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Abstract 

The Cairo Genizah is a collection of handwritten historical documents 

containing approximately 350,000 fragments of mainly Jewish texts 

discovered in the late 19th century. The fragments are today spread out in 

more than 70 libraries and private collections worldwide, and there is an 

ongoing effort to document and catalog all extant fragments. 

We explore three levels of extraction of catalog data from digital images 

of the fragments. First, images should be captured in a way that permits 

standardized automatic processing. Second, the images can be processed to 

detect elements such as image foreground, regions of written text and lines 

of the text, thereby allowing for the automatic assignment of conventional 

catalog measurements. Third, modern computer-vision tools and statistical 

inference techniques may be employed to identify fragments that might 

originate from the same original codex. Such matched fragments, commonly 

referred to as “joins”, were heretofore identified manually by experts, and 

presumably only a small fraction of existing joins have been discovered to 

date.  
Overall, we present what might be the first effort to address all three levels 

successfully within a large-scale project, detailing the various design choices 

and describing the techniques and algorithms used for the Cairo Genizah 

digitization project. 
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1  Introduction 

The Cairo Genizah (see e.g. (Reif and Reif, 2002) and the very recent 

(Glickman, 2010, Hoffman and Cole, 2010)) is a collection of handwritten 

historical documents containing approximately 350,000 manuscript-

fragments of Jewish texts discovered in the late 19th century. Most of the 

fragments were written between the 10th and the 14th centuries, and almost 

all of them in Hebrew characters, mostly in the Hebrew, Judeo-Arabic and 

Aramaic languages. Today, the fragments are spread out in more than 70 

libraries and private collections worldwide. The Friedberg Genizah Project 

(www.genizah.org), whose mission is to computerize the whole research 

world of the Genizah collection, is in the midst of a multi-year process of 

digitally photographing all of the extant fragments. As of July 2012, the 

project’s virtual library holds over 400,000 digital images. Unfortunately, 

this huge and critically important collection for Jewish Studies and for the 

study of the cultural heritage of the Mediterranean societies in the Middle 

Ages, in general, is far from being entirely cataloged, despite the ongoing 

hundred-year-old effort to document and catalog all extant fragments. 

Moreover, existing catalogs vary greatly in the amount and type of data they 

incorporate. Many of them merely briefly record the content of the fragment, 

without any information regarding its physical attributes. 

We present a system for automatically computing much of the 

traditional catalog data, as well as some additional interesting attributes not 

usually included, by extracting them from the fragment’s digital image. 

These are, mainly: the exact dimensions of the fragment; number of 

columns; number of lines; size of the margins; and the fragment’s physical 

status (torn vertically, horizontally or diagonally, or missing corners). Until 

now, finding these properties, most of which are expected to be found in any 

modern catalog, required tedious, time consuming and tiresome manual 

labor, which had to be done with the original manuscript in hand. Moreover, 

our system can extract some finer data that may be relevant to paleographic 

studies, such as density of lines (line height, inter-line space) and density of 

characters (number of characters in a fixed unit of width). This system is 

also able to differentiate between bifolios and folios (single pages), and in 

the former case collects the physical attributes for each page separately.  



  

In addition to the detailed physical description of a single fragment, the 

huge database generated by the system serves for supporting identification 

of “join” candidates in the Cairo Genizah. A join is a set of manuscript-

fragments that originate from the same original codex, but are separated 

today, and stored under different shelfmarks, possibly scattered in different 

libraries. In previous work (Wolf et al., 2011b), we described a system for 

the semi-automatic identification of joins by ascertaining the degree of 

handwriting similarity between pairs of fragments. By querying the database 

and applying some basic rules for a good match, taking into account the 

extracted physical attributes as well as the completeness or incompleteness 

of the fragments, we can significantly improve on the quality of the results 

obtained by only analyzing similarity of handwriting.  

One of the major aims of this paper is to propose appropriate conditions 

for taking digital images of manuscripts, which are necessary for achieving 

this kind of results. We argue that, today, the function of digital imaging is 

not only conservation and accessibility, but also to enable these images to 

serve potentially as inputs to artificial-intelligence algorithms and processes, 

and the computer should be taken into account as one of the “clients” of the 

images. Hence, proper conditions should be considered in advance when 

digitizing manuscripts; when such conditions are neglected, the application 

of computerized methods and harvesting their results become unnecessarily 

difficult, and the quality of obtained results is adversely affected. These 

conditions are detailed in the next section. Section 3 describes—in very 

general terms—the succession of various processes that have to be applied to 

digital images of manuscripts in order to compute the above-mentioned 

attributes. In Section 4, the system for automatically suggesting potential 

joins is described. This is followed by a brief conclusion. 

