ 

from the SBS  

1

2 3

4

5

6

7

8

9 10
11 12 13 14

15

16

17

18

19
20

21 22

23

24

25 26
27

28
29

30

31

32 33 34

35

36
37

38

39 40
41 42

43
44

45 46

47

48

49

50
51

52
53 54 55

56

57
58

59

60
61 62

63 64

65 66
67

68

69

70
71 72 73

74
75

76 77
78

79

80

81
82

83

84

85

86

87

88 89 90

91

92

93

94

95 96

97 98
99

100 101 102

103

104
105 106

107 108

109
110 111

112
113 114

115

116
117

118
119

120

121 122

123 124
125

126

127

128
129

130

131

132 133

134
135

136

137

138 139
140

141

142

143

144

145
146 147

148

149
150

151

152 153

154

155

156

157

158

159 160

161
162

163

164

165 166 167 168 169
170

171

172
173

174

175

176 177
178

179 180 181

182 183

184

185

186

187 188
189

191

190

192 193
194

195

196 197 198 199 200
201

202

203

20
4

205
206

207

208
209 210 211 212 213 214 215

216

217

218

219

220

221 222 223

224

225 226
227 228

229
230

231

232

233
234

235
236

237 238
239

240

241
242

243 244
245

246
247 248

249

250

251

252
253

254 255

256
257 258

259

260
261

262 263

264

265 266 267 268

269

270

271

272

 

Fig. 4: Intensity map of the 

variant Kraut of the variable 

‘potato haulm’ from the SBS 

 

Fig. 5: Graded area-class map of 

the variable ‘potato haulm’ (com-

bination of the intensity fields of 

all its variants) 

Figure 3 shows the occurrences of the variant Kraut of the variable ‘potato haulm’ in 

the data of the SBS (cf. the triangle symbols in Fig. 1).20 The differences in the shades of 

grey represent the relative proportion of total Kraut records at a location: The darkest 

locations have exclusively Kraut, in the lighter cells Kraut has been recorded alongside 

other variants (in differing proportions), and in the white cells Kraut has not been 
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recorded at all. These proportions, ranging between zero and one, are a very rough 

estimate of the expected relative frequency of the variant.  

In Fig. 4, the intensity field, consisting of the estimated occurrence probabilities of 

Kraut, is depicted, which is a much more sophisticated approximation of its relative 

frequencies, as it integrates the information about the presence of Kraut in the nearby 

locations. It is thus a geographically informed estimation of local variant frequencies on 

the basis of records that do not give any information about frequency if considered 

individually. 

Figure 5 combines the intensity fields of Kraut (red) and the remaining six variants of 

‘potato haulm’ (Staude, Stock, Rebe, Pflichter, Stengel, Laub), in such way that each cell is 

assigned to the variant that has the highest intensity at that point. In this example, red 

stands for Kraut, i.e. Kraut is the most probable (or the “dominant”) variant at the 

locations that are coloured red. As can be seen, only five of all seven variants appear as 

dominant somewhere on the map (Kraut (red), Staude (dark green), Rebe (violet), 

Pflichter (blue), Stengel (light green)), the other two (Stock, Laub) are too dispersed or 

too sparse to show up at all (cf. Fig. a), even though they are latently present: they are 

globally “recessive”. They do, however, cause a weakening of the dominant variants, 

which appears as a lightening of the shades of colour. The combination of the intensity 

fields of all seven variants in one area-class map fails to reproduce the information 

about the intensity of locally recessive variants; this can only be inferred through the 

lowered intensity values of the dominant variants. The orange lines in Fig. 5 are the 

boundaries of the variants’ dominance areas. They are not isoglosses in the classical 

sense, in that they divide clear-cut, uniform variant areas, but rather they mark the 

centre of a gradual transition zone, which is probably much closer to linguistic reality: 

Closer investigation would probably reveal that most speakers over the whole area know both 

words, and in some areas the two words are interchangeable, perhaps with a preference for one 

over the other […]. The isogloss, therefore, does not mark a sharp switch from one word to the 

other, but the center of a transitional area where one comes to be somewhat favored over the 

other.21 

Graded area-class maps like Fig. 5 are, in a sense, geographically “smoothed” versions 

of the original data; in this sense they can be criticized for not reflecting the original data 

faithfully, but that is not their purpose. Instead, they provide an abstraction from the 
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original data by emphasizing general, overall patterns of the spatial variation of a single 

variable that are captured neither by the original data nor by aggregative 

dialectometrical techniques. These patterns and the intensity data underlying them, i.e. 

the estimated frequencies of the variants, are the basis for the analyses in this study and 

a whole range of further methods of analysis that are currently being developed in 

Augsburg and Ulm.22 One of their applications concerns the association of certain types 

of spatial distributions with properties of the linguistic features, in the present case, 

with lexical meaning. The intensity data that are obtained by the procedure described in 

this section enable us to measure certain characteristics of spatial distributions that are 

the basis for statistical tests. 

