
593035n

ow
ned

03m

£09 .50 ;
E

oS
gew

m
fi

x5:2025
#

6
::t

coE
E
fl

coE

HJ. Otach

Methods for Modal Logics

SEKI Report SR-90-11

n0tha1SnatTdeSaBSCünameS

E
O

n
m

E

-
_

vm
m

I

Semantics Based Translation Methods for Modal Logics l

H.J. Ohlbach
FB. Informatik, University of Kaiserslautern

Postfach 3049

D-6750 Kaiserslautem, Germany

email: ohlbach@informatik.uni-kl.de

Abstract A general framework for translating logical formulae from one logic into
another logic is presented. The framework is instantiated with two different approaches
to translating modal logic formulae into predicate logic. The first one, the well known
"relational" translation makes the modal logic's possible worlds structure explicit by
introducing a distinguished predicate symbol to represent the accessibility relation. In
the second approach, the "functional" translation method, paths in the possible worlds
structure are represented by compositions of functions which map worlds to accessible
worlds. On the syntactic level this means that every flexible symbol is parametrized with
particular terms denoting whole paths from the initial world to the actual world. The
"target logic" for the translation is a first order many sorted logic with built in equality.
Therefore the "source logic" may also be first order many sorted with built in equality.
Furthermore flexible function symbols are allowed. The modal operators may be
parametrized with arbitrary terms and particular properties of the accessibility relation
may be specified within the logic itself.

Key words: Modal Logic, Translation of Logics, Logic Calculi.

1 This work has been supported by the SFB 314 of the German Science Foundation (DFG) and the ESPRIT project

:MEDLAR.

Semantics Based Translation Methods for Modal Logics1

H.] . Ohlbach
FB. Informatik, University of Kaiserslautern

Postfach 3049
D-6750 Kaiserslautern, Germany

email: ohlbach@informatik.uni—kl.de

Abstract A general framework for translating logical formulae from one logic into
another logic is presented. The framework is instantiated with two different approaches
to translating modal logic formulae into predicate logic. The first one, the well known
“relational” translation makes the modal logic’s possible worlds structure explicit by
introducing a distinguished predicate symbol to represent the accessibility relation. In
the second approach, the “functional” translation method, paths in the possible worlds
structure are represented by compositions of functions which map worlds to accessible
worlds. On the syntactic level this means that every flexible symbol is parametrized with
particular terms denoting whole paths from the initial world to the actual world. The
“target logic” for the translation is a first order many sorted logic with built in equality.
Therefore the “source logic” may also be first order many sorted with built in equality.
Furthermore flexible function symbols are allowed. The modal operators may be
parametrized with arbitrary terms and particular properties of the accessibility relation
may be specified within the logic itself.

Key words: Modal Logic, Translation of Logics, Logic Calculi.

1 This work has been supported by the SFB 314 of the German Science Foundation (DFG) and the ESPRIT project
MEDLAR.

mailto:ohlbach@informatik.uni-kl.de

2

Table of Contents

1 INTRODUCTION 3

2 LOGICS AND LOGIC MORPHISMS 6

2.1 A Recipe for Logic Compilers 8

3 ORDER SORTED PREDICATE LOGIC 9

3.1 Syntax of OSPL 9

3.2 Semantics of OSPL 10

3.3 Quantification over Functions 13

4 MODAL LOGIC 17

5 RELATIONAL 1'RANSLATION 20

6 FUNCTIONAL 1'RANSLATION 26

6.1 General Optimizations of the Functional Translation 32

6.1.1 Removal of Superfluous Axioms 33

6.1.2 Prefix Stability 34

6.2 Specific Optimizations for the Functional Translation 39

6.2.1 Unparametrized Modal Operators 39

6.2.2 Serial Accessibility Relation 39

6.2.3 Constant Domain Interpretations 40

6.3 Further Optimizations 40

6.3.1 Optimized Skolemization of Modal Variables 40

6.3.2 Theory Unification 41

6.4 A Final Example 42

7 RELATED WORK 44

8 CONCLUSION 45

INDEX 49

Table of Contents

1 INTRODUCTION . 3

2 LOGICS AND LOGIC MORPHIS MS . 6

2.1 A Recipe for Logic Compilers . 8

3 ORDER S ORTED PREDICATE LOGIC .9

3.1 Syntax of OSPL . 9
3 .2 Semantics of OSPL . 10
3 . 3 Quantification over Functions . 13

4 MODAL LOGIC . 17

5 RELATIONAL TRANSLATION . 20

6 FUNCTIONAL TRANSLATION . 26
6.1 General Optimizations of the Functional Translation 32

6.1.1 Removal of Superfluous Axioms .. 33
6.1.2 Prefix Stability ... 34

6 .2 Specific Optimizations for the Functional Translation . 39
6.2. 1 Unparametn'zed Modal Operators . 39
6.2.2 Serial Accessibility Relation .. 39
6.2. 3 Constant Domain Interpretations . 40

6 .3 Further Opt imizat ions . 40
6.3 .1 Optimized Skolemization of Modal Variables . 40
6.3.2 Theory Unification . 41

6 .4 A Final Example . 42

7 RELATED WORK . 44

8 CONCLUS ION . 45

INDEX . 49

1

3

INTRODUCTION

For many applications in Artificial Intelligence and computer science, predicate logic is not an
adequate basis to represent knowledge. In particular for systems where states and state transitions are
a basic phenomenon, modal logic and its extensions turned out to be much more suitable than
predicate logic. Typical examples are the logical specification of processes (programs) with discrete
states and actions which transfer the process into a new state. The language which supports these
concepts in a most natural way is temporal logic with possible worlds semantics. Another example is
the treatment of knowledge and belief. An adequate formalization of these notions has to take into
account that besides the real world, other worlds or frames of mind have to be considered where
different facts may hold. Many aspects of knowldege and belief can be modelled with ~pistemic

logics based on modal logic where the modal operators are interpreted as "belief' or "knows"
operator.

Classical calculi for modal logic and all its extensions, temporal logic, epistemic logic, dynamic
logic, action logic etc., are in general of Hilbert, Gentzen or Tableaux type. Most of these calculi are
not very efficient for the first-order case, i.e. the branching rate in the search space is very high.
Usually it is even infinite. Moreover for some variants, for example for quantified modal logic with
flexible2 function symbols and equality, no calculus of this type exists at all. A further disadvantage
is that these calculi require special implementations of deduction systems. Therefore almost none of
the sophisticated implementation and search control techniques developed in the last 25 years for
predicate logic resolution based deduction systems can be applied.

Recently a new idea came up which changed the situation considerably. The kernel of the idea is
very simple: Instead of working on the original syntax with the modal operators, modal formulae are
translated into predicate logic syntax such that standard predicate logic deduction systems are appli
cable. The idea is very similar to the compilation method for programming languages: instead of
using an interpreter for the programming language itself, a compiler translates the program into a
language for which a more efficient interpreter exists, usually the operation code of a processor. This
provides the freedom to design the programming language with respect to user friendliness only. It is
the task of the compiler to arrange the information contained in the generated code to suit the target
processor. The speedup of compiled programs compared to the interpreted programs shows that this
idea works.

One of the messages of this article is therefore to learn from programming language design and to
view nonclassicallogics with all these fancy operators only as a user friendly surface language.
Instead of calculi for these logics directly, compilers should be developed which translate formulae
into a logic which enjoy an efficient calculus. In the meantime experience has shown that the standard
argument against this approach, namely that efficiency is lost because the original structure of the
formula is destroyed through the translation, does not hold. If the compiler is carefully designed such
that the translation arranges relevant information in the right way, just the opposite is the case.

In this paper two different translation methods from modal logic into predicate logic are presented.
Both of them use the possible worlds semantics of the two modal operators [:J and 0:

[:J F is true in a world w iff F is true all worlds accessible from w.
OF is true in a world wiff there is a world accessible from wand F is true in this world.

The first translation method, called "relational translation" goes back at least to [Moore 80]. The idea
is to introduce a special predicate symbol R which represents the accessibility relation and to translate

2 Flexible designators may change their meaning from world to world.

1 INTRODUCTION

For many applications in Artificial Intelligence and computer science, predicate logic is not an
adequate basis to represent knowledge. In particular for systems where states and state transitions are
a basic phenomenon, modal logic and its extensions turned out to be much more suitable than
predicate logic. Typical examples are the logical specification of processes (programs) with discrete
states and actions which transfer the process into a new state. The language which supports these
concepts in a most natural way is temporal logic with possible worlds semantics. Another example is
the treatment of knowledge and belief. An adequate formalization of these notions has to take into
account that besides the real world, other worlds or frames of mind have to be considered where
different facts may hold. Many aspects of knowldege and belief can be modelled with epistemic
logics based on modal logic where the modal operators are interpreted as “belief” or “knows”
operator.

Classical calculi for modal logic and all its extensions, temporal logic, epistemic logic, dynamic
logic, action logic etc., are in general of Hilbert, Gentzen or Tableaux type. Most of these calculi are
not very efficient for the first—order case, i.e. the branching rate in the search space is very high.
Usually it is even infinite. Moreover for some variants, for example for quantified modal logic with
flexible2 function symbols and equality, no calculus of this type exists at all. A further disadvantage
is that these calculi require special implementations of deduction systems. Therefore almost none of
the sophisticated implementation and search control techniques developed in the last 25 years for
predicate logic resolution based deduction systems can be applied.

Recently a new idea came up which changed the situation considerably. The kernel of the idea is
very simple: Instead of working on the original syntax with the modal operators, modal formulae are
translated into predicate logic syntax such that standard predicate logic deduction systems are appli-
cable. The idea is very similar to the compilation method for programming languages: instead of
using an interpreter for the programming language itself, a compiler translates the program into a
language for which a more efficient interpreter exists, usually the operation code of a processor. This
provides the freedom to design the programming language with respect to user friendliness only. It is
the task of the compiler to arrange the information contained in the generated code to suit the target
processor. The speedup of compiled programs compared to the interpreted programs shows that this
idea works.

One of the messages of this article is therefore to learn from programming language design and to
view nonclassical logics with all these fancy operators only as a user friendly surface language.
Instead of calculi for these logics directly, compilers should be developed which translate formulae
into a logic which enjoy an efficient calculus. In the meantime experience has shown that the standard
argument against this approach, namely that efficiency is lost because the original structure of the
formula is destroyed through the translation, does not hold. If the compiler is carefully designed such
that the translation arranges relevant information in the right way, just the opposite is the case.

In this paper two different translation methods from modal logic into predicate logic are presented.
Both of them use the possible worlds semantics of the two modal operators El and <>:

[JF is true in a world wiff F is true all worlds accessible from zu.
0F is true in a world wiff there is a world accessible from 10 and F is true in this world.

The first translation method, called “relational translation” goes back at least to [Moore 80]. The idea
i s to introduce a special predicate symbol R which represents the accessibility relation and to translate

2 Flexible designators may change their meaning from world to world.

4

a fonnula directly according to its semantics. For example ClP is translated into 'Vw R(O,w) =:} PI(w)
where 0 denotes the initial world and pI is like P, but depends on a "modal context" argument.
Correspondingly, OP is translated into 3w R(O,w) 1\ PI(W). The properties of the accessibility relation
can now be easily axiomatized using the R-predicate, at least in as much as they are first order
axiomatizable at all.

The disadvantage of this translation method is the appearance of the R-literals. Each deduction with
a nonnal predicate has therefore to be accompanied by a chain of deductions with the R-literals. For
example a resolution operation where two world arguments of a predicate or tenn are unified has to
be accompanied by a chain of resolutions with R-literals which "unify" in a certain sense the paths to
the unified world argument. It is not easy to write a strategy which does this in a controlled way.

The second translation method, the "functional translation" uses the fact that a binary relation can
be represented by the domain-range relation of a set of one place functions.

Example: relational representation functional representation

1«WI,W2) {ft.hl
1«WI,U'3) fl: WI ~ W2 h: WI ~ U'3

1«W2,W4)

1«W2,WS) U'3~uts U'3~U'3

1«U'3, uts)	 This set is minimal (but not unique).
A maximal set has to contain all functions
mapping worlds to accessible worlds.

The path from the initial world to the actual world where a predicate or a tenn is to be interpreted can
therefore be represented by a composition of these "modal context access functions". For example the
path from WI to W5 can be described by fl 0h. On the syntactic level we introduce tenns which
denote context access functions such that sequences of these tenns denote compositions of context
access functions. A fonnula 'ClOP' is now translated into ''Vf 3g P(J,(fog,O))'3 where 'fog' denotes a
composition of two context access functions and 'J,(fog,O)' represents the application of the
composed function to the initial world (J, is the application function).

The description of the properties of the accessibility relation in the functional representation is
more indirect, but surprisingly it turned out to be computationally more efficient. For example reflex
ivity of the accessibility relation is represented by the existence of an identity function among the
context access functions. Transitivity for example is represented by requiring the closure of the set of
context access functions under composition. Most of these properties can be described with
equations, which, in a further step, can be translated into a theory unification algorithm. It is applied
to the tenns denoting paths through the possible worlds structures. Equipped with these unification
algorithms, the resolution rule [Robinson 65] comprises a whole bunch of steps of other calculi and
therefore realizes a much better look ahead in the search space.

In order to illustrate the functional translation and the effect of the resolution on the translated
fonnulae, consider the following fonnula: 'OO'Vx(OPx 1\ Cl Qx) =:} 0 ('VyPy 1\ 'VzQz)'. Assuming

3 This is not the whole truth. The translation is slightly more complicated when the accessibility relation is not
serial, i.e. there may be worlds from which there are no further worlds accessible.

4

a formula directly according to its semantics. For example :IP is translated into Vw R(0,w) => P'(w)
where 0 denotes the initial world and P' is like P, but depends on a “modal conteXt” argument.
Correspondingly, OP i s translated into Bw R(0,w) A P'(w). The properties of the accessibility relation
can now be easily axiomatized using the R-predicate, at least in as much as they are first order
axiomatizable at all.

The disadvantage of this translation method is the appearance of the R-literals. Each deduction with
a normal predicate has therefore to be accompanied by a chain of deductions with the R-literals. For
example a resolution operation where two world arguments of a predicate or term are unified has to
be accompanied by a chain of resolutions with R-literals which “unify” in a certain sense the paths to
the unified world argument. It is not easy to write a strategy which does this in a controlled way.

The second translation method, the “functional translation” uses the fact that a binary relation can
be represented by the domain-range relation of a set of one place functions.

Example: relational representation functional representation

j w4 Mama/2) {fhfz}
/ fR(w1‚w3) fl: w1—>wz f2= “fl—”03

w/ w\ fan/2,104) W.; -> W4 we -> ws

ws flat/1,105) ws —-> ms ws —> ws

w\ Knaus) This set is minimal (but not unique).
w3j\ A maximal set has to contain all functions

j2 mapping worlds to accessible worlds.

The path from the initial world to the actual world where a predicate or a term is to be interpreted can
therefore be represented by a composition of these “modal context access functions”. For example the
path from w] to ws can be described by flofz. On the syntactic level we introduce terms which
denote context access functions such that sequences of these terms denote compositions of context
access functions. A formula ‘DOP’ i s now translated into ‘Vf Hg P(.L(f°g,0))’3 where ‘fog’ denotes a
composition of two context access functions and ‘i(fog,0)’ represents the application of the
composed function to the initial world (i is the application function).

The description of the properties of the accessibility relation in the functional representation is
more indirect, but surprisingly it turned out to be computationally more efficient. For example reflex—
ivity of the accessibility relation is represented by the existence of an identity function among the
context access functions. Transitivity for example is represented by requiring the closure of the set of
context access functions under composition. Most of these properties can be described with
equations, which, in a further step, can be translated into a theory unification algorithm. It is applied
to the terms denoting paths through the possible worlds structures. Equipped with these unification
algorithms, the resolution rule [Robinson 65] comprises a whole bunch of steps of other calculi and
therefore realizes a much better look ahead in the search space.

In order to illustrate the functional translation and the effect of the resolution on the translated
formulae, consider the following formula: ‘00Vx(0Px A El Qx) = (> (VyPy A VzQz)’. Assuming

3 This is not the whole truth. The translation is slightly more complicated when the accessibility relation is not
serial, i.e. there may be worlds from which there are no further worlds accessible.

5

seriality of the accessibility relation we translate the negated fOlmula
OOVx(OPx 1\ IJ Qx) 1\ IJ (3y-,Py v 3z-,Qz) into
3f3gV'x(3h P(J,(fogoh,O),x) 1\ V'i Q(J,(fogoi,O),x)) 1\ V'j(3y-,P(J,(j,0), y) v 3z-,Q(J,(j,0), z)).

The translation of the O-operators yields the additional existential quantifications whereas the transla
tion of the IJ-operators yields the universal quantifications. For a particular x, the term J,(fogoh,O),
where h depends on x, for example denotes the world accessed by the sequence of the first three 0
operators in the original formula. Skolemized and translated into clause form, three clauses are
obtained:

Cl:
C2:
C3:

"Ix
"Ix,i
V'j

P(J,(fogoh(x),O),x)
Q(J,(fogoi,O),x)

-,P(J,(j,O), a(j)) v -,Q(J,(j,O), b(j))

In this example no resolution step is possible at all, unless the accessibility relation is transitive. In
the transitive case the variable j which denotes a function mapping worlds to worlds accessible in one
step can be bound to the term fogoi which denotes a function mapping worlds to worlds accessible in
three steps, and, by transitivity, also in a single step. Therefore {j 1-7 fogoi, x 1-7 b(fogoi)} is a unifier
for 'Q(J,(fogoi,O),x)' and 'Q(J,(j,O), bG))'. The corresponding resolvent is '-,P(J,(fogoi,O), a(fogoi))',
and this is in fact the only possible resolvent. Since no empty clause can be deduced, the given
formula is no theorem. No classical calculus is able to detect this in such a simple way.

In this paper, however, we shall not present the special theory unification algorithm for transitiv
ity, but stop with the corresponding equational axiomatization. A unification algorithm which is
sufficient for the simple example above, Le. modal logic D4, has been presented in [Ohlbach 88].
The equations developed in this paper, however, hold for a more general case and have not yet been
transformed into theory unification algorithms.

Unlike compiler building, the construction of translators for logics has not yet been systematized
and supported by standard notions and methods. Before we come to the definition of translators for
specific logics we therefore try to systematize in the next chapter some of the well known notions
about logics with respect to the description of these translators. The presented schema should cover
all kinds of two-valued logics with model theoretic semantics. It permits the defintion and verification
of the soundness and completeness of translators using the model theoretic semantics of the "source
logic" and the "target logic".

In the third chapter we present the target logic we are using. It is a first order many sorted predi
cate logic with built in equality. The particular modal logic we are considering is defined in the fourth
chapter. It is also a many sorted first order logic with built in equality. In order to allow interpreta
tions of the logic as epistemic or action logic, the modal operators IJ and 0 may be parametrized with
arbitrary terms denoting for example agents or actions. The properties of the accessibility relation are
specified within the logic itself by further built in predicates, for example REFLEXIVE or SYMMETRIC.

The two different translation methods are described in the following two chapters. Finally some
further optimizations of the functional translation are presented.

The reader is assumed to be familiar with predicate logic and modal logic. Some knowledge about
resolution and paramodulation is needed to understand the examples. Introductory textbooks are
[Chang & Lee73], [Loveland 78], [Chellas 80], [Fitting 83].

In the sequel we use the following notational conventions for writing formulae: Syntactic objects
are written in standard letters, whereas semantic objects are written in italics. For example if x is a
variable symbol, then ~ denotes its interpretation with respect to a given variable assignment.
Predicate symbols with a fixed meaning, for example SERIAL, are written with small capitals. F, G,
H are used as meta symbols for formulae. 'C:>' is used as a meta implication sign.

5

seriality of the accessibility relation we translate the negated formula
00Vx(0Px A n Qx) A :| (By—.Py v Hz—t) into
5llg‘V'XGih P(~|r(f°g°h,0),X) A Vi Q(i(f°g°i‚0)‚X)) A Vj(3y-1P(J«(i‚0)‚ y) V 32—.Q(¢(j,0), l)).

The translation of the O-operators yields the additional existential quantifications whereas the transla-
tion of the D-operators yields the universal quantifications. For a particular x, the term $(fog0h,0),
where h depends on x, for example denotes the world accessed by the sequence of the first three 0-
operators i n the original formula. Skolemized and translated into clause form, three clauses are
obtained:

C1: vx P(i(fog0h(x),0),x)
cz: vx,i Q(i(fog°i,0),x)
C3: Vj 43mm), a(j)) v fiQGGß) , bü»

In this example no resolution step is possible at all, unless the accessibility relation is transitive. In
the transitive case the variable j which denotes a function mapping worlds to worlds accessible in one
step can be bound to the term fogOi which denotes a function mapping worlds to worlds accessible in
three steps, and, by transitivity, also in a single step. Therefore {j I—> fogOi, x +—> b(fog0i)} is a unifier
for ‘Q(¢(f°g0i,0),x)’ and ‘Q(~L(j,0), bG))’. The corresponding resolvent is ‘—1P(~L(fogoi,0), a(f°g0i))’,
and this is in fact the only possible resolvent. Since no empty clause can be deduced, the given
formula i s no theorem. No classical calculus is able to detect this in such a simple way.

In this paper, however, we shall not present the special theory unification algorithm for transitiv-
ity, but stop with the corresponding equational axiomatization. A unification algorithm which is
sufficient for the simple example above, i.e. modal logic D4, has been presented in [Ohlbach 88].
The equations developed in this paper, however, hold for a more general case and have not yet been
transformed into theory unification algorithms.

Unlike compiler building, the construction of translators for logics has not yet been systematized
and supported by standard notions and methods. Before we come to the definition of translators for
specific logics we therefore try to systematize in the next chapter some of the well known notions
about logics with respect to the description of these translators. The presented schema should cover
all kinds of two—valued logics with model theoretic semantics. It permits the defmtion and verification
of the soundness and completeness of translators using the model theoretic semantics of the “source
logic” and the “target logic”.

In the third chapter we present the target logic we are using. It is a first order many sorted predi—
cate logic with built in equality. The particular modal logic we are considering is defined in the fourth
chapter. It is also a many sorted first order logic with built in equality. In order to allow interpreta-
tions of the logic as epistemic or action logic, the modal operators El and <> may be parametrized with
arbitrary terms denoting for example agents or actions. The properties of the accessibility relation are
specified within the logic itself by further built in predicates, for example REFLEXIVE or SYMMETRIC.
The two different translation methods are described in the following two chapters. Finally some
further optimizations of the functional translation are presented.

The reader is assumed to be familiar with predicate logic and modal logic. Some knowledge about
resolution and paramodulation i s needed to understand the examples. Introductory textbooks are
[Chang & Lee73], [Loveland 78] , [Chellas 80] , [Fitting 83] .

In the sequel we use the following notational conventions for writing formulae: Syntactic objects
are written in standard letters, whereas semantic objects are written in italics. For example if x is a
variable symbol, then ;(denotes its interpretation with respect to a given variable assignment.
Predicate symbols with a fixed meaning, for example SERIAL, are written with small capitals. F, G,
H are used as meta symbols for formulae. ‘d>’ is used as a meta implication sign.

2

6

LOGICS AND LOGIC MORPHISMS

The kind of logics we are considering can be described by giving the syntax and its model theoretic
semantics. The syntax is specified by describing the signature, i.e. the basic alphabet of nonlogical
symbols, and by giving formation rules for terms and formulae. The description of the signature may
already contain logical statements as for example the subsort declaration 'integer 5: real' in a sorted
logic. The formation rules for terms and formulae are in general also not so straightforward as in pure
predicate logic. In some of the order-sorted logics extra mechanisms have to ensure that the terms and
formulae are well-sorted. The model theoretic semantics is usually defined in three steps. The first
step is to define the signature interpretation, i.e. the interpretation of the nonlogical symbols. The
signature interpretation itself is very often separated into the interpretation of the non variable
symbols, which is the basic information necessary to interpret closed formulae, some context infor
mation as for example the initial world in modal logics, and into variable assignments which change
dynamically when a quantified formula is interpreted. The second step is to turn the signature inter
pretation into an interpreter for terms by following the formation rules for terms. The last step is the
definition of the satisfiability relation. The satisfiability relation actually fixes the meaning of the
logical symbols and permits the evaluation of formulae to 'true' or 'false'.

Definition 2.1 Logics
A (two-valued) logic (with model theoretic semantics) is a pair (syntax, semantics) where syntax is
a triple ~, e, <p) consisting of

•	 a set :E of signatures,

•	 a function e that maps a signature L to a set of L-terms (or terms for short) and

• a function <p that maps a signature L to a set of L-formulae (or formulae for short)

and semantics is a triple (I, e, F) consisting of

•	 a function I that maps a signature L to the set of signature interpretations over L (or L-inter
pretations for short). Each signature interpretation consists of a symbol interpretation ~, a
context C and a variable assignment 0/,

• a function e that turns a signature interpretation into an interpreter for terms and

• a satisfiability relation FE signature-interpretations x formulae. •

Example: With the above notions, pure predicate logic would be described as follows:
•	 A signature is a set of variable, function and predicate symbols. They are separated according to

their arity. :E is the set of all these signatures.

•	 The function eis essentially the inductive definition of terms.
For a given signature L, e(L) yields the set of all terms built with the symbols in L.

•	 The function <p is essentially the inductive definition of formulae.

•	 The function I assigns to each signature L the set of L-structures (which are essentially L
algebras, see below) and variable assignments. Contexts are irrelevant for predicate logic.
Given a signature L, an element of I(L) is a particular L-structure which in turn relates function
symbols with functions, predicate symbols with relations etc. (c.f. def. 3.6 and def. 3.7).

•	 The function e turns a signature interpretation into an interpreter for terms by lifting variable
assignments to the induced homomorphisms from the term algebra into the L-structure.

• F is the usual satisfiability relation. •

2 LOGICS AND LOGIC MORPHISMS
The kind of logics we are considering can be described by giving the syntax and its model theoretic
semantics. The syntax is specified by describing the signature, i.e. the basic alphabet of nonlogical
symbols, and by giving formation rules for terms and formulae. The description of the signature may
already contain logical statements as for example the subsort declaration ‘integer E real’ in a sorted
logic. The formation rules for terms and formulae are in general also not so straightforward as in pure
predicate logic. In some of the order-sorted logics extra mechanisms have to ensure that the terms and
formulae are well-sorted. The model theoretic semantics is usually defined in three steps. The first
step is to define the signature interpretation, i.e. the interpretation of the nonlogical symbols. The
signature interpretation itself i s very often separated into the interpretation of the non variable
symbols, which is the basic information necessary to interpret closed formulae, some context infor-
mation as for example the initial world in modal logics, and into variable assignments which change
dynamically when a quantified formula is interpreted. The second step i s to turn the signature inter-
pretation into an interpreter for terms by following the formation rules for terms. The last step is the
definition of the satisfiability relation. The satisfiability relation actually fixes the meaning of the
logical symbols and permits the evaluation of formulae to ‘true’ or ‘false’.

Definition 2.1 Log ic s
A (two-valued) logic (with model theoretic semantics) i s a pair (syntax, semantics) where syntax is
a triple (Z, 6, (p) consisting of
° a set E of s ignatures,
° a function 6 that maps a signature 2 to a set of Z-terms (or terms for short) and
° a function (p that maps a signature Z to a set of E—formulae (or formulae for short)
and semantics i s a triple (I, @, !=) consisting of
° a function I that maps a signature 2 to the set of signature interpretations over 2 (or)}inter-

pretations for short). Each signature interpretation consists of a symbol interpretation ‚‘F, a
context C and a variable assignment ‘V,

° a function @ that tums a signature interpretation into an interpreter for terms and
° a satisfiability relation != e signature-interpretations x formulae. 9

Example: With the above notions, pure predicate logic would be described as follows:
° A signature is a set of variable, function and predicate symbols. They are separated according to

their arity. Z is the set of all these signatures.
° The function 6 is essentially the inductive definition of terms.

For a given signature 2, 8(2) yields the set of all terms built with the symbols in 2.
° The function (p is essentially the inductive definition of formulae.
° The function I assigns to each signature)3 the set of E-structures (which are essentially Z—

algebras, see below) and variable assignments. Contexts are irrelevant for predicate logic.
Given a signature 2, an element of [(E) is a particular E-SU'ucture which in turn relates function
symbols with functions, predicate symbols with relations etc. (c.f. def. 3 .6 and def. 3.7).

° The function @ tums a signature interpretation into an interpreter for terms by lifting variable
assignments to the induced homomorphisms from the term algebra into the Z—structure.

° I: is the usual satisfiability relation. 9

7

A specification (r., IF) in a logic 1. is a signature r. together with a set IF of r.-formulae.

(For instance in sorted logics, the signature itself contains nontrivial information. Therefore it is more
than a technicality to keep the pair (r., IF) explicitly together.)

Definition 2.2 Satisfiability
•	 Given a logic 1. and an L-signature r., a r.-formula F is called L-satisfiable (or simply

satisfiable) iff ~ F F for some signature interpretation ~ (~ satisfies F).
•	 A r.-interpretation satisfies a specification S =(r., IF) iff it satisfies all formulae in IF.

S is unsatisfiable iff it is not satisfiable
• A signature interpretation satisfying a formula or specification S is called a model for S.

• A r.-formula F is a theorem (or tautology) iff ~ F F for all r.-interpretations~. •

Usually there is a notion of closed formulae in a logic. In a closed formula all variables are bound
by quantifiers. Models for closed formulae are independent of variable assignments. That means
whenever a closed formula F is satisfied by an interpretation ~ = (~ C, '0 then (~ C, 0/') satisfies F
for all variable assignments 0/'. This is in general not the case for contexts. In modal logic, for
example, satisfiability of closed formulae is usually defined relative to an initial context, Le. an initial
world. Therefore contexts are in general an essential part of models for formulae and specifications.
Variable assignments are used in the satisfiability relation for recording (semantical) bindings to
variables during a recursive descent into formulae.

We are now going to define logic morphisms as satisfiability preserving mappings between logics.
They consist of a syntactic component, a mapping of signatures and formulae, and a semantic
component, a mapping of interpretations. The syntactic component is essentially the "compiler" that
translates specifications from one logic into another. The existence of the semantic component
ensures that the syntactic translations map satisfiable specifications to satisfiable specifications
(soundness) and unsatisfiable specifications to unsatisfiable specifications (completeness). With
predicate logic as a target logic, a logic morphism allows theorem proving by translation (into
predicate logic) and refutation (for example with predicate logic resolution and paramodulation).

Definition 2.3 Logic Morphisms
A logic morphism is a mapping 'I' between two logics Li = «Li, Si, <Pi), (Ii,E>i' Fi», i = 1,2. It
consists of the two components ('¥S' '¥~) where

•	 '¥S is a specification morphism mapping Ll-specifications to Lz-specifications.
'¥S contains the two components,

•	 '¥L' a signature morphism mapping Lrsignatures to Lz-signatures, and

•	 '¥F' a formula morphism mapping Lrformulae to Lz-formulae such that r.rformulae are
mapped to '¥L(r.l)-forrnulae, i.e. \1r. E LI: FE <PI (r.) <> '¥F(F) E <Pz('¥L(r.».

(In general, '¥S not only translates formulae, but adds new symbols and formulae.)

•	 '¥~ is a bidirectional interpretation morphism, a mapping between Lrinterpretations and Lz
interpretations ensuring satisfiability preservation, Le.

•	 if an Lrspecification S is satisfied by ~l then '¥S(S) is satisfied by '¥~(~l) (soundness) and
•	 if'¥SCS) is satisfied by ~z then S is satisfied by '¥~(~z) (completeness) +

7

A specification (2, IF) in a logic L is a signature E together with a set]F of Z-formulae.

(For instance in sorted logics, the signature itself contains nontrivial information. Therefore it is more
than a technicality to keep the pair (2, IF) explicitly together.)

Definit ion 2 .2 Sa t i s f iab i l i t y
° Given a logic L and an L-signature Z , a Z-formula F i s called L-sa t i s f iable (or simply

satisfiable) iff S != F for some signature interpretation 3 (8 satisfies F).
. A Z—interpretation satisfies a specification S = (Z, IF) iff it satisfies all formulae in F.

S is unsatisfiable iff it is not satisfiable
° A signature interpretation satisfying a formula or specification S is called a model for S .
° A Z—formula F is a theorem (or tautology) iff S != F for all Z-interpretations 5 . 9

Usually there is a notion of closed formulae in a logic. In a closed formula all variables are bound
by quantifiers. Models for closed formulae are independent of variable assignments. That means
whenever a closed formula F is satisfied by an interpretation 3 = (T, C, ’V) then (T, C, ‘V') satisfies F
for all variable assignments ‘V'. This i s in general not the case for contexts. In modal logic, for
example, satisfiability of closed formulae is usually defined relative to an initial context, i.e. an initial
world. Therefore contexts are in general an essential part of models for formulae and specifications.
Variable assignments are used in the satisfiability relation for recording (semantical) bindings to
variables during a recursive descent into formulae.

We are now going to define logic morphisms as satisfiability preserving mappings between logics.
They consist of a syntactic component, a mapping of signatures and formulae, and a semantic
component, a mapping of interpretations. The syntactic component i s essentially the “compiler” that
translates specifications from one logic into another. The existence of the semantic component
ensures that the syntactic translations map satisfiable specifications to satisfiable specifications
(soundness) and unsatisfiable specifications to unsatisfiable specifications (completeness). With
predicate logic as a target logic, a logic morphism allows theorem proving by translation (into
predicate logic) and refutation (for example with predicate logic resolution and paramodulation).

Defini t ion 2.3 Logic Morphisms
A logic morphism i s a mapping ‘1’ between two logics Li = ((zb Bi, (pi) , (Ii ,®i, |=i)), i = 1,2. It
consists of the two components (TS, WS) where

° ‘I’S is a specification morphism mapping Ll-specifications to L2-specifications.
‘I’s contains the two components,
. ‘?» a signature morphism mapping Isl-signatures to fez-signatures, and
° ‘Pp, a formula morphism mapping Ll-formulae to L2~formulae such that Ell-formulae are

mapped to ‘Pz(Zl)-formulae, i.e. VZ & 21: F 6 (91(2) ED ‘I‘F(F) e (”Ml-(2)).
(In general, ‘PS not only translates formulae, but adds new symbols and formulae.)

° ‘Ps i s a bidirectional interpretation morphism, a mapping between Isl-interpretations and L2-
interpretations ensuring satisfiability preservation, i.e.
° if an Isl-specification S is satisfied by 51 then ‘I’S(S) is satisfied by ‘I‘5(81) (soundness) and
. if ‘PS(S) is satisfied by 52 then 5 is satisfied by iii-gag (completeness) o

8

Examples: Transfonnation into negation normal form and Skolemization is a logic morphism from
predicate logic into the fragment of predicate logic without existential quantifier. Notice that only the
preservation of satisfiability is required. Skolemization is the typical example that transforms tautolo
gies not necessarily into tautologies. For example the tautology 3xPx v V'x-,Px is transformed into
Pa v 'v'x-,Px which is satisfiable, but not a tautology. Transformations of Skolemized formulae into
clauses is an example for a logic morphism which preserves tautologies. •

Proposition 2.4 The composition of two logic morphisms is again a logic morphism.
The proof is straightforward. •

This property permits the linking of translation steps or, the other way round, the breaking of compli
cated translations down into a sequence of simpler ones.

2.1 A Recipe for Logic Compilers

According to the definition of logic morphisms, the following steps are necessary for the develop
ment of compilers for logics:

•	 Defmition of a specification morphism:
This consists of three steps:

1.	 Definition of a signature morphism 'PI; that generates the necessary nonlogical symbols and
appropriate declarations. For example, if the target logic is a sorted logic, then the subsort
declarations and sort declarations for function symbols have to be generated. It has to be shown
that the generated signature is really a signature in the target logic, which means for example
that consistency of the sort declarations with the arity of function symbols has to be ensured or
properties like regularity of the sort declarations have to be shown etc.

2.	 Definition of a formula morphism 'Pp. This is actually the translator for the logical formulae. It
has to be shown that the translated formulae are well defined in the target logic.

3.	 Definition of the specification morphism 'PS itself. Given a specification (1:,F) in the source
logic, the specification morphism generates a translated specification 'PS«1:,F» =('PI;C1:),
'PpCF) u A) where A are some additional axioms.

•	 In order to prove soundness and completeness of the translation, an interpretation morphism 'Ps
and its inverse 'P~ have to be defined. 'PS translates interpretations for specifications in the source
logic to interpretations for the translated specifications. 'Ps is well defined if for any given 1:
interpretation.3, 'PsC.3) is really an interpretation over the translated signature 'PI;C1:). Usually this
means to show that for example the denotation of sort symbols is not empty, or that subsort decla
rations are realized by corresponding set inclusions etc.