2 Capturing Manuscript Images with an AI 
Eye in Mind 

One of the main purposes of this paper is to detail the proper conditions for 

taking digital images of manuscripts, necessary for achieving the kind of 

results described in the introduction, viz. automatic extraction of cataloging 

and other useful data from the fragment’s image, supporting a system for the 

automatic suggestion of possible joins in the collection, and allowing for 

automated exploration of writer-identification and digital-paleography 



  

issues. It is not claimed here that such procedures are necessary and 

pertinent to all projects of document digitization; if the case at hand is that of 

a number of well-preserved and well-organized handwritten codices, then 

most of the automatic measurements detailed here may be unnecessary 

(getting them from just one typical page of the codex would be sufficient) 

and join issues are not relevant. Still, it is claimed that the needs of the 

computer as a user of the images should be taken into account, if not for 

current needs, then for future and innovative ideas (such as OCR), and, on 

the other hand, that the procedures suggested here can be of great value for 

cases similar to that of the Cairo Genizah, namely, large sets of individual, 

mutilated unattached fragments, such as the Dunhuang collection (idp.bl.uk), 

or the Papyri collections. (For a comprehensive list of papyri collections, see 

www.trismegistos.org/coll/list_all.php; for an example of such a  digitized 

collection,   see   http://www.uni-heidelberg.de/fakultaeten/philosophie/zaw/ 

papy.) 

Digitizing collections of historical manuscripts, a flurry of activity 

happily flourishing in the last few years, is usually justified by assessing the 

usefulness of the three functions of digitization: conservation, accessibility 

and manipulability. This activity is accompanied by the compilation of 

practical guides and technical papers that present best practices for digitizing 

textual documents, manuscripts and print (FADGI, 2009), such as the 

Federal Agencies Digitization Initiative Technical guidelines (FADGI, 

2010). Indeed, most of this literature is directed solely toward the objectives 

mentioned above. We consider these functions in turn. 

2.1  Conservation 

More than once have depots of manuscripts in major libraries around the 

world been threatened by natural disasters such as floods, fires and 

earthquakes, and more than once have such libraries actually lost some of 

their precious holdings this way. High-quality digital images are considered 

today to be an adequate replacement of the originals, at least for practical 

research purposes.  

By “high-quality”, we mean images taken by a professional 

photographer, in a full-color, 24-bit depth mode, at high resolution (see 

below), in a lossless (TIFF) format, taking care of all lighting (cold light), 

reflection and shadow issues. This would be considered today as the 

minimal standard for acceptable replacement. For very special collections, 



  

images are expected to be obtained in many different spectra, including, for 

example, infrared and ultraviolet, as is in fact is being done currently for the 

Dead Sea Scroll collection at the Israel Antiquities Authority.  

Digital images can be easily replicated and deposited in various 

locations, thus assuring a reasonable—if somewhat imperfect—

sustainability of items of importance. For the record, we wish to say that this 

new conservation approach is not commensurate with the older ones of 

making microfiches or microfilms available. We do not go here into detailed 

reasons why, but these should become clear to the reader from the details 

that follow.  

Regarding resolution, the rule of thumb in vogue in the beginning of this 

century, and still valid today, has been that a resolution of 400 or 600 dpi is 

adequate for conservation of textual documents, and that, in most 

applications, not much is to be gained from higher resolutions. Most of the 

Genizah collections where indeed digitized according to our requirements 

with 600 dpi. In a few collections the resolution—for technical reasons—

was somewhat lower, but in any case it was (virtually always) no less than 

450 dpi.  

2.1.1 DPI  

A word of clarification about the exact meaning in our context of this 

popular, constantly used, but very often misused and improperly understood 

unit, dpi. DPI (= dots per inch) is a unit appropriate in principle for printouts 

(as produced by a printer), assessing the printout attribute of having 600 dots 

of ink per linear inch of paper. The unit is also adequate for scanners, 

assessing that the scan of a document was done with 600 lighting-samples 

per inch. Borrowing it for digital imaging, however, is problematic, because 

of the extra parameter of the distance of the camera from the object. So, the 

proper unit in this context should be SPI (= samples per inch), denoting the 

number of “dots” per real inch of the original document sampled by the 

digital camera when capturing the document. The numbers usually assessed 

for a given image by image processors such as Photoshop, even those 

supposedly assessed by the camera manufacturers, are inadequate for our 

purposes. They usually represent a recommended conversion factor for 

printouts, and do not represent the real resolution of the captured document 

as defined above. 



  

Realizing a fragment’s image with 600 SPI (or DPI) resolution can be 

achieved as follows (similar computations are valid for any other resolution). 

Every digital camera comes with a digital “back” or board, consisting of a 

rectangular array of X × Y light-cells, as specified by the manufacturer. Let 

X/600 = A and Y /600 = B. Take a rectangular background of A × B inches. 

Any fragment that fits completely on it and is shot by the camera at a 1:1 

ratio (meaning, the entire background fits into the camera viewer exactly) 

has been indeed captured with a 600 SPI resolution. (Larger fragments have 

to be photographed in parts, but we’ll not discuss this issue here.) 

Given a digital image, how can we assess its real resolution? Assuming a 

ruler is part of the image, we can delimit an exact inch on this ruler, when 

the image is viewed in its original size (sans magnification or compression). 

The number of pixels in that inch (which can be determined by a pixel ruler) 

is the resolution of the image. 