The fact that intensity estimation yields estimated relative frequencies raises the 

question of how accurate these estimations are. Two kinds of validating the estimations 

are conceivable. The first possibility would be to revisit one or a few of the locations and 

to do a more exhaustive survey that allows making empirical statements about relative 

frequencies, which could then be compared to the estimated frequencies. In our case, 

however, this option is ruled out because the original elicitation dates too far back to 

obtain a comparable informant sample today. The second possibility, which is currently 

being implemented, is to apply a bootstrapping method that validates the predications 

of the intensity estimation by calculating intensities for locations whose data is 

temporarily ignored. Then the result can be compared to the original data of that 

location. Applied successively to all locations in a map, the average agreement between 

estimation and original data gives an idea of how reliably the intensity estimation 

performs. This procedure can also be used to validate different parameters of the 

method. 

 

4. Distributional Characteristics 

As mentioned in Section 1, there are two characteristics of spatial distributions that are 

of interest in the current investigation. One is the overall spatial expanse of variants, i.e. 

the size of the areas they cover; the other is the uniformity of these areas, i.e. the 

presence or absence of interference from other variants within them. The intensity data 

obtained using the method described in the previous section allows us to calculate 
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indices that express exactly these characteristics in a simple way. I call the former the 

complexity, the latter the homogeneity of the distributions of a variable’s variants in 

space. 

1. Complexity 

With the term complexity (C) of a variable’s distribution I refer to the degree to 

which space is split up into variant areas, or its onomasiological spatial 

“fracturedness”. This is not exactly the same as the average size of the variant 

areas, because the areas can themselves be fractured, e.g. if they have very jagged 

contours. C is very easy to derive from the intensity data, which becomes evident 

if one looks at an area-class map like that in Fig. 5. The orange lines that delimit 

the variants’ areas of dominance are a crucial indicator for the fracturedness of 

the map. The longer they are, the more fractured the map is. Thus, it seems 

natural to measure the total length of boundary lines on a map in order to 

quantify the degree to which it is divided into smaller areas. This gives an idea of 

the large-scale amount of geographical variation in a distribution, ignoring, 

however, the amount of small-scale “fluctuation” within the areas, which is 

captured by the so-called homogeneity of a distribution (see next paragraph). In 

order to make the complexity comparable across different areas of investigation, 

the total boundary length is divided by the surface of the study area, which is in 

our case 11,315 km2. The result has the unit km–1, and thus indicates the number 

of boundaries you would cross on average by walking 1 km within the study area. 

The map in Fig. 5 has a C-value of 0.037 km–1, the theoretical range being 

between 0 km–1 and – for our area – a theoretical 0.764 km–1, but values above 

0.10 km–1 are quite rare. 

2. Homogeneity 

The homogeneity (B) of a distribution describes the amount of variation that 

occurs within the variants’ areas of dominance. For example, for one variable the 

areas might describe the distribution pretty well because they are compact and 

very uniform in themselves, whereas for another variable the general picture 

given by the division of the map into areas might be disturbed by records of 

locally recessive variants. The interference from other variants is given, on a local 

level, by the intensity of the recessive variants. The local homogeneity, on the 
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other hand, is quantified by the inverse, viz. the intensity of the dominant variant 

at the location in question. The overall homogeneity of a distribution, therefore, is 

calculated as the mean intensity of the respective dominant variant. It is 

visualized as the overall “lightness” of a map. The map in Fig. 5, for example, has a 

B-value of 0.79, the theoretical range is between 0 and 1. 

To give an idea of the visual impression of these two indices on the maps, the 

following figure provides a few examples that cover the range of variability found in the 

data pretty well. 
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 ‘rack wagon’ 
complexity C:  0.098 km–1 

homogeneity B: 0.59 
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‘splinter’ 
complexity C:  0.056 km–1 

homogeneity B: 0.46 
 

 ‘cheese dairy’ 
complexity C:  0.053 km–1 

homogeneity B: 0.73 
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 ‘hayloft’ 
complexity C:  0.032 km–1 

homogeneity B: 0.75 
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 ‘stubble on a cornfield’ 
complexity C:  0.017 km–1 

homogeneity B: 0.91 
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 ‘mouth’ 
complexity C:  0.004 km–1 

homogeneity B: 0.76 
 

Fig. 6: Six examples from the SBS for maps with different values for complexity and homogeneity. For each 

map, different colours indicate different variants; matching colours across maps do not indicate identical 

variant. 