The inverse interpretation morphism 'P~ needs not translate arbitrary interpretations in the
target logic. In most cases, translated specifications only require a fragment of the target logic.
Therefore 'P~ needs only to be defined for interpretations of translated specifications. Again, it
has to be shown that 'P~ is well defined, i.e. that 'P~(.3') is really an interpretation in the source
logic. Notice that although the notation suggests it, '¥so'P~ needs not be the identity. In particular
for logic morphisms like the Skolemization which translate into a fragment of the source logic,
'P~ itself is the identity and therefore 'Pso'P~ ='PS :F- identitiy. .

'PS and 'P~ can now be used to show soundness and completeness of the translation. To this
end it has to be proven - in general by structural induction - that a model .3 for a specification S is
translated into an interpretation 'PsC.3) satisfying 'PsCS) Csoundness) and a model.3' for a trans

Examples: Transformation into negation normal form and Skolemization is a logic morphism from
predicate logic into the fragment of predicate logic without existential quantifier. Notice that only the
preservation of satisfiability is required. Skolemization is the typical example that transforms tautolo-
gies not necessarily into tautologies. For example the tautology Elx v Vx—t i s transformed into
Pa v Vx—q which i s satisfiable, but not a tautology. Transformations of Skolemized formulae into
clauses is an example for a logic morphism which preserves tautologies. o

Proposition 2.4 The composition of two logic morphisms is again a logic morphism.
The proof is straightforward. 0

This property permits the linking of translation steps or, the other way round, the breaking of compli-
cated translations down into a sequence of simpler ones.

2 .1 A Recipe for Logic Compilers
According to the definition of logic morphisms, the following steps are necessary for the develop—
ment of compilers for logics:
0 Definition of a specification morphism:

This consists of three steps:
1 . Definition of a signature morphism ‘1’}; that generates the necessary nonlogical symbols and

appropriate declarations. For example, if the target logic i s a sorted logic, then the subsort
declarations and sort declarations for function symbols have to be generated. It has to be shown
that the generated signature is really a signature in the target logic, which means for example
that consistency of the sort declarations with the arity of function symbols has to be ensured or
properties like regularity of the sort declarations have to be shown etc.

2 . Definition of a formula morphism ‘PF. This is actually the translator for the logical formulae. It
has to be shown that the translated formulae are well defined in the target logic.

3 . Definition of the specification morphism ‘I’s itself. Given a specification (ELF) in the source
logic, the specification morphism generates a translated specification ‘I’s((2,F)) = (‘P2(E),
‘I’F(F) U A) where A are some additional axioms.

° In order to prove soundness and completeness of the translation, an interpretation morphism T3
and its inverse ‘Pg have to be defined. \I‘s translates interpretations for specifications in the source
logic to interpretations for the translated specifications. ‘Pg is well defined if for any given 2-
interpretation 3 , ‘I’s (S) is really an interpretation over the translated signature ‘1’};(2). Usually this
means to show that for example the denotation of sort symbols is not empty, or that subsort decla-
rations are realized by corresponding set inclusions etc.

The inverse interpretation morphism ‘P'gl needs not translate arbitrary interpretations in the
target logic. In most cases, translated specifications only require a fragment of the target logic.
Therefore W‘s needs only to be defined for interpretlations of translated specifications Again, it
has to be shown that T3 is well defined, i. e. that ‘P'5(8') is really an interpretation in the source
logic. Notice that although the notation suggests it, ‘1’30‘1‘3 needs not be the identity. In particular
for1log ic morphisms like the Skolemization which translate into a fragment of the source logic,
‘1”s itself is the 1identity and therefore ‘I’sO‘P'5= ‘I’s # identitiy.

‘i‘s and ‘P‘g can now be used to show soundness and completeness of the translation To this
end 1t has to be proven- in general by structural induction- that a model 3 for a specification S 1s
translated into an interpretation ‘I’3($) satisfying ‘I’s (S) (soundness) and a model 5“ for a trans—

9

lated specification '¥s(S) is translated back into an interpretation '¥~ (S ') satisfying S
(completeness). In chapter 5 and 6 proofs of this type are given in detail.

3 ORDER SORTED PREDICATE LOGIC (OSPL)

As a target logic for the translation methods we are going to present we need a sorted version of
predicate logic. Sorts are in principle not necessary because formulae in sorted logics can be
translated into unsorted logic. For example the unsorted version of the formula '\ix:S P(x)' is '\ix
S(x) => P(x)'. Besides the fact that sorted formulae are more compact and allow for a more efficient
calculus, there is another advantage of sorts: the sorted version of an equation can in general be
turned into theory a unification algorithm whereas the unsorted equivalent cannot. For example it is
quite straightforward to turn the sorted commutativity axiom '\ix,y:S f(x,y) = f(y,x)' into a
unification algorithm. For the unsorted equivalent '\ix,y S(x) A S(y) => f(x,y) = f(y,x)' this is
almost impossible.

The functional translation method produces in the translated specifications may equations with
sorted variables (see def. 6.2 and 6.3). Since the ultimate goal of the translation is to turn these
equations into unification algorithms, I therefore decided to use a many sorted predicate logic as target
logic for the translation. A number of many sorted predicate logics have been developed so far. The
different versions can be distinguished by the structure of the sort information they can represent,
whether it is just a flat list of sorts, a semilattice or lattice, a feature sort structure etc., and by the kind
of sort information for function and predicate symbols they can handle. The minimal requisites we
need to apply the translation idea to more complex source logics are: A hierarchical sort structure, i.e.
a partial order, and overloaded (polymorphic) function sort declarations. A typical example for
overloaded sort declarations is '+:realxreal~real, integerxintege:r~integer'. The currently most
advanced many sorted predicate logic with these features and a fully developed resolution and
paramodulation calculus is that of Manfred Schmidt-SchauB [Schmidt-SchauB 89], which is an
extension ofWalther's many-sorted predicate logic [Walther 87].

Since Schmidt-SchauB' logic is quite complex, we briefly introduce its main notions. The reader
who is familiar with sorted logics or who is only interested in the main ideas of the translation
technique and not the corresponding proofs may skip this chapter. We follow in principle the usual
Tarski scheme for defining syntax and semantics of predicate logic, but we have to include extra
devices for handling the sort information.

In the sequel tJJO%(j) denotes the the domain of the function f

3.1 Syntax of OSPL

According to the schema in def. 2.1 we have to define signatures, formation rules for terms and
formation rules for formulae.

Definition 3.1 Sorted Signatures
A signature in OSPL consists of sets V,£, F,£, P,£ and S,£ of variable, function, predicate and sort
symbols. (Constant symbols are O-ary function symbols.) All these sets are disjoint. Function and
predicate symbols are distinguished according to their arity.

Furthermore there is

• a function S: V,£ ~ S which gives a sort to each variable symbol,
• a set of subsort declarations of the form R 5: S,

9

lated specification ‘I’s(S) is translated back into an interpretation was ') satisfying S
(completeness). In chapter 5 and 6 proofs of this type are given in detail.

3 ORDER SORTED PREDICATE LOGIC (OSPL)

As a target logic for the translation methods we are going to present we need a sorted version of
predicate logic. Sorts are in principle not necessary because formulae in sorted logics can be
translated into unsorted logic. For example the unsorted version of the formula ‘ s s P(x)’ is ‘Vx
S(x) => P(x)’. Besides the fact that sorted formulae are more compact and allow for a more efficient
calculus, there is another advantage of sorts: the sorted version of an equation can in general be
turned into theory a unification algorithm whereas the unsorted equivalent cannot. For example it is
quite straightforward to turn the sorted commutativity axiom ‘Vx,y:S f(x,y) = f(y,x)’ into a
unification algorithm. For the unsorted equivalent ‘Vx,y S(x) A S(y) = f(x,y) = f(y,x)’ this is
almost impossible.

The functional translation method produces in the translated specifications may equations with
sorted variables (see def. 6.2 and 6.3). Since the ultimate goal of the translation i s to turn these
equations into unification algorithms, I therefore decided to use a many sorted predicate logic as target
logic for the translation. A number of many sorted predicate logics have been developed so far. The
different versions can be distinguished by the structure of the sort information they can represent,
whether i t i s just a flat list of sorts, a semilattice or lattice, a feature sort structure etc., and by the kind
of sort information for function and predicate symbols they can handle. The minimal requisites we
need to apply the translation idea to more complex source logics are: A hierarchical sort SH'ucture, i.e.
a partial order, and overloaded (polymorphic) function sort declarations. A typical example for
overloaded sort declarations i s ‘+:rea1xreal—>real, integerxinteger—ainteger’. The currently most
advanced many sorted predicate logic with these features and a fully developed resolution and
paramodulation calculus is that of Manfred Schmidt-Schauß [Schmidt-Schauß 89] , which is an
extension of Walther’s many-sorted predicate logic [Walther 87].

Since Schmidt-SchauB’ logic is quite complex, we briefly introduce its main notions. The reader
who i s familiar with sorted logics or who is only interested in the main ideas of the translation
technique and not the corresponding proofs may skip this chapter. We follow in principle the usual
Tarski scheme for defining syntax and semantics of predicate logic, but we have to include extra
devices for handling the sort information.

In the sequel DOMU) denotes the the domain of the function f

3 .1 Syntax of OSPL

According to the schema in def. 2.1 we have to define signatures, formation rules for terms and
formation rules for formulae.

Defini t ion 3.1 Sorted Signatures
A signature in OSPL consists of sets V2, F2, P}: and S : of variable, function, predicate and sort
symbols. (Constant symbols are O-ary function symbols.) All these sets are disjoint. Function and
predicate symbols are distinguished according to their arity.
Furthermore there is

° a function S: V; —> S which gives a sort to each variable symbol,
° a set of subsort declarations of the form R E S ,

10

•	 a set of sort declarations for terms. A sort declaration for a term is a tuple t:S, where t is a
non variable term and S is a sort symbol. We sometimes abbreviate sort declarations
f(xl>""xn):S as f:S 1x... xSn-.?S, where Si is the sort of the variable Xi'

•	 a set of sort declarations for predicates. A sort declaration for a predicate is of the form
P:S1x... xSn, where the Si are sorts. •

We assume that the equality predicate = is in PL and that for all sorts R,S the predicate declaration
=:RxS is also in L. For a signature L, let E}; be the quasi-ordering on SL defined by the reflexive and
transitive closure of the subsort declarations.

In the sequel we assume the existence of a single top sort D, i.e. for all S E SL: S EL D. This is not
necessarv in l!eneral but simolifies some definitions.

While the definition of sorted signatures is essential for understanding of the functional translation
technique, the subsequent definitions of well sorted terms and formulae are only needed for technical
reasons in this paper.

Definition 3.2 Well Sorted Terms
The set of well sorted terms TL,S of sort S in the signature Lis (recursively) constructed by the
following three rules:

•	 x E T};,S if Sex) s~ S
•	 t E T};,S if t:R ELand R E~ S
•	 t[x/r] E TL,S if t E TL,S, rE TL,R and x E VL such that R SL Sex).

(t[x/r] means substituting r for x in t.)

The set T E of all L-terms (well sorted terms) is defined as the union u{TLS IS E S};}.

The sort Set) of a term t is the sort S of the greatest (with respect to set inc1~sion) TL,S containing 1.

We sometimes use t:S to denote that S = Set) is the sort of 1.

The function eof def. 2.1 can now be defined to map a signature :E to TL'	 •

Definition 3.3 Well Formed Formulae
An atom P(tl> ... ,tn) is wen sorted if ti E TL,Si for i =1, ... ,n and P:Slx ... xSn is a predicate
declaration in L. A wen formed formula (well sorted) is a formula built with well sorted atoms
and the logical connectives and quantifiers --,,1\, V, =>, <=>, "1,::3 in the usual way. We write \ix:S F
and ::3x:S F to indicate that the sort of the variable is S.

For convenience we assume that the quantified variables are standardized apart (renamed), i.e.
formulae like \ix3xF or VxF v 3xG do not occur. •

3.2 Semantics of OSPL

Algebras and homomorphisms [Gratzer 79] are the basic building blocks for the definition of the
semantics of well sorted terms and well formed formulae. A 1:-algebra .9lfor a signature :E consists of
a carrier set D51 and a set of functions which correspond to L in the right way. The carrier set is
divided into subsets according to :E's sort strw:;ture and the domain-range relations of the functions in
.9l match the corresponding sort declarations for terms. A special 1:-algebra is the algebra of free terms
where the carrier set consists of the well sorted terms themselves and the functions are constructor
functions for terms, i.e. they take n terms tl, ... ,tn and create a new term k(tl" .. ,tn). This fact can be
exploited to define the semantics of terms just by an homomorphism from the free term algebra into a

10

. a set of sort declarations for terms. A sort declaration for a term is a tuple t:S, where t is a
non variable term and S is a sort symbol. We sometimes abbreviate sort declarations
f(x1,...,xn):S as f:Sl><.. .xSn—>S, where Si i s the sort of the variable xi.

. a set of sort declarations for predicates. A sort declaration for a predicate is of the form
P:S 1x . . . xSn , where the Si are sorts. 0

We assume that the equality predicate = is in PE and that for all sorts R,S the predicate declaration
=:R><S is also in 2. For a signature 2, let 5 ; be the quasi-ordering on S); defined by the reflexive and
transitive closure of the subsort declarations.

In the sequel we assume the existence of a single top sort D, i.e. for all S e 8);: S E}; D. This is not
necessgy 'mgeneral,g_it signifies some definitions.

While the definition of sorted signatures is essential for understanding of the functional translation
technique, the subsequent definitions of well sorted terms and formulae are only needed for technical
reasons in this paper.

Definition 3.2 Well Sorted Terms
The set of well sorted terms T2,S of sort S in the signature 2 is (recursively) constructed by the
following three rules:

‘ X E TZ,S if 300 E); S
° teTZ-‚s i f t zREEandREzS
° t[x/r] e T):‚S if t e TE,S‚ r & T2,R and x e V}; such that R E; S(x).

(t[x/r] means substituting r for x in t.)

The set T; of all Z-terms (well sorted terms) is defined as the union U{T2,S l S e SZ}.
The sort S(t) of a term t is the sort S of the greatest (with respect to set inclusion) T23 containing t.
We sometimes use t :S to denote that S = S(t) is the sort of t .

The function 9 of def. 2.1 can now be defined to map a signature 2 to T)} o

Defini t ion 3.3 Well Formed Formulae
An a tom P(t1,...,tn) is well sorted if ti e T&si for i =1‚...,n and P:Sl><...xSn is a predicate
declaration in Z. A well formed formula (well sorted) i s a formula built with well sorted atoms
and the logical connectives and quantifiers —1, A, V, :>, ¢=>, V, 3 in the usual way. We write s s F
and 3x:S F to indicate that the sort of the variable is S.

For convenience we assume that the quantified variables are standardized apart (renamed), i .e.
formulae like VxEl or VxF v 3x6 do not occur. Q

3 .2 Semant ics of OSPL

Algebras and homomorphisms [Grätzer 79] are the basic building blocks for the definition of the
semantics of well sorted terms and well formed formulae. A Z—algebra flfor a signature 2 consists of
a carrier set D ‚q and a set of functions which correspond to Z in the right way. The carrier set is
divided into subsets according to 21’s sort structure and the domain-range relations of the functions in
fl match the corresponding sort declarations for terms. A special Z—algebra is the algebra of free terms
where the carrier set consists of the well sorted terms themselves and the functions are constructor
functions for terms, i .e. they take n terms t1‚. . .,tn and create a new term k(t1,. ..,tn). This fact can be
exploited to define the semantics of terms just by an homomorphism from the free term algebr'a into a

11

corresponding ~:-algebra. Such an homomorphism is actually an interpreter which evaluates terms in
a given algebra.

Definition 3.4 I.-Algebras
I.-algebras are defined in three steps. As an auxiliary definition we first introduce I.-quasi-algebras as
algebras which need not respect the subsort and sort declarations in I..

•	 A I.-quasi-algebra .5l for a signature I. consists of a carrier set Dj1, a partial function
kj1:D;trrity(k)~Dj1for every function symbol k in I., a nonempty set Sj1 ~ Dj1 for every sort S,
such that Dj1 is the union of the denotations for the sort symbols in I., i.e. Dj1 =U {Sj11 S E S~:J.

•	 Let j{ be a I.-quasi-algebra. We say a partial mapping q>:VL ~ Dj1 is a partial I.-assignment,
iff q>(x) E S(x)j1 for every variable x E 'DO%(q». If q> is a total function, we call it a I.
assignment. The homomorphic extension q>h of a (partial) I.-assignment q>:VL ~ D;z on TL

is defined as a (partial) function <J>h:TL ~ Dj1as follows:

•	 q>h(x) =def q>(x) for all ~variables x E 'DO'M(q» and

•	 for every k(Sl, ... ,sn) E T L:

if si E 'DO%(q>h) for i = 1,... ,n and (q>hSl"'" q>hsn) E 'DO%(k;z)

then k(sl, ... ,sn) E 'DOM(q>h) and q>h(k(sl>" .,sn» =def k;z(q>hsl"'" q>hsn)'

A I.-assignment assigns values to variable symbols and therefore completes the interpretation of
terms in a given algebra. Thus, the corresponding homomorphic extension allows interpretation of
arbitrary non-ground terms in that algebra. Now we can give the final definition for ~algebras.

•	 A I.-algebra j{ for a signature I. is defined as a I.-quasi-algebra j{ that satisfies the following
additional conditions:

•	 If R s; S is in I. then Rj1 ~ S;z

•	 For all declarations t:S E I. and for every partial ~assignment q>:VL ~ D51 with
Variables(t) ~ 'DO'M(q»: t E '1J(q>h) and <J>h(1) E Sj1' •

There is actually a many sorted equivalent of the well known fact that first-order terms constitute
the domain (Herbrand universe) of the Herbrand interpretations: The term algebra of well-sorted
tenns is a ~algebra with carrier set TL if we define:

•	 STL =def T L,S for every sort S E SL'

•	 'DO!M(kTL) =def {(sl> ,sn) I k(sl, .. ·,Sn) E T L }.

•	 kTL(Sl,· .. ,Sn) =def k(sl> ,sn)·

Definition 3.5 I.-Homomorphisms

Let I. be a signature. A I.-homomorphism is a mapping q>:j{~ $ from a I.-algebra j{ to a L

algebra $ such that:

•	 q>(S;z) ~ S'13 for all S E SL'

• q>('DO%(k;z» C 'DO'M(k'13) for all k EFL'

• If (ab" ·,an) E 'DO%(kj1) then q>(k;z(al>" ·,an» =k'13(q> al" .. ,q>an). •

In particular the homomorphic extensions of variable assignments VL ~ D51 are I.-homomorphisms
from the term algebra into the algebra Jl.. They will be used for the interpretation of formulae.

11

corresponding Z—algebra. Such an homomorphism is actually an interpreter which evaluates terms in
a given algebra.

Defini t ion 3.4 Z -Algeb ra s
E-algebras are defined in three steps. As an auxiliary definition we first introduce E-quasi-algebras as
algebras which need not respect the subsort and sort declarations in Z.
. A Z-quas i - a lgeb ra ‚91 for a signature E consists of a carrier set D g, a partial function
k„:D ffitya‘)—>D„ for every function symbol k in E, a nonempty set S a c_: D ‚q for every sort S,
such that D51 is the union of the denotations for the sort symbols in Z, i.e. D ‚q = U { S g l S e SE}.

° Let &! be a E—quasi-algebra. We say a partial mapping (sz ——> D ;; is a partial Z-assignment,
iff (p(x) e S(x)}‚l for every variable x e ammo). If (p is a total function, we call i t a 2 -
assignment. The homomorphic extension (ph of a (partial) Z-assignment (sz —> D 54 on T);
is defined as a (partial) function (ph:Tz —-> D1 as follows:
° (ph(x) =def (p(x) for all E—variables x e DOM(<p) and
° for every k(s l , . . . , sn) e T2:

if Si 6 (DOM((ph) for i = 1,...,n and ((phs1‚..., (phsn) e DOM(kZ)
then k(s1,...,sn) e Dom/[(%) and (ph(k(sl‚...,sn)) =def kfl((phsl,..., (phsn).

A Z-assignment assigns values to variable symbols and therefore completes the interpretation of
terms in a given algebra. Thus, the corresponding homomorphic extension allows interpretation of
arbitrary non- ground terms in that algebra. Now we can give the final definition for Z-algebras.
° A Z-algebra :4 for a signature 2 i s defined as a E—quasi—algebra 54 that satisfies the following

additional conditions:
° I fRE S is in Ethen RÄ ; Sa
° For all declarations t:S e Z and for every partial Z—assignment (sE —-> D1 with

Variables(t) ; Daß/((p): t e 1X<ph) and (ph(t) e S:4- 0

There is actually a many sorted equivalent of the well known fact that first-order terms constitute
the domain (Herbrand universe) of the Herbrand interpretations: The term algebra of well-sorted
terms is a Z-algebra with carrier set T}; if we define:

° ST; =def Tag for every sort S e SE.
° QOMs) =def ((81,...,sn) | k(s1,...,sn) 6 T2}.
‘ kT2(S l ‚ . . . , Sn) =def k(S l , . . . , Sn) .

Definit ion 3.5 Z -Homomorph i sms
Let 2 be a signature. A 2-homomorphism is a mapping (pm—>6 from a Z-algebra J?! to a Z-
algebra B such that:

° (p(Sfl) ; Sq; for all S e S}:—

‘ (“909%n g EDOM(kQ) for all k e F2.
° If (a1,...,an) e DOM(kfl) then (p(kfl(a1,.„,an))= k$($a1‚n- ‚ (Pan)- .

In particular the homomorphic extensions of variable assignments V: —> D‚q are Z—homomorphisms
from the term algebra into the algebra A They will be used for the interpretation of formulae.

12

Endomorphisms on the term algebra which move only finitely many variables are usually called
substitutions. They can be presented as a set {XI t-7 tl, ... , Xn t-7 tn} where the variables
{XI, ... ,XnJ are the domain and the terms {tl, ... ,tnJ are the codomain. A substitution cr is
idempotent if crcr = cr. This definition of substitutions automatically ensures that only well sorted
substitutions are considered, i.e. substitutions which always produce well sorted instantiations of
clauses.

A L-algebra does not contain objects that correspond to predicate symbols. These will be added in
the definition of k-structures before we can go on and define the semantics for OSPL-formulae.

Definition 3.6 1:-Structures
A 1:-structure ~ is a 1:-algebra which has additional denotations PJ'I for every predicate symbol
P E P1;' such that

• PJ'I is a relation with PJ'I c jlarity(p)

• =J'I is the identity on 5t
A :E-homomorphism of 1:-structures cp:~---t'.B is a 1:-homomorphism of the underlying L-algebras
satisfying in addition (al> ... ,tln) E P5t c::> (cpal> ... ,cptln) E P'B •

Now we can define the semantics of well formed formulae consisting of a :E-interpretation for
terms and atoms and a satisfiability relation for formulae.

Definition 3.7 L-Interpretations
Let S = (L, F) be a L-specification. A L-interpretation .3 = (!!vi '0 for S is 1:-structure M
together with a L-assignment 'V- VI;---tD5\(.

Since TI; is a free :E-structure, 'V'induces a L-homomorphism 'V'h:TI;---tV\l. Therefore we need not
distinguish between (~'0 and (!!vi 'V'h)' We use .3(t) as an abbreviation for 'V'h(t). •

Definition 3.8 The Satisfiability Relation
The satisfiability relation4 I=p between L-interpretations.3 and formulae is defined as
follows:

.3 Fp P(tl> ... ,tn) iff (.3(tl), ... ,.3(tn» E PM

.3 Fp Vx:S F iff for all ~E SJrf 3 [x/;u Fp F where .3[x/;u is like 3 but maps x to.t:

.3 Fp 3x:S F iff there is an ~E SM such that .3 [x/;u Fp F
The remaining logical connectives are interpreted as usual. •

Summarizing we compress the above definitions into the following definition of order-sorted
predicate logic (OSPL):

Definition 3.9 OSPL
Following the definition scheme of def. 2.1 for logics, we define OSPL as the tuple (syntax,
semantics) where syntax consists of

• the set of all sorted signatures (def. 3.1),
• the formation rules for well sorted terms (def. 3.2), i.e. the function L ---t TI;.
• the formation rules for well sorted formulae (def. 3.3)

4 The index p (for predicate logic) in Fp is to distinguish this satisfiabiIity relation from others to be defined later

on.

12

Endomorphisms on the term algebra which move only finitely many variables are usually called
subs t i t u t ions . They can be presented as a set {x l »—> t1, . . . , a tn} where the variables
{x1, . . . ,xn} are the doma in and the terms {t1,...,tn} are the codoma in . A substitution o i s
idempotent if 60 = o. This definition of substitutions automatically ensures that only well sorted
substitutions are considered, i.e. substitutions which always produce well sorted instantiations of
clauses.

A Z-algebra does not contain objects that correspond to predicate symbols. These will be added in
the definition of Z—structures before we can go on and define the semantics for OSPL-formulae.

Definition 3.6 Z -S t ruc tu re s
A Z-structure fi is a Z-algebra which has additional denotations Pa for every predicate symbol
P e PE, such that

° P51 is a relation with Pfl (_: filamye)
° =‚4 is the identity on 54.

A Z-homomorphism of Z—structures (pail—>8 is a Z-homomorphism of the underlying E-algebras
satisfying in addition (a1,...‚an) e PAED ((pa1‚...,(pan) 6 Pg o

Now we can define the semantics of well formed formulae consisting of a F.:-interpretation for
terms and atoms and a satisfiability relation for formulae.

Definition 3.7 Z - In t e rp re t a t i ons
Let S = (E, F) be a E—specification. A Z-interpretat ion S = (M, ‘V) for S i s Z-structure M
together with a Z'rassignment 'VE Vz—aDM.
Since T}; is a free E—structure, rVinduces a Z-homomorphism ’14,:Tz—>M. Therefore we need not
distinguish between (M, W) and (M, 741). We use 3(t) as an abbreviation for ’Vh(t). o

Definition 3.8 The Satisfiability Relation
The satisfiability relation4 l=p between Z-interpretat ions S and formulae is defined as
follows:

$ |=1> P(t1‚...,tn) iff (8(t1),...,8(t„)) e PM
3 |=p s s F iff for all a e SM. SDC/x] I=p P where 5[x/x] is like 3 but maps x to 2t-

3 l=1> 3x18 F iff there is an {6 SM such that 8[x/x] l=]> F
The remaining logical connectives are interpreted as usual. ‘
Summarizing we compress the above definitions into the following definition of order-sorted
predicate logic (OSPL):

Defini t ion 3 .9 OSPL
Following the definition scheme of def. 2.1 for logics, we define OSPL as the tuple (syntax,
semantics) where syntax consists of

. the set of all sorted signatures (def. 3.1),
° the formation rules for well sorted terms (def. 3.2), i.e. the function Z —> T2.
° the formation rules for well sorted formulae (def. 3.3)

4 The index p (for predicate logic) in !=? is to distinguish this satisfiability relation from others to be defined later
on.

13

and semantics consists of
• the function that maps a signature L to all :E-interpretations (def. 3.7)
• the function that takes a :E-interpretation (~ 'l1 with a :E-assignment o/and maps it to the

induced L-homomorphism o/h:TL~:M.

• the satisfiability relation I=p of def. 3.8. •

As a reminder we give the definitions of the resolution and paramodulation rules. For OSPL they
are only slightly different to the original rules for unsorted predicate logic [Robinson 65, Robinson &
Wos 69].

Resolution: LIV vLkVC
-,LJ v v-,L:,v D a is a most general unifier for Ll~, ... ,L~.

aC v aD.

Paramodulation: L[s'] v C a is a most general unifier for s' and s
s =t v D qUqs' ~ qt] is well sorted.
aL[as' ~ at] vaC v aD (one occurrence of as' is replaced by at in aL).

A unification algorithm for sorted terms can be found in [Schmidt-SchauB 89].

3.3 Quantification over Functions

In sorted predicate logics it is no problem to allow quantification over domain elements as well as
over functions at the same time. If for example there is a sort D, a sort 'D~D' can be introduced and
axiomatized such that it really describes functions over D. The second-order syntax with variables in
functional positions can be avoided by introducing an explicit 'apply' - function. Instead of
''v'f:'D~D' P(f(a»)' for example 'V'f:'D~D' P(apply(f,a»)' is written which is first-order. With this
trick second-order logic can't really be encoded in first-order logic. What is lost is that a second-order
quantification 'v'f:D~D ... quantifies over all functions over D whereas a sorted first-order quantifica
tion 'v'f:'D~D' ... quantifies only over the functions which are in the interpretation of the sort
'D~D'. With first-order axioms it is in general not possible to enforce that these are always all
functions over D. That means, given an interpretation D5I of a sort D, the sort D ~ D is in second
order logic completely determined as the set of all functions D5I ~ D5I, whereas the sort 'D~D' can
in first order logic at most be axiomatized to denote some functions D5I ~ D5I.

For the functional translation methods to be presented below we need the "functional sorts" to
quantify over context access functions, for example functions 'W~W' which map worlds to acces
sible worlds in possible worlds structures. In this application it is not only not necessary to quantify
over all functions W ~ W, it would even be wrong. A second-order quantification 'v'u:W~W ...
which might be used as a replacement for the o-operator would denote not only the accessible
worlds, but all worlds. Therefore with our usage of functional sorts where 'W~W' is axiomatized
explicitly, we are on the safe first-order side.

Introducing first-order functional sorts means axiomatizing the 'apply'-function and the functional
composition appropriately. This can be done in the following way:

13

and semantics consists of
' the function that maps a signature 2‘. to all 2-interpretations (def. 3.7)
. the function that takes a)}interpretation (M r1/) with a E-assignment ‘Vand maps it to the

induced Z-homomorphism ’tTZ—MM
' the satisfiability relation r=p of def. 3.8. 0

As a reminder we give the definitions of the resolution and paramodulation rules. For OSPL they
are only slightly different to the original rules for unsorted predicate logic [Robinson 65, Robinson &
Wos 69].

Resolut ion: L1v.. .vv C
—‚_L'1v...v—.I_„n' v D 0' i s a most general unifier for L1, . . .,Lk, L'],. ..‚L„' .
6C v oD.

Pa ramodulation: L[s'] v C 0' is a most general unifier for s ' and s
s = t v D qos‘ —) QtLis well sorted.
oL[os' —) ot] v GC v O'D (one occurrence of os' i s replaced by ot in CL).

A unification algorithm for sorted terms can be found in [Schmidt-SchauB 89].

3 .3 Quantification over Functions

In sorted predicate logics i t is no problem to allow quantification over domain elements as well as
over functions at the same time. If for example there i s a sort D, a sort ‘D——>D’ can be introduced and
axiomatized such that it really describes functions over D. The second-order syntax with variables in
functional positions can be avoided by introducing an explicit ‘apply’— function. Instead of
‘Vf:‘D—>D’ P(f(a))’ for example ‘Vf:‘D-—)D’ P(apply(f,a))’ is written which i s first-order. With this
trick second-order logic can’t really be encoded in first-order logic. What is lost is that a second-order
quantification Vf:D—>D. . . quantifies over all functions over D whereas a sorted first—order quantifica-
tion Vf:‘D-—>D’... quantifies only over the functions which are in the interpretation of the sort
‘D—9D’. With first-order axioms it is in general not possible to enforce that these are always all
functions over D . That means, given an interpretation D n of a sort D , the sort D —> D i s in second
order logic completely determined as the set of all functions D g —> D‚q, whereas the sort ‘D—>D’ can
in first order logic at most be axiomatized to denote some functions Dg -—> D1.

For the functional translation methods to be presented below we need the “functional sorts” to
quantify over context access functions, for example functions ‘W—>W’ which map worlds to acces-
sible worlds in possible worlds structures. In this application it is not only not necessary to quantify
over all functions W —> W, it would even be wrong. A second-order quantification Vu:W—>W
which might be used as a replacement for the EI-operator would denote not only the accessible
worlds, but all worlds. Therefore with our usage of functional sorts where ‘W—>W’ is axiomatized
explicitly, we are on the safe first-order side.

Introducing first-order functional sorts means axiomatizing the ‘apply’-function and the functional
composition appropriately. This can be done in the following way:

14

Definition 3.10 (Functional OSPL-Specifications)

A functional specification in OSPL is a specification (L,lF) consisting of a functional signa

tUfe and the axiomatization for the two distinguished symbols .J.. (application) and 0 (composition).

We assume a set SF of sort symbols in L such that!:~ is a semilattice on SF' i.e. for each pair Si, Sk

E SF' the greatest lower bound GLB(Si,Sk) is unique if it exists. The functions we are going to

define operate on the denotations of the sorts in SF' The functional part of L is as follows:

1.	 The functional sorts may be 'Sl>""Sn~S', Si and SE SF-
Different symbols q may be used to distinguish different sets of functions SIX,... ,xSn-7S.
(We use this suggestive notation for the functional sorts to ease reading of formulae and to
simplify some definitions. In subsequent chapters 'W-7W' is used to denote functions mapping
worlds to accessible worlds in the basic accessibility relation and 'W~W' denotes functions
corresponding to its reflexive and transitive closure.)

2.	 Whenever a declaration 'SI"",Sn~S' !: 'Dl> ... ,Dn~D' E L then Di!:~ Si for i = l, ... ,n and
S !:~ D and 'S2"",Sn~S' !: 'D2,... ,Dn-4D' E L (see comment below).

3. The sort declarations for.J, are:	 .J..:'SI"",Sn~S' X SI -7 'S2"",Sn~S'
for every sort 'Sl>""Sn~S', (and 'S2,,,,,Sn~S' has to exist as a sort symbol). (For our
purposes we need only application to one argument at a time, i.e. we use function currying when
necessary.)

4.	 The sort declarations for 0 have the following structure:
o:'Dl> ... ,Dn,Sl-4s2' x 'El, ... ,En,Sr4s3' -7 'Gl> ... ,Gn,S1"'~~S3'

where Gl =def GLB(Dl,El) for 1= 1,... ,n, and the set of all these declarations is associative, Le.
whenever o:F1 x F2 -7 F12, o:F12 x F3 -7 F123, o:F2 x F3 -7 F23, o:F1 x F23-7 F'123 are defined
for functional sorts Fl> F2 and F3 then F123 =F'123, or simply (F1 x F2) x F3 =F1 x (F2 x F3)'
Furthermore the declarations are maximal. All combinations which are possible according to these
rules have to be allowed for o.
(For the composition of m-ary functions the fIrst m-I arguments are treated as parameters and only
functions with the same parameters are composed, c.f. comment below.)

5 _ IF contains all axioms of the following kind:
a) Vf,g:'Sl"",Sn~S' (Vx:Sl .J..(f, x) = .J..(g, x» => f = g.

. . (Functions operating in the same way are identical.)
b) 'v'f:'SI~S2' 'v'g:'S2~S3' .Vx:Sl ,L«f 0 g), x) = ~(g, ,L(f, x» (definition of composition.)
c) Whenever o:'Dl>.:-,Dn,Sl~S2' x 'El>'''lEn,S2~S3' is defined and n > 0 then

'v'f:'DI,· .. ,Dk,Sr.!·~S2' 'v'g:'El> ... ,Ek,S2-4S3' 'v'XI:GLB(Dl,E1), ... , 'v'Xk:GLB(Dk,Ek)
,L«f 0 g), xl,,,,,xk) =.I-(f, xl>""xk) 0 .I-(g, xl, ... ,xk)	 •

Condition 2 which reverses the sort hierarchy of functional sorts compared to the sort hierarchy of
its component sorts on the domain side seems to be counter intuitive. A simple example, however,
convinces that this is okay. Suppose we have a sort 'A', the two sorts 'integer'!: 'real' and the two
functional sorts 'integer-7A' and 'real-7A'. Now, every 'real-7A'-function is certainly applicable to
integers and is therefore also an 'integer-7A' -function, but not vice versa. Thus, the subsort relation
ship must be 'real-7A'!: 'integer-7A'.

The composition of functions with more than one argument is asymmetric in the arguments. The
first n-l arguments are treated differently to the last argument. For example the composition of the
two arithmetic functions + and * yields a function (+ 0 *) with (+ 0 *)(3, 4) =3 * (3 + 4) = 21.
Actually it is not the intention here to describe functions like + and *. The kind of n-place functions
we need are essentially parametrized one-place functions, i.e. f(xl>''''xn) = fX1, ... ,xn-l(Xn), and we
compose only one-place functions with the same parameter vector. The one-place functions will be

14

Definition 3 .10 (Functional OSPL-Specifications)
A functional specification in OSPL is a specification (22,1?) consisting of a functional signa-
ture and the axiomatization for the two distinguished symbols i (application) and <> (composition).
We assume a set SF of sort symbols in 2 such that E: is a semilattice on SF, i.e. for each pair Si, Sk
e SF, the greatest lower bound GLB(Si,Sk) is unique if it exists. The functions we are going to
define operate on the denotations of the sorts in SF. The functional part of 2 is as follows:
1. The functional sorts may be ‘Sl,...,S„ÄS’, Si and S 6 SF.