2.2  Accessibility  

Digitizing a collection of manuscripts and having the images freely available 

over the Internet for every interested user saves him or her the trouble of 

traveling to the library where the manuscript resides, or of using an inert 

microfilm version that can barely be manipulated. It gives one immediate 

access to a true replica of the manuscript from anywhere and at any time. 

 2.3  Manipulability 

Looking at a digital image of a manuscript rather than directly at the original 

fragment gives the user access to a rich set of important processing 

capabilities that can greatly help in “reading” the manuscript (an especially 

tricky task for historical manuscripts usually damaged by age), such as 

magnifying, rotating, reversing (white on black instead of black on white), 

mirroring and manipulating contrast, brightness and luminosity of an image 

in order to obtain the best possible readability conditions.  

2.4 Image Processing 

We argue that, today, an additional objective presents itself, that of 

digitizing a manuscript so as to have the resulting image serve as a potential 

input to artificial-intelligence algorithms and image-processing processes, 

which can greatly benefit the analysis and research of that manuscript. Thus, 

the computer must be taken into account from now on as one of the “clients” 



  

   

of the imaging process, and proper conditions should therefore be considered 

in advance when digitizing manuscripts to make the computer’s tasks 

efficient and effective, and, in fact, even possible. 

 The main conditions are now described.  

2.4.1  Background 

A fragment to be photographed is usually placed on a fixed background of a 

certain color, this background serving as the common one for all fragments 

in the collection. Taking into account, however, that the first process of 

computerized analysis of an image in fact includes separating the fragment 

from its background, it becomes evident that the background color to be 

chosen should be the most contrasting one with the fragment color, both in 

terms of its material as well as its ink, so as to make the foreground-

background separation task both efficient and precise. In Fig. 1(a), the 

background color used is very close to that of the foreground, making it 

almost impossible for the computer to distinguish between the two. Having a 

black background is also not recommended, because in this case the 

computer would not be able to distinguish between characters written in 

black ink and holes in the fragment through which the black background 

shows. Thus, the common practice in some libraries of digitizing on a white, 

cream, brown or black background should be considered not ideal, because 

these colors do not contrast well with that of the manuscript material and its 

ink.  

Sampling a large number of fragments in different points, we found the 

average color of these fragments in terms of the RGB scheme to be (255, 

136, 0). We thus concluded that the most contrasting color would be (0, 120, 

255), which is a shade of blue, and this is indeed our recommendation. A 

librarian might argue that, while such a color would indeed make life easy 

for the computer, it would alienate ordinary users who would find it bizarre 

and unattractive. Our rejoinder is however quite simple: since, with this 

background-color choice, the computer can easily and exactly isolate the 

background, the system can change it, pixel by pixel, to any color desired, 

from off-white to black, through brown or rose, displaying the image to the 

user with any desired background color and texture.  

 

 

 



  

 
  (a)      (b) 

Figure 1: (a) Poor contrast (Geneva) vs. (b) ideal contrast (Cambridge).  

 

When the project of digitizing the huge Genizah collection at Cambridge 

University Library was started, we decided to use this shade of blue as the 

standard background for all images, with excellent results. The same 

practice was followed in the digitization of the Genizah collection at the 

British Library in London. See Fig. 1(b). Still, the images are presented on 

the Genizah website, following these libraries’ requests, with a background 

in a shade gray that was carefully chosen and approved by them. The 

outcome is recognized as suitable by all parties.  

2.4.2  Ruler  

Including a ruler in the image is necessary, as explained above, to assess the 

real resolution of the image, and, in fact, for calibrating it. An alternative 

might be to use a background with a grid in inches (or centimeters); such 

material, however, usually comes in a very light color (not to interfere with 

the fragment’s image), and so should be avoided because of the background 

color issue noted above.  

Having a ruler in the image is crucial, especially in cases when different 

images are taken with different lenses or with the camera not fixed in the 

same position throughout the entire shooting process.  

The ruler should be clearly distinctive from the fragment. Hence, a brown 

wooden ruler or see-through plastic one should be avoided. Rather, a 

metallic ruler is recommended. Also, it is recommended that the ruler be 

short, so that it can fit in its entirety in the image. If this is not possible, care 



  

   

   

should be taken to always align the starting end of the ruler with the left 

edge of the background. 

2.4.3  Artifacts  

The use of clips, weights and notes, as in Fig. 2(a), should also be avoided. 

For a proper analysis of the image by the computer, every significant 

element in the image should be identified and be easily recognizable, and the 

best segmentation is achieved by color separation. If such extra elements are 

unavoidable, we recommend that they be of the same distinctive color as the 

background (i.e. the special blue defined above). Our recommendation was 

followed in the British Library digitization project, as shown in Fig. 2(b).  

Textual notes (such as shelfmarks) should be of a fixed size and shape, 

preferably with an easily recognizable icon, so as to enable software to 

recognize them easily.  

In summary, taking care of the computer needs when digitizing will pay 

for itself handsomely by enabling the computer to supply us automatically 

with much useful data and with intelligent suggestions. 

 

             
 

(a)                    (b)  

 

Figure 2: (a) Fragment from the Strasbourg collection with label, clip and 

weight bags vs. (b) one from the British Library using a contrasting color.  