As can be seen, complexity and homogeneity give a pretty good indication of the 

fracturedness and the intra-areal variation of these lexical distributions. As for 

complexity, the map for ‘rack wagon’ also shows why it is important to look not at area 

sizes, but at boundary lengths instead: even though there are not many dominant 
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variants, which means that the space they occupy individually is rather large, the areas 

are broken up and jumbled to a great extent. Concerning homogeneity, the relationship 

between the overall lightness of a map (visualizing the interference from recessive 

variants) and its homogeneity becomes clear if one compares, for instance, the maps for 

‘splinter’ and for ‘stubble on a cornfield’. 

Unsurprisingly, the two indices are not unrelated. With a correlation coefficient of 

ϱ(C,B) = ‒0.65, higher values of complexity tend to have lower values of homogeneity, 

and vice versa. There are two reasons for this. Firstly, the two indices measure 

geographical variation at two ends of a spectrum from small-scale (intra-areal) variation 

(= homogeneity) to large-scale (inter-areal) variation (= complexity). As there is no 

natural division between small-scale and large-scale variation, both blend into each 

other and therefore influence each other. As isoglosses are the dividing lines between 

transition zones, a higher complexity leads to an increase in transition zones, which 

influences the overall homogeneity negatively. Secondly, the latter effect is augmented 

by the process of intensity estimation, as it smooths seemingly sharp distinctions along 

the isoglosses of a distribution. This artefact of the method is not undesirable, however, 

because such sharp transitions are mostly due to data limitations.23  

With C and B, two major characteristics of spatial distributions are quantified. 

Applied to all 735 lexical items in the corpus, we get 735 pairs of these indices. Are their 

values distributed randomly across the corpus, or are there any regularities as to which 

concepts tend to have higher or lower values? Are there any linguistic properties of 

variables that can be identified as constraints of their spatial distributions? Motivated by 

the statements reported in Section 1, the next section will use statistical methods of 

hypothesis testing to determine whether any particular subject areas yields significantly 

high or low values for complexity or homogeneity, and whether the findings corroborate 

the cited authors’ assertions. 

 

5. Statistical Testing 

In the previous section, we defined the indices of C and B, which will be the dependent 

variables for the testing. We have to choose those aspects of lexical items for 

independent variables in whose effect on C and B we are interested. For the present 
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study, the variables in the corpus were divided into subject areas which represent 

different domains of everyday life (cf. Table 1). This turned out to be relatively easy and 

straightforward to do, as the printed version of the SBS already features such a 

categorisation. These categories or “topics” are rather loosely defined but reflect the 

domains in which a variable would typically appear in everyday life quite well and seem 

to be a suitable expedient. Although this categorisation has clear deficits (e.g. one of the 

groups is called miscellaneous), it is difficult to come up with cogent criteria for a 

categorisation that allows establishing hypotheses about effects on spatial variation. It 

may prove rewarding to use different and more sophisticated categorisations to see how 

they perform in comparison to the results of this study.24  

As subject area membership is a categorical or nominal-scale variable, the use of 

parametric tests is ruled out. Instead, non-parametric tests have to be used, which often 

require no assumptions regarding the distribution of the data. One common approach is 

the use of so-called Monte Carlo methods. The basis for Monte Carlo methods is repeated 

random sampling in order to determine the range that can be assumed to be random. If 

the real sample to be tested has an extreme value compared to the simulated random 

samples, this indicates that it is not a random sample following the same rules, but that 

other constraints are exerting an effect on it.  

For our application, random sampling means that a high number (e.g. 999) of random 

groups of lexical variables is selected from the corpus. Each of these groups must 

contain the same number of variables as the group to be tested (i.e. a group with 

variables of one of the subject areas). The value to be tested is the mean value of C or B 

within a group. More precisely, it is tested whether the mean value of C or B of the maps 

in a real sample (= one of the subject areas) is equal to the means found in random 

samples, or whether it is significantly higher or lower than in the real sample. These 

means are calculated for each random group and for the test group, and then ranked in 

ascending order. If the position of the test group in this sequence is very high or very 

low, it is concluded that it has a significantly high or low mean value of C or B. In order to 

decide this, a significance level α has to be specified; 5 % is a typical threshold. If, for 

instance, the mean value of C in the test group (a subject area to be tested) is within the 

lowest 5 % of 999 random groups, it is deemed to be significantly low. In statistical 

terms, the p-value is the proportion of groups (including the test group) that have a 
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value lower or equal to the test group. If the p-value is greater or equal to 95 %, the 

group has a significantly high value of C or B. 

