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Abstract 

Spelling correction is one of the main tasks in the 

field of Natural Language Processing. Contrary to 

common spelling errors, real-word errors cannot be 

detected by conventional spelling correction 

methods. The real-word correction model proposed 

by Mays, Damerau and Mercer showed a great 

performance in different evaluations. In this 

research, however, a new hybrid approach is 

proposed which relies on statistical and syntactic 

knowledge to detect and correct real-word errors. 

In this model, Constraint Grammar (CG) is used to 

discriminate among sets of correction candidates in 

the search space. Mays, Damerau and Mercer’s 

trigram approach is manipulated to estimate the 

probability of syntactically well-formed correction 

candidates. The approach proposed here is tested 

on the Wall Street Journal corpus. The model can 

prove to be more practical than some other models, 

such as WordNet-based method of Hirst and 

Budanitsky and fixed windows size method of 

Wilcox-O’Hearn and Hirst. 
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1 Introduction 

Proposing new methods for auto-correcting 

errors, particularly real-word ones, is a thorny 

task. Because of this challenge, many of the 

existing spelling correction methods are not 

sufficiently accurate. There are two primary 

undertakings in spelling correction: error 

detection and error correction. Errors found in 

general writings are roughly classified into two 

sets: non-word errors and real-word errors. 

Non-word errors may occur when the typist 

produces a misspelled word. As there is no 

correct spelling for this kind of errors, they 

may not be attested in the dictionary list. 

Therefore, spelling correction programs, 

including word processors, may effectively 

detect and subsequently correct errors. 

Moreover, real-word errors may occur when a 

user mistypes a correctly spelled word. Many 

spelling correction programs cannot recognize 

such errors, because they normally process 

words in isolation. This way, they can merely 

distinguish non-word errors which are 

mistyped and cannot be found in the 

dictionary. Real-word errors may also appear 

in cases where a word is mistyped because of 

its phonetic similarity to another word. 

Likewise, these errors may be committed 

when a word does not seem to match the 

context (e.g. sentence) in which it is used. In 

other cases, they may occur when the user tries 

to replace a non-word error, using the 

suggestion list in the text processing software. 

A real-word error takes place when a user 

mistakenly chooses the wrong word among the 

other alternatives recommended in the 

suggestion list (Wilcox-O'Hearn and Hirst, 

2008). Even spelling correction programs may 

mistakenly generate a real-word error while 

attempting to adjust non-word errors, in cases 

where the "auto-correct" feature is enabled in 

the text processing setting (Hirst and 

Budanitsky, 2005; Dashti, 2017). Detailed 

investigation of real-word spelling corrections 

has been proposed by Pedler (2007) Hirst and 

Budanitsk (2005). Of course, Kukich (1992) 

has more extensively explored spelling 

correction. Dashti (2017) proposed a model 

which drew on a Probabilistic Context-Free 

Grammar and Wilcox-O'Hearn and Hirst’s 

(2008) fixed length windows to correct 

multiple real-word errors in a sentence. This 

model showed significantly better performance 

in the evaluations. In this study, we propose a 
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model for auto-correcting multiple real-word 

errors in a sentence. This model uses both 

statistical and syntactic knowledge to detect 

and correct real-word errors. The fixed-length 

windows model (Wilcox-O'Hearn and Hirst, 

2008) and English Constraint Grammar 

(Voutilainen and Heikkilä, 1993) are used in 

the proposed approach. We clarify why our 

model identifies and auto-corrects real-word 

errors more efficiently, especially when the 

typist is not professional. We review the 

literature in this field (Wilcox-O'Hearn and 

Hirst, 2008; Hirst and Budanitsky, 2005) and 

uses the corpus of Wall Street Journal as a 

benchmark for the assessment. Using such a 

corpus would make it possible to compare the 

findings with those of similar works (Wilcox-

O'Hearn and Hirst, 2008; Hirst and 

Budanitsky, 2005; Dashti, 2017). This paper is 

organized in the following order: in section 2, 

Mays and colleagues’ (1991) model, which 

lays the foundation of our model, is briefly 

reviewed. In section 3, a thorough discussion 

on the existing important variations and the 

updates on Mays and colleagues’ (1991) 

model are presented. Our proposed model is 

explicated in section 4. In the next section, 

evaluations and experimental results are 

reported. In section 6, an outline of the 

relevant studies in the literature is framed, and 

finally in section 7, concluding remarks about 

the discussion are provided. 

 

2 Mays, Damerau and Mercer’s model  
In this section, Mays and colleagues’ (1991) 

model is reviewed and some of its important 

shortcomings are discussed.  

 

2.1 Overview of the model  
Mays and colleagues’ (1991) approach 

represented a sample of the noisy-channel 

model. It was designed to correct the sentence 

S, which went through a noisy channel (e.g. a 

typist) that could create a few errors by 

mistake, in the correct sentence S'. Mays et al. 