  

3  Extracting a Fragment’s Physical Attributes 
from its Digital Image  

We now consider the successive steps of image analysis to be applied to a 

fragment’s digital image so as to discover the fragment’s physical attributes, 

as described above.  

Incidentally, it should be mentioned that, although it is recommended to 

capture the images of fragments with a 600 dpi resolution (in the sense 

specified above), this was mainly for the purposes of conservation and 

manipulability. For measurement purposes, we found, after several 

experiments, that a resolution of 150 dpi is sufficient. Compressing the 

original image to 150 dpi greatly reduces the memory requirements and CPU 

resources, and reduces by several orders of magnitude the time needed for 

processing images. 

The image-processing pipeline begins with a series of pre-processing steps 

by which the original image is transformed into a derived image suitable for 

the analysis stage in which the fragment’s measurements are extracted from 

that derived image. The technical aspects of the process were described in 

previous work (Wolf et al., 2011b). Here we content ourselves with a high-

level description of the various steps and their output. 

3.1  Preprocessing 

A. Computing image dpi.  Finding the exact dpi of the image in the above 

sense is achieved by using the ruler included in every image. A reference 

image of the ruler was photographed independently, and used for locating a 

similar ruler in each image. The identification is done by employing a 

randomized algorithm, RANSAC (Fischler and Bolles, 1981), in 

combination with scale-invariant feature transform (SIFT) keypoint 

matching (Lowe, 2004). This template-based approach identifies and 

localizes the specific object (the ruler) and does not just remove it. For the 

latter task, a classical method such as the binarization method of (Sauvola 

and Pietikäinen, 2000) that also contains a method for identifying textual 

regions could be used. 

Once identified, we can measure the ruler’s size in pixels (assuming it is 

totally contained in the image) and divide it by its known size. When only 

part of the ruler appears in the image, we can still get the required result, 

either by using the distance between the keypoints matched in relation to the 



  

reference image, or by detecting two consecutive ticks and measuring the 

distance between them.  

In some of the collections the fragment images were captured without a 

ruler, but on graph paper. Detecting the grid and counting the number of 

pixels between the lines (and knowing of course beforehand the distance 

between the grid’s lines) proved to provide an accurate value for the image 

dpi. 

For evaluating the results obtained by these two methods, we analyzed the 

AIU (Paris) Genizah collection in which both methods were available, that 

is, images in this collection were photographed with a background of blue 

graph paper and, in addition, a steel ruler was present in every image. The 

collection contains 13,230 images, most of them captured at 450 dpi. Table 

1a lists the dpi values that were extracted in this collection by identifying the 

ruler, while Table 1b lists the dpi values extracted by identifying the graph 

paper. As can be seen, there is only a tiny deviation of 1% in the results 

obtained by the two methods (6 pixels at 450 dpi). While the identification 

of the graph paper was fully successful, the identification of the ruler failed 

(dpi=0) for 255 images (about 2%), due to a missing ruler or to a ruler partly 

covered by the fragment. 

Processing images in other collections, which were taken at 600 dpi, 

produces values in the range of 595-603 dpi, thereby providing an accuracy 

of 0.2 mm in one inch (5 pixels in a 600 dpi image). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1a DPI  as extracted from ruler 
 
 

  
Table 1b DPI as extracted from graph paper  
 

B. Separating foreground from background. The goal of this step is to 

detect the image of the fragment itself, isolating it from the accompanying 

background. 

The process of separating fragment(s)—there may be many small separate 

fragments in the image—from the background in the image depends solely 

on color separation. It is therefore crucial to have a good distinction between 

the color of the background and that of the fragment. As described above, 

DPI  0  130-172  178  208-274  441-453  592-596  Total  
Count  255  80  389  13  12202  291  13230  

D  0  144-174  182  208-276  450-453  604  Total  
Count  1  79  389  13  12457  291  13230  



  

the collections in Cambridge and at the British Library were indeed taken on 

the blue background recommended above, which gives excellent separation. 

Other collections were taken on graph paper in which the grid lines were 

colored in a light hue of blue. In either case, an automatic classifier was first 

applied to identify foreground pixels (in contrast to background ones) based 

on RGB color values (or HSV values). To create a region-based 

segmentation of the fragment(s), the connected components of the detected 

foreground pixels were marked, and the convex hull of each component 

calculated (connected component = a contiguous region of foreground 

pixels; convex hull = the smallest possible encompassing polygon with 

angles opening inward). These procedures retain almost all of the relevant 

parts of the images, while excluding most of the background. 

 

C. Detecting and removing irrelevant components. In some collections, 

each fragment is held in a slip attached to a binder; see Fig. 3. The system 

detected these binders by the combination of their color and shape, and 

removed them from the image. In other collections, images included a label 

with the fragment’s shelfmark. These labels were also detected by the 

system and ignored. This was the case with the large Cambridge Genizah 

collection in which we have processed 309,480 images with labels. Out of 

this large number our algorithm failed to find the label in only 11,084 

images (0.3%). By contrast, the detection of clips and weight bags was much 

more challenging and quite problematic. Luckily, such practices were rare, 

so we solved the problem with semi-automated tools, augmented by some 

manual labor.   