Different symbols q may be used to distinguish different sets of functions SIX... .,XSn——>S.
(We use this suggestive notation for the functional sorts to ease reading of formulae and to
simplify some definitions. In subsequent chapters ‘W—)W’ is used to denote functions mapping
worlds to accessible worlds in the basic accessibility relation and ‘W-ÄW’ denotes functions
corresponding to its reflexive and transitive closure.)

2. Whenevera declaration ‘Sl,...,Sn—q>S’ E ‘D1,...‚D„l>D’ e Z then Die ; Si for i = 1,...,n and
S E2 D and ‘Sz,...‚Sn—%S’ .I'—: ‘D2,...,Dn-59D’ e Z (see comment below).

3. The sort declarations for J, are: Lz‘Sl,...,Sn-3>S’ x 81—) ‘Sz,...,Sn—$S’
for every sort ‘81,...,Sn—$S’, (and ‘82 , . . . , Sn¥$S’ has to exist as a sort symbol). (For our
purposes we need only application to one argument at a time, i.e. we use function currying when
necessary.)

4 . The sort declarations for 0 have the following structure: _
°:‘D1,...,Dn,SI—1)SZ’ X ‘E1,...,En,SZ-19S3’ _) ‘G1,...,G„,Sl—15>S3’

where G1 =def GLB(D1,E1) for l = 1, . . . ,n, and the set of all these declarations is associative, i.e.
Whenever °2F1 X F2 -—) F12 , °:F12 X F3 _) F123, ° IF2X F3 _) F23, OZFI X 1323—9 F '123 are defined
for functional sorts F1, F2 and F3 then F123 = F123, or simply (F 1 x F2) x F3 = F1 x (F2 x F3).
Furthermore the declarations are maximal. All combinations which are possible according to these
rules have to be allowed for 0 .

(For the composition of m—ary functions the first m—l arguments are treated as parameters and only
functions with the same parameters are composed, c.f. comment below.)

5 . 1F contains all axioms of the following kind:
a) Vf,g:‘Sl,...,Sn3>S’ (s s l ~L(f, x) = »L(g‚ x)) => f = g.

_ _ (Functions operating in the same way are identical.)
b) s ‘S IÄSZ’ Vg:‘Sz—J-)S3’ . s s l i((f o g), x) = _i(g‚ i(f‚ x)) (definition of composition.)
c) Whenever °:‘D1‚.‚.,Dn,Sli>Sz’ x ‘E1‚...‚En,82i)S3’ is defined and n > 0 then

VfI ‘D1 , . . . ,Dk‚S l—l-)Sz ’ VgZ‘E1 , . . . ‚Ek ,Sz—JÖS3’ VXIIGLB(D1‚E1) , . . . , VXkZGLB(Dk,Ek)

“ (fo g), x1,...,xk) = .L(f‚ x1‚...,xk) o Mg, x1‚...,xk) 9

Condition 2 which reverses the sort hierarchy of functional sorts compared to the sort hierarchy of
its component sorts on the domain side seems to be counter intuitive. A simple example, however,
convinces that this i s okay. Suppose we have a sort ‘A’, the two sorts ‘integer’ E ‘real’ and the two
functional sorts ‘integer—>A’ and ‘rea1—>A’. Now, every ‘real—>A’-function i s certainly applicable to
integers and i s therefore also an ‘integer—>A’-function, but not vice versa. Thus, the subsort relation-
ship must be ‘rea1—>A’ E ‘integer—aA’.

The composition of functions with more than one argument is asymmetric in the arguments. The
first n-l arguments are treated differently to the last argument. For example the composition of the
two arithmetic functions + and * yields a function (+ o *) with (+ o *)(3, 4) = 3 * (3 + 4) = 21.
Actually it i s not the intention here to describe functions like + and *. The kind of n-place functions
we need are essentially parametrized one-place functions, i.e. f(x1‚. . .,x„) = fx1 , . . . ‚ xn - l (xn) ’ and we
compose only one-place functions with the same parameter vector. The one-place functions will be

15

used to describe general context transitions and the parameters will be used in logics with
parametrized operators to enforce context switches only along labelled transitions in the possible
worlds structure where the labels serve as parameters in the transition functions. The semantics of a
parametrized modal operator like Dp for example is "DpP is true in a world w iff P is true in all worlds
which are accessible via p-Iabelled transitions". DPP can therefore be translated into Vx:'D,W-?W'
P(J,(J..(x,p),O». The 'D,W-?W'-functions are axiomatized such that a function ~E 'D,W-?W' ~I

applied to p yields a function W -? W which moves only along p-Iabelled transitions. The
composition of two such functions with the same parameters therefore corresponds to moves in the
context structure along transitions with the same label.

In the sequel we shall use sort symbols'S-?S' as well as expressions S -? S with the usual
meaning. 'S-?S' in quotation marks is a syntax element and S -? S is a semantic expression. Don't
mix them up.

0Lemma 3.1l is associative in functional. OSPL-specifications. .
Proof: t:et f:Sf, g:Sg andf:S~ where Sf=def 'Dfl'···,Dfn,S1"4S2', S.g =def 'Dgl' ... ,Dgn,S2-4S3',

Sh =def Dhl' ... ,Dhn,S3~S4 , and (Sf x Sg) x Sh;: Sf x (Sg x Sh) m the sense of 3.10,4 holds.

We show the associativity of 0 for the two cases:

~: n=O.

Let x:Sl ,J.,«f 0 g) 0 h), x) (f 0 g): 'S l-4S3' for some ij according to the declaration for 0

= J..(h, J..«f 0 g), x» (def. 3.1O,5b)
= J..(h, J..(g, J..(f, x» J..(f, x):S2 (def. 3.1O,5b)
= J..«g 0 h), J..(f, x» (g 0 h):'S2~S3' (def. 3.1O,5b)
= J..«f 0 (g 0 h», x)

<> (f 0 g) 0 h) = (f 0 (g 0 h» (def. 3.1O,5a)

Case: n>O
Letxi:Dfi J..«f 0 g) 0 h), Xl,' .. ,xn)

= J..«f 0 g), Xl>""xn) 0 ,J.,(h,xl""'xn) (def. 3.1O,5c)
= (J..(f,Xl""'Xn) 0 J..(g,x}. ,xn»0 J..(h,xl>""xn) (def. 3.1O,5c)
= J..(f,x1'" . ,xn) 0 (J..(g,x}. ,xn) 0 J..(h,x}. ... ,xn » .

J..(f,Xl, ... ,xn):'Sr4S2' (first case)
= J..(f 0 (g 0 h), xl>" .,xn) (def. 3.1O,5c)

<> (f 0 g) 0 h) = (f 0 (g 0 h» (def.3.1O,5a) •
This lemma allows to write compositions of "functional terms" as strings without parentheses.
Therefore from now on we write tl 0 t2 0 tn instead of (... (tl 0 t2) 0 •••) 0 tn.••• 0

The next theorem confirms that a functional specification really axiomatizes functions. Although
the proof is quite technical, we give it in full detail because it is an important part of the functional
translation technique.

Theorem 3.12 Every model JL for a functional specification (L,lF) is isomorphic to a model C
where the terms of sort 'S}.""Sn.3ts' are interpreted as total functions S1[Y<"'xSnc -? Se-

Proof: Let JL be a model for (L,lF).
We construct Cand the isomorphism 3 between JL and Cas follows:

a) For the nonfunctional sorts S, identify Sewith S}Jl'
This guarantees that the subset relationships in JL are properly transferred to C.

15

used to describe general context transitions and the parameters will be used in logics with
parametrized operators to enforce context switches only along labelled transitions in the possible
worlds structure where the labels serve as parameters in the transition functions. The semantics of a
parametrized modal operator like I] for example IS “upP IS true in a world w iff P IS true in all worlds
which are accessible via p—labelled transitions”. ElpP can therefore be translated into Vx: ‘D,W—>W’
P(.L(i(x,p),0)). The ‘D,W——)W’-functions are axiomatized such that a function xe ‘D, W—aW’fi,
applied to p yields a function W —) W which moves only along p-labelled transitions. The
composition of two such functions with the same parameters therefore corresponds to moves in the
context structure along transitions with the same label.

In the sequel we shall use sort symbols ‘S—-)S’ as well as expressions S —> S with the usual
meaning. ‘S—>S’ in quotation marks is a syntax element and S —> S is a semantic expression. Don ’t
mix them up.

Lemma 3.11 o is associative in functional OSPL-specif icat ions.
M: [ßtf‘Sf‚ g : Sg andkzh Sh where Sf=def Df1’°"Df ’S l—)S2’ 8.3 =dcf D g’ l ' . . ,Dggm,S2J-)S3 ,
Sh =def ‘D.hl, ‚Dhgn‚S3—>S4’, and (Sfx Sg) x 31h: Sf X (Sg >< Sh) m the sense of 3. 10,4 holds.
We show the associativity of 0 for the two cases:
C_s.e: n= 0
Let x281 ~L((f o g) o h), x) (f o g): ‘S 1383] for some “ according to the declaration for 0

= J.(h, l((f o g), x)) (def. 3.10,5b)
= J,(h, J‚(g, J‚(f, x)) $(f, x):82 _ (def. 3 .10,5b)
= .L((g o h), J‚(f, x)) (g ° h):‘Szll-')S3’ (def. 3.10,5b)
= ¢((f o (g ° h». x)

<> (fo g) o h) = (fo (g o h)) (def. 3.10,5a)
Case; n>0
Let xi:Dfi »L((f o g) o h), x1,...,xn)

= .L((fo g), x1,...,xn) o ¢(h,x1,...,xn) (def. 3.10,5c)
= (J,(f,x1,...,xn) ° ¢(g,x1,...,xn)) ° J‚(h,x1,.„,xn) (def. 3.lO‚5c)
= ~L(f,x1,...,xn) o (»L(g,xl,...,xn) o .L(h,x1,...,xn)) _

¢(f,x1,...,xn):‘S 1—1982’ (first case)
= ~L(f o (g o h), x1,...,xn) (def. 3.10,50)

ED (fo g) o h) = (fo (g o h)) (def. 3.10,5a) O

This lemma allows to write compositions of “functional terms” as strings without parentheses.
Therefore from now on we write t l 0 t2 o o tn instead of (...(t1 0 tz) o . . .) o tn.

The next theorem confirms that a functional specification really axiomatizes functions. Although
the proof i s quite technical, we give it in full detail because i t is an important part of the functional
translation technique.

Theorem 3.12 Every model fitfor a functional specification (ZJF) is isomorphic to a model C
where the terms of sort ‘81,. . .‚Sn—q>S’ are interpreted as total functions 31 CX.. .><SnC—> Sc.

Proof: Let Jilbe a model for (2,1F).
We construct C and the isomorphism 3 between 11 and C as follows:

a) For the nonfunctional sorts S, identify S Cwith S „.
This guarantees that the subset relationships in :21 are properly transferred to C.

16

b)	 To every f;;l E 'SI"",Sn~S';;I we assign the function E(f;;l) = fc : Slcx",xSnc~ Scwhich
satisfies the following condition: V~E S1;;1 fC<;0 :::: E(!.;;I(f;;l, ;r) (-l-;;I is the interpretation of J.. in
Jf., S l.9l :::: SI c), Using the axioms 3.1O,5a it can be shown with induction on n that fc is
unique.

Let 'SI," "Sn~S'C =def {8(f~ I f;;l E 'SI,,,,,Sn~S' J'l}. This guarantees again that the subset
relationships in Jf. are properly transferred to C. However, we have to show that the definition is
consistent with the subsort relationships of the functional sorts, Le. whenever
fJ'l E 'Sh""Sn~S';;I C 'Dh... ,Dn~D'J'lthen8(f~ is a total function on DIcx...xDnc~ Dc-

Therefore let fJ'l E 'Sh' ",Sn~S'J'l C 'Oh' .. ,Dn~D';;I and fc=def 8(f51).

We perform induction on n.

Base Case: n = 1, i.e. f;;lE 'Sr~S';;I'

Let ~E DIC = DUI' According to def. 3.10,2, D15:E SI' S 5:E D and we have

DI;;lc SIJ'l·Thus, ~E Sl.9l= SIC- and therefore fC<~ = E(J..;;I(f51,;0) E S;;I = Scc Dc

Hence, fcE DIC~ Dc·

Induction Stem: n> 1. The induction hypothesis is

Vg;;l E 'S2,'" ,Sn~S'J'l: 8(g~ is a total function on D2Cx ...x Dnc ~ 0 c

Let again ~E DICc SlcfC<;0 = 8(-l-;;I(f)<1' ~) E 'S2"",Sn~S' e

Since -l-)<1(f)<1,~) E 'S2, ...,Sn~S'o according to the induction hypothesis

fC<;r) = E(J..)<1(f)<1, ;0) : D2ex ...x Dne~ Dcand therefore feE DICX D2Cx ...x Dne~ Dc-

From a) and b) we obtain that E is a bijection between the sets S)<1 and Sewhich are associated with
the sorts S.

c)	 E(J..;;I) =def -l-e where -l-c is the application function, i.e. -l-C<fc, e) = fde) holds for all feand
corresponding arguments e. It is easy to verify that this definition matches the sort declarations
for,J, (def. 3.10,3).

d)	 S(°~ =def °c where °c is the composition function on the interpretations of the functional sorts.

It is defined as follows:

VfcE 'D h · .. ,Dn,Sr4S2' e geE 'El, .. ·,En,S2~S3'e:
feocgcE GICx...x GnCx SI~S3ewhere GiC= DiC (1 EiCfori == l, ... ,n such that
(fc oe ge)(~1,"·,i\n, .t) = ge (~l""'i\n,fc(tJ., ... ,i\n, .t»

Using the correspondences between fcand f)<1' and the fact that GLB(Di, Ei)Ck DiC(1 EiC·we
can prove by indu~tion on n: .
if o:DI, ... ,Dn,SI4S2' x 'El,' .. ,En,Sr4s3' ~ 'GI,... ,Gn,SI~S3' is a declaration in L
then feocgc E 'Gl>...,Gn,SI~S3'c-

It is easy to verify that these definitions satisfy the axioms 3.10,5 and the homomorphism conditions
(in both directions): 8('D05\f(f~) = 'DOM(fc» and if a E 'D05\f(f)<1) then E(f)<1(a» = fc<3(a»

e)	 Since E is a bijection between the sets S)<1 and SCwhich are associated with the sorts S we can
now assign to each other function symbol k and its corresponding function k;;l a unique function
ke = E(k~ such that the homomorphism conditions hold in both directions.

f)	 Similarly we assign to each predicate symbol P and its corresponding relation P;;I a relation
Pc = 2(P~ such that (ab ... ,an) E P;;I if and only if (S(al),'" ,8(an» E PC'

Hence, we have constructed the desired "functional" L-structure for the context specification which is
isomorphic to 5t The isomorphism ensures that the functional L-structure is also a model for the
specification. •

16

b) To every ffle ‘Sl‚...‚Sn%S’‚q we assign the function E(f‚q) = fc: Slcx...xS„C——> Scwhich
satisfies the following condition: Vane Sm fdx) = E(i2(ffl, X)) (ig is the interpretation of i in
2, SM = Slc)— Using the axioms 3.10.5a it can be shown with induction on n that fc is
unique.
Let ‘Sl,.. ”Sn—(1)8". =def {E.(fz) | fx & ‘31,. ..,Sn—%S’fl}. This guarantees again that the subset
relationships in 2 are properly transferred to C. However, we have to show that the definition i s
consistent with the subsort relationships of the functional sorts, i .e . whenever
fx e ‘81,. . .,Sn—q’fl ; ‘D1,...,Dnl)D’fi then EG,!) is a total function on cx. ..><DnC—) Dc-

Therefore let f„ e ‘Sl‚...,Sn3>S’fl ; ‘D1‚...‚Dn-1>D’„ and fC=def 3(a).
We perform induction on n.
Base Case: n = 1, i.e. fze ‘Sl—q>S’fi.
Let {6

1316- = DM. According to def. 3.10,2, D1 E}; SI, S E}; D and we have
DM; Sm.Thus, xe SM: 310 and therefore fda’) = :(lflgffl, x)) & Sa = SC; Dc-

Hence, fce BIC—> Dc-

mm: n > 1 . The induction hypothesis is
Vgfl & ‘Sz‚.. .,SHÄS’H: E(gg) is a total function on cx. ..x DM.—) DC
Let again {6 cg 315%“) = EG,/«46%, x)) e ‘Sz‚...,Sn—3>S’C
Since MG}, K)) & ‘Sz,...,Sn—3>S’C, according to the induction hypothesis
fdx) = E(i„(f‚q, x)) : DZCx...x Due—> DCand therefore fce cx D2Cx.. .x Due—> Dc-

From a) and b) we obtain that E i s a bijection between the sets S ‚4 and Stich are associated with
the sorts S.

c) 302) =def i c where i c is the application function, i.e. %(fc' ;) = fd“) holds for all fc and
corresponding arguments a It is easy to verify that this definition matches the sort declarations
for & (def. 3.103).

(1) E(°fl) =dcf °C where oCis the composition function on the interpretations of the functional sorts.
It is defined as follows:
Vfce ‘D1 , . . . ,Dn ,SI—1_)SZ‚C gce ‘E l , . . . ,En ,Sz—JÖS3’C:

fC°C gce Glcx. . .x GncX Slc—>S3tere Gic= Dich Bic fori=1,. . . ,n such that
(fC°CgC)(7Cl’°"’7(nv () : gC (Ils--~:7G1:fc(’(1v-°97Cns 70)

Using the correspondences between fc and f„, and the fact that GLB(Di, E95; Dich Bic-W6

can prove by induction on n: .
if o:D1 , . . . ,Dn ,S l -1—)Sz’ x ‘E1,...,En,Sz-—J-)S3’ -—> ‘Gl,...,Gn‚Sl-l£>S3’ is adeclaration in 2
then fCOC gc € ‘G1 , . . . ,Gn , s 13983’C.

It is easy to verify that these definitions satisfy the axioms 3.10,5 and the homomorphism conditions
(in both directions): E(DO£M(f„)) = 909149) and if a e Dom/{62) then E.(f201» = fC(E(a))

e) Since E. is a bijection between the sets S 2 and Scwhich are associated with the sorts S we can
now assign to each other function symbol k and its corresponding function k„ a unique function
kc = 5(q) such that the homomorphism conditions hold in both directions.

f) Similarly we assign to each predicate symbol P and its corresponding relation P1a relation
Pc = E(P‚q) such that (a1,...,an) & Pflif and only if (3(a1)‚...,E(an)) 6 PC-

Hence, we have constructed the desired “functional” Z-structure for the context specification which is
isomorphic to :4. The isomorphism ensures that the functional 2-structure is also a model for the
specification. ’

4

17

In the sequel we shall use only the functional interpretation of functional specifications. We can
exploit this interpretation also to simplify the syntax of terms by writing x(y) instead of J,(x, y).

MODAL LOGIC

Since there is a large variety of modal logics, in syntax as well as in semantics, it is necessary to
firmly establish the particular kind of logic we are going to use for demonstrating the one step trans
lation techniques. Let us call this logic M-Logic for the moment (M for modal). M-Logic is an
extension of OSPL and has the two modal operators 0 and 0-, however parametrized with arbitrary
terms. For example 'Vx:employee Ox 0employer(x) too-Iazy(x)' is a well formed sentence in M-Logic.
In an epistemic interpretation this sentence might express: every employee believes that his employer
believes that he, the employee, is too lazy. The semantics is an extension of Kripke's possible worlds
semantics [Kripke 59,63] where the accessibility relation is parametrized with domain elements.

Each world in a possible worlds structure is essentially a predicate logic interpretation, and in the
most general version of M-Logic the domains of these interpretations may be different from world to
world (varying domain logic). That means a term like 'king-of(france)' may denote an object in one
world and not denote any object in another world. M-Logic provides three different possibilities to
state that a particular object exists in a particular world. The first possibility is to make a statement
about this object. For example the formula 'rich(king-of(france»' not only states that the king of
france is rich, but also that the king of france exists in the actual world, which is in this case the initial
world. Consequently the corresponding negated formula 'orich(king-of(france»' holds if either the
king of france is not rich or if it does not exist at all. The second possibility to ensure the existence of
an object is to use a special predicate 'EXISTS'. For example, 'EXISTS(king-of(france»' simply states
that the king of france exists in the initial world. As another example, 'OJohn EXISTS(king
of(france»' where 'OJohn' is interpreted as the 'belief' operator, means that the king of france exists
in all worlds, which John considers in his mind. The third possibility is provided by another built in
predicate 'PERSIS1ENT'. This predicate may be used to ensure the existence of objects not only in one
world, but in all accessible worlds. 'PERSISTENT(John,p)' for example means that John exists in all
worlds p-accessible in finitely many steps from the current world.

If a term t denotes an object that exists in a particular world it is not necessary for 1's subterms to
exist in that world. An example where this makes sense is 'father-of(John)'. In a world before John's
birth, father-of(John) exists, although John himself does not exist. The other way round, in a world
where John's father has died, John exists and father-of(John) does not. Therefore we do not build in
any assumptions about the correlations of terms and subterms with respect to the EXISTS predicate.

It is common to distinguish modal logics according to the properties of the accessibility relation,
for example no special properties, seriality (there is an accessible world from each world) reflexivity,
symmetry etc. With parametrized operators and corresponding parametrized accessibility relations 'R.p
there is the freedom to fix particular properties for each parameter separately. For example we can
require oa to correspond to a reflexive accessibility relation, i.e. 1?a is reflexive in all considered
interpretations, while at the same time, say, Db corresponds to a transitive relation.

In the classical versions of modal logics, the desired properties of the accessibility relation are
either included directly in the definition of the possible worlds semantics or they are implicitly speci
fied by giving a characteristic axiom schema in an Hilbert calculus. For example the schema 'oP =>
P' axiomatizes reflexive accessibility relations. Since the translation methods we are going to present
make the accessibility relation an explicit part of the syntax, the specification morphism can add
characteristic axioms - and not axiom schemas - describing its properties. This is controlled by certain
key words like 'SERIAL', 'REFLEXIVE' etc. which we include as built in predicates. For example
'REFLEXIVE(p)' as a formula in M-Logic means that the p-parametrized accessibility relation is reflex

17

In the sequel we shall use only the functional interpretation of functional specifications. We can
exploit this interpretation also to simplify the syntax of terms by writing x(y) instead of i(x, y).

4 MODAL LOGIC

Since there is a large variety of modal logics, in syntax as well as in semantics, it is necessary to
firmly establish the particular kind of logic we are going to use for demonstrating the one step trans-
lation techniques. Let us call this logic M-Logic for the moment (M for modal). M-Logic is an
extension of OSPL and has the two modal operators El and (>, however parametrized with arbitrary
terms. For example ‘semployee Elx Uemployerot) too—lazy(x)’ is a well formed sentence in M-Logic.
In an epistemic interpretation this sentence might express: every employee believes that his employer
believes that he, the employee, is too lazy. The semantics is an extension of Kripke’s possible worlds
semantics [Kripke 59,63] where the accessibility relation is parametrized with domain elements.

Each world in a possible worlds structure is essentially a predicate logic interpretation, and in the
most general version of M—Logic the domains of these interpretations may be different from world to
world (varying domain logic). That means a term like ‘king-of(france)’ may denote an object in one
world and not denote any object in another world. M-Logic provides three different possibilities to
state that a particular object exists in a particular world. The first possibility is to make a statement
about this object. For example the formula ‘rich(king-of(france))’ not only states that the king of
france is rich, but also that the king of france exists in the actual world, which is in this case the initial
world. Consequently the corresponding negated formula ‘-.rich(king—of(france))’ holds if either the
king of france i s not rich or if it does not exist at all. The second possibility to ensure the existence of
an object is to use a special predicate ‘EXISTS’. For example, ‘EXISTSOcing-of(france))’ simply states
that the king of france exists in the initial world. As another example, ‘EI John EXISTS(king-
of(france))’ where ‘DJohn’ is interpreted as the ‘belief’ operator, means that the king of france exists
in all worlds, which John considers in his mind. The third possibility is provided by another built in
predicate ‘PERSIS'IENT’. This predicate may be used to ensure the existence of objects not only in one
world, but in all accessible worlds. ‘PERSISTENT(John,p)’ for example means that John exists in all
worlds p-accessible in finitely many steps from the current world.

If a term t denotes an object that exists in a particular world it is not necessary for t’s subterms to
exist in that world. An example where this makes sense is ‘father-of(John)’. In a world before John’s
birth, father-of(John) exists, although John himself does not exist. The other way round, in a world
where John’s father has died, John exists and father-of(John) does not. Therefore we do not build in
any assumptions about the correlations of terms and subterms with respect to the EXISTS predicate.

It is common to distinguish modal logics according to the properties of the accessibility relation,
for example no special properties, seriality (there is an accessible world from each world) reflexivity,
symmetry etc. With parametrized operators and corresponding parametrized accessibility relations Rp
there is the freedom to fix particular properties for each parameter separately. For example we can
require na to correspond to a reflexive accessibility relation, i.e. :Ra i s reflexive in all considered
interpretations, while at the same time, say, Db corresponds to a transitive relation.

In the classical versions of modal logics, the desired properties of the accessibility relation are
either included directly in the definition of the possible worlds semantics or they are implicitly speci-
fied by giving a characteristic axiom schema in an Hilbert calculus. For example the schema ‘DP =>
P’ axiomatizes reflexive accessibility relations. Since the translation methods we are going to present
make the accessibility relation an explicit part of the syntax, the specification morphism can add
characteristic axioms - and not axiom schemas — describing its properties. This is controlled by certain
key words like ‘SERIAL’, ‘REFLEXIVE’ etc. which we include as built in predicates. For example
‘REFLEXIVE(p)’ as a formula in M—Logic means that the p—parametrized accessibility relation is reflex-

18

ive, i.e. every world which is accessed via p-parametrized transitions is p-accessible from itself. The
relational translation, for example, translates 'REFLEXIVE(p)' into ''Vu R*(p,O,u) ~ R(p,u,u)' where
odenotes the initial world and R* denotes the reflexive and transitive closure of R which in turn
stands for the accessibility relation. The meaning of this axiom is just what was said before: every
world u which is accessible via arbitrary p-parametrized transitions (R*(p,O,u)) is accessible from
itself (R(p,u,u)).

As soon as the description of the properties of the accessibility relation is part of the syntax, we
can go one step further and allow these characteristic literals to occur as subformulae of bigger fonnu
lae. For example 'DJohn REFLEXIVE(pope)' is a correct formula in M-Logic. In an epistemic interpre
tation where D is the 'knows' or 'believes' operator, the distinction between knowledge and belief
can be made by requiring the accessibility relation corresponding to the 'knows' operator to be
reflexive; what is true in the knower's potential worlds is true in the real world. The interpretation of
the above formula in this context is therefore: 'John believes (DJohn) that the pope is infallible
(REFLEXIVE(pope)). A possible worlds structure where this statement is true looks like:

l~

r:.:Je

pope

pope

pope

i.e. the part of the pope's accessibility relation which is accessible by Jolin-Iabelled transitions is
reflexive. In the relational translation, this formula is translated into ''Vw R(John,O,w) ~ Vu
R*(pope,w,u) ~ R(pope,u,u)' where R* corresponds to the reflexive and transitive closure ofR.

Definition 4.1 Syntax of M-Logic
The syntax of M-Logic is an extension of OSPL:
The signature Lt consists of the variable, function and predicate symbols, together with the various
sort declarations. Besides the equality symbol we include the following unary predicate symbols (of
sort D) with fixed meaning: EXISTS, SERIAL, REFLEXIVE, SYMMETRIC, TRANSITIVE, EUCLIDEAN5,
LINEAR, INCREASING-DOMAIN, and DECREASING-DOMAIN. The two place predicate symbol
'PERSISTENT' is of son DXD. We call these special predicate symbols, except the 'EXISTS' and
'PERSISTENT' symbols, the accessibility relation property predicates or ARP-predicates for
short. Furthermore we distinguish rigid and flexible function and predicate symbols.

Terms and formulae are built just as in OSPL, however with two additional operators D p and Op:
If F is a formula and p is a term then F' =DpF and F' = OpF are formulae. The free variables of F'
are the free variables of F together with the free variables of p. •

5 A relation 1{.is called euclidean iff whenever 1?{a, 5) and 1?{a, c) holds then 1?{6, c) and 1?{" 5).

18

ive, i.e. every world which is accessed via p—parametrized transitions is p—accessible from itself. The
relational translation, for example, translates ‘REFLEXIVE(p)’ into ‘Vu R*(p,0,u) : R(p,u‚u)’ where
0 denotes the initial world and R* denotes the reflexive and transitive closure of R which in turn
stands for the accessibility relation. The meaning of this axiom is just what was said before: every
world u which is accessible via arbitrary p—parametrized transitions (R*(p,0,u)) is accessible from
itself (R(p,u,u)).

As soon as the description of the properties of the accessibility relation is part of the syntax, we
can go one step further and allow these characteristic literals to occur as subformulae of bigger formu-
lae. For example ‘0 john REFLEXIVE(pope)’ i s a correct formula in M—Logic. In an epistemic interpre-
tation where |:| i s the ‘knows’ or ‘believes’ operator, the distinction between knowledge and belief
can be made by requiring the accessibility relation corresponding to the ‘knows’ operator to be
reflexive; what is true in the knower’s potential worlds is true in the real world. The interpretation of
the above formula in this context i s therefore: ‘John believes (EI John) that the pope is infallible
(REFLEXIVE(pope)). A possible worlds structure where this statement is true looks like:

POP“

i.e. the part of the pope’s accessibility relation which i s accessible by jean-labelled transitions is
reflexive. In the relational translation, this formula i s translated into ‘Vw R(John,0,w) => Vu
R*(pope,w‚u) => R(pope‚u‚u)’ where R* corresponds to the reflexive and transitive closure of R.

Definition 4 .1 Syntax of M-Logic
The syntax of M—Logic is an extension of OSPL:
The signature 2 consists of the variable, function and predicate symbols, together with the various
sort declarations. Besides the equality symbol we include the following unary predicate symbols (of
sort D) with fixed meaning: EXISTS, SERIAL, REFLEXIVE, SYMMETRIC, TRANSITIVE, EUCLIDEAN5,
LINEAR, INCREASING-DOMAIN, and DECREASING—DOMAIN. The two place predicate symbol
‘PERSISTENT’ is of sort DxD. We call these special predicate symbols, except the ‘EXISTS’ and
‘PERSISTENT’ symbols, the accessibility relation property predicates or ARP-predicates for
short. Furthermore we distinguish rigid and flexible function and predicate symbols.

Terms and formulae are built just as in OSPL, however with two additional operators up and %:
If F is a formula and p is a term then P = upF and F' = OPF are formulae. The free variables of F'
are the free variables of F together with the free variables of p. O

5 A relation xis called euclidean iff whenever Ma, 6) and R(a, c) holds then R(fi, :) and 9((c, 6).

19

Definition 4.2 Semantics of M-Logic
The triple semantics = (I,S,F) (def.2.1) defines a possible worlds semantics for M-Logic as follows:

•	 [maps a signature L to a 1:-interpretation,g = ('JIl!, 1(, P, w, '0 where

•	 'Wis a set of "worlds"

•	 ~is the accessibility relation. It is parametrized with domain elements, i.e. for a particular
domain element (parameter) the accessibility relation is a usual binary relation on worlds. For a
particular parameter p, ~ denotes the reflexive and transitive closure of 'R.p. The tuple ('JIl!, 1\) is
sometimes called a frame [Fitting 83].
For a world WE 'l1f. 'R..p(w) =def {w I :3wl ... un ~(w, WI) and ... and ~(wn>uJ)} U { w} .
'R..p(w) is the part of the possible worlds structure which is accessible from W via finitely many
p-Iabelled transitions.

•	 P maps worlds to L-structures (def. 3.6) over the same carrier set. The interpretation of sorts
and rigid symbols is the same in all worlds.

•	 The context w (the actual world) is a particular world in 'Wand

•	 'Vis a variable assignment, i.e. a mapping from variables to domain elements.

In the sequel ,g[w] is like,g except that the actual world is now wand ,g[x/.u is like,g except that 0/
maps the variable x to the value ~

•	 The homomorphism S(,g) interprets terms in the actual world w, more precisely in 1{w) which is a
standard predicate logic interpretation. We usually write ,get) instead of S(,g)(t) to denote t's value
in the particular interpretation ,g.

•	 The satisfiability relation FM is defined as follows: Let ,g = ('JIl!, 1(, P, w, '0 and 5I =1{w).

•	 ,g FM EXISTS(t) iff ~Ht) E EXISTS51.

•	 ,g FM PERSISTENT(t,p) iff ,get) E EXISTS~u) for all all uE ~(p)(w)

•	 The interpretation of the ARP-predicates is:

,g FM SERIAL(p) iff the ~(P)(w)-part of ~is serial,

similar for the predicates REFLEXIVE, SYMMETRIC, TRANSITIVE, EUCLIDEAN and LINEAR.

•	 ,g i=M INCREASING-DOMAIN(p) iff for all WI, U2 which are accessible from win ~(P):

~(p)(WI,W2)implies EXISTS~Wl) c EXISTS~U'2)

•	 ,g FM DECREASING-DOMAIN(p) iff for all WI, U2 which are accessible from win the ~(P):

~(P)(WI,W2) implies EXISTS~W1);;;2EXISTS1XUIl)'

•	 ,g FM P(tI, ... ,tn) iff ,g(ti) E EXISTS51 for i = l, ... ,n and C,g(tl), ... ,,g(tn»E P51.

•	 The interpretation of the logical connectives -', /\, V,~, and ~ is as usual.

•	 ,g FM 'v'x:S F iff for all-t.E S51 rl EXISTS51 ,g[x/.u FM F.

•	 ,g FM :3x:S F iff there is an -t.E S51rlEXISTS51 with ,g[x/.u FM F.

• ,g FM Dp F iff for all worlds W, ~(p)(w, w) implies ,g[w] I=M F.

• ,g FM Op F iff there is a world w with ~(p)(w, uJ) and ,g[w] I=M F. •

The encoding of varying domains is somewhat tricky as the interpretation of the quantifiers
shows. The domain D51 and the interpretation of the sort symbols is the same in all worlds, but the
EXISTS-predicate may be different in different worlds. The EXISTS-predicate is used to filter out in
each world those objects which are considered as existing. This idea solves a serious problem which
comes up in the alternative approach where the domain as well as the denotation of the sort symbols
varies from world to world. In this approach, function symbols need to be interpreted as partial

19

Definition 4.2 Semantics of M-Logic
The triple semantics = (LSF) (def.2.1)defines a possible worlds semantics for M-Logic as follows:
- I maps a signature >: to a Z—interpretation S = (W, ER, 1’, w, ‘V) where

.

.

’Wis a set of “worlds”
Kis the accessibility relation. It is parametrized with domain elements, i.e. for a particular
domain element (parameter) the accessibility relation i s a usual binary relation on worlds. For a
particular parameter p, .‘R; denotes the reflexive and transitive closure of {RP The tuple (W, R) is
sometimes called a frame [Fitting 83] .
For aworld we ‘WE RIM!) =d {11! I Emma)“ Mum) and and :Rp(w„,zd)} U{w}.
£1,050) i s the part of the possible worlds structure which is accessible from w via finitely many
p—labelled transitions.
1’ maps worlds to Z—structures (def. 3.6) over the same carrier set. The interpretation of sorts
and rigid symbols is the same in all worlds.
The context w (the actual world) is a particular world in ‘W and
‘V is a variable assignment, i.e. a mapping from variables to domain elements.

In the sequel S[w] is like 3 except that the actual world is now w and Shi/x] i s like 8 except that ‘V
maps the variable x to the value x.
° The homomorphism 8(8) interprets terms in the actual world w, more precisely in f(w) which is a

standard predicate logic interpretation. We usually write 8(t) instead of @(3)(t) to denote t’s value
in the particular interpretation 3 .

. The satisfiability relation I=M is defined as follows: Let 3 = ("W, K, T, w, ’V) and fl : 17(w).
S PM EXISTS(t) iff am e EXISTS‚q.
8 I=M PERSISTENT(t,p) iff sa) e Exxsrsgw for all all ue 9:30,)(241)
The interpretation of the ARP-predicates is:
S l=M SERIAL(p) iff the 1R3(p)(w)-part of als serial,
similar for the predicates REFLEXIVE, SYMMETRIC, TRANSITIVE, EUCLIDEAN and LINEAR.
3 t=M INCREASING~DOMAlN(p) iff for all wl, w; which are accessible from win @@):

rRs(p)(wl,wz) implies EXISTSqwl) ; EXISTSqwz)

3 I=M DECREASING-DOMAIN(p) iff for all wl, "2 which are accessible from win the @@):
K3(p)(wl,wz) implies EXISTSel) ; EXISTSTWI).