(1991) considered  α  to be a parameter which 

represented the probability of a word’s correct 

spelling. The remaining fraction (1-α) showed 

the probability that the word was mistyped as a 

real-word error, showing that this probability 

was equally distributed among all the related 

correction candidates. Therefore, the 

probability that the intended w was typed as y  

was formulated as follows: 

 

(1)   

             

 
In equation 1,  is the spelling variations 

of  generated by the ispell software 

)Kuenning  et al., 2004). Afterwards, equation 

2 was used to estimate the probability of every 

single related trigram, and then to replace the 

most probable one with the original trigram: 

 

(2) 

 
 

In this configuration, S', which is one of the 

current sentences in the search space , 

maximizes the probability of 

. 

 

2.2 Disadvantages of Mays, Damerau 

and Mercer’s method  
One of the disadvantages of this model is the 

large size of the trigram model, which is an 

essential element to produce an effective 

performance. The other disadvantage is that 

the model tries to correct grammatical errors 

which can be detected and corrected through 

grammar checkers only. According to Wilcox-

O'Hearn and Hirst (2008), there is an 

undesirable shortcoming in this model: 

because each member of the search space  

is a sentence with one word changed in it, the 

method would be able to correct only one real-

word error in each sentence. This process 

could be more challenging if the α value 

showed a low degree, especially in cases 

where the source of the error (e.g. typist) 

might produce many spelling errors. Consider 

the phrase "the two of them" which the user 

intended to type, although by mistake s/he 

typed "thew to of then". In this sequence of 

words, = thew, = to, = of, and = 

then. According to Mays et al., (1991), in such 

a situation the model would create a search 

space of all the related  word-sequences, each 

containing only a single spelling variation of 

the original phrase words. In short, the search 

space would include these word sequences: 

 



 

 

 
 

In addition, the model would try to estimate 

the probability of each sequence of words in 

the current search space, and replace the one 

with the highest probability value with the 

original phrase. However, as there is no word-

sequence with more than one spelling variation 

through the search space, no exact replacement 

for the original phrase could be found. 

 

3 Variations and improvements on the 

model  
Wilcox-O'Hearn and Hirst (2008) introduced 

another assessment of the model, testing the 

model on the corpus of the WallStreet Journal. 

Although the model performed quite well in 

contrast with Hirst and Budanitsky’s (2008) 

method, there was still some potential for 

improvement. In the present study, two 

important works are discussed that can help 

improve the model of Mays et al. (1991): 

Wilcox-O'Hearn and Hirst (2008) and Dashti 

(2017). 

 

3.1. Fixed sized windows method 

suggested by Wilcox-O'Hearn and Hirst 

(2008) 
The model of Mays et al. (1991) can typically 

make only one correction in each sentence. 

Wilcox-O'Hearn and Hirst (2008), considering 

it to be a NP hard problem, incorporated 

sentences with more than one correction in the 

search space. As they observed, such a 

capability would be helpful only when the 

typist was very careless, or in the case where 

the α value was very low. To solve this issue, 

Wilcox-O'Hearn and Hirst (2008) suggested a 

strategy. They tried to select all of the 

sentences which showed a higher probability 

value than the original sentence  and to use a 

combination of them rather than a single 

sentence from the search space . 

 

3.2.    Using windows of fixed length  

 
In the model of Mays et al. (1991), the 

sentences are usually used as variable-length 

units in order to be more optimized. Wilcox-

O'Hearn and Hirst (2008) suggested a variation 

of the model which improved itself through 

windows of fixed length. In this variation at 

the first stage, the boundaries of the sentence 

are taken into consideration as BoS 

(Beginning-of-Sentence) and EoS (End-of-

Sentence). Then a window with the fixed 

length d+4 (d is the range of words) is used to 

accommodate the trigrams which are 

overlapped with the words in the current 

range. As a consequence, the smallest 

windows size will be 5, which incorporates 

three trigrams in estimating the probability of 

all the spelling variations of the middle word 

in the range. Thereafter, the method moves d 

words to one side and checks the rest of the 

words in the sentence. Thus allowing multiple 

corrections in the sentence would be possible. 

If we consider the length of the sentence 

(including sentence markers, BoS and EoS), 

l−d+1 iteration(s) will be required to check the 

whole sentence. 

 

3.3. Weaknesses of Wilcox-O'Hearn and 

Hirst’s (2008) model 
In recent years, unlike 1980s and mid-1990s, 

PCs and electronic devices are tremendously 

accessible to the majority of people around the 

world (Dashti, 2017). Most people use 

different types of electronic devices to type 

their content. As Dashti (2017) observes, every 

individual enjoys his\her own specific levels of 

attitude, accuracy and typing speed. From a 

practical perspective, various programs should 

be devised for different types of users, whether 

they are professional typists or beginners who 

have started typing on their handheld devices. 