  

 
Figure 3: Fragment from the JTS collection with a black binder. 

  

D. Separating multi-fragment images into components.    In many cases, 

more than one fragment was captured in a single image; see Fig. 4. In the 

AIU collection, for instance, out of 13230 images, 2224 (16.8%) were 

detected as having more than one fragment and 98 (0.7%) were detected as 

having more than five. Each such fragment (a “component” of the image) 

was identified and given a unique identifier (serial number) and, 

subsequently, handled independently of other components in the image. In 

such cases, however, there was a need to relate the components in the recto 

image of a fragment to the ones in its verso image (so as to have the same 

identifiers for both images). This was done automatically by mirroring one 

image and matching the components in both images by size and shape. 

 
Figure 4: Multiple fragments in one image. 

 

E. Binarization.  The regions detected in the foreground segmentation 

process are then binarized, that is, every ink pixel is assigned a value of 1 



  

(representing black), and all other pixels are assigned a value of 0 (for 

white). This is done using the auto-binarization tool of the ImageXpress 9.0 

package by Accusoft Pegasus. To cope with failures of the Pegasus 

binarization, we binarized the images a second time using a local threshold 

set at 0.9 of the local average of the 50×50 patch around each pixel. The 

final binarization is the pixel-wise AND of those two binarization steps. 

Pixels near the fragment boundary are set to 0. More sophisticated 

binarization methods, such as (Bar-Yosef et al., 2007), are being 

experimented with.  

 

F. Auto-alignment. Although in most cases fragments were imaged placed 

upright, in many other cases the fragment was tilted. This depended on how 

the fragments were conserved: in Mylar envelopes, bound in volumes or in 

loose storage. The need for alignment is two-fold: first, to enable the correct 

measurement of the fragment’s various attributes (such as width and length), 

and, second, to enable proper application of the handwriting-matching 

algorithm described below. 

Alignment is achieved by rotating the image until the lines of text are 

horizontal, using a simple method akin to those in (Baird, 1992, Srihari and 

Govindaraju, 1989). For each possible rotation angle, we consider the ratio 

of black to white pixels in each horizontal line. We then calculate the 

variance of the projection for each angle, and select the angle for which the 

variance is maximal. This method may fail in two ways. If the fragment was 

originally written diagonally or in uneven lines, the system will fail to 

straighten the fragment, and might even undo what was originally a correct 

setup. Though this will result in erroneous measurements, it will still be 

beneficial for the handwriting matching algorithm. Furthermore, our 

algorithm might not detect an upside-down image. Although this will not 

affect the proper measurement of the fragment, it will hinder the handwriting 

matching algorithm. In principle, were we able to identify the script style, 

the algorithm could determine the correct orientation. Unfortunately, the 

diversity of handwritings in the Genizah material is so rich and variable that 

we are as yet unable to achieve this goal, but do hope to in the near future. 

To evaluate the quality of the auto-alignment algorithm, we inspected the 

distribution of projection values in the chosen angle. In well-aligned 

documents, we expect the standard deviation of this distribution to be high. 



  

On the other hand, when the distribution of projection values tend to be flat, 

we assume that the alignment is of poor quality. Using one standard 

deviation as the threshold, we mark each fragment as either having a good 

line-alignment or not. 

We applied this method to the totality of the 469,940 processed fragments. 

Of these, 323,396 (68%) fragments were dsignated as being well-aligned, 

while 146,544 (31%) were marked as having poor line-alignment. This high 

failure rate has several causes: fragments with a blank side, tiny fragments 

with only a few legible characters, fragments in poor physical condition 

(mutilated or badly damaged) and fragments with diagonally-written lines. 

All of these contributing factors (which occur abundantly in the Genizah 

collection) yield poor binarization and, consequently, poor line-alignment. 

3.2  Physical measurements 

Having accurately determined the exact dpi of an image, we can measure 

different attributes of the fragment with very high accuracy. The most 

obvious ones are the dimensions of the fragment, which are recorded 

(manually) in most Genizah catalogs (but these catalogs cover, as noted, 

only a very small fraction of the Genizah collections). Few catalogs also 

record the inner dimensions of the fragment, that is, the dimensions of the 

written part. Besides these, our system also records the exact width of all 

four margins. 

Needless to say, these measurements should be considered valid only for 

complete and intact folios. In the more common case for the Genizah of 

damaged pages, these figures should be considered as lower bounds only. 

There is a need, therefore, to record the state of the fragment: whether 

complete or damaged, and in the later case, in what directions(s) the damage 

occured (horizontal, vertical or both). The system evaluates the state of the 

fragment by its shape and by the appearance of the margins. The number of 

lines in the fragment, commonly recorded in many catalogs, is also 

computed. Note, however, that, while catalogs usually give the number of 

lines for one sample page from each shelfmark (which might contain several 

pages), our system records this value for every page, recto and verso. 

Obviously, the quality of all these automatically-generated values largely 

depends on the state of preservation of the fragment. Stained, very dark or 

faded fragments and otherwise poorly preserved ones yield noisy or poor 

binarization, which will result in inaccurate measures and values. Therefore, 



  

a module for the evaluation of data quality is applied to all available images. 