 

6. Results and Interpretation 

The following table (Table 1) shows the p-values for mean C and mean B of all subject 

areas in the corpus. 

 

Table 1 p-values obtained using Monte Carlo simulation (number of random sampling: 999). Numbers 

in brackets are the sizes of the groups. 
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As is to be expected, most of the subject areas show unremarkable p-values for both 

indices. Especially in the case of the somewhat awkward groups adverbs and 

miscellaneous, this is little surprising.  

Strictly speaking, Table 1 contains the results of a total of 124 single statistical tests: 

31 subject areas were tested at both ends of the scale with regard to two indices 

(31·2·2). The risk of obtaining a type I error (i.e. an accidental significance)25 is therefore 

a lot higher than in the case of one single test. Assuming that the single tests for one 

index and at one end of the scale are completely independent, a theoretical number of 

1.55 type I errors would be expected to occur when performing 31 tests (31·α = 1.55) 

for one index and at one end of the scale. In the results of the tests as shown in Table 1, 

there are between three and four groups with significant p-values for each index and at 

each end of the scale, which is remarkably more than the theoretical 1.55 significances 

that would be expected randomly as type I errors. Because they are in fact not 

independent but interrelated to a great extent (cf. Section 4), the actual expected 

number of type I errors is even lower. This is a first indication that there is a relation 

between the subject areas and the C- and B-values that goes beyond random 

associations. Nonetheless, this means that up to half of the significances shown in Table 

1 are presumably false positives. Since it is impossible to determine which ones are 

“true” and which ones are “false” positives, it should be attempted to give a plausible 

interpretation for all of them. The statistical significances that the tests yielded, though 

they are to be taken with a grain of salt, are an incentive to look closer.  

Community has a significantly low p-value for C and a high, though not significant 

value for B. It can be concluded that community contains maps that have rather large, 

smooth, uniform areas. In this case, the explanation is quite straightforward. In this 

group there are many variables that concern social relationships (e.g. kinship relations), 

or other socially relevant concepts. Naturally, variables of this kind will tend to be a 

regular part of everyday communication, particularly in chitchat-type conversations and 

especially across village borders, and thus they have a special disposition for 

interpersonal accommodation. This fosters spatial diffusion, differences are levelled out 

quickly, and this, ultimately, leads to large, uniform areas.  

The significantly low p-value for B in the group the farmhouse is accompanied by a 

high, though not significant value for C, which is at least partly due to the correlation of 



17 
 

the two indices. The high complexity probably has to do with the domestic and place-

bound nature of the topic, which does not encourage spatial diffusion, but rather 

impedes it. The low homogeneity is to be seen in the context of a lack of conceptual and 

terminological distinctness that seems to occur with the items in this group. It is stated 

quite often in the corresponding commentaries in the SBS that the informants ‘did not 

always know how to distinguish things, and that the expressions’ semantic scope could 

not be delimited precisely’26. This can be due partly to material differences in the way 

houses are built, partly to the fact that the different parts of the house are not always 

distinct from each other, which can lead to differences in the division of the building into 

conceptual parts.  

Both indices for weather phenomena have significant values: the maps are very 

complex and very heterogeneous. This may seem surprising at first, because weather is 

a regular part of everyday conversations and has a central function in small talk, which 

would rather suggest a stronger tendency for diffusion and low complexity. If one looks 

closer, however, it again appears that many of the concepts in this topic are not so clear-

cut that a distinct representation in the lexicon is probable. Instead, some of the 

concepts rather form part of a continuum, such as the variables ‘drizzle’, ‘heavy rain’, 

‘snowstorm’, ‘soft hail’, and ‘hail’. Given the vague semantic scope of these variables, it is 

not surprising that the records show a high degree of terminological variability or 

‘referential variance’27, which inevitably leads to maps of reduced homogeneity. What is 

more, one of the alleged mechanisms described in Section 1 might play a role here. 

Weather is a field that often gives rise to emotional reactions. Emotionally charged 

concepts are assumed prone to re-motivation and re-innovation. Their emotive function 

becomes manifest in formal expressivity, which is conditioned by affect and spontaneity. 