As claimed by Wilcox-O'Hearn and Hirst 

(2008), multiple corrections in a sentence 

would not be exceptionally essential, although 

in the real world their idea is not true. Suppose 

α=.9, which is a typical value for this 

parameter. This value, implies that in every ten 

words typed by the user, one is not correct on 

average. In the real world, a user may 

normally mistype two words. The typos might 

occur one after the other or with a distance of a 

few words (Dashti, 2017). As the model of 

Mays et al. (1991) suggests, it only applies to 

one error in a sentence, although in reality it 

may fail to correct multiple real-word errors. 

As explained above, Wilcox-O'Hearn and 

Hirst (2008) proposed a variation which used 

windows of fixed length. One advantage of 

windows of fixed length is that they allow for 

multiple corrections in a sentence. 

Nevertheless, multiple corrections cannot be 



made in a particular window (Dashti, 2017). 

For example, consider the following sentence 

from the WallStreet Journal corpus:  

 

…test [tests] comparing its potpourri covert 

→ convert [cover] with the traditional… 

 

This is an example of false-positive correction 

in a fixed-size window, in which "test" and 

"covert" are real-word mistakes. As can be 

seen, Wilcox-O'Hearn and Hirst’s (2008) 

fixed-window failed to identify the first real-

word error. Moreover, the model was 

unsuccessful in correcting the second error, 

because the method merely detects and 

corrects one error in each window.  

 

3.4. Correcting multiple real-word 

errors in a window  
Dashti (2017) made a thorough overview of 

the drawbacks in models proposed by Mays et 

al. (1991) and Wilcox-O'Hearn and Hirst 

(2008). He described why the variation 

formulated by Wilcox-O'Hearn and Hirst 

(2008) failed to correct multiple real-word 

errors in everyday real world conditions where 

α shows lower values. Dashti’s (2017) 

proposed approach drew on Wilcox-O'Hearn 

and Hirst’s (2008) fixed window size approach 

as a basis to create a search space including all 

the windows that were accommodated in a 

sentence. For every word in the current 

window, a group of spelling variations  

might be considered.  is only a combined 

sequence of the words, in a current search 

space.  represents the search space of 

the current window, incorporating all possible 

combinations of the current words and their 

related spelling variation sets. It should be 

noted that . 

Dashti (2017) manipulated a probabilistic 

context-free grammar (PCFG) (Klein and 

Manning, 2003) to discriminate between items 

in the search space. Any word sequence which 

had lower parse probability than the original 

word-sequence was removed from the search 

space. When the PCFG was applied, only 

syntactically well-formed word-sequences 

remained. Following that, the trigram 

approach proposed by Mays et al. (1991) was 

relied on to estimate the probability of the 

syntactically well-formed word-sequences. 

Next, word-sequences of all windows were 

combined with respect to their order of 

appearance, and the PCFG was applied to all 

the combinations. The combinations with 

higher parse probabilities than those of the 

original sentence were regarded as the final 

correction candidates. Consequently, equation 

3 was used to estimate the probabilities of best 

correction candidates. 

 

(3) 

 
where  is the i-th syntactically well-

formed word-sequence in the j-th window. 

 

3.5. Advantages and weaknesses of 

Dashti’s (2017) model 
Dashti’s (2017) model performed significantly 

better in evaluations, compared with the 

performances of Wilcox-O'Hearn and Hirst’s 

(2008) and Hirst and Budanitsky’s (2005) 

models. The difference of accuracy between 

Dashti’s model and the others was even more 

evident in cases where α  had lower values. 

Although the results were satisfying and the 

task of correcting multiple real-word errors 

was successful, the model was rather slow in 

processing everyday functions. This 

shortcoming appears to be a consequence of 

using Klein and Manning’s (2003) PCFG 

model, which works rather slowly. Dashti 

(2017)  stated that performance may be further 

improved by using high-speed unlexicalized 

PCFGs, such as the one proposed by Petrov et 

al. (2006). Dashti also pointed out that CG 

may be used to further improve the task of 

real-word error correction.  In present research, 

CG is used to create a model for detecting and 

correcting multiple real-word errors in a 

window. 

 

 

4 Methodology of the proposed hybrid 

approach 

 
The proposed hybrid approach manipulates 

both statistical and syntactic knowledge to 

detect and correct real-word errors. In this 

extended model, Dashti’s (2017) approach is 

relied on to generate the search space 

for each window. In the proposed 

model, CG is employed to discriminate among 

a set of correction candidates in the final 

search space. Then, Mays and colleagues’ 



(1991 trigram approach is used to estimate the 

probabilities of syntactically well-formed 

correction candidates. Section 4.1 details the 

CG and the modules which are used in our 

model. In section 4.2 we give a thorough 

discussion of how the proposed model works. 