This is performed by inspecting several factors, including the noise level in 

the binary image, the homogeneity of the text portion and the deviation of 

the obtained results from typical values.  

Another method for evaluating the measurements' quality is comparing the 

measurements' values for the recto and the verso sides of the same 

document. A certain difference between the values of the measurements for 

the two sides of a fragment is unavoidable, as these measurements depend 

on the fragment's line-alignment quality, which is calculated separately for 

each side. Slightly different angles of the lines in the opposite sides of the 

original document will yield different alignment of the two images and 

therefore different measurements of the same document. Moreover, poor 

quality line-alignment on one side may result in incorrect alignment of the 

fragment and erroneous dimensions measures. 

Analyzing 3654 documents from the AIU collection with only one 

fragment per image, we found that 89% of them had less than a 10% 

difference in the width dimensions. We consider these documents to have 

good auto-alignment and sufficiently accurate measurements. 

Our system also offers a graphic tool for the website user that draws the 

derived rectangles bounding the fragment and the textual portion on top of 

the original image, providing a visual indication of the validity of the 

inferred measures. Another function marks every detected textual line in the 

fragment, allowing for manual indication of lines that the system may have 

skipped or marked by mistake. See Fig. 5. These drawings can be toggled on 

and off, so they need not interfere with the readability of the fragment. 

The system also records some finer attributes, which are not to be found in 

catalogues, but are of great importance for matching joins, including average 

line height, average inter-line space, and average density of characters. 

These attributes may characterize a manuscript and can contribute to the join 

module, described next. 



  

 
  Figure 5: Bounding rectangles and medial lines, representing derived 

measurements for a fragment.  

 

4  An Automatic System for Discovering Joins  

One of the most critical issues in Genizah research is that of discovering 

“joins”, that is, different fragments originating from the same codex that 

have been relocated in different locations (through the unavoidable 

deterioration of the originals over so many centuries and the random 

acquisition and trade of manuscripts), one fragment being found, for 

instance, in Cambridge and another in Vienna. Over the past hundred years, 

a few thousand joins have been discovered manually, by the sheer erudition, 

memory and intelligence of scholars.  Can a computerized system help solve 

this problem today? 

It is clear that if the images of two fragments are to be declared a join, then 

their handwriting should be similar, since both fragments were in all 

probability written by the same scribe. Hence the need to develop a 

computerized system that can assess—within a given probability—that two 

images of handwritten material bear similar handwriting, and were 

presumably written by the same hand, and thus constitute a potential join. In 

addition to comparing handwriting, the join-discovery system should take 

into consideration the appropriate cataloging data, as extracted from the 

images in the system described above.  

Having successfully developed such a join-suggestion system proves the 

usefulness of making digital images of manuscripts available, as well as the 



  

usefulness of a computerized system for extracting catalog data from these 

images. 

4.1 Similar Handwriting 

For determining similarity of handwriting, we employed a general 

framework for image representation that has been shown to excel in domains 

far removed from document processing, namely, that of face recognition, 

adopting a method based on a “bag of visual keywords” (Dance et al., 2004, 

Lazebnik et al., 2006). The technical details of our system are provided 

elsewhere (Wolf et al., 2011b). Here, we provide only a non-technical high-

level description.  

In this approach, we do not analyze the individual handwritten letters and 

their shapes, but rather use a global comparison scheme, vaguely similar to 

the way with which two portraits are compared by the computer and found 

to be portraits of the same person. First we compute for each image a 

characteristic “signature”, which is then converted into a numerical vector. 

To determine whether the handwriting of the two images is similar, their 

signatures are compared. This comparison employs a learned metric, that is, 

we use a training set of known joins to estimate the parameters of a 

similarity function that describes how likely any two images are to be a join, 

given their signatures. 

 We have conducted three experiments to evaluate the usefulness of our 

system for finding joins. These evaluations have produced a long list of 

brand new joins, never before recorded in Genizah research, which have just 

been published for a scholarly audience (Shweka et al., 2011).  

4.2  Benchmarks 

4.2.1  A First Small Benchmark 

A set of experiments was performed on an initial benchmark we created 

(Wolf et al., 2009), with all images taken from the JTS (Jewish Theological 

Seminary in New York) and AIU (Alliance Israélite Universelle in Paris) 

collections. We compared all possible pairs of images from these two 

collections and submitted the 30 pairs that received the highest scores, but 

were not already known to be joins, to a human expert for validation, which 

took a couple of hours. Eighty percent of the newly detected candidates were 

found to be actual joins, 17% were found to be non-joins, and the status of 

one pair could not be readily determined. 