S 1=M P(t1,...‚tn) iff 801) e EXISTSg for i = 1,...,n and (8(t1),...,3(tn)) 6 P3.
The interpretation of the logical connectives —1, A, v , ==>, and ® is as usual.
8 PM s s F iff for all :ce S‚q n EXISTSÄ 3[x/x] I=M F.
S I=M s s F iff there is an ace SnXISTS ‚q with S[x/x] I=M F.
3 I=M up F iff for all worlds ul, 1R3(p)(u/, ai) implies Süd] I=M F.
8 r=M % F iff there is a world a) with figmxw, w) and Süd] r—M F. O

The encoding of varying domains i s somewhat tricky as the interpretation of the quantifiers
shows. The domain D ‚q and the interpretation of the sort symbols is the same in all worlds, but the
EXISTS-predicate may be different in different worlds. The EXISTS-predicate is used to filter out in
each world those objects which are considered as existing. This idea solves a serious problem which
comes up in the alternative approach where the domain as well as the denotation of the sort symbols
varies from world to world. In this approach, function symbols need to be interpreted as partial

5

20

functions. But how can we interpret the term 'father-of(John)' in a world where John does not exist,
i.e. 'John's interpretation is undefined, but his father exists and therefore 'father-of(John)' should
not be undefined? In the approach with the EXISTS-predicate this is trivial: 'John' and 'father
of(John) , denote domain elements in the usual way, but EXISTS(John) is false and EXISTS(father
of(John») , is true in the given world.

In the sequel we sometimes omit the parameters of the modal operators and the corresponding
accessibility relations. In this case we go back to the traditional versions of modal logic.

Remarks 4.3: According to def. 2.2, a closed formula F is satisfiable iff it is satisfiable by some
interpretation, i.e. by some frame ('J1J, 1{) and some initial world WE 'W. It is well known that in
this case only the part of the possible worlds structure is necessary which is accessible from win
finitely many steps [Chellas 80]. Therefore we usually assume the frame to consist only of the
restricted possible worlds structure with was origin.

RELATIONAL TRANSLATION

The first translation method we present is a well known method for mapping modal logic formulae
into predicate logic by introducing explicitly a special predicate symbol R which represents the acces
sibility relation [Moore 80]. A formula 'oP' for example is translated into 'Vw R(O,w) => P'(w)'
where P' compared to P has an additional "world context argument". For the more interesting case
where the modal operators are parametrized with terms, a ternary predicate symbol 'R(p,u,v)' is
needed which represents p-parametrized transitions from u to v. Correspondingly a formula 'DpP' is
translated into 'Vw R(p,O,w)=> P'(w)'.

In the sequel the word "domain" is used to distinguish between domain elements coming from the
domain elements in M-Logic and the additional "world" elements which are introduced by the
translation into predicate logic. For example domain sorts are the sort symbols used in the original
modal logic specification whereas "world sorts" are introduced by the translation and denote worlds,
world context access functions etc. The same with "domain variables" and "world variables".

If 1.1 is M-Logic and 1.2 is OSPL, we can now define a "relational" logic morphism (def. 2.3) '¥1(
which maps M-Logic-specifications to OSPL-specifications such that satisfiability and unsatisfiability
is preserved. We follow the rules given in 2.1.

Definition 5.1 The Signature Morphism '¥L

The signature morphism '¥Lmaps an M-Logic signature with top sort D to an OSPL-signature (def.

3.1) as follows:

•	 The sorts and the sort hierarchy remains unchanged. One distinguished sort W for worlds is
introduced. W is isolated from the translated sort hierarchy.

•	 A special constant symbol O:W is introduced. (It denotes the initial world.)

•	 Each flexible n-place domain function or predicate symbol and the EXISTS predicate is mapped to
an l+n-place function or predicate symbol. (The additional argument takes the world context
parameter.)
In the sequel, for a flexible M-Logic symbol f, f =def '¥L(t) denotes the corresponding translated
symbol.

20

functions. But how can we interpret the term ‘father-of(John)’ in a world where John does not exist,
i .e . ‘John’s interpretation i s undefined, but his father exists and therefore ‘father-of(]ohn)’ should
not be undefined? In the approach with the EXISTS-predicate this is trivial: ‘John’ and ‘father—
of(John)’ denote domain elements in the usual way, but EXISTS(John) is false and EXISTS(father—
of(John))’ is true in the given world.

In the sequel we sometimes omit the parameters of the modal operators and the corresponding
accessibility relations. In this case we go back to the traditional versions of modal logic.

Remarks 4.3: According to def. 2 .2 , a closed formula F i s satisfiable iff it is satisfiable by some
interpretation, i.e. by some frame (W, R) and some initial world we 14}. I t is well known that in
this case only the part of the possible worlds structure is necessary which i s accessible from win
finitely many steps [Chellas 80]. Therefore we usually assume the frame to consist only of the
restricted possible worlds structure with was origin.

5 RELATIONAL TRANSLATION

The first translation method we present is a well known method for mapping modal logic formulae
into predicate logic by introducing explicitly a special predicate symbol R which represents the acces-
sibility relation [Moore 80]. A formula ‘UP’ for example is translated into ‘Vw R(0,w) => P'(w)’
where P' compared to P has an additional “world context argument”. For the more interesting case
where the modal operators are parametrized with terms, a ternary predicate symbol ‘R(p,u,v)’ i s
needed which represents p—paramettized transitions from uto r). Correspondingly a formula ‘UPP’ is
translated into ‘Vw R(p,0,w) '=> P'(w)’.

In the sequel the word “domain” is used to distinguish between domain elements coming from the
domain elements in M-Logic and the additional “world” elements which are introduced by the
translation into predicate logic. For example domain sorts are the sort symbols used in the original
modal logic specification whereas “world sorts” are introduced by the translation and denote worlds,
world context access functions etc. The same with “domain variables” and “world variables”.

If L1 is M-Logic and Lg is OSPL, we can now define a “relational” logic morphism (def. 2 .3) ‘I’K
which maps M—Logic—specifications to OSPL-specifications such that satisfiability and unsatisfiability
i s preserved. We follow the rules given in 2.1.

Definition 5.1 The Signature Morphism ‘Pz
The signature morphism ‘1’); maps an M-Logic signature with top sort D to an OSPL-signature (def.
3.1) as follows:
° The sorts and the sort hierarchy remains unchanged. One distinguished sort W for worlds is

introduced. W is isolated from the translated sort hierarchy.
° A special constant symbol O:W is introduced. (It denotes the initial world.)
' Each flexible n-place domain function or predicate symbol and the EXISTS predicate is mapped to

an 1+n-place function or predicate symbol. (The additional argument takes the world context
parameter.)
In the sequel, for a flexible M-Logic symbol f, f =def ‘Pz(f) denotes the corresponding translated
symbol.

21

•	 In the term declarations tS, the term t is modified by the following recursive function 1tL which
declares W to be the sort of the additional argument for the translated flexible function symbols

•	 1tI:(x) = x where x is a variable. (.:.)
•	 1tI:(f(tl,... ,tn)) =few, 1tI:(tl),.' .,1tL(tl)) where fis flexible and

w is a new variable of sort W.

•	 1tI:(f(tl,... ,tn)) = f(1tL(tl), ... ,1tL(tl)) where fis rigid.

•	 The predicate declarations are modified according to the above rules.

•	 Furthermore 'PI: adds two distinguished ternary relation symbols R:DxWxW and R*:DxWxW
which represent the parametrized accessibility relation and its reflexive and transitive closure (the
first argument is the parameter). •

Definition 5.2	 The Formula Morphism 'Pp
The formula morphism 'Pp is defined inductively over the structure of terms:
For a term or formula F, we use Fw as an abbreviation for 'Pp(F,w), i.e. Fw =def 'Pp(F,w).

•	 Xw = x if x is a variable.

•	 f(tl, ... ,tn)w = few, tlw, ... , tnw) iffis an n-place flexible function symbol.

•	 EXISTS(t)w = EXISTS'(w, tw).

•	 PERSISTENT(t,p)w ="du:W R*(pw,w,u) ::::::) EXISTS'(u,tw).

•	 SERIAL(p)w =EXISTS'(w,pw) /\ "du:W R*(pw,w,u) ::::::) 3v:W R(pw,u,v)

•	 REFLEXlVE(p)w = EXISTS'(w,pw) /\ ("du:W R*(pw,w,u) ::::::) R(pw,U,u))

•	 TRANSITIVE(p)w = EXISTS'(w,pw) /\
("du:W R*(pw,w,u) ::::::) ("dVI,V2:W R(Pw,U,Vl) /\ R(Pw,VI,V2) ::::::) R(Pw,U,V2)))

•	 SYMMETRIC(p)w =EXISTS'(w,pw) /\ ("du:W R*(pw,W,u) ::::::) "dv:W R(pw,u,v) ::::::) R(pw,v,u))

•	 EUCLIDEAN(p)w =EXISTS'(w,pw) /\
("du:W R*(pw,w,u) ::::::) ("dVI,V2:W R(Pw,U,Vl) /\ R(Pw,U,V2) ::::::) R(Pw,VI,V2)))

•	 LINEAR(p)w = EXISTS'(w,pw) /\
("du,v:W R*(pw,w,u) /\ R*(pw,w,v) ::::::) R*(pw,u,v) v R*(pw,v,u))

•	 INCREASING-DOMAIN(p)w = EXISTS'(w,pw) /\ ('v'u:W R*(pw,W,u) ::::::)
("dv:W R(pw,u,v) ::::::) "dx:D (EXISTS'(u,x) ::::::) EXISTS'(v,x))))

•	 DECREASING-DOMAIN(p)w = EXISTS'(w,pw) /\ (Vu:W R*(pw,w,u) ::::::)
("dv:W R(pw,U,v) ::::::) "dx:D (EXISTS'(u,x) ~ EXISTS'(v,x))))

•	 P(tI, ... ,tn)w = EXISTS'(W,tlw) /\ ... /\ EXISTS'(w,tnw) /\ P'(W,tlw, ... ,tnw)
if P is a flexible predicate symbol.

•	 ("dx F)w = "dx EXISTS'(w,x) ::::::) Fw.

•	 (3x F)w = 3x EXISTS'(w,x) /\ Fw.

•	 (op F)w = EXISTS'(w,pw) ::::::) ("du:W R(pw,w,u)::::::) Fu).

•	 (Op F)w = EXISTS'(w,pw) /\ 3u:W R(pw,w,u) /\ Fu.

• For all other cases 'Pp is the usual homomorphic extension.

The toplevel call of the translation algorithm is: 'Pp(F,O). •

21

° In the term declarations t:S, the term t is modified by the following recursive function n}; which
declares W to be the sort of the additional argument for the translated flexible function symbols

° 7:2(x) = x where x i s a variable. (°?)
° Jt);(f(t1,...,tn)) = f(w, 7t2(t1)‚. . .,1t2(t1)) where f is flexible and

w is a new variable of sort W.
° 1t;(f(t1,...,tn)) = f(1tz(t1),. . „„Zum where f is rigid.

° The predicate declarations are modified according to the above rules.
° Furthermore ‘1’: adds two distinguished ternary relation symbols RsWxW and R*:DXWXW

which represent the parametrized accessibility relation and its reflexive and transitive closure (the
first argument i s the parameter). .

Definition 5.2 The Formula Morphism ‘I’F
The formula morphism ‘I’F is defined inductively over the structure of terms:
For a term or formula F, we use FW as an abbreviation for ‘PF(F,W), i.e. FW =def ‘I’F(F,w).
° xw = x if x is a variable.
° f(t1,...,tn)W = f‘(w, uw , . . . , tnw) if f is an n-place flexible function symbol.
. EXISTS(t)w = EXISTS'(W, tw).
° PERSISTENT(t,p)w = vuzw R*(pw,w‚u) => EXISTS'(u,tw).
° SERIAL(p)w = EXISTS'(w,pw) A Vuzw R*(pw,w,u) => avzw R(pw,u,v)
° REFLEXIVE(p)w = EXISTS'(w,pw) A (Vq R*(pw‚w,u) = R(pw,u,u))
° 'I'RANSITIVE(P)W = EXISTS'(w,pw) A

(Vuzw R*(pw,w,u) = (Vv1,v2:W R(pw,u,v1) A R(pw,V1,V2) = R(pw,u,v2)))
° SYMMETRIC(p)w = EXISTS'(w,pw) A (Vu:W R*(pw,w,u) = Vv:W R(pw,u‚v) = R(pw‚v,u))
° EUCLIDEAN(p)W = EXISTS'(W,pw) A

(Vuzw R*(pw‚w,u) = (VV1,V2:W R(Pw‚u‚V1) A R(Pw‚11‚V2) => R(Pw‚V1‚V2)))

° LINEAR(P)w = EXISTS'(w,pw) A
(Vu,v:W R*(pw,w‚u) A R*(pw,w‚v) = R*(pw,u‚v) v R*(pw‚v,u))

° INCREASlNG-DOMAIN(P)w = EXISTS'(w,pw) A (Vu2W R*(pw,w,u) =>
(sW R(pw,u,v) = sD (EXISTS'(u,x) = EXISTS'(V,X))))

° DECREASING—DOMAIN(p)w = EXISTS'(w,pw) A (Vuzw R*(pw,w,u) =>
(sw R(pw,u,v) = sD (EXISTS‘(u,x) <= EXISTS'(v,x))))

° P(t1‚...,tn)w = EXISTS'(w,t1w) A...A EXISTS'(w,tnw) A P'(w‚t1w,...,t„w)
if P is a flexible predicate symbol.

° (Vx F)W = Vx EXISTS'(w,x) = FW.
° (3x F)w = 3x EXISTS'(w,x) A FW.
° (up F)w = EXISTS'(w‚pw) => (Vu:W R(pw,w,u) => Fu).
° (0p F)W = EXISTS'(w,pw) A 3u:W R(pw,w,u) A Fu.
° For all other cases ‘PF is the usual homomorphic extension.
The toplevel call of the translation algorithm is: ‘Pp(F,0). .

22

Example: 'PF(V'X Cf(x) P(x) ,0)
= (V'x Cf(x) P(x))o
= V'x EXISTS'(O,x) ::) (Cf(x) P(x»)o
= V'x EXISTS'(O,x) => (EXISTS'(O,f(x)O) => (Vu:W R(f(x)O,O,u) => (P(x»u»
= V'x EXISTS'(O,x) => (EXISTS'(O,f(O,x» => (Vu:W R(f(O,x),O,u) => P(u,x») •

Definition 5.3 The Specification Morphism \}' S
\}'L and 'Pp specify how to translate symbols and formulae. In addition the specification morphism
\}'S has to add the characteristic formulae to the translated specifications which axiomatize the
reflexive and transitive closure of ~

o V'p:D,u:W R*(p,O,u) (see the remark after the defmition of M-Logic's semantics)

@ V'p:D,u:W R*(p,u,u)

e V'p:D,u,v,w:W R(p,u,v) /\ R*(p,v,w) => R*(p,U,w) •

The axiom 0 restricts the possible worlds structure to the initial world's connected component (see
remark 4.3). It is not necessary in principle, but it can be used to simplify translated formulae
somewhat.

It is easy to verify that 'Ps is really a specification morphism, i.e. it translates well formed modal
logic specifications into well formed predicate logic specifications. Since flexible symbols get a new
argument, all term declarations have to be updated. This is done with rule (+:+) of def. 5.1.

The so defined specification morphism from modal logic to predicate logic permits the use of a
standard predicate logic resolution calculus for proving modal logic theorems. To see how this
works, let us try to prove the Barcan formula 'V'xcP(x) => cV'xP(x)' which holds in the decreasing
domain case. Since the operators are not indexed, we drop the first argument of the R-predicate. The
translated version of the negated formula 'V'xoP(x) /\ 03x-,P(x)' is therefore:

Vx EXISTS'(O,x) => Vu (R(O,u) => (EXISTS'(u,x) /\ P'(u,x»/\
3u R(O,u) /\ 3x EXISTS'(u,x) /\ -,(EXISTS'(u,x) /\ P'(u,x»

The clause version of the formula is:

Cl: -,EXISTS'(O,x) v -,R(O,u) v EXISTS'(u,x)
C2: -,EXISTS'(O,x) v -,R(O,u) v P'(u,x)
C3: R(O,a)
C4: EXISTS'(a,b)
CS: -,EXISTS'(a,b) v -,P'(a,b)

The translated clause version of the decreasing domain axiom DECREASING-DOMAINO is:

CO': -.R*(O,u) v -,R(u,v) v -JEXISTS(v,X) v EXISTS(u,x)

which simplifies with 0 of def.5.3 to

CO: -,R(u,v) v -,EXISTS'(v,x) v EXISTS'(u,x)

A resolution refutation proceeds as follows:

C5,I&CI,3 ~ RI: -,EXISTS'(O,b) v -,R(O,a) v -,P'(a,b)
RI,3& C2,3 ~ R2: -,EXISTS'(O,b) v -,R(O,a)
C3,&R2;2 ~ R3: -,EXISTS'(O,b)
C3& CO,1 ~ R4: -,EXISTS'(a,x) v EXISTS'(O,x)
R3& R4,2
R5&C4

~ R5: -'£XISTS'(a,b)
~ R6: empty clause. •

22

Example: ‘PF(Vx Uf(x) P(x) ,0)
(VX Df(x) P(X))o

Vx EXISTS'(0,x) => (mm;) P(x))o
Vx EXISTS‘(0,x) => (EXISTS'(0‚f(x)o) : (Vu:W R(f(x)0,0,u) => (P(x))u))
Vx EXISTS'(0,x) => (EXISTS'(0,f(0,x)) => (Vu2W R(f(0,x)‚0‚u) => P(u,x))) 0

Definition 5 .3 The Specification Morphism T5
‘1’); and ‘I’F specify how to translate symbols and formulae. In addition the specification morphism
‘Ps has to add the characteristic formulae to the translated specifications which axiomatize the
reflexive and transitive closure of K;

0 Vp:D,u:W R*(p,0,u) (see the remark after the definition of M-Logic’s semantics)
@ Vp:D‚u:W R*(p,u ,u)
€) Vp:D,u,v,w:W R(p,u,v) A R*(p,v,w) => R*(p ,u ,w) O

The axiom 0 restricts the possible worlds structure to the initial world’s connected component (see
remark 4.3). It is not necessary in principle, but it can be used to simplify translated formulae
somewhat. ‘

It is easy to verify that T5 i s really a specification morphism, i.e. it translates well formed modal
logic specifications into well formed predicate logic Specifications. Since flexible symbols get a new
argument, all term declarations have to be updated. This is done with rule (°?) of def. 5.1.

The so defined specification morphism from modal logic to predicate logic permits the use of a
standard predicate logic resolution calculus for proving modal logic theorems. To see how this
works, let us try to prove the Barcan formula ‘qP(x) => qP(x)’ which holds in the decreasing
domain case. Since the operators are not indexed, we drop the first argument of the R-predicate. The
translated version of the negated formula ‘VxElP(x) A 03x—.P(x)’ is therefore:

Vx EXISTS'(0,x) => Vu (R(O,u) => (EXISTS'(u,x) A P'(u,x))A
Eu R(0,u) A 3x EXISTS‘(u,x) A —u(EXISTS'(u,x) A P'(u,x))

The clause version of the formula is:

C1: —1EXISTS'(O,X) v —-.R(0,u) v EXISTS'(u‚x)
C2: -:EXISTS'(0,x) v —1R(0,u) v P'(u,x)
C3: R(0,a)
C4: EXISTS'(a,b)
CS: -—1EXISTS'(a,b) v —nP'(a,b)

The translated clause version of the decreasing domain axiom DECREASING—DOMAINO is:

CO': —1R*(0,u) v -—iR(u,v) v —\EXISTS(v‚x) v EXISTS(u,x)

which simplifies with 0 of def.5.3 to
CO: ——.R(u,v) v fiEXISTS‘(v,x) v EXISTS'(u,x)

A resolution refutation proceeds as follows:
C5,1&C1,3 _) R1: —1EXISTS'(0,b) v —.R(0‚a) v —.P'(a,b)
R1,3& C2,3 —> R2: -iEXISTS'(0,b) v —1R(O‚a)
C3,&R2;2 ——> R3: -—1EXISTS'(0,b)
C3& C0,1 —> R4: —uEXISTS'(a,x) v EXISTS‘(0,x)
R3& R4,2 —> R5: —.EXISTS'(a,b)
R5&C4 ——) R6: empty clause. ‘

23

The relational translation method is very flexible because many kinds of accessibility relations can
easily be handled. The introduction of the R-literals and the EXISTS'-literals, on the other hand,
considerably blows up the number and the size of the translated clauses. Information about chains of
accessible worlds is scattered around the whole clause set. Moreover, for the standard resolution
strategies there is no difference between the normal predicates and the special predicates. Therefore
there is no simple and natural strategy which performs resolutions between R-literals and the EXISTS'
literals only when they are needed to enable a resolution with normal literals. In general, without such
a strategy, too many useless resolutions between these literals are possible.

In order to prove soundness and completeness of the relational translation, the first thing to do is
to define the interpretation morphism 'P~ for translating modal logic models into predicate logic
models and vice versa. The proof is listed in full detail because it is prototypic for all the soundness
and completeness proofs for logic translators.

Definition 5.4 The Interpretation Morphism '¥~

Let,gM = ('11J, ~ P, w, '0 be an M-Logic interpretation. The interpretation morphism '¥~ constructs a

predicate logic interpretation ,gp = (:Jvf, '0 as follows:

•	 The carrier setof M and the interpretation of the domain sorts is the same as in ~ 'M1 or in all other
worlds respectively. The interpretation of the new sort is WM= 'tv.

•	 The interpretation of rigid symbols is the same as in ,gM. The special constant symbol 0 is mapped
to w.

•	 If k is a flexible n-place M-Logic function symbol and k' = 'PE(k) is the corresponding OSPL
version, then k':MCu,~,... ,;m» =defkp(u)CD, ... ,;m) for all uE WMand ~ E DMwhere kp(u) is
defined.

•	 If P is a flexible n-place M-Logic predicate symbol and P' = '¥E(P) is the corresponding OSPL
version, then (u,~, ... ,;m» E PM iff (D, ... ,tn) E p~u).

•	 The interpretation ofthe R-predicate is:
R:u(p,u,v) iff ~(u,v). Rtkis the reflexive and transitive closure OfR5\(.

Now let ,gp = (:M, '0 be a predicate logic interpretation for a translated specification. The inverse
interpretation morphism 'liS constructs an M-Logic interpretation,gM = ('11J, ~ P, w, '0 as follows:

•	 'W= WM, w= OM.

•	 P maps worlds to ~-structures which are like !Jvfexcept that the interpretation of flexible symbols
in each world u is: k~u)(~, ... ,tn) =def kM(u,~, ... ,tn» and the interpretation of flexible predicate
symbols in each world uis: (;U, ... ,tn) E p~u) iff (u, ;U, ... ,tn» E PM.

•	 ~(u,v) iffR9.f(p,u,v).

•	 The interpretation of the ARP-predicates is: SERIAL1(w)(p) iff 'l(p(w) is serial.
The other ARP-predicates are interpreted correspondingly. •

Theorem 5.5 Soundness of the Translation
If the M-Logic interpretation ,gM satisfies the M-Logic specification S = (~,G) then the translated
interpretation 'P~(,gM) satisfies the translated specification '¥s(S).

Proof: Let,gM = ('W,9\,P,w,'V,l and 'P~(,gM) = ,gp = (M,'V,l. First of all we have to show that ,gp is
really an OSPL-interpretation, i.e. :Mis a ~-structure. The main thing to check is that the sort hierar
chy is reflected by corresponding set inclusion relations and that the functions match the correspond
ing sort declarations. Both properties follow immediately from the facts that,gM is an M-Logic inter

23

The relational translation method i s very flexible because many kinds of accessibility relations can
easily be handled. The introduction of the R—literals and the EXISTS'-1iterals, on the other hand,
considerably blows up the number and the size of the translated clauses. Information about chains of
accessible worlds is scattered around the whole clause set. Moreover, for the standard resolution
strategies there is no difference between the normal predicates and the special predicates. Therefore
there is no simple and natural strategy which performs resolutions between R-literals and the EXISTS'—
literals only when they are needed to enable a resolution with normal literals. In general, without such
a strategy, too many useless resolutions between these literals are possible.

In order to prove soundness and completeness of the relational translation, the first thing to do is
to define the interpretation morphism ‘Ps for translating modal logic models into predicate logic
models and vice versa. The proof is listed in full detail because it is prototypic for all the soundness
and completeness proofs for logic translators.

Definition 5.4 The Interpretation Morphism ‘Ps
Let SM = (W, R, 11’, w, ‘V) be an M-Logic interpretation. The interpretation morphism ‘I’s constructs a
predicate logic interpretation Sp = (M, M as follows:
° The carrier set' of M and the interpretation of the domain sorts is the same as in '.P(‘W) or in all other

worlds respectively. The interpretation of the new sort i s WM: ‘W.
° The interpretation of rigid symbols is the same as in SM. The special constant symbol 0 is mapped

to w.
° If k is a flexible n-place M-Logic function symbol and k ' = ‘I’z(k) is the corresponding OSPL

version, then k'gu(u,7q,...,7(n)) =def kflu) (7C1 , - - - , 7 (n) for all ue WMand 76 6 DM where kg”) i s
defined.

- If P is a flexible n-place M-Logic predicate symbol and P' = ‘1’);(P) i s the corresponding OSPL
version, then (u,x1‚...‚;m)) e Pdf iff(;r1,...‚xn) 6 139(11)-

° The interpretation of the R-predicate is:
Rgt4(p,u,v) iff Rp(u,v). R his the reflexive and transitive closure of RM.

Now let Sp = (M 70 be a predicate logic interpretation for a translated specification. The inverse
interpretation morphism ‘Pg constructs an M-Logic interpretation SM = (“W, 1K, {P, w, fl!) as follows:
° 'W= WM, w = OM.
° i’maps worlds to E—structures which are like Mexcept that the interpretation of flexible symbols

in each world u is: kr_p(„)(x1,...,xn) =def kßKufiav . .,:(n)) and the interpretation of flexible predicate
symbols in each world u i s : (Um-‚XM e Pg”) iff (u, 2Q,...,xn)) e Pdf.

' .’Rp(u‚v) i ffRM(P‚u‚v)-

° The interpretation of the ARP—predicates is: SERIALfiwflp) iff My!) is serial.
The other ARP-predicates are interpreted correspondingly. 0

Theorem 5.5 Soundness of the Translation
If the M-Logic interpretation SM satisfies the M-Logic specification S = (E,G) then the translated
interpretation ‘I’s (SM) satisfies the translated specification ‘I’s (S).

Proof: LetSM =(‘W,17(,:P,w,'m and T3 (SM) = Sp = (EM-V). First of all we have to show that Sp i s
really an OSPL-interpretation, i.e. M i s a Z-structure. The main thing to check i s that the sort hierar—
chy is reflected by corresponding set inclusion relations and that the functions match the correspond—
ing sort declarations. Both properties follow immediately from the facts that SM is an M-Logic inter-

24

pretation, the interpretations of the domain sorts are not changed and the interpretation of the
functions obviously matches the changed term declarations (c.f. def.5.1, .:.).

By induction on the term structure we show for a term t the following property:
If ~p(w) =wthen ~M(t) =~p(tw). (1)

where twis again an abbreviation for '¥p(t,w). The base case, t is a domain variable, is trivial because
the assignment of domain variables does not differ between SM and Sp. Now let t = k(t}, ... ,to)· If k
is a rigid symbol, its interpretation is not changed and the induction hypothesis can be applied
immediately. Ifk is flexible we have:
3p(tw) = 3p(k'(w, tlw, ... , tow» (def.of'¥p)

= kM(SP(w),3M(tl), ... ,SM(to» (ind. hyp.)

=k~w)(SM(tl), ... ,SM(to» (Sp(w) = wanddef. of'¥~)

= SM(t) (M-Logic semantics)

By induction on the structure of the formula G we show the corresponding property:
If3p(w) = wand 3M I==MG then 3pl==pGw. @

Since the initial call to the translation is '¥p(G,O) and Sp(O) = 05\{= w, i.e. the assumption Spew) = w
holds, this completes the soundness proof.

The base case of the induction is the atomic level. We have to prove @ for atoms with the user
defined predicates and with the special ARP-predicates. Now let Spew) = wand 3M i==M G.

Case G = EXISTS(t)
3M I=M EXISTS(t) (assumption)

<> .3M(t) E EXISTS1'(w) (M-Logic semantics)
<> (w, 3M(t» E EXISTS'5\{ (def. of '¥~)

<> (.3p(w), .3p(tw))) E EXISTS'5\{ «1) and assumption)
<> 3p i==pEXISTS'(w,tw) (OSPL semantics)
<> 3pl=pGw (def. of '¥p)

Case G =PERSISTENT(t,p)
SM I==MPERSISTENT(t,p) (assumption)

<> 3M(t) E EXISTS1'(u) for all uE ~(P)(w) (M-Logic semantics)
c:> (ll, 3M(t» E EXISTS'5\{ for all all uE ~(P)(w) (def. of'¥~)

c:> 'ifuRM(3M(p),W, u) <> (ll, 3M(t» E EXISTS'5\{ (semantics ofR*)
<> 'ifuRM(.3P(Pw),W, u) <> (.3p(u), 3p(tw»E EXISTS'5\{ «1) and assumption)
<> 3p I=p 'ifu:W R*(pw,w,U) =::} EXISTS'(u,tw) (OSPL semantics)
<> 3pl=pGw (def. of '¥F)

Case G = pet}, ... ,to)
SM I=M P(tl, ... ,to) (assumption)

<> 3M(tj) E EXISTS1Xw) for i = 1, ,n and (.3M(tl), ... ,.3M(to)) E P1Xw) (M-Logic semantics)
<> Sp Fp EXISTS'(W,tiw) for i = 1, ,n (previous case)

and (w, 3M(tl), ... ,.3M(to»E PM (def. of'¥~)

<> 3p Fp EXISTS'(W,tiw) for i = 1, ... ,n

and (3p(w), 3p(tlw), ... ,3p(tow»E PM «1) and assumption)

<> 3p Fp (EXISTS'(W,tl w) A ... A EXISTS'(w,tnw) A P'(W,tlw, ... ,tow» (OSPL semantics)
<> .3pFpGW (def.of'¥F)

Case G = SERIAL(p)
.3MI=M SERIAL(p) (assumption)

<> ~M(p)(W) is serial (M-Logic semantics)
<> .3M(p) E EXISTS1Xw) and (otherwise ~M(p)(U') is not defmed)

'if u '1(~M(P)(w, u) <> 3v ~M(P)(u,V) (def. of seriality)

24

pretation, the interpretations of the domain sorts are not changed and the interpretation of the
functions obviously matches the changed term declarations (of. def.5.l, €*).

By induction on the term structure we show for a term t the following property:
If $p(w) = wthen SM“) = Spaw). ©

where tw is again an abbreviation for ‘PF(t,w). The base case, t is a domain variable, is trivial because
the assignment of domain variables does not differ between SM and Sp . Now let t = k(t1,. . .,tn). If k
i s a rigid symbol, i ts interpretation is not changed and the induction hypothesis can be applied
immediately. If k i s flexible we have:
SPÜW) = 3p(k'(w, I : lw : . . . , tnw» (def. of "I’F)

= kau ' f (5p(w)‚8M(t1)‚„ . ‚8M(tn)) (ind. hyp.)
= k'w)(8M(tl)v . . ‚8M(tn)) '(3p(w) = wand def. of ‘I‘5)
= 3M0) (M—Logic semantics)

By induction on the structure of the formula G we show the corresponding property:
If Sp(w) = wand SM I=MG then Sp l=p GW. @

Since the initial call to the translation is ‘I’F(G,0) and Sp(0) = DM: zu, i.e. the assumption Sp(w) = w
holds, this completes the soundness proof.

The base case of the induction is the atomic level. We have to prove ® for atoms with the user
defined predicates and with the special ARP—predicates. Now let Sp(w) = wand SM I=M G.

Case G = EXISTS(t)
S M I=M EXISTS(t) (assumption)

© SM(t) e EXISTSMW) (M-Logic semantics)
EI> (w, SM(t)) & EXISTS'M (def. of ‘P3)
ED (S p(w), Sp(tw))) e EXISTS'M (@ and assumption)
=> Sp hpEXISTS‘(w,tw) (OSPL semantics)
=> 31*p (def. of lFF)

gm G = PERSISTENT(t‚p)
SM FM PERSISTENT(t,p) (assumption)

=> SM(t) e EXISTSMu) for all ue @@)(w) (M-Logic semantics)
::> (u, SM(t)) e EXISTS' M for all all we R3 @)(w) (def. of 423)
:> Vu RM(8M(p)‚w‚ u) © (u, SM(t)) & EXISTS' M (semantics of R*)
© VuRM(S p(pw) , w, u) © (Sp(u), Sp(tw)) e EXISTS‘M (@ and assumption)
<> Sp I=p Vu:W R*(pw,w,u) => EXISTS'(u,tw) (OSPL semantics)
<> 81>:p (def. of WF)

959 G = Nth-win)
SM l=M P(t1,. - -,tn) (assumption)

<> 3M(ti) e EXISTSMW) fori = 1‚. . . ,n and (SM(t1),...,SM(tn)) e Pm”) (M-Logic semantics)
=> Sp l=p EXISTS‘(w,tiw) for i = 1,. . . ,n (previous case)

and (w, SM(t1),...,SM(tn)) e PM (def. of‘I’s)
© Sp |=p EXISTS'(w,tiw) for i = 1,.. ,n

and (Sp(w), Sp(t1w),...,Sp(tnw)) e PM (@ and assumption)
<> Sp ¥=p (EXISTS'(W,t1w) A A EXISTS'(W,Inw) A P'(W,t1w,...‚tnw)) (OSPL semantics)
© SP hp GW (def. of TF)

gm G = SERIAL(p)
SM I=M SERIAL(p) (assumption)

ED $5M(p")(w) IS sen‘al (M-Logic semantics)
ED S M(p) e EXISTSMW) and (otherwise Rn)(w) is not defined)

v” R SM(p)(w, u) © 3v K3M@)(ulv) (def. of seriality)

25

Q Zp Fp EXISTS'(W,pw) and (fIrst case)

Q
'v'uRM(ZM(p),W, u) Q 3vR~ZM(p),UJv)
... and 'v'uRM(ZP(Pw),Zp(w), u) Q 3vR~pw,u,v)

(def. of'P~)

«1) and assumption)
Q .. , and 'v'tIE W'Jr{ (Zp[u/u] Fp R*(pw,w, u» Q

(3 tE W 'Jr{Zp[u/u,v/v] Fp R(pw),U,v» (OSPL semantics)
Q ... and Zp Fp ('v'u:W R*(pw,W, u) =::} 3v:W R(pw),U,v» (OSPL semantics)
Q Zp Fp EXISTS'(w,pw) /\ ('v'u:W R*(pw,W' u) =::} 3v:W R(pw),U,v»
Q Zp Fp Gw (def. of 'PF)

The proofs for the cases with the other ARP-predicates are similar.

Induction Step: The induction hypothesis is: if Zp(w) =wand ZM FM F then Zp Fp Fw·

Case G ='v'x:S F
ZM FM'v'X:S F (assumption)

Q 'v' ~E S1l;w)r'lEXISTS1l;w): ZM[xlitl FM F (M-Logic semantics)
Q 'v'~~E S'Jr{/\ (Zp(w), Zp[x/itl(x» E EXISTS''Jr{Q Zp[xlitl FpFw (case EXISTS and ind.hyp.)
<> Zp FP'VX:S EXISTS'(W,x) =::} Fw (OSPL semantics)
<> Sp Fp Gw (def. of'l'F)

Case G =3x:S F. This case is analogous to the previous one.

Case G =DpF
ZM FMDpF (assumption)

<> 'v'u~M(Piw,u) <> SM[U] FM F (M-Logic semantics)
Q 'v'uR'Jr{(ZM(P),W,u) <> ZM[U] FM F (def. of'P~)

<> 'VuRMCZp(pw),Zp(w),u) Q ZM[U] FM F «1) and assumption)
<> 'v'uZp[u/u] FpR(pw,W,u) Q Zp[u/u] FpFu (ind. hypo and Zp[u/u](u) =u)
<> Zp Fp 'Vu:W R(pw,W,u) =::} Fu (OSPL semantics)
<> Sp FpGW (def. of 'l'F)

Case G =Op F. This case is analogous to the previous one.

The cases with normal logical connectives are straightforward applications of the induction hypothe
sis.

To complete the soundness proof, it has to be shown that the three axioms O,@ and @) for R*,
added by the specifIcation morphism 'l'S, are satisfIed by Zp. This is obvious for @ and @). 0 is a
consequence of the fact that only the part of the possible worlds structure needs to be considered
which is accessible in fInitely many steps from the initial world (c.f. remark 4.3). •

Theorem 5.6 Completeness of the Translation
If the OSPL interpretation Sp satisfIes a translated specification 'l'S«L,G» then the back translated
interpretation ZM ='P~(Zp) satisfIes the original specification (L,G).