 

4.1. Constraint Grammar 
In this section, we explain the English 

Constraint Grammar Parser (ENGCG) 

Voutilainen, and Heikkilä (1993). The first 

version of the ENGCG was developed by 

Voutilainen, Heikkilä and Anttila Voutilainen 

et al. (1992), based on the CG theory of 

Karlsson (Karlsson 1990, 1995). In following 

sub-section, the components of CG, which are 

used in the proposed model, are further 

explored. 

 

4.1.1. Preprocessing 
The initial stage in parsing is called 

preprocessing, which includes a variety of 

tasks such as: (a) the identification of sentence 

boundaries; (b) identification of punctuation 

marks; (c) identification of certain compounds, 

multiword prepositions, and other colloquial 

language structures; and (c) the normalization 

of  certain orthographical patterns. The 

preprocessing component is developed as a set 

of approximately 7000 rewrite rules, most of 

which are fixed syntagms in the “BETA” 

programming language” Brodda (1990). 

 

4.1.2. Morphological Analyzer 
The main component in the morphological 

analyzer is morphosyntactic lexicon, which 

was designed based on Koskenniemi’s well-

known Two-Level model Koskenniemi 

(1983). Presently, the English lexicon 

ENGTWOL Karlsson et al. (1995), which 

contains approximately 84,000 lexical entries, 

represents the main vocabulary of modern 

English. ENGTWOL includes all inflected and 

central drivational English word-forms. 

Prefixes and endings are represented in 

separate ‘minilexicons’ which might be 

accessed from the ‘stem’ lexicon. Moreover, 

ENGTWOL manipulates a feature system 

which is mainly based on Quirk et al. (1985), 

including 139 morphosyntactic tags. Some of 

tags include parts of speech (pos) and others 

involve numbers, cases, moods, and so on. 

Moreover, they might also include essentially 

syntactic properties Heikkilä (1995). The 

ENGTWOL lexicon is performed as a two-

level program called twol. Depending on the 

type of the text, the ENGTWOL analyzer 

identifies up to 99% of all running-text word-

form tokens. For each token, at least one or 

more morphological analyses are conducted. 

 

 

4.1.3. Morphological Disambiguation 
For about 35–50% of all words in the input 

sentences, the morphological analyzer 

generates several alternative analyses. 

However, typically only one analysis is the 

proper match for the context. The 

morphological disambiguator recognizes the 

correct alternative by removing as many 

contextually illegitimate alternatives as 

possible. Optimally, the morphological 

disambiguator identifies unambiguous and 

correctly tagged sentences. However, this goal, 

from a practical perspective, is extremely 

difficult to achieve in the analysis of 

unrestricted texts. ENGCG relinquishes only 

those alternatives which represent a very small 

risk of error. Because the few most 

complicated cases are left pending, the output 

of the tagger is somewhat ambiguous. Most 

morphological or part-of-speech (pos) 

disambiguators (Church, 1988; Leech et al., 

1994; de Marcken, 1990) draw on co-

occurrence-based and lexical statistics, which 

are usually derived from manually tagged 

corpora. In contrast. ENGCG only manipulates 

hand-written rules of language, or constraints 

which impose restrictions on the linear order 

of words and tags. Generally these types of 

constraints are very partial expressions of 

syntactic statements Voutilainen (1994). 

Generally they appear in the form: “remove 

reading Z if all context conditions are 

satisfied; else leave Z unchanged.” The 

contextual conditions usually involve the fixed 

position of the words (e.g. “the second word to 

the left contains the tag Z”) or the unbounded 

context within the sentence (e.g. “to the right, 

there is no X”).  

Some of the  constraints are explained briefly 

to clarify the general idea: 

 

1) Remove all finite verb readings if the 

preceding word is an unambiguous 

determiner. 

 



2) Remove all subjunctive readings 

unless the left-hand context contains 

that or lest as a subordinating 

conjunction. 

 

3) Remove all finite verb readings if the 

preceding word is “to”. 

 

The present grammar mainly includes two 

sections, the grammar-based section and the 

optionally applicable heuristic section. The 

first section contains about 1,150 constraints, 

making approximately 93-97% of all words 

unambiguous, out of which at least 99.7% 

showed correct morphological analyses. In the 

morphological disambiguation process, 

through the 200-odd heuristic constraints, 96–

98% of all words were rendered unambiguous, 

however at this stage only about 99.5% 

showed correct morphological analyses. 

 

4.2 The Proposed Hybrid Method in Use 
Unlike the approaches suggested by Mays et 

al. (1991) and Wilcox-O'Hearn and Hirst 

(2008), the proposed design not only uses 

statistical knowledge but also manipulates 

syntactic knowledge to improve the process of 

detecting and correcting real-word errors. 