  

 

4.2.2  Benchmark with the Geneva Collection 

We then asked our system to find joins with the recently recovered Geneva 

collection, which is characterized by mostly large, neat, clear and quite well-

conserved folios. The search using our tools was pretty efficient, with about 

30% of the top 100 matches turning out to be joins. Fig. 6 shows a variety of 

previously-unknown joins proposed by our algorithm (the leaf from Geneva 

is in each case is on the left). Example (a) consists of two leaves from the 

same copy of the Mishnah (Hebrew, square script, on vellum), with the right 
one being from the small collection of the National Library (NL) in 

Jerusalem (additional leaves from the same manuscript are in Oxford and 

Cambridge). Example (b) shows fragments from a codex of the Bible 

(Hebrew, square script, on vellum), with the right fragment from JTS. Such 

codices are written using a very rigid set of calligraphic rules, and the 

identification of such joins based on handwriting is considered extremely 

challenging. Example (c) is from a codex of alternating Hebrew and 

Aramaic text (square script), the right-hand one from JTS. Example (d) 

shows a join of two leaves of Hebrew liturgical supplications (rabbinic 

script), the second one from Pennsylvania. Example (e) is from a book of 

precepts by Saadiah Gaon, a lost halakhic work by the 10th century head of 

the Academy in Sura (Judeo-Arabic, square oriental script, on vellum), the 

right one from JTS. This is a good example of how joins can help identify 

new fragments from lost works. Once one is identified correctly, the 

identification of the other is automatically determined. Example (f) is from a 

Hebrew responsum (rabbinic script), where both leaves are from AIU, but 

given different shelfmarks. 

4.2.3  Benchmark of Joins between Collections 

A third set of join-seeking efforts was conducted on all between-collection 

pairs of fragments unknown to be joins in ENA, AIU, NL and smaller 

European collections of mixed quality. Note that inter-collection joins are 

harder and more challenging for scholars to find manually. The top-scoring 

9,000 pairs were extracted and then reduced, for practical reasons, to 8,790 

pairs. The first 2,000 pairs and the last 3,000 fragments of this list were 

studied. The results are given in Table 1. The columns distinguish between 

“strong” joins, meaning the same scribe and the same manuscript, and 

“scribal” joins—a join between different manuscripts that appear to be 



  

Range Strong join  Scribal join Total join Non-blank 
1–2000 
5791–8790 

17% 7%  
7% 6% 

24% 
13% 

45% 
18% 

  

written by the same scribe. The latter are also of potential interest to scholars 

and are considered a successful hit. As can be seen, 24% of the top 

discoveries are true joins, mostly strong. More than 13% of the 6th, 7th, and 

8th thousands of matches are validated, and at least half of those are strong. 

Going over the examples, it became apparent that many of the proposed 

joins were artifacts caused by normalized vectors arising from blank pages. 

This was to be expected, since the benchmark that was used to develop the 

join-discovery tool was not designed to handle blank documents. After the 

removal of 49 such pages and all their supposed joins, the recognition rates 

increased considerably.  

It should be added that any Genizah scholar would be extremely happy to  

check a list of, say, a hundred pairs, finding maybe only one pair to be a true 

join, since his chances of finding this join by himself are practically nil. 

 

 
Figure 6: Examples of heretofore unknown joins discovered by the system. 

See text for details. 

 

 

 

 

Table 2: Percentage of verified new joins out of candidate joins suggested by 

the system. 

 

4.2.4  Computational Benchmark 

 



  

To facilitate collaboration between researchers and to easily evaluate the 

contribution of various components of our system, we also devised an 

accessible benchmark that can be utilized without the need of expert 

evaluation. This benchmark is modeled after the widely popular face-

recognition benchmark called "Labeled Faced in the Wild" (Huang et al., 

2007). 

 Our benchmark consists of 31,315 leaves, from the New York (ENA), 

Paris (AIU), and Jerusalem (JNUL) collections. It consists of “positive 

pairs”, each consisting of two fragments known to be from the same join, 

and of negative pairs, which are pairs that are not known to be positive. 

Since the expected number of unknown joins is very limited in comparison 

to the total number of pairs, the vast majority of the negative pairs are 

believed to be non-joins. 

 There are two views of the dataset: View 1, which is meant for parameter 

tuning, and View 2, meant for reporting results. View 1 contains three splits, 

each containing 1000 positive pairs of leaves belonging each to the same 

join, and 2000 negative pairs of leaves that are not known to belong to the 

same join. When working on View 1, one trains on two splits and tests on 

the third. 

 View 2 of the benchmark consists of ten equally sized sets. Each also 

contains 1000 positive pairs of images taken from the same joins, and 2000 

negative pairs. Care is taken so that no known join appears in more than one 

set, and that the number of positive pairs taken from one join does not 

exceed 20. 

 To report results on View 2, one repeats the classification process ten 

times. In each iteration, nine sets are taken as training, and the results are 

evaluated on the tenth set. Results are reported by constructing a receiver 

operating characteristic (ROC) curve for all splits together (the outcome 

value for each pair is computed when this pair is a testing pair) and by 

computing statistics of the ROC curve (area under curve and true positive 

rate at a certain low false positive rate).  

By using handwriting similarity alone, we are able to show high 

recognition rates on this benchmark: the obtained area under curve is 0.98, 

and the recall at the false positive rate of 0.001 is as high as 79%.  