This can lead to pronounced onomasiological and geographical diversity, first on a local 

and regional level (as expressed by B), and as a result of spatial diffusion also on a larger 

scale (as expressed by C). This interpretation can also explain why the variables for ‘to 

drizzle’ and ‘to rain heavily’ have much higher C-values than the much less affective 

wind directions. 

The domain of household, quite naturally, comprises concepts that concern stationary 

activities. These activities are usually performed at home, in the house, and often alone. 

This promotes geographically diverse forms, as the requirements for a wider spread of 
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fewer variants, such as mobility of the speakers (at least in the relevant situation) or 

socially relevant character of the concepts, are not met. Likewise, the group children’s 

games also does not involve mobility of the speakers: the concepts are socially relevant, 

but the social interaction is confined to a small spatial perimeter, as children usually 

play predominantly in the neighbourhood, and they learn how to play tag, for example, 

in the yard or in the street. This, again, fosters the emergence of variants with a small 

spatial expanse, which finds expression in high C-values. It is noteworthy that B also 

reaches a significant value, for which its negative correlation with C cannot be the only 

explanation, because in the case of household, the p-value for B is far from significant 

irrespective of a similarly high p-value for C. Perhaps here a mechanism described by 

Wenzel (1930), Hildebrandt (1983) and Lötscher (2005), who describe children as 

especially active and emotional innovators, actually comes into play (cf. Section 1). They 

explain uneven distributions of child-related variables as a result of children’s play 

instinct and imagination, which lead to spontaneous, emotionally motivated forms.  

In the case of the (rather small) group farmers & agricultural workers, we find 

significant results for both C and B. The variables that contribute to the especially high C- 

and low B-values concern the name for a farmer with respect to the size of his holding, 

e.g. ‘smallholder’ or ‘large-scale farmer’. It seems that we have to do with ‘referential 

variance’ once again, since the categories that are applied are not clear-cut, but rather 

fuzzy segments of a continuum. The borders between them are unclear, which leads to 

differences in the way the continuum is divided into concepts. The instability of concept 

brings about instability of expression, resulting in a multitude of re-motivations and 

nonce words,28 which can reduce the overall homogeneity. Another possible explanation 

for the extreme values is again emotionality. The size of a farmer’s holding, which is 

closely linked to his economic situation and social status, can often lead to derogative, 

scornful or envious expressions (e.g. the pejorative terms Grattler or Pfröpfler). As 

described in the context of weather phenomena, the emotional potential of concepts is 

assumed to entail high onomasiological diversity. 

The group time & greeting has a very high, significant p-value for homogeneity (B), 

which means that the distributions in this group have very uniform, interference-free 

variant areas. The explanation for this is obvious: Salutations are linguistic phrases 

whose pragmatic function is almost exclusively phatic, while having a pronounced social 
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relevance. They are vital elements of many conversations, especially with unknown or 

unfamiliar interlocutors. These are ideal preconditions for rapid spatial spreading and 

stable levelling, which accounts for the high B̅-values of the concerned maps. Time, on 

the other hand, is not primarily a social subject area, but it does play an important role 

in interpersonal contacts: Whenever experiences are narrated or activities have to be 

coordinated, the conventionalized division of time provides a common frame of 

reference. This is even more important if the contact between two persons is of an 

irregular nature, because this renders an efficient arrangement crucial. Thus, highly 

conventionalized time terminology is essential for arrangements to be successful, which 

also contributes to high homogeneity in this group. 

For the low complexity in the group poultry & bee keeping there is more than one 

possible explanation. Firstly, this group contains many variables that tend to have 

onomatopoetically motivated variants (e.g. the variables ‘cock’, ‘to cackle’, ‘chick’, ‘to 

cluck’), which restrains the arbitrariness and thus also the diversity of innovations, 

which in effect reduces their number. Fewer variants share the same space, which 

results in larger areas on average. Secondly, the fact that this group belongs to the wider 

field of agriculture might have some relevance. One might think that there is little 

tendency for spatial diffusion in agricultural settings, as they are often associated with 

immobility, which would in theory lead to high complexity. On the other hand, the 

agricultural topics contain a lot of “outdated” material: agriculture played an important 

role in rural life in the past, but lost much of its significance during the last century. 