Dashti’s (2017) approach (see section 3.4 

above) was used to generate the search space 

 for each window. Then, all s were 

combined according to windows’ order to 

yield the final search space .  is a 

member of  ( ); and it has the 

same length as the original sentence, according 

to expectations. Next, CG was applied to the 

 and syntactically ill-formed s were 

removed from . Finally Mays and 

colleagues’ (1991) trigram approach was 

applied to the remaining correction candidates 

incorporated in   , and a  with 

maximum value probability was selected as 

the best correction candidate. The whole 

process is briefly described in the following 

steps: 

 

Step 1. Generate the search space  for 

each window.  

Step 2. Combine search spaces   

according to the windows’ order, and create 

the final search space . 

Step 3. Use ENGTWOL morphological 

analyzer to recognize all the word-form tokens 

of all s in  and make all possible 

morphological analyses. 

Step 4. Employ the morphological 

disambiguator to identify the unambiguous 

and correctly tagged candidates  by 

removing as many contextually illegitimate 

alternatives as possible. 

Step 5. Use Mays and colleagues’ (1991) 

trigram approach to identify the most probable 

correction candidate with the highest 

probability. 

 

 

Start

Input 

Sentence

Is the EoS 

marker  

reached?

Generate the 

search space 

C(S)   for the 

current window

No
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word position

Combine all 

C(S)  s and create 

final search space 

C(S)

Set BoS and EoS 

markers

yes

Use ENGTWOL 

morphological 

analyzer to give 

all morphological 

analyses of C(S) 

members

Manipulate 

morphological 

disambiguator to 

identify 

unambigious 

correctly tagged 

candidates

Use the trigram 

language model to 

identify the most 

probable 

candidate

End

  
Fig. 1 Flowchart diagram of the model 

Figure 1 dissertates the flowchart of the model 

constructed.  

 

 



5 Evaluations   

 
In this section, some of the most important 

disadvantages of Mays and colleagues’ (1991) 

model are pointed out. Then, the proposed 

approach in this study is evaluated through 

measures of precision, recall, F-measure, and 

performance.  

 

5.1 Reviewing the Evaluation in Mays et 

al. (1991)  
Mays and colleagues’ (1991) model was 

assessed using trigrams, the vocabulary of 

which included 20,000 words. Bahl et al. 

(1983) and Mays et al. (1991) implied that the 

probabilities were yielded from IBM Laser 

Patent Corpus, while the vocabulary of this 

corpus includes only 12,000 words. Another 

disadvantage of the model of Mays et al. 

(1991) is that the test data used were 

composed of 100 sentences, which were 

extracted from Transcripts of the Canadian 

Parliament and AP newswire (50 from each), 

although these sources are not presently 

available. In the assessment made by Mays et 

al. (1991), for a sentence S' there was a search 

space of 86 sentences S, each containing only 

one error. In their assessment, no detail was 

shared about the length of the sentences. 

Additionally, the evaluation was not provided 

in terms of precision, recall and f-measure. 

The test and training data were not available to 

estimate the accuracy and performance of the 

measures. Due to these disadvantages, the 

assessment provided by Mays et al. (1991) is 

neither acceptable nor it might be compared 

with other models, namely those of Hirst and 

Budanitsky (2005) and Golding and Roth 

(1999). In the following section, the 

assessment of the hybrid mode is reported. 

 

5.2 Assessment of Hybrid Approach  
Wilcox-O'Hearn and Hirst (2008) did not just 

introduce a new variation that allowed for few 

corrections in a sentence by using windows of 

fixed length, but they proposed a new 

assessment of Mays and colleagues’ (1991) 

method. Wilcox-O'Hearn and Hirst (2008) and 

Dashti, (2017) followed Hirst and 

Budanitsky’s (2005) work and used 1987–89 

Wall Street Journal corpus in their 

assessments. We also chose the similar corpus 

as Wilcox-O'Hearn and Hirst (2008) and 

Dashti (2017) did; the corpus incorporates 

about 30 million words, in which all the 

identifiers and headings are removed. 

Moreover, we assumed there was no error in 

the text, as it was. The test set was composed 

of 548 articles, each ranging from 115 to 

roughly 2,723 tokens, with the sum of 330,000 

words. Following Wilcox-O'Hearn and Hirst 

(2008) and Dashti (2017), Cambridge 

Statistical Language Modeling Toolkit 

(Clarkson and Rosenfeld, 1997) was used to 

develop the trigram model. Wilcox-O'Hearn 

and Hirst (2008) evaluated their model using a 

20,000 and a 62,000-word corpus. Evaluation 

results demonstrated that the model, which 

included 62,000 words, was by far more 

successful in detecting and correcting real-

word errors (Dashti, 2017). Considering this 

fact, Dashti, (2017) used a 62,000 word data 

set in his evaluation. The vocabulary in this 

study, too, included 62,000 most frequently 

used words in the corpus, after the test data 

were omitted. Following Wilcox-O'Hearn and 

Hirst (2008), from the 548 saved articles we 

gathered, we randomly chose 33,508 

sentences. After that, we made two separate 

test sets, each composed of 16,754 sentences 

detailed as follows:  

S62000: Any word, in the 62,000 most 

frequent words in the corpus, can be replaced 

with one of its spelling variations from the 

same vocabulary.  