 



  

4.3  Incorporating Catalog Information with 
Handwriting Similarity to Suggest Joins 

We found that the most distinguishing visual information between fragments 

arises from the handwriting, and the search for joins focuses on minute 

differences that exist between various scribes, as described above. However, 

other sources of information are also valuable for finding joins. Applied in 

tandem with the handwriting similarity, these can help disambiguate difficult 

cases and improve the overall accuracy.  

The physical measurements, the extraction of which was described in 

Section 3.2, are highly indicative for finding joins. Eight measurements are 

considered: number of lines, average line height, standard deviation of line 

height, average space between lines, standard deviation of interline space, 

and the inner dimensions of the fragment: height, width, and area.  

In order to verify that two documents are potential joins, we compare the 

measurements of the two documents. In good condition, two leaves of the 

same manuscript would produce similar measurememtns. The Genizah, as 

described above, however, contains highly degraded documents. Therefore, 

joins display vastly different measurements in many cases. Conversely, 

many pairs of fragments have similar measurements by chance. 

Therefore, it is not surprising that each one of these measurements is 

hardly discriminative by itself; however, combined together, they are able to 

discriminate pretty reliably between joins and random pairs, although not 

nearly as well as handwriting similarity. The exact details are reported in 

(Wolf et al., 2011a). 

Another source of available information is subject classification. A 

significant part of the digitized Genizah documents have already been 

manually classified by subject matter. The classification contains the 

categories Hebrew Bible, Bible translations, Bible commentaries, Talmud, 

liturgy, Judeo-Arabic literature, plus several more. Since every manuscript is 

expected to belong to one classification, this information is relevant for 

excluding improbable joins. However, the utility of this information is rather 

limited due to inconsistent classifications and, sometimes, multiple 

conflicting classifications for even the same fragment. Quite often, 

fragments of the same unknown join might have unrelated classifications. 

Running a battery of tests, as described in (Wolf et al., 2011a), we found 

that handwriting is significantly more informative than physical 



  

measurements, which are more informative than subject classification. Still, 

the combination of the three, by means of multivariate regression, produces 

results that are considerably more accurate than using handwriting similarity 

alone. Specifically, for the benchmark of Section 3.2.4, recall at the false 

positive rate of 0.001 increases to 85%.  

 

4.4 Discussion 

A related task to that of join finding is that of scribe identification, where the 

goal is to identify the writer by morphological characteristics of his 

handwriting. This is done either by means of local features or by global 

statistics. Most recent approaches are of the first type and identify the writer 

using letter or grapheme-based methods, which use textual feature matching 

(Bensefia et al., 2003, Panagopoulos et al., 2009). The work of Bres, Eglin 

and Auger (2006) uses text-independent statistical features, while other 

efforts combine both local and global statistics (Bulacu and Schomaker, 

2007, Dinstein and Shapira, 1982). Within this spectrum, our approach for 

handwriting similarity is local, with the property that the graphemes are 

automatically extracted without human supervision.  

Previous contributions to handwriting recognition identify the writer of the 

document from a list of known authors. Here, we concentrated on finding 

join candidates, and did not assume a labeled training set. Since writers are 

usually unknown (in the absence of a colophon or signature), and since joins 

are the common way to catalog Genizah documents, we focused on this task. 

The handwriting techniques we use are not entirely suitable for 

distinguishing between different manuscripts penned by the same writer. 

However, the additional data employed, such as genre and topic 

classifications and physical parameters, help distinguish different 

manuscripts by the same writer.  

Interestingly, there is a specialization to individual languages, employing 

language-specific letter structure and morphological characteristics (Bulacu 

and Schomaker, 2007, Dinstein and Shapira, 1982, Panagopoulos et al., 

2009). Since the Genizah contains a multitude of script styles and languages, 

our solution has to be generic by design.  



  

5 Conclusion  

Digitizing collections of historical manuscripts is rapidly becoming one of 

the main tasks of librarians and preservers of such collections. While it is 

understood that digital images are required for conservation, sustainability, 

accessibility and manipulability needs, we maintain that they are also 

important as input to advanced artificial-intelligence image-analysis 

techniques that can contribute great benefits to the study of these 

manuscripts. The digitization effort should, therefore, take into account the 

fact that the computer itself will be one of the most important “consumers” 

of the digital images, and its needs must be taken into account when 

planning a digitization project. These requireents are: including a ruler in 

every image, choosing a contrasting background of a specific blue hue, 

avoiding the use of artifacts and capturing images at 600 dpi (in the specific 

meaning explained earlier). 

Having done so, the computer can process each image to automatically 

extract a large amount of useful data about the fragment’s physical 

attributes, including its dimensions, the number of rows, margins, character 

and line density, etc. Moreover, artificial-intelligence techniques can be 

applied to a pair of images to ascertain the likelihood that they were written 

by the same scribe, and by incorporating measurements extracted from the 

images, to determine whether they are indeed a join, originating from the 

same manuscript.  

This approach is being applied to the huge and very important Cairo 

Genizah collection (comprising 350,000 fragments), whose manuscripts are 

currently dispersed all over the world. Using the methods described here 

might well enable us to reconstruct the original Genizah collection, thus 

assuring a quantum leap in facilitating Genizah research.  
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