Many of the tools and techniques are no longer in use today, as agriculture became less 

common as an occupation and machines took over the roles of humans. Consequently, 

these obsolete linguistic variants had a lot of opportunity for long-term diffusion and 

levelling, which was largely unimpaired by the development of new innovations. Such a 

“late stage” of geolinguistic development, accordingly, is characterized by large, 

consolidated areas. As for poultry & bee keeping, this is only significant for C, whereas for 

fertilisation, which also belongs to agriculture, both C and B have significant p-values. In 

the case of hay harvest, the p-values display the same tendency, but do not reach a 

significant level. For the high homogeneity of wood & timber, it seems plausible to apply 

the same explanation. It is interesting that the low complexity and high homogeneity in 

the fields of agriculture and forestry contradicts the statements made by Wenzel and 

Bach (cf. Section 1). They argue that variables that refer to agricultural items or 
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activities have a multitude of variants of limited geographical spread.29 Furthermore, 

Wiesinger (2005, p. 1109), following Kranzmayer (1956, pp. 3–4), states that terms of 

agriculture and related subjects have a bias against long-distance mediation, which 

should result in small areas, i.e. high complexity. Such a connection cannot be 

substantiated with the lexical maps of the SBS; on the contrary: all of the agriculture-

related topics that exhibit significant values point in the opposite direction. 

 

7. Summary and Explanatory Framework 

The interpretations of the results in the previous section can be argued about if 

considered individually, but the general picture seems quite plausible as the 

mechanisms described above can be condensed into relatively few basic tendencies. For 

instance, the concepts with a socially relevant or even phatic component and those that 

involve mobility of the speakers can be subsumed under the common heading “concepts 

with a disposition to spatial spread and levelling”; they are attributable to a principle 

that takes effect at the level of diffusion. Other principles, by contrast, work at other 

levels, for instance the “emotionality” of a concept, which influences its propensity for 

innovation.30 Based on such levels of influence, the mechanisms can be categorised as 

follows (see also Table 2). 

1. Innovation affinity 

What I call the innovation affinity of a variable is its tendency to develop new 

variants regularly. If a variable has a low innovation affinity, only rarely do new 

forms emerge. This can be the case, for instance, when the denoted concept is 

obsolete, e.g. an outdated tool or an activity that is no longer performed; the 

linguistic variable itself is dying out. Existing conventions remain undisturbed 

and stable; this benefits homogeneity, but impedes the emergence (or 

maintenance) of complexity. A high innovation affinity is frequently found in the 

case of emotional concepts, which often show spontaneous and expressive 

neologisms. Many innovations emerge locally, interfere with existing 

homogeneity, and can diffuse into the environment, causing an increase in 

complexity.31 
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2. Arbitrariness 

Some variables allow only a limited range of possible variants: their arbitrariness 

is restricted. This is especially true in the case of onomatopoetically motivated 

expressions. This mechanism, which influences the process of innovation, leads 

to a reduced diversity of variants in relation to variables with unrestricted 

arbitrariness. While the innovation affinity can be the same as with other 

variables, there is an increased probability that two or more innovators come up 

with the same innovation. Consequently, the homogeneity of these variables is on 

average higher than that of otherwise comparable variables, because there are 

fewer competing variants locally. At the same time, the complexity is lower, 

because local innovations lead to identical variants, whose areas merge in the 

course of diffusion.  

3. Diffusion affinity 

The diffusion affinity describes the disposition of a variable’s variants to spread 

in space and – by way of selection out of competing variants – to be levelled to 

regionally uniform areas. Possible factors for a high diffusion affinity are social 

relevance and a phatic component of meaning, as well as speaker mobility. These 

lead to a quick diffusion in space, accelerating the process of spatial levelling and 

resulting in large and uniform variant areas, which entails low complexity and 

high homogeneity. The opposite is the case if a concept has no social relevance or 

if, say, an activity is place-bound and the typical speaker rather immobile. In that 

case, spatial diffusion is impeded, the areas remain small and for that reason 

alone are heterogeneous. 

4. Specificity of meaning 

Specificity of meaning is situated in the mental lexicon, where the connections 

between linguistic forms and their conceptual representation are stored. These 

connections can be straightforward or rather fuzzy.32 They can also vary from 

dialect to dialect and from speaker to speaker. What is more, the semantic 

vagueness can have a massive impact on data elicitation, as the surveyed items 

may not be represented by a uniform concept in the informants’ mental lexicons, 

resulting in insecure and semantically inconsistent answers, and very often 

multiple responses. This clearly reduces the homogeneity of a lexical variable’s 
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variant areas drastically.33 Complexity, on the other hand, should remain 

unaffected by this mechanism, as it is independent of geography and exerts its 

effect mainly on the level of data collection. 