MALP: Any word whose base form is a noun 

in the database of WordNet (without 

considering syntactic analysis) can be replaced 

with any of its spelling variations. This would 

replicate the malapropism data in Hirst and 

Budanitsky’s (2005) model.  

 

We chose four distinctive values of α in order 

to test the model: the values ranged from .9, 

which represented an unskilled typist, to .999, 

which replicated a precise typist. Depending 

on the current α value, different words may be 

replaced with their spelling variations. For 

example, for α =.95, a value already used by 

Hirst and Budanitsky (2005), about one in 

twenty words may be replaced by one of its 

spelling variations. A spelling variation is 

described as any word with the maximum of 

edit-distance of 1 from the original word, 

which can be an insertion, deletion, 

substitution or the transposition of two 

characters that leads to a real-word error. We 

evaluated the results, manipulating three 

measures: precision, recall and F-measure 



(which was the harmonic mean of recall and 

precision). In order to calculate F-measure, we 

used equation 4:  

(4)  

 
Three measures are shown for both the 

correction and deletion of errors in each table. 

We re-implemented the approaches suggested 

by Hirst and Budanitsky (2005), Wilcox-

O'Hearn and Hirst (2008), and Dashti (2017), 

comparing them with our proposed model. In 

doing so, the same test and training data were 

employed as explained earlier. Table 1 reports 

the comparison of the results (d=1). The 

performance of the model is significant in both 

S62000 and MALP test sets. As expected, in 

lower values of α, particularly when α =.9, F-

measure, recall and precision values for both 

correction and detection, showed a 

considerable increase in contrast with the 

findings of Wilcox-O'Hearn and Hirst (2008) 

and even of Dashti (2017). 

 

 Detection  Correction 

 P R F  P R F 

 

Hirst and Budanitsky (2005) 
 

Test set MALP: 
 

.95 .231 .312 .265  .212 .289 .244 

 

Wilcox-O’Hearn and Hirst, (2008) 
 

Test set S62000, d=1: 
 

.9 .273 .859 .414  .266 .832 .403 

.99 .502 .779 .610  .496 .764 .601 

.995 .574 .752 .651  .568 .739 .642 

.999 .733 .679 .704  .733 .674 .702 
 

Test set MALP, d=1: 
 

.9 .176 .610 .273  .169 .585 .262 

.99 .367 .547 .439  .364 .529 .431 

.995 .433 .513 .469  .428 .497 .459 

.999 .610 .448 .516  .604 .438 .507 

 

Multiple Corrections per Window 
 

Test set S62000, d=1: 
 

.9 .400 .898 .553  .386 .867 .534 

.99 .519 .804 .630  .512 .778 .617 

.995 .582 .766 .661  .577 .762 .656 

.999 .744 .684 .712  .738 .673 .704 
 

Test set MALP, d=1: 
 

.9 .291 .624 .396  .283 .598 .384 

.99 .382 .549 .450  .376 .530 .439 

.995 .448 .521 .481  .442 .506 .471 

.999 .613 .454 .521  .611 .444 .514 

 

Hybrid Approach 
 

Test set S62000, d=1: 

.9 .774 .967 .859  .769 .947 .848 

.99 .805 .948 .870  .798 .939 .862 

.995 .817 .937 .872  .810 .931 .866 

.999 .849 .925 .885  .846 .908 .875 

Test set MALP, d=1: 

.9 .775 .956 .856  .771 .938 .846 

.99 .801 .941 .865  .795 .933 .858 

.995 .818 .928 .869  .812 .922 .863 

.999 .847 .919 .881  .843 .902 .871 

        

Table 1: Comparison of results: Multiple 

Corrections per Window  Dashti (2017), (Wilcox-

O’Hearn and Hirst (2008), Hirst and Budanitsky 

(2005) (shown on the first row) and the proposed 

approach on Wall Street Journal corpus with a 

62,000 word vocabulary 

 
The reason for this observation is that in 

situations where α has a lower value, the 

probability that a current window incorporates 

at least two real-word errors would notably 

increase. However, what distinguishes our 

approach from Dashti’s (2017) model is the 

kind of syntactic knowledge we use. Initially 

the proposed model can detect almost all 

morphological analyses (over 99%) of a token 

in a correction candidate. Next, the method 

manipulates thousands of handwritten 

grammar rules and heuristics to give 

unambiguous analyses of tokens with 99.7% 

accuracy, if the correct analysis exists. A good 

correction candidate is supposed to be 

syntactically correct, if all the tokens 

accommodated in it are unambiguous. For 

higher values of α (e.g. α=.995), the models of 

Wilcox-O'Hearn and Hirst (2008) and Dashti 

(2017) showed nearly similar results. The 

proposed model, however, still performed 

significantly better. This performance level, of 

course, was not very unexpected, because the 

syntactic knowledge proved to be practical 

even in correcting single real-word errors in a 

window. Yet, the results of the proposed 

approach on the MALP test set were still good 

in comparison to the S62000 test set. This 

good performance, too, was also anticipated. 