Proof: LetZp =(~'0 and ZM ='P1(Zp) = ('rv,2\,P,w,'0. First of all we have to show that ZM is
really an M-Logic interpretation. This is even more trivial than in the soundness proof and therefore
skipped. In the same way as in the soundness proof the property CD:

If Spew) =wthen SM(t) =SP('l'F(t, w»
can be shown. By induction on the structure of the formula G the corresponding property can then be
shown:

If Zp(w) = wand Zp FP'P1<G,w) then ZM FM G
Because the initial call to the translation algorithm is 'l'F(G,O) and since ~p(O) = wthis proves the
theorem.
In principle all proof steps for this induction are the same as the corresponding proof steps of the

25

Sp |=p EXISTS'(w,pw) and (first case)
VuR;{(3M(p)‚w‚ u) =D 3vRM8M(p),u‚z/) (def. of ‘I‘s)
. . . and Vu R;{(Sp(pw),3p(w), u) => ElvRMpWJw) (@ and assumption)
. . . and Vue WM (3p[u/u] i=1) R*(pw,w, u)) CD

(El ve WM3p[u/u,V/v] bp R(pw),u,v)) (OSPL semantics)
and Sp l=p (Vu:W R*(pw,w‚ u) => Elvzw R(pw),u,v)) (OSPL semantics)

Sp |=pEXISTS'(w,pw) A (Vuzw R*(pw,w‚ u) => Evzw R(pw),u,v))
Sp r=p Gw (def. of TF)

The proofs for the cases with the other ARP-predicates are similar.

Indugfign Step; The induction hypothesis is: if Sp(w) = wand SM FM F then Sp I=p FW.

00
6

00

€}

m G = s s F
SM FM sS F (assumption)

E:> Vzce SawnEXISTSflw): SM[x/7d r=M F (M-Logic semantics)
© Vyczce S MA (31>(w), 3P[X/7d(x)) E EXISTS'MÖ SFB/X] I=P Fw (case EXISTS and ind.hyp.)
=> Sp I=1> s s EXISTS'(w,x) => FW (OSPL semantics)
:> Sp I=p Gw (def. of TF)

% G = Exzs F . This case i s analogous to the previous one.

Case G = DPF

3 M I=M El (assumption)
© Vu RSM) (w,u) © 8M[u] I=M F (M-Logic semantics)
© VuRM M(p) ,w ,u) ED 5M[u] I=M F (def. of W3)
ED VuRMSp(pw),$p(w),u) CD 5M[u] I=M F (@ and assumption)
© Vu$p[u/u] l=pR(pw,w,u) ED 31>[u/u] I=1> Fu (ind. hyp. and Sp[u/u](u) = u)
© Sp l=p Vq R(pw,w,u) => Fu (OSPL semantics)
ED 31> l=1> GW (def. of WF)

Case G = Op F. This case is analogous to the previous one.

The cases With normal logical connectives are straightforward applications of the induction hypothe-
sis .

To complete the soundness proof, it has to be shown that the three axioms 0 ,9 and 9 for R*,
added by the specification morphism T5, are satisfied by Sp . This i s obvious for 9 and © . 0 is a
consequence of the fact that only the part of the possible worlds structure needs to be considered
which is accessible in finitely many steps from the initial world (c.f. remark 4.3). o

Theorem 5.6 Completeness of the Translation
If the OSPL interpretation 3p satisfies a translated specification ‘I’s((Z,G)) then the back translated
interpretation SM = ‘11:} (Sp) satisfies the original specification (2,6).

Proof: Let Sp = (MM and SM: ‘Pg—‚l(3p) = ('n/‚R,:P,w,%. First of all we have to show that 3M i s
really an M—Logic interpretation. This is even more trivial than in the soundness proof and therefore
skipped. In the same way as in the soundness proof the property @:

If Sp(w) = wthen 5M(t) = 3p(‘I’p(t, W))
can be shown. By induction on the structure of the formula G the corresponding property can then be
shown:

If 8p(w) = wand Sp t=p‘I’7(G,w) then 8M I=M G
Because the initial call to the translation algorithm is ‘I‘F(G,O) and since 312(0) = wthis proves the
theorem.
In principle all proof steps for this induction are the same as the corresponding proof steps of the

26

soundness proof, however read backwards. There is only one small difficulty. The characteristic
axioms for the R*-predicate (def. 5.3) specify a superset of the reflexive and transitive closure of the
~relation6. R* plays a role in the translation of the ARP-predicates. The argument here is, what
holds for worlds accessible in a superset of the reflexive and transitive closure of 1{holds in particular
for the subsets of worlds accessible in the reflexive and transitive closure itself. Therefore nothing is
lost in the step back from the translated formula to the original formula. +

6 FUNCTIONAL TRANSLATION

As already said, the relational translation is applicable to many variants of modal logic, but the
efficiency of the resulting calculus7 is not very good. In order to improve its efficiency, a represen
tation of the information about accessible worlds has to be found which permits the reasoning about
whole chains of possible worlds in a single step. Resolution between normal literals should only be
possible when the two resolution literals are interpreted definitely in the same world. To this end, a
new translation technique has been developed where the relevant information about the chain of
worlds leading to the actual world is concentrated in one single term and reasoning about possible
worlds can be done with unification algorithms operating on these terms.

The basic idea of the functional translation has already been explained in the introduction. It uses
the fact that a binary relation can be represented as the domain - range relation of a set of one place
functions. On the syntactic level this means that a concatenation of terms t1 0 ••• otn , each of which
denoting a function mapping worlds to accessible worlds, can be interpreted as a composition of such
context access functions. Applied to the initial world, this composition describes a path through
the possible worlds structure where the last element serves as the actual world in which a term or
atom is to be interpreted. A formula oOQ is now translated into 'Vf 3g Q(-J,(fog,O»'8 where fog
denotes a composition of two context access functions and ..L(fog,O) represents the application of the
composed function to the initial world.

There are two problems with this kind of translation. The first problem comes from the
parametrized modal operators. In 'opQ' for example, the o-operator does not denote all accessible
worlds, but only those, accessible via p-labelled transitions. In order to describe this with functions,
we need context access functions depending additionally on domain elements. Therefore, besides the
sort 'W-tW', a sort 'D,W~W' is introduced whose interpretation in an algebra 51 is 'D,W-tW' 5f. ~

D5f. X W5f. ~ W5f., i.e. 'D,W~W' denotes two-place functions which depend on domain elements
(parameters) and worlds. Now 'OpOqQ' can be translated into 'Vf:'D,W~W' 3g:'D,W-tW'
Q(..L(..L(f,p)o.,l.(g,q),O)'. The axiomatization of the apply function .J, and the composition function 0

guarantees that a term' .J,(f,p)' means ftp) where fED 5f. X W5f. -t W5f. such that ftp) E W5f. ~ W5f. is
obtained. Thus, '.J,(f,p)' denotes an ordinary context access function and the term -J,(f,p)o..L(g,q)
denotes again a path through the possible worlds structure.

6 The transitive closure of a relation is not finitely axiomatizable in first order logic.

7 The efficiency of a calculus is usually measured in the branching rate of the search space it generates.

8 This time again seriality of the accessibility relation is assumed.

26

soundness proof, however read backwards. There is only one small difficulty. The characteristic
axioms for the R*-predicate (def. 5.3) specify a superset of the reflexive and transitive closure of the
St,-relationÖ. R* plays a röle in the translation of the ARP—predicates. The argument here is, what
holds for worlds accessible in a superset of the reflexive and transitive closure of Rholds in particular
for the subsets of worlds accessible in the reflexive and transitive closure itself. Therefore nothing is
lost in the step back from the translated formula to the original formula. 9

6 FUNCTIONAL TRANSLATION

As already said, the relational translation is applicable to many variants of modal logic, but the
efficiency of the resulting calculus7 is not very good. In order to improve its efficiency, a represen-
tation of the information about accessible worlds has to be found which permits the reasoning about
whole chains of possible worlds in a single step. Resolution between normal literals should only be
possible when the two resolution literals are interpreted definitely in the same world. To this end, a
new translation technique has been developed where the relevant information about the chain of
worlds leading to the actual world i s concentrated in one single term and reasoning about possible
worlds can be done with unification algorithms operating on these terms.

The basic idea of the functional translation has already been explained in the introduction. It uses
the fact that a binary relation can be represented as the domain — range relation of a set of one place
functions. On the syntactic level this means that a concatenation of terms t10...0tn, each of which
denoting a function mapping worlds to accessible worlds, can be interpreted as a composition of such
context access functions. Applied to the initial world, this composition describes a path through
the possible worlds structure where the last element serves as the actual world in which a term or
atom is to be interpreted. A formula I:I<>Q i s now translated into ‘Vf 3g Q(~L(fc>g,0))’8 where fog
denotes a composition of two context access functions and l(f°g,0) represents the application of the
composed function to the initial world.

There are two problems with this kind of translation. The first problem comes from the
parametrized modal operators. In ‘upQ’ for example, the D-operator does not denote all accessible
worlds, but only those, accessible via p-labelled transitions. In order to describe this with functions,
we need context access functions depending additionally on domain elements. Therefore, besides the
sort ‘W—->W’, a sort ‘D‚W—>W’ is introduced whose interpretation in an algebra fit i s ‘D,W—->W’ ;; (_;
D ‚q X W‚q —> W2, i.e. ‘D‚W—>W’ denotestwo-place functions which depend on domain elements
(parameters) and worlds. Now ‘ElqQ’ can be translated into ‘Vf:‘D,W—>W’ 3g:‘D,W—>W’
Q(~L(¢(f,p)o¢(g,q),0)’. The axiomatization of the apply function ~L and the composition function 0
guarantees that a term ‘i(f ,p)’ means f(p) where f e D g X WA -—) W ‚q such that flp) e W} —-> W ‚q i s
obtained. Thus, ‘l(f,p)’ denotes an ordinary context access function and the term i(f,p)°~L(g,q)
denotes again a path through the possible worlds structure.

‘5 The transitive closure of a relation is not finitely axiomatizable in first order logic.

7 The efficiency of a calculus is usually measured in the branching rate of the search space it generates.

8 This time again seriality of the accessibility relation is assumed.

27

A graphical picture of parametrized context access functions:

Ws
!l(P): WI-7U2 f2(p): WI-7W3

U2-7U'5
W fi (q w6 ~

W w3
!J.(q): WI-7 W4

w4 U2-7Ut)

For the translation of the ARP-predicates the auxiliary sorts 'w.3,W' and 'D,W.3,W' are needed.
They denote functions mapping worlds to worlds accessible in the reflexive and transitive closure of
the basic accessibility relation. In the unparametrized case, for example 'REFLEXIVEO' is translated
into 'Vf:'W.3,W' 3g:'W.3,W' 4-(fog,O) = 4-(f,O)'. The quantification 'Vf:'W.3,W' .. .' accesses all
worlds at all. Therefore this formula can be read: for all worlds there exists a context access function
which maps the world to itself; and this is nothing else than reflexivity. (We shall see that it makes no
difference whether the function g denotes really the identity function or depends on the world.)

The second problem in the functional translation comes from the fact that in non serial possible
worlds structures there may be "end worlds", i.e. worlds where there is no further accessible world
at all. In these structures context access functions are necessarily partial functions. Unfortunately
partial functions cannot be handled in standard predicate logic. To overcome this restriction, partial
functions have to be made total by the usual (strict) co-extension mechanism [Loecks & Sieber 84]
which adds an artificial bottom element..L and maps all arguments for which the function is not
defined to the bottom element. On the syntactic side we introduce a special predicate END: WxD such
that ENDj'f(w,p) is true in an ~>structure J'lif wis an end world for parameter p, i.e. from wthere is
no p-accessible world.

Example:

W3 END(~,p)

END(~,q)

A formula 'cpQ' is now\translated into 'Vf:'D,W-7W' -,END(O,p) ~ Q(4-(.t(f,p),O»' with the
meaning: if the initial world is not the end world for parameter p, Q holds in all p-accessible worlds.

We now formally define a "functional" logic morphism <1> which maps modal logic specifications
to functional OSPL-specifications such that satisfiability and unsatisfiability is preserved. The defini
tions and proofs follow exactly the same schema as the corresponding parts in the last chapter. In the
sequel the letters f,g,h,i and j are used as variable symbols for denoting context access functions.

27

A graphical picture of parametrized context access functions:

Jaw “'s
f1(p)= M —> «& f2(P)3 wt —+ ws

w
W "> w5

w W3

f1(q)= wl —+ w4

f1(‘1) 104 w; —) 705

For the translation of the ARP—predicates the auxiliary sorts ‘Wi>W’ and ‘D,W3>W’ are needed.
They denote functions mapping worlds to worlds accessible in the reflexive and transitive closure of
the basic accessibility relation. In the unparametrized case, for example ‘REFLEXIVEO’ is translated
into ‘s‘Wi3W’ agz‘wi>W’ t(fog,0) = t(f‚0)’. The quantification ‘Vf:‘wi>W’...’ accesses all
worlds at all. Therefore this formula can be read: for all worlds there exists a context access function
which maps the world to itself; and this is nothing else than reflexivity. (We shall see that it makes no
difference whether the function g denotes really the identity function or depends on the world.)

The second problem in the functional translation comes from the fact that in non serial possible
worlds structures there may be “end worlds”, i .e . worlds where there i s no further accessible world
at all. In these structures context access functions are necessarily partial functions. Unfortunately
partial functions cannot be handled in standard predicate logic. To overcome this restriction, partial
functions have to be made total by the usual (strict) (x)-extension mechanism [Loecks & Sieber 84]
which adds an artificial bottom element .L and maps all arguments for which the function i s not
defined to the bottom element. On the syntactic side we introduce a special predicate END: WXD such
that END „(w,p) is true in an E-structure 2 if w is an end world for parameter p, i.e. from wthere i s
no p—accessible world.
Example:

—\END(uQ‚p) „4
END(wz‚q)

”5
“’1

may?)
“am?” „3 END(ug‚p)

END(wj,q)

A formula ‘EIpQ’ is now\translated into ‘Vf:‘D,W—>W’ ——.END(0,p) => Q(.L(J«(f,p)‚0))’ with the
meaning: if the initial world is not the end world for parameter p, Q holds in all paccessible worlds.

We now formally define a “functional” logic morphism (I) which maps modal logic specifications
to functional OSPL—specifications such that satisfiability and unsatisfiability is preserved. The defini-
tions and proofs follow exactly the same schema as the corresponding parts in the last chapter. In the
sequel the letters f,g,h,i and j are used as variable symbols for denoting context access functions.

28

Definition 6.1	 The Signature Morphism <I>L

<I>Lgenerates a functional OSPL signature from an M-Logic signature with top domain sort D as
follows:

•	 The domain sort hierarchy remains unchanged.
Five additional context sort symbols are introduced:
W,'W~W','W.3,W', 'D,W~W', 'D,W.3,W'
The subsort relationships are: 'W~W' 5 'W.3,W' and 'D,W~W'5 'D,W~W'

•	 The symbols specific for functional OSPL specifications, composition 0 and application J,. (def.
3.10) are introduced:
0:	 'w.!4w' x 'w.!4w' ~ 'w.!4w' J,.: D x 'D,W~W' ~ 'W~W'

'D,W~W' x 'D,W.!4W' -7 'D,W.3,W' D x 'D,W.3,W' -7 'W.3,W'

•	 <I>L translates variable, function and predicate symbols in the same way as 'PL (def. 5.1).

•	 The following constant, function and predicate symbols are added: O:W, id:'W.3,W', END:WxD.

Definition 6.2 The Formula Morphism <I>F

For a term or formula F let Fw ==def <I>F(F,w) and let w' =def J,.(w,O).

•	 xw =x if x is a variable.

•	 f(tt. ... ,tn)w = f(W',tl w, ... , tnw) iffis an n-place flexible function symbol.

•	 EXISTS(t)w = EXISTS'(w',tw)

•	 PERSISTENT(t,p)w =Vf:'D,W.3,W' EXISTS'(J,.(woJ,.(f,Pw),O),tw).

•	 SERIAL(p)w =EXISTS'(w',pw) 1\ Vf:'D,W~W' -,END(J,.(woJ,.(f,pw),O),pw)

•	 REFLEXlVE(p)w = EXISTS'(w',pw) /\
Vf:'D,W.3,W' 3g:'D,W~W' J,.(woJ,.(f,Pw)oJ,.(g,pw),O) =J,.(wo-1.(f,pw),O)

•	 TRANSITIVE(p)w =EXISTS'(w',pw) /\
Vf,g: 'D,W-7W' 3h: 'D,W-7W' -1.(woJ,.(f,pw)o-1.(g,pw),0) = J,.(woJ,.(h,pw),O)

•	 SYMMETRIC(p)w =EXISTS'(w',pw) /\ \;jf:'D,W~W' Vg:'D,W-7W' 3h:'D,W~W'
J,(woJ,(f,Pw)oJ,(g,Pw)oJ,.(h,pw),O) == J,(woJ,.(f,pw),O)

•	 EUCLIDEAN(p)w == EXISTS'(w',pw) 1\ 'v'f:'D,W.3,W' Vg,h:'D,W-7W' 3k:'D,W~W'
J,(woJ,(f,pw)oJ,(g,pw)oJ,(k,pw),0) = J,.(woJ,(f,pw)oJ,(h,pw),0)

•	 LINEAR(p)w == EXISTS'(w',pw) /\ 'v'f,g:'D,W.3,W' 3h:'D,W.3,W'
J,(woJ,(f,Pw)oJ,(h,pw),O) == J,(woJ,(g,pw),O) v
J,(woJ,(g,pw)oJ,(h,pw),0) == -1.(woJ,(f,pw),0)

•	 INCREASING-DOMAIN(p)w =EXISTS'(W',pw) /\ 'v'f:'D,W.3,W' 'v'g:'D,W-7W' 'v'x:D
EXISTS'(J,(woJ,(f,pw),O),x) => EXISTS'(J,.(woJ,(f,pw)oJ,.(g,pw),O),x)

•	 DECREASING-DOMAIN(p)w == EXISTS'(W',pw) /\ Vf:'D,W.3,W' 'v'g:'D,W~W'
EXISTS'(J,(woJ,(f,pw),O),x) ~ EXISTS'(J,(woJ,(f,pw)oJ,(g,pw),O),x)

•	 P(tt. ... ,tn)w == EXISTS'(w',tlw) /\ ... /\ EXISTS'(w',tnw) /\ P'(W',tlw,···,tnw)
if P is a flexible predicate symbol.

•	 ('dx F)w == 'dx EXISTS'(w',x) => Fw
•	 (3x F)w == 3x EXISTS'(W',x) /\ Fw
•	 (Dp F)w == EXISTS'(w',pw) => (-,END(W',pw) => 'v'f:'D,W-7W' Fwo,L(f,pw»

•	 (Op F)w == EXISTS' (w',Pw) /\ -,END(w',pw) /\ 3f:'D,W-7W' FwoJ,(f,pw»

•	 For all other cases <I>p is the usual homomorphic extension.

28

Definition 6 .1 The Signature Morphism (D);

(I)}; generates a functional OSPL signature from an M-Logic signature with top domain sort D as
follows:
0 The domain sort hierarchy remains unchanged.

Five additional context sort symbols are introduced:
W,‘W—->W’,‘W-’5>W’, ‘D,W—->W’, ‘D,wi>W’
The subsort relationships are: ‘W—äW’ E ‘W—*9W’ and ‘D‚W—->W’ E ‘D,W3>W’
The symbols specific for functional OSPL specifications, composition ° and application i (def.
3.10) are introduced:o: ‘w-i>W’ x ‘WÄW’ _) ‘WÄW’ l: D x ‘D,W—->W’ —> ‘W-—>W’

‘D‚wi>W’ x ‘D,w—*>W’ —> ‘D,wi>W’ D x ‘D,W—*->W’ —> ‘WÄW’
(I); translates variable, function and predicate symbols in the same way as ‘1’}; (def. 5.1).
The following constant, function and predicate symbols are added: 0:W, idz‘Wi>W’, END:W><DO

Definition 6.2 The Formula Morphism (DF
For a term or formula F let FW =def <Dp(F,w) and let w' =def l(w,0).

xw = x if x is a variable.
f(t1,. ..‚tn)w = f(w'‚t1w, . . . , tnw) if f is an n-place flexible function symbol.
EXISTS(t)w = EXISTS'(w',tw)
PERSISTENT(I‚P)W = s‘D,W-"—‘>W’ EXISTS'(l(wol(f,pw),0),tw).
SERIAL(p)w = EXISTS'(W'‚pW) A Vf:‘D,W—°’—‘>W’ —1END(l(wol(f,pw),0),pw)
REFLEXIVE(P)W = EXISTS‘(W',pw) A

Vf:‘D,W-°'—‘>W’ 3g:‘D,W—->W’ ¢(w0i(f,pw)°¢(g,pw),0) = i(w0~L(f,pw),0)
TRANSITIVE(p)w = EXISTS'(W'‚pw) A

Vf,g:‘D,W—)W’ 3h:‘D,W—9W’ i(w0~L(f,pw)°~L(g,pw),0) = i(w0l(h,pw),0)
SYMMETRIC(p)w = EXISTS'(W',pw) A Vf:‘D,W—*—>W’ Vg:‘D,W—->W’ 3h:‘D,W—->W’

i (W°i(f ‚Pw)°$(g‚Pw)°i (h‚pw)‚0) = i (W°i (f ‚Pw)‚0)

EUCLIDEAN(p)w = EXISTS'(W',pw) A Vf:‘D‚W3>W’ Vg,h:‘D,W—>W’ 3k:‘D,W—>W’
Mwoi(f‚Pw)°i(g‚Pw)°i(k‚Pw)‚0) = i (W°i(f ‚Pw)° i (h‚Pw)‚0)

LINEAR(p)w = EXISTS'(w',pw) A Vf,g:‘D,W-°'—‘)W’ 3h:‘D,Wi)W’
$(W°‘L(f‚Pw)°J’(h‚Pw)‚O) = &(w0$(g‚pw),0) V
i (W°Jr(g‚Pw)°l (h .pw)‚0) = $(W°i (f ‚Pw)‚0)

INCREASING—DOMAIN(p)w = EXISTS'(w'‚pw) A s‘D,W—”1>W’ Vg:‘D,W—->W’ sD
EXISTS'(J«(W°»L(f‚pw)‚0)‚x) => EXISTs'(l(wol(f,pw)oi(g,pw),0),x)

DECREASING-DOMAIN(p)w = EXISTS'(W',pw) A Vf:‘D,Wi">W’ Vg:‘D,W—->W’
EXISTS'($(W°$(f‚pw),0)‚x) <= EXISTS'(¢(W°l(f,pw)°i(g,pw),0),x)

P(t1,...,tn)w = EXISTS'(w',t1w) A...A EXISTS'(W',tnw) A P'(w',t1w,„.,tnw)
if P i s a flexible predicate symbol.

(Vx mw = Vx EXISTS'(W',x) => FW
(3x F)W = 3x EXISTS'(w',x) A FW
(Up F)w = EXISTS'(w',pw) => (—|END(w'‚pw) => Vf:‘D,W-—)W’ FwoJ,(f,pw))
(Op F)w = EXISTS'(W',pw) A —-.END(w',pw) A 3f:‘D,W—->W’ Fwo¢(f,pw))
For all other cases (Pl.—is the usual homomorphic extension.

29

The top level call of the translation algorithm is: <1>F(.1", id). In the translated formulae, terms J,(id,O)
are rewritten to '0' and terms 'idosomething' and 'somethingoid' are rewritten to something. Hence
'id' disappears completely. +

Example:
<1>F(VX Dk(x) P(x),id)

= (Vx 0k(x) P(X»id
= Vx EXISTS'(J,(id,O),x) => (Dk(x) P(X»id
=	 Vx EXISTS'(J,(id,O),x) => (EXISTS'(J,(id,O), k(X)id) => (-,END(J,(id,O), k(X)id)

=> Vf:'D,W~W' (P(X»ido.L(f,k(X)id»)
= Vx EXISTS'(J,(id,O),x) => (EXISTS'(J,(id,O), k(J,(id,O),x» => (-,END(J,(id,O), k(J,(id,O),x»

=> Vf:'D,W~W' P(J,(idoJ,(f,k(J,(id,O),x»,O),x»
~ Vx EXISTS'(O,x) => (EXISTS'(O, k(O,x» => (-,END(O, k(O,x»

=> Vf:'D,W~W' P(J,(J,(f,k(O,x»,O),x» +

Definition 6.3 The Specification Morphism <1>S
The specification morphism <1>S uses <1>k for translating M-Logic signatures into OSPL-signatures
and <PF for translating M-Logic formulae into OSPL-formulae. Furthermore, it adds the necessary
axioms for the application function J, and the composition function 0 (def. 3.10,5) to generate a
functional specification (def. 3.10). And finally it adds the axioms which characterize the END
predicate and the 'D,W~W' sort. (We sometimes use a second order syntax to make the axioms
more readable. The first-order version of terms like x(y) is J,(x,y».

Characterization of 0 and J,:
CD Vf,g:'W~W' ';Vw:W f(w) = g(w) => f = g
@ Vf,g:'D,W~W' Vp:D Vw:W J,(f, p)(w) =J,(g, p)(w) => f =g
® Vf,g:'W~W' Vw:W J,(f 0 g, w) =J,(g, J,(f, w»
® Vf,g:'D,W~W' Vp:D J,(f 0 g, p) = J,(f, p) 0 J,(g, p)

Characterization of the END-predicate:
@ Vf:'W~W' g:'D,W~W' 'v'p:D END(J,(foJ,(g,p),0), p) => -,END(J,(f,O),p)

Characterization of the 'D,W~W' sort:
® 3f:'D,W~W' Vp:D Vw:W J,(f,p)(w) =w (reflexivity)
(J) 'v'f,g:'D,W~W' 3h:'D,W~W' J,(f,p)oJ,(g,p) =.l.(h,p) (transitivity) +

It is straightforward to verify that <Ps is really a specification morphism, i.e. it translates well formed
M-Logic specifications into well formed (well sorted) OSPL-specifications.

Definition 6.4 The Interpretation Morphism
Let.gM = ('J1J, 'R.., P, w, '0 be an M-Logic interpretation. The interpretation morphism <1>S constructs a
functional predicate logic interpretation.gp = (:M, '0 as follows:

• The carrier set of Mand the interpretation of the domain sorts is the same as in '1{w) or in all other
worlds respectively.

The interpretation of the additional symbols is:

• WM= '}Vu {.l}9

9 The bottom element .1 is necessary to make the context access functions total.

29

The top level call of the translation algorithm is: (DFÜ; id). In the translated formulae, terms .L(id,0)
are rewritten to ‘0’ and terms ‘idosomething’ and ‘somethingOid’ are rewritten to something. Hence
‘id’ disappears completely. 0

Example :
(DFÜ/x Elk(x) P(x),id)

(VX Dk(x) P(X))id

VX EXISTS'(J‚(id,0),x) => (Ük(x) P(x))id
Vx EXISTS'(t(id,O),x) => (EXISTS'(t(id,0), k(x)id) => (—.END(l(id,O), k(x)id)

=> s‘D‚W——>W’ (P(X))id°i(f‚k(x)id)))
Vx EXISTS'(¢(id,0),x) => (EXISTS'(i(id,0), k(i(id,0) ,x)) => (—uEND(i(id,0), k(¢(id,0),x))

=> Vf:‘D,W—)W’ P(.L(id<>J‚(f,k(i(id‚0),x)),0)‚x))
—-> Vx EXISTS'(0,x) = (EXISTS‘(O, k(0,x)) => (—|END(O, k(O,x))

=> Vf:‘D‚W—->W’ P(~L(i(f,k(0,x)),0),x)) 0

Defini t ion 6.3 The Specification Morphism (Ds
The specification morphism (Ds uses (I)}; for translating M-Logic signatures into OSPL-signatures
and CD}: for translating M-Logic formulae into OSPL-formulae. Furthermore, i t adds the necessary
axioms for the application function J. and the composition function ° (def. 3.10‚5) to generate a
functional specification (def. 3 .10) . And finally i t adds the axioms which characterize the END
predicate and the ‘D‚W—*>W’ sort. (We sometimes use a second order syntax to make the axioms
more readable. The first-order version of terms like x(y) is i(x,y)).

Characterization of 0 and .L:
@ Vf,g:‘W-°'-‘>W’ sw f(w) = g(w) => f = g
@ Vf,g:‘D,W—*>W’ sD sw Mt", p)(w) = i(g, p)(w) => f = g
@ Vf‚g:‘W—°'—‘>W’ sw l(fo g, w) = Mg, m, w))
@ Vf,g;‘D,w—*>W’ sD i(fo g, p) = ta: p) o Mg, p)

Characterization of the END-predicate:
@ s‘wiW’ g:‘D‚W—"1>W’ sD END(t(fot(g,p),0), p) => —.END(J‚(f‚O),p)

Characterization of the ‘D,W-"—'>W’ sort:
@ afz‘D,w-i>w’ sD Vw:W t(f,p)(w) = w (reflexivity)
@ Vf,g:‘D,W—*>W’ 3h:‘D,W—*>W’ i(f,p)0~L(g,p) = i(h,p) (transitivity) o

It is straightforward to verify that (Ds is really a specification morphism, i.e. i t translates well formed
M—Logic specifications into well formed (well sorted) OSPL—specifications.

Definition 6 .4 The Interpretation Morphism
Let SM = (W, R, :P, W, ‘V) be an M-Logic interpretation. The interpretation morphism (Ds constructs a
functional predicate logic interpretation Sp = (M, W) as follows:
' The carrier set of M and the interpretation of the domain sorts is the same as in (Kw) or in all other

worlds respectively.
The interpretation of the additional symbols is:
. WM: ‘WU {_L}9

9 The bottom element .L is necessaIy to make the context access functions total.

30

•	 'D,W~W''J,{= {fe D9vfXW'J,{~W'J,{I Vue W'J,{Vpe D'J,{ if3v~u, v) thenj{p,u) #:-.1 and
j{p,u) #:-.1 Q ~(u,j{p,u))}.

•	 'D,W~W''J,{= {fe D9vfXW'J,{~ W'J,{I VpeD'J,{j{p) = identity or
j{p) = !l(P)o... o!n(P) for some it e 'D,W~W' 'J,{}.

•	 'W~W''J,{= {ge W'J,{~ W'J,{I Vue W'J,{3fE 'D,W~W''J,{3pE D'J,{g(u) =j{p,u)}.

•	 'W~W' 'J,{= {gE W'J,{~ W'J,{lg= identity or g= 91o ...0On for some[fi. e 'W~W' 'J,{}.

•	 id'J,{is the identity function on W u

•	 O'J,{= w
• J,'J,{ is the application function, i.e. VpE D'J,{V f e 'D,W~W' 'J,{ J,9vlif, p) =j{p).

• o'J,{is the composition function, i.e.
Vfl,jie 'W~W''J,{VueW'J,{ (fl0'J,{ji)(U)=ji(fl(U» and
V fJ,ji e 'D,W~W''J,{Vue W'J,{Vpe D'J,{ (fl o'J,{ji)(p,u) = ji(p) (fi(p)(u».

In the sequel we omit the index 'J,{for 0'J,{ and,L.u

•	 The interpretation of the rigid symbols in 3p is the same as in 3M.

•	 The interpretation of flexible function symbols is:
f9,{ (u, ;0,...,~» = f~u)(;o, ... ,~) where f = <I>L(f)
and the interpretation of flexible predicate symbols is:
(u, D, ... ,-tn) e Pdf iff (;0, ... ,~) e p~u) where P' = <I>L(P).

•	 ENDAAU,P) iffthere is no world v with ~u,v).

Now let 3p = (:M, '0 be a yredicate logic interpretation for a translated specification. The inverse
interpretation morphism 'Ps constructs an M-Logic interpretation 3M = ('Y1!, 2?, P, w, '0 as follows:

•	 wis constructed iteratively:
Wo = {O'J,{}

'J11. = {fip,u) Ife 'D,W~W''J,{, pe D'J,{, ue 'J11..l and not ENDAAU,P)}

W= 'U Wi.

1=o
•	 P maps worlds to L-structures which are like :Mexcept that the interpretation of flexible function

symbols in each world uis: f~u)C;o,... ,~) = fdf(u, ;o, ... ,;m» where f = <I>L(f),
and the interpretation of flexible predicate symbols in each world u is:
(;o, ... ,;m) e p~u) iff (u, ;0, ... ,;m) E Pdf where P' = <I>L(P).

•	 Vu,ve W1?p(u,v) iff3fE 'D,W~W'M: v= j{p,u)

•	 W=OM •

Theorem 6.5 Soundness of the Translation
If the M-Logic interpretation 3M satisfies the M-Logic specification S = (L,G) then the translated
interpretation <I>~(3M) satisfies the translated specification <I>S(S).

Proof: Let3M= (W,1\,P,w,'0 and <I>~(3M) = 3p = (:M,'0. First of all we have to show that 3p is
really an OSPL-interpretation, i.e. :M is a L-structure. The main thing to check here is that the inter
pretations of the sorts, in particular of the functional sorts, are not empty, that the sort hierarchy is
reflected by corresponding set inclusion relations and that the functions match the corresponding sort
declarations. The checks are straightforward and therefore skipped.

In the sequel let again w' =def J,(w,O) and tw =def <I>F(t,W).

By induction on the term structure we show exactly in the same way as in theorem 5.5 for a term t the
following property: If 3p(w') = wthen 3M(t) =3p(tw). <D
By induction on the structure of the formula G we show the corresponding property:

30

‘D,W—>W'M= {fe DMXWM—) WMI Vue WMVpe DM if 30 My, v) thenflpm) # J. and
flPsu) ** i “> RPCtkflPWD}.

‘D,wi>W’M= {fe DMxWM—a WMI Vpe DMflp) = identity or
flp) =fi(p)<>...0f„(p) for somefi & ‘D,W—>W’M}.

° ‘W—)W’M= {g6 WM-) WMI Vue WM afe ‘D,W—-)W’M3p E DMÄu) =flp,u)}.
‘Wi>W’M= {ge Wall—) WM|g= identity org=g1o...ogn for somegi & ‘W—aW’M}.
idMis the identity function on WM.

° OM: w
~LM is the application function, i.e. Vp e DMV fe ‘D,W3>W’M „LMU, p) = flp).

- °Mis the composition function, i.e.vane ‘W1>W’Mvue WM % wma) =fz<fi<u>> andVfbfl e ‘D,wi>W’Mvue WMV? e DM (f1 www) =f2(p) Wm».
In the sequel we omit the index Mfor OM and iM.
° The interpretation of the rigid symbols in Sp is the same as in 3M.
° The interpretation of flexible function symbols is:

fair (u, n,...‚XnD = Main,—„m) where f = (DEG)

and the interpretation of flexible predicate symbols is:
(u, 7a , . . . , xn) 6 P964 iff (70,...,7(n) 6 Par“) Where P' = (1)2(P).

° ENDM(u,p) iff there is no world vwith Maga).

Now let Sp = (M, % be a predicate logic interpretation for a translated specification. The inverse
interpretation morphism ‘Pg constructs an M-Logic interpretation SM = (‘W, K, ‘P, w, “V) as follows:
° ‘Wis constructed iteratively:

‘Wo = {OM}

M = {f(p,u) I f e ‘D,W——>W’M, pe DM, we ‘WH and not ENDMmpfl
‘W = ig) ‘Wi.

° 1’ maps worlds to Z—structures which are like Mexcept that the interpretation of flexible function
symbols in each world u i s : fflu)(7G:-uy7(n) = nAu, x1,...,7(n)) where f' = (1)};(f),

and the interpretation of flexible predicate symbols in each world uis:
(2a,...,xn) 6 P900 iff (u, PClqCn) e PM where P' = <Dz(P).

° Vu,ve ‘WIKp(u,v) i f f3 f e ‘D‚W—->W’M: v=fip‚u)
° w=0M .

Theorem 6.5 Soundness of the Translation
If the M-Logic interpretation SM satisfies the M-Logic specification S = (2,6) then the translated
interpretation (1)3(8M) satisfies the translated specification (133(8).

m: LetSM = (WI/$3,141,?) and (1)3(8M) = Sp = (MM. First of all we have to show that Sp is
really an OSPL-interpretation, i.e. M is a Z—structure. The main thing to check here is that the inter—
pretations of the sorts, in particular of the functional sorts, are not empty, that the sort hierarchy i s
reflected by corresponding set inclusion relations and that the functions match the corresponding sort
declarations. The checks are straightforward and therefore skipped.

In the sequel let again w' =def »L(w‚0) and tw =def (I>F(t,w).

By induction on the term structure we show exactly in the same way as in theorem 5.5 for a term t the
following property: If Sp(w') = wthen SMC) = 31>(tw). @
By induction on the structure of the formula G we show the corresponding property:

31

If 3p(w') = wand 3M FM G then 3p Fp Gw. @

Since the initial call to the translation is <pp(q, id) and 3 p(O) =OM =w, and idM =identity i.e. the
assumption 3p(w') = w holds, this completes the soundness proof.