These four categories can be used to account for the variation in spatial distributions as 

outlined in Section 6. Each lexical variable has certain intrinsic characteristics (e.g. social 

relevance) that can have an effect on the spatial distribution of its variants, depending 

on which level a specific characteristic plays a role. An overview of the expected effects 

as outlined above is provided in Table 2.  
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Table 2 Factors for the distributional indices complexity (C) and homogeneity (B). The presumed 

effects of the factors were extracted from the interpretations of the statistical tests and their results in the 

previous sections. A plus-sign indicates an effect that leads on average to an increase of the respective 

index’s values, a minus-sign stands for a decreasing effect (cf. Table 1). 

   C B 

Innovation 
affinity 

high e.g. expressivity, emotionality, taboo + ‒ 
low e.g. obsolete vocabulary ‒ + 

     

Arbitrariness 

free  + ‒ 
restricted e.g. disposition for onomatopoeia ‒ + 

     

Diffusion affinity 

high e.g. mobility, social relevance,  
phatic component ‒ + 

low e.g. immobility, taboo + ‒ 
     

Specificity of 
meaning 

clear   + 
fuzzy e.g. unclear differentiation from other 

concepts, ambiguity   ‒ 

The findings from Section 6 can now be viewed anew in the light of this classification. 

In Table 3, it is shown how different characteristics inherent in subject areas (such as a 

tendency to terminological fuzziness or emotionality) trigger one (or more) of the four 

mechanisms outlined above, which likewise lead to higher or lower values of C and B. It 

is quite obvious that the strength of the effect is not predictable with this simple model, 

at best its direction. Moreover, C and B are not affected to the same extent, and in some 

cases the effect might go unnoticed as the values are too small to be significant.  

 

Table 3 Topics in the SBS, significant mean index values and possible explanation. A plus-sign indicates 

an increasing effect on the respective index, a minus-sign stands for a decreasing effect. The highlighted 

cells indicate that the effect was found to be statistically significant (cf. Table 1). 

community  C B 

social diffusion affinity: high – + 

    

the farmhouse C B 

place-bound diffusion affinity: low + 
– 

terminological fuzziness specificity of meaning: fuzzy  

    

weather  C B 

emotional potential innovation affinity: high‒ + 
– 

referential variance specificity of meaning: fuzzy‒  
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children’s games  C B 

place-bound diffusion affinity: low‒ 

+ – emotionality,  
play instinct, imagination 

innovation affinity: high‒ 

    

household  C B 

place-bound diffusion affinity: low + – 

    

farmers and agricultural workers  C B 

 size of agriculture: emotional potential innovation affinity: high‒ + 
– 

conceptual fuzziness specificity of meaning: fuzzy‒  

    

time & greeting  C B 

socially relevant, phatic diffusion affinity: high – + 

    

poultry & bee keeping  C B 

onomatopoeia arbitrariness: restricted‒ 
– + 

obsolete vocabulary innovation affinity: low‒ 

    

fertilisation  C B 

obsolete vocabulary innovation affinity: low – + 

    

wood & timber  C B 

obsolete vocabulary innovation affinity: low – + 

 

8. Conclusion 

To sum up, it can be said that a clearly non-random distribution of significant complexity 

and heterogeneity values is observable in the semantic groups of the SBS. In both cases, 

seven out of thirty-one groups, or 22.5 %, show significant values (cf. Table 1), which is 

remarkably more than the 10 % of significances (5 % for each end of the scale) that 

were to be expected as type I errors. Individual details of the interpretations suggested 

in Section 6 might be arguable, but the model introduced in Section 7 provides a 

consistent and plausible explanatory framework. On the whole, it is indisputable that the 

meaning of a lexical variable can have a notable effect on the spatial distributions of its 

variants. This result also demonstrates the power of the (geo)statistical approach taken.  
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1  For a more detailed discussion of the relationship between lexical variables, variants and concepts, cf. 
Pickl 2012, 42–43. 

2  Only Lötscher (2005; 2010) arrives at a theoretical framework by explaining his observations in terms 
of innovation and diffusion. 

3  Cf. e.g. Croft (2000, pp. 44–46). 

4  ‘arealer Diversität im Ursprung’ (Lötscher 2005, p. 310). 