Although the MALP test set included content-

word errors, CG helped to detect these types of 

syntactically ill-formed errors. Nevertheless, 

the results of the proposed method showed 

noticeably much better performance in 



contrast with those of Hirst and Budanitsky’s 

(2005) model (see the first row of Table 1). It 

should be noted that for d=1 span of words, 

where window-size=5, the search space  

incorporated an average of 29 sentences. Then, 

d was expanded to higher values of 3, 6 and 

10. However`, as expected the results were 

only slightly changed; since all possible 

correction candidates were generated in the 

same way and then analyzed by using CG. 

Table 2 shows the results for d=3, d=6 and 

d=10. 

 

 Detection  Correction 

 P R F  P R F 

 

 

Test set S62000, d=3: 
 

.9 .777 .966 .861  .770 .948 .850 

.99 .804 .950 .870  .797 .941 .863 

.995 .818 .939 .874  .811 .933 .867 

.999 .847 .923 .883  .844 .909 .875 
 

Test set MALP, d=3: 
 

.9 .773 .957 .855  .767 .937 .843 

.99 .802 .939 .865  .794 .931 .857 

.995 .816 .929 .868  .810 .921 .861 

.999 .848 .917 .881  .842 .900 .870 
 

 

Test set S62000, d=6: 
 

.9 .774 .967 .859  .769 .949 .849 

.99 .805 .948 .870  .798 .939 .862 

.995 .816 .940 .873  .809 .935 .867 

.999 .848 .921 .882  .846 .911 .877 
 

Test set MALP, d=6: 
 

.9 .776 .955 .856  .773 .938 .847 

.99 .802 .942 .866  .791 .935 .856 

.995 .820 .931 .871  .813 .929 .867 

.999 .849 .920 .883  .841 .904 .871 
 

 

Test set S62000, d=10: 
 

.9 .771 .968 .859  .767 .948 .847 

.99 .803 .945 .868  .796 .937 .860 

.995 .815 .939 .872  .807 .933 .865 

.999 .850 .921 .884  .844 .901 .871 
 

Test set MALP, d=10: 
 

.9 .780 .960 .860  .772 .935 .845 

.99 .809 .943 .870  .799 .933 .860 

.995 .819 .934 .869  .812 .926 .865 

.999 .852 .914 .881  .846 .898 .871 

Table 2: Evaluating the Hybrid approach by using 

values of d=3 d=6 d=10, on S62000 and MALP 

test set. 

 

Apparently, as the values of d increased, the 

measure of recall decreased, but in the 

meantime precision significantly rose up. In 

Table 3 some examples of multiple successful 

and unsuccessful corrections in a particular 

window are provided. 

 
 

 

Successful multiple corrections 

 

… can almost see the firm → farm [farm] 

issue seceding → receding [receding]… 

 

 

… again are confronting a bell → ball [ball] 

game in which they will be able too → to 

[to] play… 

 

 

they came on the heels of the Reykjavik 

summits → summit [summit]between 

President Reagan and Soviet leaders → 

leader [leader] Mikhail Gorbachev. 

 

Unsuccessful multiple corrections 

 

True Positive correction of one error; False 

Negative detection one error: 

… I’m uncomfortable tacking → taking 

[taking] a lot of times [time] off work,” he 

says. 
Table 3: Examples of successful and unsuccessful 

multiple corrections. Italics demonstrate the words 

which are thought to be errors, arrow demonstrate 

the correction replaced by the error, and string 

inside brackets show the intended word. 

 
The evaluations proved that the proposed 

model was successful in accomplishing the 

task of correcting multiple real-word errors in 

a particular window. Meanwhile, during the 

assessments, as the span of words, d was 

expanded and the windows accommodated an 

increased number of words, the runtime 

increased and the model showed some 

performance overhead. The reason for this was 

that the model had to deal with numerous 

correction candidates and to apply CG on 

each, to discriminate among them. Hardware 

platform used in this comparison was exactly 

the same as the one employed by Dashti 

(2017): HPE ProLiant ML150 Gen9 Server 

model; with Intel Xeon E5-2600 v4 Processor 

and 256 GB RAM (DDR4- 21,400 MHz). 



Table 4 demonstrates a comparison of average 

correction time of all the test instances, for 

different values of the parameter d between the 

proposed model and those of Wilcox-O'Hearn 

and Hirst (2008) and Dashti (2017). 