The base case of the induction is the atomic level. We have to prove @ for atoms with the user
defined predicates and with the special ARP-predicates. Now let 3p(w') = wand 3M FM G.

Case G =EXISTS(t)
3M i=M EXISTS(t) (assumption)

<> 3M(t) E EXISTS1{w) (M-Logic semantics)
<> (w, SM(t» E EXISTSir (def. of <P~)

<> (3p(w'), gp(tw»E EXIST~ «(1) and assumption)
<> 3p Fp EXISTS'(w',tw) (OSPL semantics)
<> 3p Fp Gw. (def. of <Pp)

Case G =PERSISTENT(t)
gM FM PERSISTENT(t) (assumption)

<> 3M(t) E EXISTS'l(u) for all all uE ~(p)(w) (M-Logic semantics)
<> V u ~~M(p)(W, u) <> (ll, 3M(t» E EXISTSM (def. of <P~ and ~)
<> Vfe 'D,W~W'M(f{3p(pw),w),3p(tw»E EXISTsM

(CD, def. of 'D,W~W'M and assumption)
<> 3p Fp Vf:'D,W~W' EXISTS'(J,(woJ,(f,pw),O),pw) (OSPL semantics)
<> 3p Fp Gw. (def. of <Pp)

Case G = P(tl, ... ,tn)
gM FM P(tl,· .. ,tn) (assumption)

<> 3M(ti) e EXISTS1{w) for i = 1,... ,n and
(3M(tl)," .,3M(tn»e P1{w) (M-Logic semantics)

<> 3p Fp EXISTS'(w',tiw) for i = 1,... ,n (previous case)
and (w, gM(tl), ... ,3M(tn»e PM (def. of <I>g)

<> 3p Fp EXISTS'(w',tiw) for i = 1, ... ,n
and (3p(w'), 3p(tlw), ,gp(tnw» e Pir (CD and assumption)

<> 3p Fp EXISTS'(w',tlw) 1\ 1\ EXISTS'(w',tnw) 1\ P(W',tlw, ... ,tnw) (OSPL semantics)
<> 3p Fp G w. (def. of <Pp)

Case G ='SERIAL(p)
3M FM SERIAL(p) (assumption)

<> ~MCP)(w) is serial (M-Logic semantics)
<> 3M(p) exists in w and (otherwise ~MCp)(w) is not defined)

\iu 1(3MCP)(w, u) <> 3v ~M(P)(U,v) (def. of seriality)

<> 3p Fp EXISTS'(w',pw) and Vu ~ 3 M(P)(W, u) <> not ENDMll,3M(p»

(case EXISTS and semantics of END)
<> ... and Vfe 'D,W~W'MnotEND~3p(Pw),w),3p(pw» (CD and def. of'D,W:!.:;W'M)
<> '" and Vfe 'D,W~W'Mnotgp[f/j]FpEND(J,(woJ,(f,pw),O),pw) (assumption)
<> 3p Fp EXISTS'(w',pw) 1\ \if e 'D,W~W' -,END(J,(wo,],(f,pw),O),pw) (OSPL semantics)
<> 3p Fp G w (def. of <Pp)

Case G =REFLEXIVE(p)
3M FM REFLEXIVE(p) (assumption)

<> ~M(P)(W) is reflexive (M-Logic semantics)
<> 3M(p) exists in wand (otherwise ~MCp)(w) is not defmed)
<> Sp I=pEXISTS'(w',pw) and Vu 1(3 M(P)(W, u) <> %M(P)(u,U)

(case EXISTS and def. of reflexivity)

If 31>(w') = wand SM I=M G then Sp |=p GW.

31

@
Since the initial call to the translation is (Pym, id) and 3p(0) = OM: w, and idM= identity i.e. the
assumption Sp(w') = w holds, this completes the soundness proof.

The base case of the induction is the atomic level. We have to prove @ for atoms with the user
defined predicates and with the special ARP-predicates. Now let 3p(w‘) = 10 and SM FM G.

933; G = EXISTS(t)
S M J=M EXISTS(t)

:>
:>
©
©
::)

SM(t) e EXISTSKW)
(w, SM(t)) e EXISncf
(Sp(w‘), Sp(tw)) e EXISTS;
Sp r=p EXISTS'(W',tw)

gage G = PERSISTENT(t)
SM pM PERSISTENT(t)

ED 3M(t) & EXISTSqu) for all all ue 130,)(w)

(w, u)c:> (u, SM(t)) e EXISTSM
c:> e ‘D ,W-BW’MQKSMPW), w), Sp(tw)) e EXISTSM

(®, def. of ‘D ,W—*-)W’Mand assumption)

‚:> VqM

(assumption)
(M-Logic semantics)
(def. of (bg)

(@ and assumption)
(OSPL semantics)
(def. of (PF)

(assumption)
(M—Logic semantics)
(def. of (Ds and Ri“)

==> Sp I=p Vf: D, W—->W’ EXISTS '(J,(w0J‚(f,pW)‚0),pw) (OSPL semantics)
<> Sp n=p Gw (def. of op)

%G =P(t1 , . . . , t n)

S M i=M P(t1,. . .,tn) (assumption)
<> 5M(ti) e EXISTSKW) for i = 1,...,n and

(5M(t1)‚.--‚3M(tn)) € Paw) (M—Logic semantics)
c:> Sp I=p EXISTS'(w',tiw) for i = 1,. . .,n (previous case)

and (w, 8M(t1),...,SM(tn)) 6 P912 (def. of (Ds)

c:> Sp l=p EXISTS'(W',tiw) for i = 1,...,n
and (8p(w'), 5p(t1w),...,8p(tnw)) e nf (@ and assumption)

© Sp |=p EXISTS'(W',t1w) A A EXISTS'(w',tnw) A P(w',t1w,...,tnw) (OSPL semantics)
=> Sp r=p Gw. (def. of (DF)

&& G ='SERIAL(p)
S M t=M SERIAL(p) (assumption)

ED 17(s)'(w)1s serial (M-Logic semantics)
© 5M(p)*exists in 10 and (otherwise R5M(p)(w) is not defined)

Vu K3M(p)(w u) © Elude;)(u,z)) (def. of seriality)
=> Sp r=p EXISTS '(w' ,pw) and u a: 3M(p)(w‚uu) c:> not ENDM(u,SM(p))

(case EXISTS and semantics of END)
ED . .and e ‘D,W—eW’Mnot ENDM/(Sp(pw),w),5p(pw)) (@ and def. of ‘D‚W—aW’M)
Ei> . . and e ‘D ‚W——>W’M not 5p[f/f]* r=1> END(i(w0J‚(f,pw) ,0)‚pw) (assumption)
c:> Sp |=pEXISTS' (w' ,pw) A Vf e ‘D ‚W—>W’ —.END(.L(wo$(f‚pw) O),pw) (OSPL semantics)
E:> Sp 1:p (def. of (DF)

m G = REFLEXIVE(p)
3 M I=M REFLEXIVE(p) (assumption)

=> :R5M(p)(w) IS reflexive (M--Logic semantics)
l i>SSM(p) exists in w and (otherwise .'R5M(p)(w) IS not defined)
tb Sp l=PEXISTS ('w' ,pw) and Vu K 5M(p)(w, u) => Kn)(u,u)

(case EXISTS and def. of reflexivity)

32

~ ... and Vu~gM(P)(WI u) ~ 3ge 'D,W~W'ug(Sp(pw»(u)= u
«1) and def. of 'D,W~W'M)

~ ... and Vfe 'D,W.5,W'M3ge 'D,W~W'u (assumption anddef. of 'D,W.5,W''J;{)
Sp[f/f,g/g] Fp J,(woJ,(f,Pw)o-!{g,pw),O) = J,(woJ,(f,pw),O)

~ Spl=pEXISTS'(w',pw) 1\ (OSPLsemantics)
Vf:'D,W.5,W' 3g:'D,W~W' J,(wo-!'(f,Pw)o-!'(g,pw),O) = -!,(wo-!'(f,pw),O)

Q Sp l=p Gw (def. of <Pp)

The proofs for the cases with the other ARP-predicates are similar.

Induction Step: The i~duction hypothesis is: if Spew') = wand SM FM F then Sp l=pFw.

Cases G = Vx:S F and q = 3x:S F

These cases are exactly like the corresponding cases in theorem 5.5.

Case G= op F
SM l=M Op F (assumption)
~ SM(P) exists in w ~ (M-Logic semantics)

\f u ~M(P)(Wlu) ~ SM[U] l=M F (M-Logic semantics)
~ ... ~ENDAAW,SM(p))orVfe'D,W~W'USM[j{SM(p),W)]l=MF

(semantics of END and def. of 'D,W~W' M)
Q <> ENDAAW,Sp(pw» or Vfe 'D,W~W'Mo SM[f{SP(Pw),W)] FM F (CD)
~ <> Sp Fp END(w',Pw) or Vf e 'D,W~W' go.{. Sp[f/j] Fp Fwo,L(f,pw)

(ind.hyp. and assumption)

<> Sp Fp EXISTS'(w',pw) => (-,END(W',p) => \ff:'W~W' Fwo,L(f,pw»)

(OSPL semantics, case EXISTS)

~ Sp Fp Gw (def. of <1>p)

Case G = Op F. This case is analogous to the previous one.

The cases with the normal logical connectives are trivial applications of the induction hypothesis.

To complete the soundness proof, it has to be shown that the characteristic axiom for the END-predi
cate and the reflexivity and transitivity axioms for the 'D,W.5,W' sort hold. This is straightforward. +

Theorem 6.6 Completeness of the Translation
If the OSPL interpretation Sp satisfies a translated specification <1>S«1:,G» then the back translated
interpretation SM = <I>1(Sp) satisfies the original specification (L,G).

The proof is analogous to the completeness proof of the relational translation. +

6. 1 General Optimizations of the Functional Translation

On first glance the functional translation seems to generate nothing better than the relational
translation. The formulae even look bigger and more complex. Instead of the R-predicate we have the
END-predicate and even worse, equations occur already in the translations of propositional modal
logic formulae.

It turned out, however, that the functional translation offers many more possibilities to optimize the
translation itself and to improve the OSPL resolution and paramodulation calculus by incorporating
some of the generated formulae, in particular the translated ARP-predicates, into theory unification
[Siekmann 89] and theory resolution rules [Stickel 85]. In the subsequent paragraphs some of the
obvious optimizations are discussed.

32

ED and Vu !(§M(p)(w, u) ==> age ‘D,W-—)W’M. g(Sp(pw))(u) = u
(@ and def. of ‘D,W—>W’M)

© . . . and e5 ‘D,W—*->W’MElg e ‘D,W—>W’gt{. (assumption and def. of ‘D‚W3->W’M)
3Plf/fig/y] l=P $ (W°i (f ‚pw)°$(g‚Pw)‚0) = i (W°¢(f ,Pw),0)

<> Sp t=p EXISTS'(w’,pw) A (OSPL semantics)
Vf:‘D‚W—*>W’ Elgz‘D,W—>W’ t(wot(f,pw)o¢(g,pw),0) = ¢(woi(f,pw),0)

© Sp l=p Gw (def. of OF)

The proofs for the cases with the other ARP-predicates are similar.

Indugfion Step; The induction hypothesis is: if Sp(w') = wand SM |=M F then Sp |=pFw.

gas-LSG: s s Fand g=3s F
These cases are exactly like the corresponding cases in theorem 5.5.

Qfl G = Up F
SM l=M up F (assumption)

E:> SM(p) exists in w CD (M—Logic semantics)
Vu £3M(p)(w,u) © SM[u] FM F (M-Logic semantics)

© => ENDMw,SM(p)) or e ‘D,W—)W’gvf. SMMSM(p),w)] t=M F
(semantics of END and def. of ‘D,W—>W’M)

":> © ENDM(w,Sp(pw)) or Vj’e ‘D,W——)W’M SMMSp(pw),w)] I=M F (CD)
CD © Sp t=pEND(w'‚pw) or e ‘D‚W—>W’M: Sp[f/j] |=p Fwoimpwp

(ind.hyp. and assumption)
=:> 8p r=p EXISTS'(W',pw) = (fiEND(W',p) => Vf:‘W—>W’ Fwompw)»

(OSPL semantics, case EXISTS)
CD SP l=p Gw (def. of (DF)

gas; G = Op F . This case i s analogous to the previous one.

The cases with the normal logical connectives are trivial applications of the induction hypothesis.
To complete the soundness proof, it has to be shown that the characteristic axiom for the END-predi-
cate and the reflexivity and transitivity axioms for the ‘D,W3>W’ sort hold. This is straightforward. .

Theorem 6.6 Completeness of the Translation
If the OSPL interpretation Sp satisfies a translated specification d>s((Z,G)) then the back translated
interpretation SM = (Di—} (Sp) satisfies the original specification (Z,G).
The proof is analogous to the completeness proof of the relational translation. 9

6 .1 General Optimizations of the Functional Translation

On first glance the functional translation seems to generate nothing better than the relational
translation. The formulae even look bigger and more complex. Instead of the R-predicate we have the
END-predicate and even worse, equations occur already in the translations of propositional modal
logic formulae.

It turned out, however, that the functional translation offers many more possibilities to optimize the
translation itself and to improve the OSPL resolution and paramodulation calculus by incorporating
some o f the generated formulae, i n particular the translated ARP-predicates, into theory unification
[Siekmann 89] and theory resolution rules [Stickel 85]. In the subsequent paragraphs some of the
obvious optimizations are discussed.

33

6.1.1 Removal of Superfluous Axioms

First of all we notice that the two axioms
CD "df,g:'W~W' "dw:W f(w);c g(w) v f= g
@ "df,g:'D,W~W' "dp:D "dw:W J,(f, p)(w) ;c J,(g, p)(w) v f = g

generated by the specification morphism (def. 6.3) cannot be applied to any of the translated formulae
because the inequality does not (theory) unify with any of the other equations. Therefore the first
optimization is to drop these two axioms.

The third axiom
® "df,g:'W~W' "dw:W J,(f ° g, w) = J,(g, J,(f, w»,

applied from right to left, permits the normalization of all terms of sort W as a term J,(tlo ... otn,O).
Since this structure is already generated by the translation itself and it is easy to keep it for
instantiations caused by resolution and paramodulation, we can drop this axiom too. Furthermore,
since all terms of sort W have the above structure, J,(tl 0 ••• otn,O) can be abbreviated by a string
[tl ... tn]. (In [Ohlbach 88] this structure, called world-path, is a distinguished syntactic element).

The axioms
® "df,g:'D,W~W' "dp:D J,(f ° g, p) = J,(f, p) ° J,(g, p)
® 3f:'D,W~W' Vp:D "dw:W J,(f,p)(w) = w (reflexivity)
(J) "df,g:'D,W~W' 3h:'D,W~W' J,(f,p)oJ,(g,p) = J,(h,p) (transitivity)

describe properties of the 'D,W~W'-elements which have to do with reflexivity and transitivity of
the ~ relation. Therefore they cannot be removed without loosing information. In a resolution and
paramodulation calculus, they may however be replaced by a theory unification algorithm which has
the following unification rule:

If f is a variable of sort 'D,W~W' then a unifier for the terms
J,(f,p) and J,(tl,Pl)o ... oJ,(tn,Pn) is 't = 0' o{f~ tlo ... otn} where O'P = O'Pl = .. , = O'pn.

Axiom ® has to be used as rewrite rule from left to right to normalize instantiated terms such that
in the above case 't (t(f,p» = J,(tlo ...otn,O'p) = J,(tI,O'p)o ...oJ,(tn,crp).

This unification rule is sufficient because terms of type 'D,W~W' occur only in the translation of
the ARP-predicates and here they actually stand for nothing else than arbitrary strings
J,(tl,P)o ...oJ,(tn,p).

The only remaining additional axiom is now
<ID "df:'W~W' g:'D,W~W' Vp:D -,END(J,(foJ,(g,p),O), p) v -,END(J,(f,O),p)

This axiom can only be removed in the serial case (see below). In the general case, however, it can be
used to justify a reduction rule which is able to reduce the number of generated END-literals stemming
from the modal operators: If a clause contains the literals

END(J,(tlo ... otn,O), p) v -,END(J,(tlo ... otn0J,(SI,p)o ...oJ,(Sk,P),O), p) vD

then resolution of the first literal with the second literal in @ yields

-,END(J,(tlo ... otn0J,(g,p),O), p) V-,END(J,(tlo ... otn0J,(SI,p)o...oJ,(Sk,p),O), p) vD

where g is a new variable. Since g occurs only once, the factor generated by 't = {g ~ Slo ... oSk}
subsumes the original clause. The net effect is the removal of the literal 'END(J,(tl0...otn,O),p)', and
this can be done immediately after the generation of the clause normal fonn.

33

6 .1 .1 Removal of Superfluous Axioms

First of all we notice that the two axioms
@ vngz‘wiw sw f(w) ¢ g(w) v f = g
@ Vf‚g:‘D,wi>W’ Vp:D sW uf, p)(w) ¢ t(g, p)(w) v f = g

generated by the specification morphism (def. 6.3) cannot be applied to any of the translated formulae
because the inequality does not (theory) unify with any of the other equations. Therefore the first
Optimization is to drop these two axioms.

The third axiom
@ Vf,g:‘wi>W’ sw Mr o g, w) = Mg, uf, w)),

applied from right to left, permits the normalization of all terms of sort W as a term l(t10. ..otn,0).
Since this structure is already generated by the translation itself and it is easy to keep it for
instantiations caused by resolution and paramodulation, we can drop this axiom too. Furthermore,
since all terms of sort W have the above structure, i(t10...0tn,0) can be abbreviated by a string
[t1. . .tn]. (In [Ohlbach 88] this structure, called world-path, is a distinguished syntactic element).

The axioms
@ Vf‚g:‘D‚W—*>W’ vp:D to: o g, p) = uf, p) o J‚(g, p)
@ afz‘D,wi>w' Vp:D sw ~L(f,p)(w) = w (reflexivity)
@ Vf‚g:‘D‚W-°—">W’ 3h:‘D,W—’5>W’ $(f,p)°~L(g,p) = l(h,p) (transitivity)

describe properties of the ‘D,Wi>W’-elements which have to do with reflexivity and transitivity of
the iR?" relation. Therefore they cannot be removed without loosing information. In a resolution and
paramodulation calculus, they may however be replaced by a theory unification algorithm which has
the following unification rule:

If f i s a variable of sort ‘D,W-°'—‘>W’ then a unifier for the terms
¢(f,p) and l(t1,p1)o...ol(tn,pn) is ': = o o{f r—>t1o . . . o t „} where 6p = Up} = = opn.

Axiom @ has to be used as rewrite rule from left to right to normalize instantiated terms such that
in the above case 17 (t(f,p)) = l(t1°. . .Otn,0‘p) = i(t1,0p)0. ..0~L(tn,0'p).

This unification rule is sufficient because terms of type ‘D,W—*->W’ occur only in the translation of
the ARP—predicates and here they actually stand for nothing else than arbitrary strings
¢(t1,p)°. ~°J'(tn>P)-
The only remaining additional axiom is now

© s‘W—äÄW’ g:‘D‚W—’5>W’ sD fiEND(.L(f<>J‚(g,p)‚O), p) v —|END(—L(f,0)‚p)
This axiom can only be removed in the serial case (see below). In the general case, however, it can be
used to justify a reduction rule which is able to reduce the number of generated END-literals stemming
from the modal operators: If a clause contains the literals

END(l(t1o...otn,0), p) v —\END(J‚(t1°...Otn°»L(S1,p)°...°J‚(sk‚p),0)‚ p) v D
then resolution of the first literal with the second literal in @ yields '

—uEND(i(t1°..-°tn°i(g‚p)‚0)‚ p) v—mENDMtio . . . o tn° i (31 ‚p) ° . - - ° J» (Sk‚p) ‚0) ‚ p) v D
where g i s a new variable. Since g occurs only once, the factor generated by 't = {g H s1<>...osk}
subsumes the original clause. The net effect is the removal of the literal ‘END(J‚(t1°...0tn‚O)‚p)’, and
this can be done immediately after the generation of the clause normal form.

34

6.1.2 Prefix Stability

Functionally translated formulae have a particular syntactic property which can be exploited to
simplify certain things in the resolution calculus. This property, called prefix stability, says that the
prefix of every variable of sort 'D,W-7W' is unique. The prefix of a variable 'f' is the chain of terms
'tlo...otn' standing before 'f' in terms 'J..(tlo ... otn0J..(f,p) ... ,O)'. Since these terms originate from the
modal operators, the prefix of a variable 'f' comes from the embracing modal operators of the
operator, 'f' comes from. For example 'OpDp(Q v OqR)' with rigid p and q is translated into

EXISTS(O,p) /\ -,END(O,p) /\ 3f (EXISTS(J..(,j,(f,p),O),p) => -,END(,j,(,j,(f,p),O),p) =>
Vg (Q(,j,(,j,(f,p)o,j,(g,p),0» v (EXISTS (,j,(,j,(f,p)o,j,(g,p),O),p) /\ -,END(,j,(,j,(f,p)o,j,(g,p),O),q) /\
3h R(,j,(,j,(f,p)oJ..(g,p)o,j,(h,q),O).

The prefix of 'f', which comes from 'Op', is empty, the prefix of 'g', which comes from 'D p', is
,,j,(f,p)' and the prefix of h is 'J..(f,p)o,j,(g,p)' .

One place where this nice property can be exploited is the application of the reflexivity axiom. The
formula 'REFLEXIVE(p)' where p is again rigid, is translated and Skolemized into 'EXISTS(p,O) /\ Vf
J..(,j,(f,p)o,j,(g(f),p),0) = ,j,(,j,(f,p),0)'. Actually 'J..(g(f),p)' is something like the identity function,
however depending on f. Nevertheless we want to use the equation 'HJ..(f,p)o,j,(g(f),p),O) =
,j,(,j,(f,p),O)' to remove a term ',j,(x,p)' inside a term' ... o,j,(x,p)o ... ' where 'x' is a variable, by
paramodulation without introducing 'g(f)' by instantiating 'x' somewhere else. If the prefix of 'x' is
the same everywhere, for example 'so,j,(x,p)', then paramodulation with the reflexivity axiom at one
particular occurrence of 'x' yields the instantiated terms 'so,j,(g(s),p)' everywhere else. Applying the
reflexivity axiom as rewrite rule from left to right allows to simplify 'so,j,(g(s),p)' to's', thus
eliminating all occurrences of 'g(. ..)'. As an example consider the formula 'Q(J..(J..(f,p)oJ..(x,p),O) v
R(HJ..(f,p)oJ..(x,p),O)'. Paramodulation with the reflexivity axiom yields 'Q(,l,(Hf,p),O) v
R(,j,(,j,(f,p)o,j,(g(f),p),O)'. Applying the reflexivity axiom as rewrite rule now yields 'Q(,j,(,j,(f,p),O) v
R(,j,(,j,(f,p),0)'. The net effect is the removal of ',j,(x,p)', and this is what is expected in the reflexive
case. The same operations are possible in the symmetric, euc1idean and linear case. That means prefix
stability can be exploited to avoid the introduction of the Skolem functions from the special ARP
formulae into deduced formulae.

In [Ohlbach 88], prefix stability is exploited to develop a finitary unification algorithm which
replaces the transitivity axiom for the accessibility relation. Without prefix stability the unification
algorithm would be infinitary.

Definition 6.7 Prefix and Prefix Stability
Ifa term 't' of sort 'D,W~W' occurs as subtermin a term ',j,(tlo ...otn0,j,(t,p)... ,O)' then 'tlo ... otn' is
called a prefix of 't' and 'tlo ... otn0,j,(t,p)' is called prefix* of 't'. For a given set F of formulae
'prefix(t,F)' is the set of all prefixes of 't' in F and 'prefix*(t,F)' is the set of all prefix*s of 't' in F.
A set F of formulae is called prefix stable if prefix(f,F) is a singleton for all 'D,W~W'-variables
in f. •

There is a useful property of prefix stable terms which can be exploited at various places: In prefix
stable formulae variables do not occur in their own prefix.

Lemma 6.8 If the prefix of a variable f is unique then f does not occur in its own prefix.

Proof: Assume the prefix of f is ,j,(tl,Pl)o ... 0,j,(tk,Pk) and f occurs in some ti or Pi. Since f's prefix is

unique, J..(tl,Pl)o ... 0J..(tk,Pk) must occur in ti or Pi respectively, which is impossible for finite terms.

•

34

6 . l . 2 Prefix Stability

Functionally translated formulae have a particular syntactic property which can be exploited to
simplify certain things in the resolution calculus. This property, called prefix stability, says that the
prefix of every variable of sort ‘D,W—>W’ is unique. The prefix of a variable ‘f’ is the chain of terms
‘tlo...0tn’ standing before ‘f’ in terms ‘¢(t1°...°tn°¢(f,p)...,0)’. Since these terms originate from the
modal operators, the prefix of a variable ‘f’ comes from the embracing modal operators of the
operator, ‘f’ comes from. For example ‘Opnp(Q v OqR)’ with rigid p and q is translated into

EXISTS(0,p) A -:END(0,p) A Elf (EXIsrs(t(J,(f,p),0),p) => —.END(¢(¢(f,p),0),p) =>
Vg <Q<¢(¢(f,p>o¢<g.p>,0» v (EXISTS<¢<¢<f,p)o¢(g,p),0),p) A —IEND(i(i(f‚p)°$(g‚p)‚0)‚q) A
3h R(¢(i (f ,p)°¢(g,p)°¢(h,q) ,0) .

The prefix of ‘f’, which comes from ‘Op’, is empty, the prefix of ‘g’, which comes from ‘np’, is
‘i(f,p)’ and the prefix of h is ‘i(f,p)°~L(g,p)’.

One place where this nice property can be exploited is the application of the reflexivity axiom. The
formula ‘REFLEXIVE(p)’ where p is again rigid, is translated and Skolemized into ‘EXISTS(p,0) /\ Vf
¢(J,(f,p)0¢(g(f),p),0) = ¢(¢(f,p),0)’. Actually ‘i(g(f),p)’ is something like the identity function,
however depending on f. Nevertheless we want to use the equation ‘J , (¢(f ,p)° i (g(f) ,p) ,0) =
J,(~L(f,p),0)’ to remove a term ‘J,(x,p)’ inside a term ‘...0¢(x,p)°...’ where ‘x’ i s a variable, by
paramodulation without introducing ‘g(f)’ by instantiating ‘x’ somewhere else. If the prefix of ‘x’ is
the same everywhere, for example ‘s0J,(x,p)’, then paramodulation with the reflexivity axiom at one
particular occurrence of ‘x’ yields the instantiated terms ‘s<uL(g(s),p)’ everywhere else. Applying the
reflexivity axiom as rewrite rule from left to right allows to simplify ‘soJ‚(g(s),p)’ to ‘s’, thus
eliminating all occurrences of ‘g(. . .)’ . As an example consider the formula ‘Q(~L(.L(f,p)ot(x,p),0) v
R(J,(J,(f,p)°¢(x,p),0)’. Paramodulation with the reflexivity axiom yields ‘Q(¢(¢ (f,p),0) v
R(J«(~L(f,p)°i(g(f),p),0)’. Applying the reflexivity axiom as rewrite rule now yields ‘Q(J‚(J‚(f,p)‚0) v
R(¢(¢(f,p),0)’. The net effect is the removal of ‘J‚(x‚p)’, and this is what is expected in the reflexive
case. The same operations are possible in the symmetric, euclidean and linear case. That means prefix
stability can be exploited to avoid the introduction of the Skolem functions from the special ARP—
formulae into deduced formulae.

In [Ohlbach 88], prefix stability is exploited to develop a finitary unification algorithm which
replaces the transitivity axiom for the accessibility relation. Without prefix stability the unification
algorithm would be infinitary.

Definition 6.7 Prefix and Prefix Stability
If a term ‘t’ of sort ‘D,Wi>W’ occurs as subterrn in a term ‘i(t10...0tn0i(t,p)...,0)’ then ‘t1°...0tn’ is
called a prefix of ‘t’ and ‘t10...0tn°~L(t,p)’ is called prefix* of ‘t’. For a given set F of formulae
‘prefix(t,F)’ i s the set of all prefixes of ‘t’ in F and ‘prefix*(t,F)’ is the set of all prefix*s of ‘t’ in F.
A set F of formulae i s called prefix stable i f prefix(f,F) is a singleton for all ‘D,W—"—‘)W’-variables
in f. 0

There is a useful property of prefix stable terms which can be exploited at various places: In prefix
stable formulae variables do not occur in their own prefix.

Lemma 6.8 If the prefix of a variable f is unique then f does not occur in its own prefix.
Proof: Assume theprefix of f is J,(t1,p1)0...0i(tk,pk) and f occurs in some ti or pi. Since f’s prefix is
unique, i(t1,p1)°. . .°¢(tk,pk) must occur in ti or pi respectively, which i s impossible for finite terms.

O

35

An immediate consequence of the previous lemma is a kind of top leve1linearity for prefix stable
terms: 'D,W~W'-variables can occur at most once on top level of the terms J(tbPI)o ... oJ(tk,Pk).
That means for example a term like J(J(f,p)oJ(f,q» never occurs in translated M-Logic formulae.

Proposition 6.9 <l>p produces prefix stable formulae.
The formula morphism <l>p produces prefix stable formulae if all quantified variables are different.

Proof: We prove by induction on the structure of terms and formulae: Fw =def <l>p(F,w) is prefix

stable and for all variables f occurring in w, prefix(f, Fw) = prefix(f;w).

Almost all cases are straightforward. We therefore show only one typical case in the induction step:

Case F = F1 /\ F2:

Fw = Flw /\ F2w (def. of <l>p)

Letfbea 'D,W~W'-variable.

Case 1: f occurs in w:

Q prefix(f,Flw) = prefix(f,w) = prefix(f,F2w) (induction hypothesis)

Q prefix(f,Fw) = prefix(f,Fl w /\ F2w) = prefix(f,w) (def. of <l>p)

and prefix(f,Fw) is a singleton (induction hypothesis).
Case 2: f does not occur in w:
Q Since all quantified variables are different, f occurs either in F1w or in F2w but not in both;

w.Lo.g assume f occurs in Flw'
Q prefix(f,Fw) = prefix(f,Flw /\ F2w) (def. of <l>p)

= prefix(f,Flw) U {}

Q prefix(f,Fw) is a singleton (induction hypothesis). +

Prefix stability can be exploited only if it is preserved by all operations on the translated formulae, i.e.
by Skolemization, generation of clauses, resolution and paramodulation. For all these operations,
either prefix stability invariance has to be shown or the operation has to modified to preserve prefix
stability.

Skolemization

Standard Skolemization does not preserve prefix stability as the following example shows: The
Skolemization of 'V'f Vg 3h P(J(J(f,p)oJ(g,p)oJ(h,p),O)' yields 'V' f V' g P(J,(J(f,p)oJ,(g,p)o
J,(h(f,g),p),O)' where 'g' occurs once in 'J,(g,p)' with prefix 'J,(f,p)' and once in h(f,g) where the
definition of a prefix makes not much sense. To restore prefix stability, we introduce an extended
Skolemization (c.f. [Herzig 89]) which in the above case yields 'Vf V'g P(J,(.J,(f,p)oJ,(g,p)o
J,(h(J,(f,p),J,(f,p)oJ,(g,p»,p),O)'. Although this looks more complicated, it helps simplify the proof
search.

Lemma 6.10 Extended Skolemization
A formula V'XI ... Xn 3y F[tl(XI), ,tn(xn),y] can be Skolemized to VXI ... Xn F[tl(XI), ... tn(xn),

g(tl(XI), ... ,tn(xn)] where F[tl(XI), ,tn(xn),Y] means that all occurrences of Xi are within a term

ti(Xi).

Proof:

VXI ...Xn 3y F[tl(XI), ,tn(xn),y]

<=> Vxi ... ~3y VXI xnxi =tl(Xl) /\ ... /\ ~ =tn(xn) ~ F[xi. ... ,~,y]

35

An immediate consequence of the previous lemma i s a kind of top level linearity for prefix stable
terms: ‘D,W—"5>W’-variables can occur at most once on top level of the terms i(t1,p1)o...o¢(tk,pk).
That means for example a term like $(i(f,p)o$(f‚q)) never occurs in translated M—Logic formulae.

Proposi t ion 6 .9 (DF produces prefix stable formulae.
The formula morphism CD]: produces prefix stable formulae if all quantified variables are different.

Proof: We prove by induction on the structure of terms and formulae: FW =def <Dp(F,w) i s prefix
stable and for all variables f occurring in w, prefix(f, FW) = prefix(f,w).
Almost all cases are straightforward. We therefore show only one typical case in the induction step:

Egg F = F1 A F2:
FW = Flw A F2“, (def. of (DF)
Let f be a ‘D,W—>W’-van'able.
Case 1 : f occurs in w :
ED prefix(f‚F1w) = prefix(f‚w) = prefix(f,F2w) (induction hypothesis)
=D prefix(f,Fw) = prefix(f,F1w A F2w) = prefix(f,w) (def. of (DF)

and prefix(f‚FW) is a singleton (induction hypothesis).
Case 2: f does not occur in w :
E:> Since all quantified variables are different, f occurs either in F lw or in F2“, but not in both;

w.l .o.g assume f occurs in F lw .
=> prefix(f,Fw) = prefix(f,F1w A F2w) (def. of (DF)

= PrefiX(f‚F1w) U { }
==> prefix(f‚Fw) is a singleton (induction hypothesis). 9

Prefix stability can be exploited only if i t is preserved by all operations on the translated formulae, i.e.
by Skolemization, generation of clauses, resolution and paramodulation. For all these operations,
either prefix stability invariance has to be shown or the operation has to modified to preserve prefix
stability.

Skolemiza t ion

Standard Skolemization does not preserve prefix stability as the following example shows: The
Skolemization of “(7n 3h P(i(¢(f,p)oJ«(g,p)0i(h,p),0)’ yields ‘Vf‘v’g P(i(i(f‚p)oJ‚(g,p)o
$(h(f,g)‚p)‚0)’ where ‘g’ occurs once in ‘i(g,p)’ with prefix ‘i(f,p)’ and once in h(f,g) where the
definition of a prefix makes not much sense. To restore prefix stability, we introduce an extended
Skolemization (c.f. [Herzig 89]) which in the above case yields ‘Vf Vg P(J,(J,(f,p)0i(g,p)o
J,(h(J‚(f‚p),$(f,p)o$(g,p))‚p)‚0)’. Although this looks more complicated, it helps simplify the proof
search.

Lemma 6.10 Extended Skolemization
A formula ‘v’xl...xn By F[t1(x1),...,tn(xn),y] can be Skolemized to Vx l . . . xn F[t1(x1),...tn(xn),
g(t1(x1),...,tn(xn)] where F[t1(x1),...,tn(xn),y] means that all occurrences of xi are within a term
t i (Xi) .

m:
Vx1‚..xn Ely F[t1(x1),. . .‚t„(xn)‚y]

=) Vxl'...x‚'13y Vxl . . .xn x1' = t1(x1) A.../\ x,; = tn(xn) = F[x1‘,...,x‚'„y]

36

is unsatisfiable iff
'ixi ...~ 'ixl Xn xi::::: tl(Xl) /\ /\ ~ =tn(xn) :=} F[xi, ... ,~,g(xi... ~)]

<=> 'ixl·· .Xn F[x{, ,~,g(tl (Xl), ,tn(xn»))]
 •
This lemma, which holds for arbitrary predicate logic formulae, can be used to Skolemize trans

lated M-Logic formulae by first generating a prefix form, which is a standard transformation in
predicate logic and then Skolemizing as follows:

'ifl ...fn:'D,W~W' 'ixl ...Xm 3y F[tl(Xl), ,tn(xn),y]

~ 'if l" .fn:'D,W~W' 'ixl ...Xn F[tl(Xl), ,tn(xn),f(s}, ... ,sn, Xl ...Xm)]

where Si::::: prefix*(fi,F).
Since the translated formulae are prefix stable (proposition 6.9), lemma 6.10 is applicable and the
extended Skolemization yields again prefix stable formulae.

Generation of Clauses

Clause generation consists of manipulations on the formula level followed by a variable renaming to
make the clauses variable disjoint. Since the manipulations on the formula level do not modify the
structure of terms, prefix stability is guaranteed. The variable renaming operation replaces all
variables consistently by new variables. It is easy to see that this operation also preserves prefix
stability.

Instantiation of Clauses and Resolution

Both deduction rules, resolution and paramodulation consist of an instantiation operation followed by

the corresponding clause forming operations. As the following example shows, instantiation of

clauses with arbitrary substitutions does not preserve prefix stability: {x f-7 a(J,(J,(f,p)oJ,(g,p),0» }

(P(x) Y Q(J,(J,(h,p)oJ,(g,p),O») ::::: P(a(J,(J,(f,p)oJ,(g,p),O» Y Q(J,(J,(h,p)oJ,(g,p),O» which is no

longer prefix stable because there are two different prefixes for' g'. The hope is therefore that at least

the instantiation with most general unifiers preserves the prefix stability. The next lemma gives a

sufficient condition for substitutions such that instantiation preserves prefix stability.