5  Lee and Kretzschmar (1993, p. 554). 

6  Cf. also Geeraerts and Speelman (2010). 

7  Cf. Goossens (1969, pp. 53 and 69); Francis (1983, 20); Viereck (1986, 725). 

8  Cf. SBS (vol. I, pp. 20–24). 

9  For further information, cf. SBS (vol. I). 

10  For details of the classification process, cf. Pickl (2012, 76–80). 

11  Cf. Spruit et al. (2009, p. 1624). 

12  Cf. Leinonen (2010, p. 38). 

13  Cf. Rumpf et al. (2009; 2010). 

14  The methods referred to and the results presented in this article were obtained in the joint research 
project “New Dialectometry Using Methods from Stochastic Image Analysis” (funded by the Deutsche 
Forschungsgemeinschaft) of the Department of German Linguistics (University of Augsburg) and the 
Institute of Stochastics (Ulm University). 

15  Cf. Pickl and Rumpf (forthcoming). 
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16  A somewhat related geostatistical approch is taken by Jack Grieve, who uses the spatial autocorrelation 
measures Moran’s I and Getis-Ord Gi* to test if significant spatial clustering is found in the data (cf. e.g. 
Grieve 2009; Grieve, Speelman, and Geeraerts 2001). 

17  For the exact mathematical procedure, cf. Rumpf et al. (2009, pp. 285–290); Pickl and Rumpf (2011, 
pp. 272–275), Pickl (2012, pp. 85–101). 

18  So-called graded area-class maps reproduce the “fuzziness” of a location’s affiliation with the areas, 
making it possible to visualize transition zones between areas and allowing locations to have partial 
membership of areas (cf. Kronenfeld 2005; 2007). 

19  For the definition of a “lexical distance measure” and an application of the procedure, cf. Pickl (2012, 
101–111). Other (related) lexical distance measures are introduced by Nerbonne and Kleiweg (2003, 
346–349) and Speelman and Geeraerts (2008, 227–228). For phonetic data, the so-called Levenshtein 
distance is very popular (cf. e.g. Heeringa 2004; Nerbonne 2010, pp. 480–481). One of the most well-
known general distance measures is probably the method proposed by Goebl (1984, pp. 75–77).  

20  The Voronoi tessellation that has been used for the visualization assigns each point in the plain to the 
closest data point. 

21  Francis (1983, p. 5). 

22  Cf. Rumpf et al. (2010); Pickl (2012); Pröll (this volume), Meschenmoser and Pröll (forthcoming; 
submitted). 

23  Sharp transitions are, however, to be expected along major linguistic boundaries. Therefore, the effect 
can be reduced by using linguistic instead of geographical distances for the intensity estimation, which 
has been done with the lexical data of the SBS. For technical reasons, and in order to be concise, 
however, I will only use maps generated with geographical distances in the present article. 

24  It can also be worthwhile to have a closer look at categories other than semantic ones. It is, for example, 
possible to test the effect of parts of speech (cf. Pickl 2012, pp. 142–144). For independent variables 
other than categorical ones (e.g. frequency of use) other test procedures like regression analysis have to 
be used. 

25  A type I error occurs when a sample’s test statistic is determined to be significant although its value is 
only a result of random variation. The probability of a type I error is exactly α, i.e. in this case 5 %. 

26  ‘in der Sache nicht immer genau zu unterscheiden wußten und daß die vorhandenen Bezeichnungen in 
ihrem Bedeutungsumfang nicht genau einzugrenzen sind’ (SBS, vol. VIII, p. 24). 

27  ‘referentielle Varianz’ (Hildebrandt 1983, pp. 1333, 1364). 

28  Cf. Lötscher (2006, pp. 147–148). 

29  Cf. Wenzel (1930, p. 13); Bach (1950, p. 174). 

30  Also Lötscher (2010) emphasized the role of innovation and diffusion for the areal distribution of 
variants. 

31  Speelman and Geeraerts (2008, pp. 230–233) have already established the influence of ‘negative effect’ 
on the heterogeneity of a variable’s geographical distribution (cf. also Geeraerts and Speelman 2010, 
pp. 34–35). 

32  For a more detailed discussion of problems of conceptual differentiation, cf. Geeraerts et al. (1994) and 
Geeraerts (2010). The influence of the independent variables ‘lack of familiarity’ and ‘non-uniqueness’, 
which are also associated with fuzzy conceptualisations, on the distributional heterogeneity of lexical 
variables has been shown by Speelman and Geeraerts (2008) and Geeraerts and Speelman (2010).  

33  In principle the same observation has been made by Hildebrandt (1983, pp. 1333, 1364). The 
relationship between the prototypicity of a concept and the areal diversity of its linguistic 
representations according to Lötscher (2005, pp. 304–305, 310) also follows a similar line of reasoning. 