 

d Correction time (in milliseconds) 

 Hybrid 

Approach 

Fixed 

window 

size 

Multiple 

corrections 

per window 

1 910 581 690 

3 1026 781 871 

6 1133 991 1357 

10 1409 1230 2014 

Table 4: Average correction time of all the test 

sentences for different values of parameter d 

 

Although for lower values of the parameter d, 

more iterations would be required to cover 

word- sequences in a sentence, the runtime 

would be considerably better because fewer 

combinations would be generated in each 

window.  

Complete information regarding the size of the 

search space is presented here. Table 5 

represents the average size of the search space 

according to the window size. Unlike Dashti 

(2017) model, no significant difference might 

be seen, because all possible correction 

candidates were generated either by using 

smaller windows or larger windows as 

described in 3.4 section. After that, the CG 

was applied to all correction candidates which 

were accommodated in the initial search space. 

This process ultimate led to the final search 

space, which included only syntactically 

correct candidates. The good performance of 

the model revealed that the model could be 

completely practical and efficient in everyday 

applications for all types of users. 

 
Parameter d Initial Search 

Space Size 

Final 

Search 

Space Size 

1 5230 29 

3 5078 33 

6 4920 27 

10 5001 30 

Table 5: Average size of the search space  

 

6 Other relevant observations   

Introducing the notion of malapropism, Hirst 

and Budanitsky (2005) tried to find a way to 

recognize and correct any anomalous words in 

a text. This method rested on the lexical-

resource of WordNet. They manipulated the 

measure of lexical cohesion to identify the 

semantic distance in the text. In cases where 

spelling variation led to a word that displayed 

a semantic content matching the context, the 

method would assume that the original word 

was an error. Furthermore, Hirst and 

Budanitsky’s model failed to perform better 

than other alternatives, such as models 

developed by Mays et al. (1991), Wilcox-

O'Hearn and Hirst (2008), and Dashti (2017). 

Some studies have also dealt with correcting 

real-word errors (see Golding and Schabes, 

1996; Golding and Roth, 1996; Golding and 

Roth, 1999). These investigations relied on 

machine learning techniques, processing real-

word error correction as a function of 

disambiguation. Another model to trace 

anomalies between words involves predefined 

confusion sets in a particular lingual context 

(Golding and Roth 1996). These sets were 

extracted from the list of usually confused 

words, as enumerated by Random House 

Unabridged Dictionary Flexner (1983). What 

distinguished these three methods (Golding 

and Schabes, 1996; Golding and Roth, 1996; 

Golding and Roth, 1999) was the specific 

techniques employed to deal with the real-

word error correction task. Golding and Roth 

(1996, 1999), manipulated WinSpell software, 

which drew on a machine-learning algorithm. 

In this configuration, the members of 

confusion sets were represented as clouds of 

"slow neuron-like" nodes, which reflected 

collocational groupings and repeated features. 

Furthermore, Golding and Schabes (1996) 

incorporated a Bayesian hybrid strategy, and 

Golding (1995) employed a pos-trigram 

model. Newer models were suggested by 

Fossati and Di Eugenio (2007, 2008). These 

researchers configured a mixed trigram 

method that utilized the data of a part of 

speech tagger. Mixed trigrams were included 

grammatical categories as well as words (e.g. 

articles, adjectives, verbs). As a result of this 

process, fewer trigrams were needed to be 

generated. According to mixed trigrams’ 

indications, each word in a sentence was 

parceled to reveal its correct grammatical 

order. The analyzed word could be associated 

with some candidates (from a confusion set) 



that had to be verified. Through mixed 

trigrams, a word as suggested by the confusion 

set was selected as the proper alternative. 

Verberne (2002) also suggested another 

method: as her hypothesis postulated, any 

word-trigram in the context of the British 

National Corpus (BNC) was correct, and any 

trigram that was not found in BNC would be 

undoubtedly an error. In cases where an 

unspecified word-trigram was to be verified, 

the model tried to go through the possible 

spelling variations of the current words in the 

trigram to detect relevant trigrams. She 

obtained a recall of .33 and a precision of .05. 

 

7  Conclusion  
This study proposed a method which could 

provide a significantly better performance 

compared with the trigram approach of Mays 

et al. (1991), windows of fixed size model of 

Wilcox-O'Hearn and Hirst (2008), and 

multiple correction approach proposed by 

Dashti (2017). The study demonstrated that the 

proposed model yielded significantly better 

accuracy in correcting multiple errors in a 

current window for lower values of α. In 

contexts with higher values of α, the difference 

was still noticeable and the proposed approach 

outperformed the alternative models. In terms 

of running time, the average error correction 

time increased for larger values of the 

parameter d and the performance was 

noticeably lower. In case of correcting 

malapropisms, as observed by Mays et al. 

(1991), Wilcox-O'Hearn and Hirst (2008), and 

Dashti (2017), the proposed model 

demonstrated an exceptionally good 

performance, particularly where the number of 

errors was considerably higher (lower values 

of α). Our attempt to improve the real-word 

error correction task, through statistical and 

syntactic knowledge, was completely 

successful.  
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