Lemma 6.11

If C is a prefix stable clause set and a ::::: {x f-7 s} is an idempotent substitution where either s is a new

variable or s occurs in C or s ::::: SI 0 ... 0Sn and .l.-(Sl,p)o ... oJ,(sn,P) occur in C and prefix(sl,C) :::::

prefix(x,C) then aC is prefix stable.

Proof: A consequence of lemma 6.8 is that for the s ::::: S}O ...0Sn case the variable x is not contained in

prefix(sl,C) ::::: prefix(x,C) CD

Let fbe a 'D,W~W'-variable in ae.

Case I: f does not occur in s.

In this case f occurs in e. Let q be f's (unique) prefix in C. Since f does not occur in s, f also not

occurs in aq which is the prefix of af::::: f. Hence f's prefix in aC is again unique.

Case 2: f occurs in s.

If f occurs at a deeper nesting level in s, its prefix in C must be the same as its prefix in crC because s

occurs in C. Therefore let s ::::: SI 0 ... 0Sn and f ::::: Si for some i. (The case that s is a new variable is

trivial). The situation is as follows:

Occurrences of f::::: Si in C: prefix(s},C)0J,(S2,P)0...0J..(Si,P).

Since prefix(s},C) ::::: prefix(x,C) and because of CD, x does not occur in prefix(sl,C), Furthermore

because a is idempotent, x does not occur in J..(S2,P)o ...0J,(Si,P). Therefore for these occurrences in

36

is unsatisfiable iff
f . . . x , ; Vxl . . .xn x1' = t1(x1) A.../\ x,; = tn(xn) => F[x1',... ‚xli,g(x1'...x‚'‚)]

=> Vxl. . .xn F[x1',...,x,',,g(t1(x1),...,tn(xn)))] o

This lemma, which holds for arbitrary predicate logic formulae, can be used to Skolemize trans-
lated M-Logic formulae by first generating a prefix form, which is a standard transformation in
predicate logic and then Skolernizing as follows:

Vfl...fn:‘D,W—)W’ Vxl. . .xm 3y F[t1(x1),...,tn(xn),y]
—> Vf1.. .fn:‘D,W—>W’ Vxl. . .xn F[t1(x1),.. .,tn(xn)‚f(sl,...‚sn, X1...xm)]

where si = prefix*(fi‚F).
Since the translated formulae are prefix stable (proposition 6.9), lemma 6.10 is applicable and the
extended Skolemization yields again prefix stable formulae.

Generation o f Clauses

Clause generation consists of manipulations on the formula level followed by a variable renaming to
make the clauses variable disjoint. Since the manipulations on the formula level do not modify the
structure of terms, prefix stability is guaranteed. The variable renaming operation replaces all
variables consistently by new variables. It is easy to see that this operation also preserves prefix
stability.

Instantiat ion of Clauses and Resolut ion

Both deduction rules, resolution and paramodulation consist of an instantiation operation followed by
the corresponding clause forming operations. As the following example shows, instantiation of
clauses with arbitrary substitutions does not preserve prefix stability: {x H a(J,(J,(f,p)oJ.(g,p),0))}
(Poo v Q(¢(¢(h,p)o¢(g.p).0)» = P(a(¢(¢(f.p>o¢(g.p),0» v Q(¢<~L(h.p)o¢(g.p).0» which is no
longer prefix stable because there are two different prefixes for ‘g’. The hope is therefore that at least
the instantiation with most general unifiers preserves the prefix stability. The next lemma gives a
sufficient condition for substitutions such that instantiation preserves prefix stability.

Lemma 6 .11
If C is a prefix stable clause set and 0' = {x H s} is an idempotent substitution where either s i s a new
variable or s occurs in C or s = 51°...osn and i(sl ,p)o. . .oi(sn,p) occur in C and prefix(s1‚C) =
prefix(x,C) then O'C is prefix stable.
@: A consequence of lemma 6.8 is that for the s = 51°. . .05“ case the variable x i s not contained in
prefix(s1,C) = prefix(x,C) @
Let f be a ‘D,W—*9W’~variable in ac.
Case 1: f does not occur in s.
In this case f occurs in C. Let q be f’s (unique) prefix in C. Since f does not occur in s, f also not
occurs in (Sq which is the prefix of of = f. Hence f’s prefix in (SC is again unique.
Case 2: f occurs in 5.
If f occurs at a deeper nesting level in s, its prefix in C must be the same as its prefix in CC because s
occurs in C. Therefore let s = s10...osn and f = si for some i . (The case that 5 is a new variable is
trivial). The situation is as follows:
Occurrences of f = si in C: prefix(sl,C)°J‚(s2‚p)°...oi(si,p).
Since prefix(sl,C) = prefix(x,C) and because of ®, x does not occur in prefix(s1,C). Furthermore
because 0' i s idempotent, x does not occur in L(sz,p)°. . .o¢(si,p). Therefore for these occurrences in

37

C we have that the prefix in oC is again prefix(sl,C)oJ..(S2,P)0 ...0,l.(Si,p).

Now we have to consider the occurrence of x in C which is prefix(x,C)o,l.(x,p) =

prefixes t.C)o,l.(x,p). Instantiated with 0 and normalized, prefixes1,C)0,l.(S2,P)0 ... o,l.(Si,P)o ... is

obtained, and this is the same term as above. Therefore we conclude in this case again that

prefix(f,oC) is unique. +

Definition 6.12 Standard Unification

A unification algorithm generating unifiers 0 for some terms t in the following way is called a

standard unification algorithm: 0 can be written as a composition 01 0... 00n where for i =

1,... ,n, 0i = {x 1-7 sI is an idempotent substitution such that

• either s is a new variable or
• s occurs in the partially unified terms ti-1 =def (0"1° ...00i_1)t or
• or s =SlO ...OSn and ,l.(st.p)o ... o,l.(sn,P) occur in ti-1 and prefix(sl,ti-1) =prefix(x,ti_1)' +

It is noted that the normal unification algorithm for OSPL [Schmidt-SchauB 89], enhanced by the
unification rule for 'D,W~W'-terms is of this type, even with arbitrary term declarations. In the
sequel we consider only standard unification.

Lemma 6.13 Instantiation of a clause set C with a unifier for some of its terms which is generated

by a standard unification algorithm preserves prefix stability.

Proof: We exploit that the unification algorithm generates substitutions 0 which can be written as a

composition 010... 00n with properties as listed in lemma 6.11. Induction on n and application of

lemma 6.11 yields the desired result. +

Lemma 6.14 Resolution with a unifier computed by a standard unification algorithm preserves

prefix stability.

The proof is an immediate consequence of the previous lemma. +

Paramodulation

It is quite natural that resolution preserves prefix stability because instantiation of whole clauses with
most general unifiers does not seriously change the structure of terms. This is different for the
paramodulation operation which replaces a single subterm by another term. In particular, a paramodu
lation may modify one occurrence of a prefix of a 'D,W.!!tW'-variable and leave another occurrence
unchanged, thus destroying prefix stability. For example consider the prefix stable clause
'P(-l.(,l.(f,p(a))o,l.(g,p(a)),O) v Q(,l.(,l.(f,p(a))o,l.(g,p(a)),O)'. Paramodulation with 'a = c' yields
'P(J,(,l.(f,p(c))o,l.(g,p(a)), 0) v Q(J,(,l.(f,p(a))o,l.(g,p(a)), 0)' which is no longer prefix stable. The idea
to restore prefix stability is to change the paramodulation strategy such that all occurrences of a
particular term in the prefix of a world variable of a clause are paramodulated simultaneously. In the
above example, the second occurrence of 'a' would also be paramodulation such that the twice
paramodulated clause is again prefix stable.

37

C we have that the prefix in oC is again prefix(s1,C)°~L(sz,p)°. . .°~L(si,p).
Now we have to consider the occurrence of x in C which i s prefix(x,C)°¢(x,p) =
prefix(sl,C)0~L(x,p). Instantiated with 6 and normalized, p re f ix (s l ,C)0 i (sz ,p)o . . .o l , (s i ,p)o . . . is
obtained, and this i s the same term as above. Therefore we conclude in th is case again that
prefix(f,6C) _is unique. 0

Defini t ion 6 .12 Standard Unification
A unification algorithm generating unifiers 0‘ for some terms t in the following way i s called a
standard unification a lgor i thm: 0' can be written as a composition 61° . . . 00 ' n where for i =
1 , . . . , n , O'i = {x H s} i s an idempotent substitution such that

° either s i s a new variable or
' 5 occurs in the partially unified terms ti-1 =def (61°. . ‚oo i_1) t or
' or 5 = 51°...osn and i(s1,p)0. ..oJ,(sn,p) occur in ti_1 and prefix(sl,ti_1) = prefix(x,ti_1). o

It i s noted that the normal unification algorithm for OSPL [Schmidt—Schauß 89] , enhanced by the
unification rule for ‘D‚W3->W’-terms is of this type, even with arbitrary term declarations. In the
sequel we consider only standard unification.

Lemma 6.13 Instantiation of a clause set C with a unifier for some of its terms which i s generated
by a standard unification algorithm preserves prefix stability.
PM: We exploit that the unification algorithm generates substitutions 0' which can be written as a
composition 61°.. .00n with properties as listed in lemma 6.11. Induction on n and application of
lemma 6.11 yields the desired result. 9

Lemma 6.14 Resolution with a unifier computed by a standard unification algorithm preserves
prefix stability.
The proof is an immediate consequence of the previous lemma. 9

Paramodulation

It is quite natural that resolution preserves prefix stability because instantiation of whole clauses with
most general unifiers does not seriously change the structure of terms. This is different for the
paramodulation operation which replaces a single subterm by another term. In particular, a paramodu—
lation may modify one occurrence of a prefix of a ‘D,W1>W’-variable and leave another occurrence
unchanged, thus destroying prefix stability. For example consider the prefix stable clause
‘P(J,(.L(f,p(a))°¢(g,p(a)),0) v Q(i (i(f,p(a))0¢(g,p(a)),0)’. Paramodulation with ‘a = c ’ yields
‘P(i(»L(f‚p(c))°i(g,p(a)), 0) v Q(¢(¢(f,p(a))0¢(g,p(a)), 0)’ which is no longer prefix stable. The idea
to restore prefix stability is to change the paramodulation strategy such that all occurrences of a
particular term in the prefix of a world variable of a clause are paramodulated simultaneously. In the
above example, the second occurrence of ‘a’ would also be paramodulation such that the twice
paramodulated clause is again prefix stable.

38

A general example for simultaneous paramodulation:
P(k(x)) v Q(k(a),x)
kCa) =c v D q ={x t-7 a}, paramodulation into kCx)
P(c) v Q(c,a) v D +

Dan Benanav has shown that this kind of simultaneous paramodulation, together with resolution
and factoring is complete for unsorted predicate logic [Benanav 90], i.e. every unsatisfiable clause set
can be refuted with simultaneous paramodulation, resolution and factoring. For sorted logic,
simultaneous paramodulation is in general not complete as the following counter example shows:
Suppose we have the two sorts A and B, the subsort declaration A 5 B, a constant symbol a:B, a
predicate symbol P: BxA and a function symbol k: B~ A. The three clauses {P(a,k(a))},
{-,P(k(a),k(a))} and {a =k(a)} can be refuted by normal paramodulation and resolution but not by
simultaneous paramodulation. The reason is that P(a,a) is not a well sorted atom and therefore these
paramodulations are not possible. The possible simultaneous paramodulation into the first clause
yields P(k(a),k(k(a)) which does not help.

For preserving prefix stability, it is however not necessary to apply simultaneous paramodulation
only. Only paramodulations into different occurrences of a world variable's prefix should be
paramodulated simultaneously. All other cases are treated as before. Since the sort of a world
variable's prefix is always 'W~W' or 'w3,w' and never changes through paramodulation, this
guarantees that whenever a paramodulation into one occurrence of a world variable's prefix is
possible, simultaneous paramodulation into all occurrences is possible too. Benanav's completeness
proof now carries over to this restricted version of simultaneous paramodulation.

Lemma 6.15 Restricted simultaneous paramodulation preserves prefix stability.
IProof: Let C[s'] and s = t, D be the variable disjoint, prefix stable parent clauses of a paramodulation
\yielding (aC)[as' ~ at], aD as simultaneous paramodulant. According to lemma 6.13, a(C, s = t,
iD) is prefix stable. Let 'f' be a world variable in the paramodulant. We consider the critical case
]where as occurs in f's prefix in a(C, s = t, D). If f occurs in aC, all occurrences of as in aC are
,replaced by at. Therefore f's prefix in (aC)[as' ~ at] is still unique.. fmust also occur in C with s'
lin its prefix, because otherwise there would be another variable g which is instantiated with f and s
Iwould be in the prefix of g. Since g cannot occur in its own prefix (lemma 6.8), and since the parent
Iclauses are variable disjoint, g can not be instantiated by the unifier for s' and s. Therefore f occurs
lalready in C. Since the clauses are variable disjoint and since f is not instantiated by a, f cannot occur
~n aD. Thus, f's prefix is unique in the whole paramodulant. +

38

A general example for simultaneous paramodulation:
P(k(X)) v Q(k(a).X)
ka =c = xv—>a a ramodla t ion in tokx
P(c) v Q(c‚a) v D 0

Dan Benanav has shown that this kind of simultaneous paramodulation, together with resolution
and factoring is complete for unsorted predicate logic [Benanav 90], i.e. every unsatisfiable clause set
can be refuted with simultaneous paramodulation, resolution and factoring. For sorted logic,
simultaneous paramodulation is in general not complete as the following counter example shows:
Suppose we have the two sorts A and B , the subsort declaration A E B, a constant symbol a:B, a
predicate symbol P : BXA and a function symbol k: B—> A . The three clauses {P(a ,k(a))} ,
{fiP(k(a),k(a))} and {a = k(a)} can be refuted by normal paramodulation and resolution but not by
simultaneous paramodulation. The reason i s that P(a,a) is not a well sorted atom and therefore these
paramodulations are not possible. The possible simultaneous paramodulation into the first clause
yields P(k(a),k(k(a)) which does not help.

For preserving prefix stability, it is however not necessary to apply simultaneous paramodulation
only. Only paramodulations into different occurrences of a world variable’s prefix should be
paramodulated simultaneously. All other cases are treated as before. Since the sort of a world
variable’s prefix is always ‘W——>W’ or ‘WÄW’ and never changes through paramodulation, this
guarantees that whenever a paramodulation into one occurrence of a world variable’s prefix is
possible, simultaneous paramodulation into all occurrences is possible too. Benanav’s completeness
proof now carries over to this restricted version of simultaneous paramodulation.

Lemma 6.15 Restricted simultaneous paramodulation preserves prefix stabili ty.
2119!: Let C[s'] and s = t, D be the variable disjoint, prefix stable parent clauses of a paramodulation
yielding (6C)[os' —> 01], 6D as simultaneous paramodulant. According to lemma 6.13, 0(C, s = t,
D) is prefix stable. Let ‘f’ be a world variable in the paramodulant. We consider the critical case
where os occurs in f ’ s prefix in O'(C‚ s = t , D) . If f occurs in 6C, all occurrences of a s in 6C are
replaced by c't. Therefore f’s prefix in (oC)[0's' _) ct] is still unique..f must also occur in C with s'
in its prefix, because otherwise there would be another variable g which is instantiated with f and 5
‘would be in the prefix of g. Since g cannot occur in its own prefix (lemma 6.8), and since the parent
iclauses are variable disjoint, g can not be instantiated by the unifier for s’ and s. Therefore f occurs
already in C. Since the clauses are variable disjoint and since f is not instantiated by 0, f cannot occur
in 6D. Thus, f’s prefix is unique in the whole paramodulant. O

39

6.2 Specific Optirnizations for the Functional Translation

For particular cases, the translation rules can further be simplified. We consider some of the more
frequently occurring cases.

6.2.1 Unpararnetrized Modal Operators

Since modal operators without parameters are an important subcase, we list the simplified translation
rules for this case:

• SERIALw	 = Vf:'W~W' -,END(J(wof),O»

• REFLEXIVEw	 == Vf:'W5,W'3g:'W~W' J..(wofog,O) == J..(wof,O)

•	 TRANSITIVEw == Vf,g:'W~W'3h:'W~W' J..(wofog,O) == J..(woh,O)

== Vf:'W5,W' Vg:'W~W' 3h:'W~W' J..(wofogoh,O) == J..(wof,O)•	 SYMMETRICw

•	 EUCLIDEANw == Vf:'W~W' Vg,h:'W~W' 3k:'W~W' J..(wofogok,O) == J..(wofoh,O)

== Vf,g:'W~W' 3h:'W~W'•	 LINEARw
J..(wofoh,O) = J..(wog,O) v J..(wogoh,O) = J..(wof,O)

•	 INCREASING-DOMAINw == Vf:'W5,W' Vg:'W~W' Vx:D
EXISTS'(J..(wof,O),x) => EXISTS'(J..(wofog,O) ,x)

•	 DECREASING-DOMAINw = Vf:'W5,W' Vg:'W~W' Vx:D
EXISTS'(J..(wof,O),x) <= EXISTS'(J..(wofog,O),x)

• (oF)w	 == -,END(J..(w,O» => Vf:'W~W' Fwof

• (OF)w	 = -,END(J..(w,O» /\ 3f:'W~W' Fwof

• All other cases are as before.

As mentioned before the only axiom to be generated by the specification morphism is @. The

simplified version for the unparametrized case is:

@' Vf:'W~W' g:'W~W' END(J..(fog,O» => -,END(J..(f,O»

6.2.2 Serial Accessibility Relation

The formula 'Vp SERIAL(p)' is translated into 'Vp Vf:'D,W~W' -,END(J..(J..(f,p),O),p)'. This clause
subsumes all formulae containing a literal '-,END(...)' conjunctively and allows to "resolve away"
literals 'END(...)' contained disjunctively in a formula. Such literals occur in the translation of the two
modal operators. The combined effect of generating these literals during the translation and subsum
ing or resolving them away with the seriality clause can be achieved by simply not generating them.
The optimized translation rules for this case are therefore:

•	 If a specification contains a formula 'Vp SERIAL(p)' then remove axiom @ and use the following
optimized translation rules:
• (DpF)w == EXISTS'(w',pw) => Vf:'W~W' FwoJ,(f,pw)

• (Op F)w = EXISTS'(w',pw) /\ 3f:'W~W' Fwo,J.(f,pw).

39

6 .2 Specific Optimizations for the Functional Translation

For particular cases, the translation rules can further be simplified. We consider some of the more
frequently occurring cases.

6 . 2 . 1 Unparametrized Modal Operators

Since modal operators without parameters are an important subcase, we list the simplified translation
rules for this case:
. SERIALw = s‘WÄW’ —:END(J«(w0f),0))
. REFLEXIVEw = s‘Wi>W’Elg:‘W—9W’ t(wofog,0) = t(wof‚0)
. TRANSITIVEW = Vf,g:‘W—>W’3h:‘W—>W’ t(wofog,0) = t(woh,0)
- SYMMETRICw = Vf:‘W—*>W’ Vg:‘W——)W’ 3h:‘W—>W’ _L(w0fog0h‚0) = i(wof‚0)
. EUCLIDEANW = s‘wiW’ Vg,h:‘W-—>W’ 3k:‘W—->W’ t(wofogok‚0) = i(wofoh,0)
. LINEARw = Vf,g:‘wi>W’ 3h:‘W—*>W’

.L(w0f0h,0) = J,(wog,0) v J,(wogoh,0) = ¢(wof,0)

. INCREASING-DOMAINW = Vf: ‘W1>W’ n‘W-aW’ Vx:D
Exrsrs'(J‚(wof,O),x) = Exrsrs'(i(wofog,0),x)

° DECREASlNG-DOMAINW = Vf:‘W—*->W’ Vg:‘W—>W’ sD
EXISTS‘(¢(wof,0),x) <= EXIST3'(J‚(wofog,0),x)

° (DF)w = —1END(J‚(W,O)) => Vf:‘W—>W’ Fwof

° (0F)w = —.END(J‚(W‚0)) A 3f:‘W—>W’ Fwof

° All other cases are as before.

As mentioned before the only axiom to be generated by the specification morphism is © . The
simplified version for the unparametrized case is:

@ s‘WÄW’ gz‘WÄW’ END(J‚(f°g,O)) =>fiEND(l«(f,O))

6 . 2 . 2 Serial Accessibility Relation

The formula ‘Vp SERIAL(p)’ is translated into ‘Vp Vf:‘D,W-"—')W’ -|END(J,(J«(f,p),O),p)’. This clause
subsumes all formulae containing a literal ‘—.END(. . .)’ conjunctively and allows to “resolve away”
literals ‘END(. . .)’ contained disjunctively in a formula. Such literals occur in the translation of the two
modal operators. The combined effect of generating these literals during the translation and subsum-
ing or resolving them away with the seriality clause can be achieved by simply not generating them.
The optimized translation rules for this case are therefore:
° If a specification contains a formula ‘Vp SERIAL(p)’ then remove axiom @ and use the following

optimized translation rules:
’ (DPF)W = EXISTS'(W'‚Pw) => Vf: ‘W—>W’ Fwol(f,pw)

. (op
F)w = EXISTS'(W',pw) A 3f:‘W—>W’ Fw0l(f,pw)-

40

6.2.3 Constant Domain Interpretations

In case ''v'x'v'p PERSISTENT(x,p)' holds, Le the domain does not change, the following clause is
generated by <Pp: '\7'p,x:D 'v'f: 'D,W~ W' EXISTS'(~(~(f,p),O),x)'. This formula subsumes or
resolves away respectively all EXISTS' literals generated by the translation. Therefore we can
formulate optimized translation rules for the constant domain case too:

•	 If a specification contains the formula '\7'x\7'p PERSISTENT(x,p)' then use the following optimized
translation rules:

•	 P(tl, ... ,tn)w = P'(W',tlw,... ,tnw) ifP is a flexible predicate symbol.

•	 SERIAL(p)w = 'v'f:'D,W~W' -,END(~(wo~(f,pw),O),pw)

•	 REFLEXIVE(P)w ='v'f:'D,W~W' 3g:'D,W~W' ~(woJ,(f,Pw)o~(g,pw),O) =~(woJ,(f,pw),O)

•	 TRANSITIVE(p)w = \7'f,g:'D,W-4W'3h:'D,W-4W' J,(wo~(f,Pw)o~(g,pw),O)=~(wo~(h,pw),O)

•	 SYMMETRIC(p)w =\7'f:'D,W~W' 'v'g:'D,W-4W' 3h:'D,W~W'

~(wo~(f,Pw)o~(g,Pw)o~(h,pw),O)= ~(wo~(f,pw),O)

•	 EUCLIDEAN(p)w ='v'f:'D,W~W' \7'g,h:'D,W~W' 3k:'D,W-4W'

~(wo~(f,pw)o~(g,pw)o~(k,pw),0) =~(wo~(f,pw)oJ,(h,pw),0)

•	 LINEAR(p)w =\7'f,g:'D,W~W' 3h:'D,W~W'

J,(wo~(f,Pw)o~(h,pw),O) = ~(wo~(g,pw),O) v

~(wo~(g,Pw)o~(h,pw),O) = ~(wo~(f,pw),O)

•	 ('v'x F)w = \7'x Fw
•	 (3x F)w = 3x Fw
•	 ([Jp F)w =oEND(W',pw) ~ 'v'f:'D,W~W' FwoJ,(f,pw)

•	 (Op F)w =-,END(W',pw) A 3f:'D,W-4W' FwoJ,(f,pw).

That means no EXISTS'-literal at all occur in the translated formulae.

6 •3 Further Optimizations

The optimizations presented in this section are still subject to ongoing investigations.

6.3.1 Optimized Skolemization of Modal Variables

In the serial case the formula [JOQ is translated, into 'v'f 3g Q(~(fog,O) which, Skolemized in the
usual way, yields 'v'f Q(J,(foh(f),O». The Skolem function h depends on f. Since the term ~(foh(f),O)

is nothing else than h(f)(f(O» =h(f,f(O» in second order syntax, this term depends twice on f, which
seems to be redundant. A graphical picture of the situation supports this conjecture.

h needs not depend on f and may nevertheless map wl to w2 and w3 to w4. That means an
optimized Skolemization could generate \7'f Q(J,(fOh,O» with a constant symbol h.

Unfortunately this view is too simplistic as the following counter example shows, which was
discovered by Patrice Enjalbert: Assuming constant domains, the translated and optimized

40

6 . 2 . 3 Constant Domain Interpretations

In case ‘Vp PERSISTENT(x,p)’ holds, i . e the domain does not change, the following clause is
generated by (DF: ‘Vp,x:D Vf:‘D,W1>W’ EXISTS'(J,(¢(f,p),0),x)’. This formula subsumes or
resolves away respectively all EXISTS' literals generated by the translation. Therefore we can
formulate optimized translation rules for the constant domain case too:
° If a specification contains the formula ‘Vp PERSISTENT(x,p)’ then use the following optimized

translation rules:
° P(t1,...,tn)w = P'(w',t1w‚...,tnw) if P is a flexible predicate symbol.
. SERIAL(p)w = Vf;‘D,wi>W’ —.END(¢(wo¢(f,pw),0),pw)
. REFLEXIVE(p)W = Vf:‘D,W1>W’ EIg:‘D,W—>W’ i(wo¢(f,pw)ol,(g,pw),0) = i(woi(f,pw),0)
° TRANSITIVE(p)w = Vf,g:‘D,W—)W’Elh:‘D,W—)W’ ¢(wo¢(f,pw)oi(g,pw),0) = .L(wo.L(h,pw),O)
° SYMME'IR1C(p)w = Vf:‘D‚W-5>W’ Vg:‘D,W—->W’ 3h:‘D,W—)W’

$(W°$(f‚Pw)°$(g‚Pw)°l(h‚pw)‚0) = $(W°$(f‚Pw)‚0)

. EUCLIDEAN(p)w = s‘D‚wi>W’ Vg,h:‘D,W—)W’ Elk:‘D,W—9W’
i (W°i(f‚Pw)°$(g‚Pw)°i(k‚Pw)‚0) = $(W°i(f ‚pw)°i (h‚Pw)‚0)

. LINEAR(p)w = Vf,g:‘D,wi>W’ 3h:‘D,wi>W’
~L(W°¢(f,Pw)°¢(h,pw).0) = ¢(W°i(g,Pw),0) V
Jr(W°‘L(ga)°‘L(h,Pw),0) = i(W°~L(f,pw),O)

. (vx F)“, = Vx FW

. (3x F)W = 3X FW

. (up F)“, = fiEND(W',pw) => Vf:‘D,W—>W’ Fwo¢(f,pw)

. (op F)w = —1END(w'‚pw) A 3f:‘D,W—>W’ FW°i(f‚pw)'

That means no EXISTS'-literal at all occur in the translated formulae.

6 .3 Further Optimizations

The optimizations presented in this section are still subject to ongoing investigations.

6 .3 .1 Optimized Skolemization of Modal Variables

In the serial case the formula DOQ is translated, into Vf E! g Q(~L(fog,0) which, Skolemized in the
usual way, yields Vf Q(~L(foh(i),0)). The Skolem function h depends on f. Since the term ~L(foh(f),0)
i s nothing else than h(f)(f(0)) = h(f,f(0)) in second order syntax, this term depends twice on f, which
seems to be redundant. A graphical picture of the situation supports this conjecture.

”’1 h(f1)) "é

f2 „% h(fz)) “a
h needs not depend on f and may nevertheless map all to 2412 and w3 to w4. That means an

optimized Skolemization could generate Vf Q(i(f°h,0)) with a constant symbol h.

Unfortunately this view is too simplistic as the following counter example shows, which was
discovered by Patrice Enjalbert: Assuming constant domains, the translated and optimized

41

Skolemized version of the modal formula o(3x(Q(x) /\ oO.Q(x» is
'v'f Q(J,(f,O),a(J,(f,O» /\ 'v'f,g .Q(J,(fogoh,O),a(J,(f,O».

If the accessibility relation is symmetric, i.e. the equation
\tf:'D,W~W' 'v'g:'D,W~W' 3h:'D,W~W' J,(fogoh,O) =J,(f,O)
or, not 100% correct, but working in practice: 'v'g:'D,W~W' gog-1 =id

holds, this formula is refutable. (A corresponding unification algorithm with this axiom built in,
generates a unifier 0" = {f~ h, g ~ h-1} for Q(,J..(f,O),a(J,(f,O» and Q(J,(fogoh,O),a(,J..(f,O»). The
modal logic version, however, is satisfiable. A model is:

That means at least in the symmetric case the normal or extended Skolemization is necessary. Andreas
Herzig has shown that the optimized Skolemization is sound at least for the propositional modal logic
case [Herzig 89]. There is a strong conjecture that it also works in the first order case when the
properties of the accessibility relation do not permit movements arbitrarily forward and bac~ward in
the possible worlds structure. For certain properties this conjecture has been proved in [Auffray 89].

6.3.2 Theory Unification

The translation of the ARP predicates yields equations in most cases. To tune the resolution and
paramodulation calculus, it is necessary to turn these equations into theory unification algorithms. I
have done this for the case of classical modal logics with unparametrized operators and for logics
with reflexive, symmetric and transitive accessibility relation. The algorithm is presented here without
soundness and completeness proofs. They can be found in [Ohlbach 88]. The algorithm is not yet
extended to the general case.

The process of unification is considered as a sequence of - in general nondeterministic - transfor
mations on systems of equations that starts with the terms or atoms 'p = q' to be unified and termi
nates in the positive case with a system 'Xi =ti' in solved form. The nondeterministic choice of the
transformation rules generates a tree like search space where the nodes are the actual state of the
equation system. Each successful transformation chain computes a unifier for p and q. This follows
the ideas in [Herbrand 30], [Martelli & Montanari 82] and others. We divide a system of equations
into an unsolved ordered part r, an ordered set, that initially contains the single equation {p = q} to
be solved, and into an initially empty solved part 0" with components of the form 'x = t' such that 0'

represents an idempotent substitution.

The transformation starts by checking the trivial cases, i.e. whether or not the initial system 'p =q'
is already in the form 'x =t'. Each transformation replaces a system r, 0" by a modified system r', 0"

as follows:

•	 Pick the left most equation s =t E r (depth first, left to right selection, r is ordered).
Remove s =t from r.

•	 Select from the set of admissible transformation rules a rule '1'which is applicable to s =tor t =s.
If no rule is applicable then terminate this branch in the search space with failure.

•	 Apply the rule '1'to s =t (or t =s respectively).

Let SI = tl & ...& sn =tn be the result of the transformation.

41

Skolemized version of the modal formula D(Elx(Q(x) A DO—1Q(x)) i s
Vf Q(l(f,O), a(.L(f, 0)) A Vf,g —:Q(i(fog°h,0),a(¢(f,0)).

If the accessibility relation lS symmetric, i e. the equation
Vf: ‘D,W—)W’ Vg: ‘D,W—>W’ Elh: ‘D, W—>W’ l(fog0h,0)= i(f, 0)
or, not 100% correct, but working 1n practice: Vg: ‘D,W—->W’ gog'' 1 = id

holds, this formula is refutable. (A corresponding unification algorithm with this axiom built in,
generates a unifier 0' = {f 1—) h, g H h ' l } for Q(l(f,0),a(~L(f,O)) and Q(¢(fogoh,0),a(l(f,0))). The
modal logic version, however, is satisfiable. A model i s :

Q(X1)
(am)

Q(X2)
-IQ(x1)

That means at least in the symmetric case the normal or extended Skolemization is necessary. Andreas
Herzig has shown that the optimized Skolemization is sound at least for the propositional modal logic
case [Herzig 89]. There i s a strong conjecture that it also works in the first order case when the
properties of the accessibility relation do not permit movements arbitrarily forward and backward 1n
the possible worlds structure. For certain properties this conjecture has been proved in [Auffray 89].

6 . 3 . 2 Theory Unification

The translation of the ARP predicates yields equations in most cases. To tune the resolution and
paramodulation calculus, it i s necessary to turn these equations into theory unification al gorithms. I
have done this for the case of classical modal logics with unparametrized operators and for logics
with reflexive, symmetric and transitive accessibility relation. The algorithm is presented here without
soundness and completeness proofs. They can be found in [Ohlbach 88]. The algorithm is not yet
extended to the general case.

The process of unification is considered as a sequence of — in general nondeterministic - transfor-
mations on systems of equations that starts with the terms or atoms ‘p = q’ to be unified and termi-
nates in the positive case with a system ‘xi = ti’ in solved form. The nondeterministic choice of the
transformation rules generates a tree like search space where the nodes are the actual state of the '
equation system. Each successful transformation chain computes a unifier for p and q. This follows
the ideas in [Herbrand 30], [Martelli & Montanari 82] and others. We divide a system of equations
into an unsolved ordered part I‘, an ordered set, that initially contains the single equation {p = q} to
be solved, and into an initially empty solved part 0' with components of the form ‘x = t’ such that 0'
represents an idempotent substitution.

The transformation starts by checking the trivial cases, i.e. whether or not the initial system ‘p = q’
is already in the form ‘x = t’. Each transformation replaces a system I‘, 0' by a modified system I“, O'
as follows:
. Pick the left most equation s = t e I‘ (depth first, left to right selection, F is ordered).

Remove s = t from 1".
° Select from the set of admissible transformation rules a rule ‘1‘which is applicable to s = t or t = s.

If no rule is applicable then terminate this branch in the search space with failure.
° Apply the rule ‘Tto s = t (or t = s respectively).

Let $1 = t l & . . .& sn = t“ be the result of the transformation.

42

•	 For i = n, ... ,I:

If si equals ti then ignore this component (tautology rule).

If Si and ti are both non-variable terms then push Si = ti at the front of r.
otherwise let w.l.o.g Si be a variable.

If Si E ti (occurs check) then terminate this branch in the search space with failure,

otherwise replace all occurrences of Si in r and a by ti (application rule) and

insert Si = ti into a.

It is noted that we imposed a Prolog like depth first, left to right linear selection strategy and an
immediate application of the computed substitutions on the control structure of the transformation
process. This ensures that an equation is completely solved once it is selected before the next one is
attacked. This strategy simplifies the termination proof of the splitting rule (see below) considerably.

The transformation rules are:

(The letters written outlined denote - possibly empty - strings SI O ••• 0Sk of world terms.)

General rules:
f(s}> ... ,so) = f(t}> ... to) ~ SI = tI & ... & So = to (Decomposition)
sos=t°11: ~ s=t&S=11: (Separation).

Rule for reflexive accessibility relation: (f is a world variable)
So f 0 s' = t ~ f = id & So s' = t (Identity).

Rule for symmetric accessibility relation:
sos 0 f 0 s' = t ~ f = s-1 & s 0 s' = t (Inverse)

Rules for transitive accessibility relation:
f 0 s = 11: 0 11:' ~ f = 11: & s = 11:' (Path-Separation)
f 0 sos = 11: 0 t 0 g 0 11:' ~ g = gI 0 g2 & f = 11: 0 to gI & sos = g2 0 11:'

if sand t exist. gl and g2 are new world variables. (Splitting) •
Examples: Unification of the terms aofog and h, where f,g,h are variables, assuming symmetry and
reflexivity of the accessibility relation yields the unifiers {f t-7 id, g t-7 id, h t-7 a}, {f t-7 a-I, g t-7 h}
and {g t-7 f-I, h t-7 a}. Unification of the terms fobocog and aohoc, where f,g,h are again variables,
assuming transitivity of the accessibility relation yields the unifiers {f t-7 a, h t-7 boc, g t-7 c} and {f t-7

a, g t-7 gIoc, h t-7 bocogI}.

6 . 4 A Final Example

There is a famous example from McCarthy, the wise men puzzle, that has been used to test the repre
sentation ability of formalisms for knowledge and belief. As a last example we give an axiomatization
of the wise men puzzle in M-Logic and a proof by functional translation and resolution refutation. Its
traditional form is:

5l. certain f(jng wisnes to determine wnicfi of fiis tnree wise men is tfie wisest. :Jfe arranges tfiem in a circre
so tfiat tfiey can see and fiear eacfi otfier and teas tfiem tfiat fie wire put a wnite or Mack. spot on eacfi of
tfieir forefieaC£S but at [east one spot wif[be 'Ulnite. In fact a[[tfiree spots are 'Ulnite. :J{e tnen offers fiis favar
to tne one wfio first teCCs nim tfie co[or of fiis spot. 5l.fter a 'Ulnue, tfie wisest announces tnat fiis spot is
'Ulnite. :J{ow does fie k.no'Ul?

(Actually the information that all three spots are white is not necessary to solve the puzzle.)

42

° For i = n,. . .‚ l:
If si equals ti then i gnore this component (tautology rule).
If si and ti are both non-variable terms then push Si = ti at the front of 1".

otherwiSe let w.l.o.g si be a variable.
If si 6 ti (occurs check) then terminate this branch in the search space with failure,

otherwise replace all occurrences of si in F and 0' by ti (application rule) and
insert si = ti into 0'.

It i s noted that we imposed a Prolog like depth first, left to right linear selection strategy and an
immediate application of the computed substitutions on the control structure of the transformation
process. This ensures that an equation is completely solved once it is selected before the next one is
attacked. This strategy simplifies the termination proof of the splitting rule (see below) considerably.

The transformation rules are:
(The letters written outlined denote — possibly empty — strings 51°. . .osk of world terms.)
General rules:

f(s1,...,sn) = f(t1,...tn) —> 31 = t1 &... & 5n = tn (Decomposition)
sos= t ° t ——)s= t&s= t (Separation).

Rule for reflexive accessibility relation: (f is a world variable)
s0 fos '= t ——)f= id&sos '= t (Identity).

Rule for symmetric accessibility relation:
sos0 fos '= t —>f=S '1&sos '= t (Inverse)

Rules for transitive accessibility relation: -
f ° s = t ° t‘ —> f= t & s = t ' (Path-Separation)
fo sos=1 to togo t l —-)g=g1°g2 &f=f t ° t °g1&S°S=g2° t '

if s and t exist. g l and g2 are new world variables. (Splitting) 0

Examples: Unification of the terms a°f°g and h , where f,g,h are variables, assuming symmetry and
reflexivity of the accessibility relation yields the unifiers {f H id, g H id, h H a}, {f H 214, g H h}

and {g H H, h H a}. Unification of the terms febocog and aohoc, where f,g,h are again variables,
assuming transitivity of the accessibility relation yields the unifiers {f H a, h H boc, g H c} and {f H
a, g H gloc, h H bocogl}.

6 .4 A Final Example

There is a famous example from McCarthy, the wise men puzzle, that has been used to test the repre—
sentation ability of formalisms for knowledge and belief. As a last example we give an axiomatization
of the wise men puzzle in M—Logic and a proof by functional translation and resolution refutation. Its
traditional form is:

fl certain King wishes to determine which of his three wise men is the wisest. }fe arranges them in a circfe
so that they can see am! hear each other and tefß them that he wiff put a white or black spot on each of
their foreheazis hut at [east one spot wifl' he white. In fact all three spots are white. fife then ofi‘ers his favor
to the one who first tefß him the eofor of his spot. After a while, the wisest announces that his spot is
white. flow does he know?

(Actually the information that all three spots are white is not necessary to solve the puzzle.)

43

The solution involves the wisest man reasoning about what his colleagues know and don't know
from observations and the king's announcement. To axiomatize this puzzle in epistemic logic, assume
the three wise men are A, Band C and C is the wisest.

First of all we need the three formulae:

Cl: A:;t:B

C2: A:;t:C

C3: B:;t:C

and assume the symmetry of the :;t:-predicate.

At least one of them has a white spot and everybody knows that everybody else knows that his
colleagues know this. (ws(S) means S has a white spot.)

C4: VS, S', SIt: Os os' OS" ws(A) v ws(B) v ws(C)

The three men can see each other and they know this. Therefore whenever one of them has a white
or black spot, he knows that his colleagues know this and he knows also that his colleagues know
this from each other.

C5: VS,S': S:;t: S' ~ Os (-.ws(S) ~ OS'-,ws(S»

C6: VS,S',S" S :;t: S'/\ S :;t: SIt /\ S' :;t: SIt: ~ Os os' (-,ws(S) ~ os"-,ws(S))

C7: VS,S',S" S :;t: S'/\ S :;t: SIt /\ S' :;t: SIt: ~ Os oS' (-,ws(S') ~ OS"-,ws(S'»

(We give only the minimum number of axioms which are necessary for the proof.)

They can hear each other and they know this. B did not say anything, therefore C knows that B does
not know the colour of his own spot.

C8: 0C-,0B ws(B) ({:::> 0c OB -,ws(B»

C knows that B knows that A does not know the colour of his spot.

C9: 0c DB -, 0A ws(A) ({:::> DC OB 0A-,ws(A».

We translate the formulae into OSPL syntax assuming seriality of the accessibility relation:

The sort of the variables in lowercase symbols is 'W~W'. To make the formula more readable we
use second order syntax and drop the 0 and J,-function and the 0 sign writing terms J,(xo••• oZ, 0) in
simple brackets [x.. .z].

Cl: A:;t: B C2: A:;t: C C3: B:;t: C

C4: VS,u,S',u"S",u":

ws([u(S)u'(S')u"(S")],A) v ws([u(S)u'(S')u"(S")],B) v ws([u(S)u'(S')u"(S")],C)
C5: VS,u, S',u': S = S' y ws([u(S)], S) y -,ws([u(S)u'(S')],S)
C6: VS,u, S',u', S",u":

S = S'y S =SIt Y S' =SIt Y ws([u(S)u'(S')], S) V -,ws([u(S)u'(S')u"(S")], S»

C7: 'VS,u, S',u', S",u":

S = S'v S = SIt Y S' = SIt Y ws([u(S)u'(S')],S') V -.ws([u(S)u'(S')u"(S")],S'))
C8: 'Vu -,ws([u(C)g(u)(B)],B)
C9: Vu,v -,ws([u(C)v(B) h(u,v)(A)],A) (g and hare Skolem functions)

A deduction of the fact that C knows the colour of his own spot, i.e. 0cws(C) is now a trivial
exercise for any resolution theorem prover. The following UR-proof was found by our system
[Ohlbach &Siekmann 89]:

CI,C2,C3,C7,C8 ~ RI: Vu,u" -,ws([u(C) g(u)(B) u"(A)], B) (~OC OB OA -,ws(B»
C9, Rl,C4 ~ R2: Vu ws([u(C) g(u)(B) h(u,g(u»(A)], C) (~OC OB OAWS(C»

:43

The solution involves the wisest man reasoning about what his colleagues know and don’t know
from observations and the king’s announcement. To axiomatize this puzzle in epistemic logic, assume
the three wise men are A, B and C and C is the wisest.

First of all we need the three formulae:

C1 : A¢B
C2: A¢C
C3: B¢C

and assume the symmetry of the #—predicate.

At least one of them has a white spot and everybody knows that everybody else knows that his
colleagues know this. (ws(S) means S has a white spot.)

C4: VS , S ' , S" : Els Elsv Els" ws(A) v ws(B) v ws(C)

The three men can see each other and they know this. Therefore whenever one of them has a white
or black spot, he knows that his colleagues know this and he knows also that his colleagues know
this from each other.

C5: VS,S': S # S ' = Es (—uws(S) => |:ls'—uws(S))
C6: VS,S',S" S == S'A S == S" A S ' at S": => Us US' (—-1WS(S) => Els"—uws(S))
C7: VS,S',S" S # S'A S #: S" A S ' # S": :> Es [is' (‘1WS(S’) => Els"—1WS(S‘))

(We give only the minimum number of axioms which are necessary for the proof.)

They can hear each other and they know this. B did not say anything, therefore C knows that B does
not know the colour of his own spot.

C8: [JC—laß ws(B) (=> UC OB —.ws(B))

C knows that B knows that A does not know the colour of his spot.

C9: Dc EIB —- CIA ws(A) (© Dc DB OA —-.ws(A)).

We translate the formulae into OSPL syntax assuming seriality of the accessibility relation:

The sort of the variables in lowercase symbols is ‘W—aW’. To make the formula more readable we
use second order syntax and drop the 0 and .L-function and the 0 sign writing terms i(x0...°z, 0) in
simple brackets [x. . .z].

C1: A¢B C2: A¢C C3: B¢C
C4: VS ,u ,S ' , u ' ,S" ,u" :

ws([U(S) I I ' (S ')U" (S")LA) V WS([U(S)11 ' (S ')U" (S")LB) V WS([U(S)U ' (S ')11" (S")] ‚C)

C5: VS ,u , S ' ,u ' : S = S ' v ws([u(S)]‚ S) v —s([u (S)u ’ (S ')] ,S)
C6: VS‚u, S' ,u ' , S " ,u" :

S = S'v S = S" v S ' = S" v ws([u(S)u'(S')], S) v —1ws([u(S)u'(S')u"(S")], S))
C7: VS ,u , S ' ,u ' , S " ,u" : '

S = S 'v S = S“ v S ' = S" v ws([u(S)u‘(S')],S') v —.ws([u(S)u’(S')u"(S")],S'))
C8: Vu ——uws([u(C)g(u)(B)],B)
C9: Vu,v —.ws([u(C)v(B) h(u,v)(A)],A) (g and h are Skolem functions)

A deduction of the fact that C knows the colour of his own spot, i .e . Dcws(C) is now a trivial
exercise for any resolution theorem prover. The following UR-proof was found by our system
[Ohlbach &Siekmann 89]:

C1,C2,C3,C7,C8 _) R1: Vu,u" —IWS([11(C) g(u)(B) u"(A)] , B) (<=> Clc OB CIA —IWS(B))
C9, R1 ,C4 —> R2: Vu ws([u(C) g(u)(B) h(u,g(u))(A)], C) (€; Dc OB <>AWS(C))

7

44

Cl,C2,C3,R2,C6 ---7 R3: Vu ws([u(C) g(u)(B)], C) (~ DC OB WS(C))
C3,R3,C5 ---7 R4: Vu ws([u(C)], C) (~DC WS(C)) •

RELATED WORK

There are well known but very specific translation methods for logics. For example Skolemization
translates formulae from general predicate logic into the fragment without existential quantifier.
Translation of formulae from sorted logics to unsorted logics, usually called relativization, is some
times used to clarify certain aspects of the sorted logic and to support completeness proofs for sorted
calculi. Most of these procedures, however, were not seen as a translation process. Some of the
authors even call the deductions in the translated syntax "meta reasoning".

The relational translation for modal logics is quite natural and should therefore be as old as the
Kripke semantics itself. To my knowledge, the first one who has used it for a particular application,
namely in natural language processing, is [Moore 80]. I have extended this method to the more
expressive M-Logic with the ARP-predicates, mainly to illustrate the translation methodology itself
with a not too complicated example.

The basic idea for the functional translation is to represent paths in the possible worlds structure by
strings of terms. The only meaningful interpretation of these strings is as composition of functions
mapping worlds to accessible worlds. Some authors have used these terms and the strings as
additional labels of the modal operators without exploiting this interpretation. Graham Wrightson has
used them in a tableaux calculus as a syntactical basis for an early version of a unification algorithm
for modal contexts [Wrightson 83]. In [Chan 87] a resolution method for propositional S4 modal
logic is defined which works on the original syntax, but with labelled operators. Lincoln Wallen has
extended the matrix method of [Andrews 81] and [BibeI81,82] to modal logics. He still works on the
original syntax, but introduces also labelled operators. Wallen was the first who applied the special
unification algorithm to these labels [Wallen 87].

The earliest work in the spirit of the translation idea seems to be Nakamatsu and Suzuki's method
for translating modal formulae into two-sorted predicate logic. They considered mainly the S4 and S5
cases [Nakamatsu & Suzuki 82,84]. Recently some research groups independently of each other
came up with almost the same idea for the functional translation. These are Luis Farinas del Cerro and
Andreas Herzig from Toulouse, Yves Auffray from Saint-cloud together with Patrice Enjalbert from
Caen, and Peter Jackson and Han Reichgelt. For the classical first order modal logic case without
equations and for serial accessibility relation their systems do not differ seriously. Jackson and
Reichgelt use a sequent calculus on the target logic side with a special unification algorithm for modal
terms (which I do not understand) [Jackson & Reichgelt 87]. Auffray and Enjalbert have character
ized the properties of the accessibility relation with equations in a very similar way as I did. They do
not insist on a particular calculus for the translated formulae [Auffray & Enjalbert 88, Auffray 89].
Herzig's system is - for the serial case - almost the same as I have presented in [Ohlbach 88], i.e. a
resolution calculus with the special theory unification algorithms which have built in the properties of
the accessibility relation. For the nonserial case Herzig's system does not generate END-literals during
the translation, but treats the nonseriality dynamically during the resolution operation. To my
knowledge this is the most compact and efficient treatment of nonseriality in a resolution calculus. Its
integration in a resolution theorem prover, however, requires some modifications beyond the
exchange of the unification algorithm.

Inspired by the first publication of my translation method, which did not take into account equality
,reasoning and which considered only reflexivity, symmetry and transitivity of the accessibility

44

C1,C2,C3,R2,C6 -> R3: Vu ws([u(C) g(u)(B)], C) (4:) DC 013 ws(C))
C3,R3,C5 —> R4: Vu ws([u(C)], C) (=» Elc ws(C)) O

7 RELATED WORK
There are well known but very specific translation methods for logics. For example Skolemization
translates formulae from general predicate logic into the fragment without existential quantifier.
Translation of formulae from sorted logics to unsorted logics, usually called relativization, i s some-
times used to clarify certain aspects of the sorted logic and to support completeness proofs for sorted
calculi. Most of these procedures, however, were not seen as a translation process. Some of the
authors even call the deductions in the translated syntax “meta reasoning”.

The relational translation for modal logics is quite natural and should therefore be as old as the
Kripke semantics itself. To my knowledge, the first one who has used it for a particular application,
namely in natural language processing, is [Moore 80]. I have extended this method to the more
expressive M—Logic with the ARP—predicates, mainly to illustrate the translation methodology itself
with a not too complicated example.

The basic idea for the functional translation is to represent paths in the possible worlds structure by
strings of terms. The only meaningful interpretation of these strings is as composition of functions
mapping worlds to accessible worlds. Some authors have used these terms and the strings as
additional labels of the modal operators without exploiting this interpretation. Graham Wrightson has
used them in a tableaux calculus as a syntactical basis for an early version of a unification algorithm
for modal contexts [Wrightson 83]. In [Chan 87] a resolution method for propositional S4 modal
logic i s defined which works on the original syntax, but with labelled operators. Lincoln Wallen has
extended the matrix method of [Andrews 81] and. [Bibel 81,82] to modal logics. He still works on the
original syntax, but introduces also labelled operators. Wallen was the first who applied the special
unification algorithm to these labels [Wallen 87].

The earliest work in the spirit of the translation idea seems to be Nakamatsu and Suzuki’s method
for translating modal formulae into two-sorted predicate logic. They considered mainly the S4 and SS
cases [Nakamatsu & Suzuki 82,84]. Recently some research groups independently of each other
came up with almost the same idea for the functional translation. These are Luis Fan'fias del Cerro and
Andreas Herzig from Toulouse, Yves Auffray from Saint-cloud together with Patrice Enjalbert from
Caen, and Peter Jackson and Han Reichgelt. For the classical first order modal logic case without
equations and for serial accessibility relation their systems do not differ seriously. Jackson and
Reichgelt use a sequent calculus on the target logic side with a special unification algorithm for modal
terms (which I do not understand) [Jackson & Reichgelt 87]. Auffray and Enjalbert have character-
ized the properties of the accessibility relation with equations in a very similar way as I did. They do
not insist on a particular calculus for the translated formulae [Auffray & Enjalbert 88, Auffray 89].
Herzig’s system is - for the serial case - almost the same as I have presented in [Ohlbach 88] , i .e. a
resolution calculus with the special theory unification algorithms which have built in the properties of
the accessibility relation. For the nonserial case Herzig’s system does not generate END-literals during
the translation, but treats the nonseriality dynamically during the resolution operation. To my
knowledge this i s the most compact and efficient treatment of nonseriality in a resolution calculus. Its
integration in a resolution theorem prover, however, requires some modifications beyond the
exchange of the unification algorithm.

Inspired by the first publication of my translation method, which did not take into account equality
reasoning and which considered only reflexivity, symmetry and transitivity of the accessibility

8

45

relation, Arild Waaler has extended it to the euclidean case and considered some aspects of paramodu
lation [Waaler 89].

For the treatment of logics with more complex operators, for example temporal UNTIL,

EVENTUALLY - etc. operators, it turned out that the one step translation is too complicated. Therefore
I developed an intermediate logic, called Context Logic, with predicate logic syntax, but possible
worlds semantics. This logic allows to break up the translation into two steps where the second step,
translation into OSPL, is independent of the actual source logic [Ohlbach 89]. The two step trans
lation via Context Logic has been used to translate a quite complex temporal logic with a whole bunch
of operators into predicate logic [Ohlbach 89]. Also Fagin and Halpern's Logic of Local Reasoning
[Fagin & Halpern 88] has been translated into predicate logic via Context Logic [Waagb11l90].

Brand new is Dov Gabbay's "labelled deduction systems" approach to generate optimized calculi
not from the semantics of the source logic, but from Hilbert calculi [Gabbay 90]. He marks formulae
with labels which, for the modal logic case, correspond to the possible worlds, and in other logics to
something else. The calculus permits the manipulation of the labels and the formulae independently
and in parallel such that it is easy to switch to another logic by exchanging the labelling discipline.

CONCLUSION

We have presented a general framework for translating logical formulae from one logic into another
logic. The methodology has been illustrated with two different approaches to translating a rather
expressive modal logic into predicate logic. The modal logic we considered is a normal logic in the
sense of [Chellas 80]. It is first order, many sorted with built in equality. It has the two modal opera
tors 0 and 0 parametrized with arbitrary terms. Particular properties of the accessibility relation,
namely seriality, reflexivity, symmetry, transitivity, euclideanness and linearity can be specified for
the whole possible worlds structure or for parts of it by special built in predicates within the logic
itself. Constant and function symbols may be rigid or flexible, i.e. change their meaning from world
to world. We also allow varying domain interpretations where terms may denote objects existing in
one world and not existing in another world.

The first translation method we presented is the well known "relational" translation which makes
the modal logic's possible worlds structure explicit by introducing a distinguished predicate symbol
to represent the accessibility relation. In the second approach, the "functional" translation method,
paths in the possible worlds structure are represented by compositions of functions which map
worlds to accessible worlds. This allows reasoning about larger parts of the possible worlds structure
within a single call of the unification algorithm in a resolution calculus.

Both translation methods yield formulae which can be processed with a standard many sorted
resolution and paramodulation calculus. That means predicate logic theorem provers or logic
programming systems are now immediately applicable to modal logic.

Several optimizations of the functional translation have been sketched. The most effective
optimization, however, the translation of the axioms describing the properties of the accessibility
relation into theory unification and theory resolution rules has been worked out so far only for the
fragment of the modal logic that corresponds to the classical modal systems K, D, T, DB, K4, D4,
B, S4 and S5. The extension to the full logic used in this paper is in some aspects quite straight
forward, in some aspects, in particular for linearity, really nontrivial. A first version has been
developed by Andreas Nonnengart and will be published soon.

45

relation, Arild Waaler has extended it to the euclidean case and considered some aspects of paramodu-
lation [Waaler 89].

For the treatment of logics with more complex operators, for example temporal UNTIL,
EVENTUALLY - etc. operators, i t turned out that the one step translation is too complicated. Therefore
I developed an intermediate logic, called Context Logic, with predicate logic syntax, but possible
worlds semantics. This logic allows to break up the translation into two steps where the second step,
translation into OSPL, is independent of the actual source logic [Ohlbach 89]. The two step trans—
lation via Context Logic has been used to translate a quite complex temporal logic with a whole bunch
of operators into predicate logic [Ohlbach 89]. Also Fagin and Halpern’s Logic of Local Reasoning
[Fagin & Halpem 88] has been translated into predicate logic via Context Logic [W aagbcs 90].

Brand new is Dov Gabbay’s “labelled deduction systems” approach to generate optimized calculi
not from the semantics of the source logic, but from Hilbert calculi [Gabbay 90]. He marks formulae
with labels which, for the modal logic case, correspond to the possible worlds, and in other logics to
something else. The calculus permits the manipulation of the labels and the formulae independently
and in parallel such that it is easy to switch to another logic by exchanging the labelling discipline.

8 CONCLUSION

We have presented a general framework for translating logical formulae from one logic into another
logic. The methodology has been illustrated with two different approaches to translating a rather
expressive modal logic into predicate logic. The modal logic we considered i s a normal logic in the
sense of [Chellas 80]. It is first order, many sorted with built in equality. It has the two modal opera—
tors |:| and <> parametrized with arbitrary terms. Particular properties of the accessibility relation,
namely seriality, reflexivity, symmetry, transitivity, euclideanness and linearity can be specified for
the whole possible worlds structure or for parts of it by special built in predicates within the logic
itself. Constant and function symbols may be rigid or flexible, i.e. change their meaning from world
to world. We also allow varying domain interpretations where terms may denote objects existing in
one world and not existing in another world.

The first translation method we presented is the well known “relational” translation which makes
the modal logic’s possible worlds structure explicit by introducing a distinguished predicate symbol
to represent the accessibility relation. In the second approach, the “functional” translation method,
paths in the possible worlds structure are represented by compositions of functions which map
worlds to accessible worlds. This allows reasoning about larger parts of the possible worlds structure
within a single call of the unification algorithm in a resolution calculus.

Both translation methods yield formulae which can be processed with a standard many sorted
resolution and paramodulation calculus. That means predicate logic theorem provers or logic
programming systems are now immediately applicable to modal logic.

Several optimizations of the functional translation have been sketched. The most effective
optimization, however, the translation of the axioms describing the properties of the accessibility
relation into theory unification and theory resolution rules has been worked out so far only for the
fragment o f the modal logic that corresponds to the classical modal systems K , D , T, DB, K4, D4,
B, S4 and SS. The extension to the full logic used in this paper is in some aspects quite straight-
forward, in some aspects, in particular for linearity, really nontrivial. A first version has been
developed by Andreas Nonnengart and will be published soon.

46

Acknowledgement

I wish to thank all my colleagues in Jorg Siekmann's research group and in the MEDLAR team who
contributed to this work. Lincoln Wallen's talk about his matrix method, given in spring 1987 in
Munich, originally inspired this work. During many discussions with Andreas Nonnengart the basic
principles were clarified and the first versions of the unification algorithms were developed. Jorg
Siekmann, my PhD supervisor, insisted on clear and understandable formalisms and formulations.
His criticism forced me to change and simplify, and therefore to improve, considerable parts of the
classical modal logic version of the formalism and proofs. I had many helpful and inspiring
discussions with Andreas Herzig and Luis Farifias del Cerro from Toulouse and Arild Waaler from
Oslo. Finally I wish to thank Michael McRobbie from the Australian National University at Canberra
who invited me for a research stay at AND and whom I own the three most productive months in my
life. Some parts of the translation method have been developed there.

References

Anderson & Bledsoe 70 R.Anderson, W.W. Bledsoe. A linear format for resolution with merging
and a new technique for establishing completeness. Journal of ACM, vol.
17, pp. 525-534, 1970.

Andrews 81 P.B. Andrews. Theorem-Proving via General Matings.
Journal of the Association for Computer Machinery, 28,2,
pp. 193-214, 1981.

Auffray 89 Y. Auffray. Resolution modal et logique des chemins.
These de doctorat de l'universite de Caen, Caen, 1989.

Auffray&Enjalbert 88 Y. Auffray, P. Enjalbert. Demonstration de theoremes en logiques modale
Un point de vue equationnel. Journees Europeennes Logique et Intelligence
Artificielle, Roscoff, 1988.

Benanav 90 D. Benanav. Simultaneous Paramodulation.
Proc. of 10th CADE, Springer Lecture Notes in Artificial Intelligence 449,
pp. 442-455, 1990.

Bibel81 W. Bibel. On matrices with connections.
Journal of the Association for Computer Machinery, 28,4,
pp. 633-645, 1981.

Bibel82 W. Bibel. Automated Theorem Proving.
Vieweg Verlag, Braunschweig, 1982.

Chan 87 M. Chan. The Recursive Resolution Method.
New Generation Computing, 5, pp. 155-183,1987.

Chang&Lee 73 c.-L. Chang, R.C.-T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Science and Applied Mathematics Series (ed. W. Rheinboldt),
Academic Press, New York, 1973.

Chellas 80 B.F. Chellas. Modal logic - an introduction.
Cambridge University Press, 1980.

Fagin & Halpern 88 R. Fagin, J.Y. Halpern. Belief, Awareness and Limited Reasoning.
Artificial Intelligence 34, pp. 39-76, 1988.

46

Acknowledgement

I‘ wish to thank all my colleagues in Jörg Siekmann’s research group and in the MEDLAR team who
contributed to this work. Lincoln Wallen’s talk about his matrix method, given in spring 1987 in
Munich, originally inspired this work. During many discussions with Andreas Nonnengart the basic
principles were clarified and the first versions of the unification algorithms were developed. Jörg
Siekmann, my PhD supervisor, insisted on clear and understandable formalisms and formulations.
His criticism forced me to change and simplify, and therefore to improve, considerable parts of the
classical modal logic version of the formalism and proofs. I had many helpful and inspiring
discussions with Andreas Herzig and Luis Farifias del Cerro from Toulouse and Arild Waaler from
Oslo. Finally I wish to thank Michael McRobbie from the Australian National University at Canberra
who invited me for a research stay at ANU and whom I own the three most productive months in my
life. Some parts of the translation method have been developed there.

References

Anderson & Bledsoe 70 R.Anderson, W.W. Bledsoe. A linear format for resolution with merging
and a new technique for establishing completeness. Journal of ACM, vol.
17, pp. 525-534, 1970.

Andrews 81 PB. Andrews. Theorem-Proving via General Matings.
Journal of the Association for Computer Machinery, 28,2,
pp. 193-214, 1981.

Auffray 89 Y. Auffray. Resolution modal et logique des chemins.
These de doctorat de l'université de Caen, Caen, 1989.

Auffray&Enjalbert 88 Y . Auffray, P. Enjalbert. Demonstration de théorémes en Iogiques modale -
Un point de vue equationnel. Joumées Européennes Logique et Intelligence
Artificielle, Roscoff, 1988.

Benanav 90 D. Benanav. Simultaneous Paramodulation.
Proc. of 10th CADE, Springer Lecture Notes in Artificial Intelligence 449,
pp. 442-455, 1990.

Bibel 81 W. Bibel. On matrices with connections.
Journal of the Association for Computer Machinery, 28,4,
pp. 633-645, 1981.

Bibel 82 W. Bibel. Automated Theorem Proving.
Vieweg Verlag, Braunschweig, 1982.

Chan 87 M. Chan. The Recursive Resolution Method.
New Generation Computing, 5, pp. 155-183, 1987.

Chang&Lee 73 C.-L. Chang, R.C.-T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Science and Applied Mathematics Series (ed. W. Rheinboldt),
Academic Press, New York, 1973.

Chellas 80 BE Chellas. Modal logic - an introduction.
Cambridge University Press, 1980.

Fagin & Halpern 88 R. Fagin, J.Y. Halpern. Belief, Awareness and Limited Reasoning.
Artificial Intelligence 34, pp. 39-76, 1988.

47

Fitting 83 M.C. Fitting. Proof methods for modal and intuitionistic logics.
Vol. 169 of Synthese Library, D. Reidel Publishing Company, 1983.

Gabbay90 D. Gabbay. Labelled Deduction Systems.
Imperial College, London, to be published.

Gratzer 79 G. Gratzer. Universal Algebra.
Springer Verlag, 1979.

Herbrand 30 Herbrand, J., Recherches sur la theory de la demonstration.
Traveaux de la Soc. des Sciences et des Lettre de Varsovier, Nr. 33,128,
1930.

Herzig 89 A. Herzig. Raisonnement automatique en logique modale et algorithmes
d'unification. These de doctorat de l'universite Paul-Sabatier de Toulouse,
1989.

Jackson&Reichgelt 87 P. Jackson, H. Reichgelt. A general proof method for first-order modal
logic. Proc. of Int. Joint Conference on Artificial Intelligence (HCAI), pp.
942-944, 1987.

Kripke 59 S. Kripke. A Completeness Theorem in Modal Logic.
J. of Symbolic Logic, Vo124, 1959, pp 1-14.

Kripke 63 S. Kripke. Semantical analysis of modal logic I, normal propositional
calculi. Zeitschrift flir mathematische Logik und Grundlagen der
Mathematik, Vol. 9, 1963, pp 67-96.

Loecks&Sieber 84 1. Loecks, K.Sieber. Foundations ofProgram Verification.
Wiley-Teubner Series in Computer Science, 1984.

Loveland 78 D. Loveland. Automated Theorem Proving: A Logical Basis.
Fundamental Studies in Computer Science, Vol. 6, North-Holland,
New York 1978.

Martelli&Montanari 82 A. Martelli, U. Montanari. An Efficient Unification Algorithm.
ACM Trans. Programming Languages and Systems 4,2, pp. 258-282 1982.

Moore 80 R.c. Moore. Reasoning about Knowledge and Action.
PhD Thesis, MIT, Cambridge 1980.

Nakamatsu&Suzuki 82 K. Nakamatsu, A. Suzuki. A mechanical theorem proving of first-order
modal logic (S5). Trans. Inst. Electron. & Commun. Eng. Jpn. Sect. E
(Japan), Vol. E65, no 12, pp. 730-736, Dec. 1982.

Nakamatsu&Suzuki 84	 K. Nakamatsu, A. Suzuki. Automatic theorem proving for modal predicatet
logic. Trans. Inst. Electron. & Commun. Eng. Jpn. Sect. E (Japan), Vol.
E67, no 4, pp. 703-210, April. 1984.

Ohlbach 88	 H.1. Ohlbach. A Resolution Calculus for Modal Logics.
Proc. of 9th CADE, Argonne, Springer LNCS 310, pp. 500-516, 1988.
Full version: SEKI Report SR-88-08, FB Informatik, Univ. of
Kaiserslautern, Germany, 1988.

Ohlbach 89	 H.1. Ohlbach. Context Logic.
SEKI Report SR-89-08, FB Informatik, Univ. of Kaiserslautern, Germany,
1989.
see also: H.1. Ohlbach. Context Logic - An Introduction.

Fitting 83

Gabbay 90

Grätzer 79

Herbrand 30

Herzig 89

Jackson&Reichgelt 87

Kripke 59

Kripke 63

Loecks&Sieber 84

Loveland 78

Martelli&Montanari 82

Moore 80

Nakamatsu&Suzuki 82

Nakamatsu&Suzuki 84

Ohlbach 88

Ohlbach 89

47

M.C. Fitting. Proof methods for modal and intuitionistic logics.
Vol. 169 of Synthese Library, D. Reidel Publishing Company, 1983.

D. Gabbay. Labelled Deduction Systems.
Imperial College, London, to be published.

G . Grätzer. Universal Algebra.
Springer Verlag, 1979.

Herbrand, J., Recherches sur la theory de la démonstration.
Traveaux de la Soc . des Sciences et des Lettre de Varsovier, Nr. 33,128,
1930.

A. Herzig. Raisonnement automatique en Iogique modale et algorithmä
d'unification. These de doctorat de l'université Paul-Sabatier de Toulouse,
1989.

P. Jackson, H. Reichgelt. A general proof method for first-order modal
logic. Proc. of Int. Joint Conference on Artificial Intelligence (IJCAI), pp.
942-944, 1987.

S. Kripke. A Completeness Theorem in Modal Logic.
] . of Symbolic Logic, Vol 24, 1959, pp 1-14.
S . Kripke. Semantical analysis of modal logic I , normal propositional
ca lcu l i . Zeitschrift für mathematische Logik und Grundlagen der
Mathematik, Vol. 9 , 1963, pp 67-96.

J. Loecks, K.Sieber. Foundations of Program Verification.
Wiley-Teubner Series in Computer Science, 1984.

D. Loveland. Automated Theorem Proving: A Logical Basis.
Fundamental Studies in Computer Science, Vol. 6, North-Holland,
New York 1978.

A. Martelli, U. Montanari. An Efiicient Unification Algorithm.
ACM Trans. Programming Languages and Systems 4,2, pp. 258-282 1982.

RC. Moore. Reasoning about Knowledge and Action.
PhD Thesis, MIT, Cambridge 1980.

K. Nakamatsu, A . Suzuki. A mechanical theorem proving of first-order
modal logic (S5). Trans. Inst. Electron. & Commun. Eng. Jpn. Sect. E
(Japan), Vol. E65 , no 12 , pp. 730-736, Dec. 1982.

K. Nakamatsu, A . Suzuki. Automatic theorem proving for modal predicatet
logic. Trans. Inst. Electron. & Commun. Eng. Jpn. Sect. E (Japan), Vol.
E67, no 4 , pp. 703-210, April. 1984.

H.]. Ohlbach. A Resolution Calculus for Modal Logics.
Proc. of 9th CADE, Argonne, Springer LNCS 310, pp. 500-516, 1988.
Ful l vers ion: SEKI Report SR-88-08 , FB Informatik, Univ. of
Kaiserslautern, Germany, 1988.

HJ . Ohlbach. Context Logic.
SEKI Report SR-89-08, FB Informatik, Univ. of Kaiserslautern, Germany,
1 9 89.
see also: H.] . Ohlbach. Context Logic - An Introduction.

Ohlbach&Siekmann 89

Robinson 65

Robinson & Wos 69

Schmidt-SchauB 89

Siekmann 89

Smullyan 68

Stickel85

Waaler 89

Wagblll 89

Wallen 87

Walther 87

Wrightson 83

48

Proc. of GWAI-89, Geseke, Springer Informatik Fachberichte 216, pp. 27
36, 1989.

H.I. Ohlbach, J.H. Siekmann. The Markgraf Karl Refutation Procedure.
SEKI Report SR-89-19, FB Infonnatik, Univ. of Kaiserslautern, Gennany,
1989.

I.A. Robinson. A Machine Oriented Logic Based on the Resolution
Principle. J.ACM, VoL 12, No 1, pp. 23-41, 1965.

Robinson, G., Wos, L. Paramodulation and theorem proving in first order
theories with equality. Machine Intelligence 4, American Elsevier, New
York, pp. 135-150, 1969.

M. Schmidt-SchauB. Computational Aspects ofan Order-Sorted Logic with
Term Declarations. Springer Lecture Notes in Artificial Intelligence 395,
1989.

J. Siekmann. Unification Theory.
J. of Symbolic Computation 8, 1989.

R.M. Smullyan. First Order Logic,

Springer Verlag, Berlin 1968.

M. StickeL Automated Deduction by Theory Resolution.

Journal of Automated Reasoning VoL 1, No. 4, pp. 333-356, 1985.

A. Waaler. Resolusion i modallogiske systemer for bruk i kunnskaps

teknologi. Diploma thesis, Institutt for Datateknikk og Telematikk.

Norges Tekniske HlIlykole, Trondheim, Norway, 1989.

G. Wagblll, Logics and Semantics for Knowledge and Belief.

Diploma thesis. Norwegian Institute of Technology, Trondheim, 1989.

L.A. Wallen. Matrix proof methods for modal logics.

In Proc. of 10th IJCAI, 1987.

see also L.A.Wallen. Automated Proof Search in Non-Classical Logics:

Efficient Matrix Proof Methods for Modal and Intuitionistic Logics. Thesis,

University of Edinburgh, 1987.

C. Walther. A Many-sorted Calculus Based on Resolution and

Paramodulation. Research Notes in Artifical Intelligence, Pitman Ltd.,

London, M. Kaufmann Inc., Los Altos, 1987.

G. Wrightson. On some tableau proof procedures for modal logic.

Dissertation, Fak. f. Infonnatik, University of Karlsruhe. Also published by

VDI-Verlag 1983.

Ohlbach&Siekmann 89

Robinson 65

Robinson & Wos 69

Schmidt-Schauß 89

Siekmann 89

Smullyan 68

Stickel 85

Waaler 89

Wagb¢ s9

Wallen 87

Walther 87

Wrightson 83

48

Proc. of GWAI—89, Geseke, Springer Informatik Fachberichte 216, pp. 27-
36, 1989.
H.]. Ohlbach, J.H. Siekmann. The Markgraf Karl Refutation Procedure.
SEKI Report SR-89—19, FB Informatik, Univ. of Kaiserslautern, Germany,
1989.

LA. Robinson. A Machine Oriented Logic Based on the Resolution
Principle. J.ACM, Vol. 12, No 1 , pp. 23-41, 1965.

Robinson, G. , Wos, L. Paramodulation and theorem proving in first order
theories with equality. Machine Intelligence 4 , American Elsevier, New
York, pp. 135-150, 1969.

M. Schmidt-SchauB. Computational Aspects of an Order-Sorted Logic with
Term Declarations. Springer Lecture Notes in Artificial Intelligence 395,
1989.
J. Siekmann. Unification Theory.
J. of Symbolic Computation 8 , 1989.

RM. Smullyan. First Order Logic,
Springer Verlag, Berlin 1968.

M. Stickel. Automated Deduction by Theory Resolution.
Journal of Automated Reasoning Vol. 1, No. 4, pp. 333-356, 1985.

A. Waaler. Resolusion i modallogiske systemer for bruk i kunnskaps-
teknologi. Diploma thesis, Institutt for Datateknikk og Telematikk.
Norges Tekniske Hoykole, Trondheim, Norway, 1989.
G. Wagbo, Logics and Semantics for Knowledge and Belief.
Diploma thesis. Norwegian Institute of Technology, Trondheim, 1989.

L.A. Wallen. Matrix proof methods for modal logics.
In Proc. of 10th IJCAI, 1987.
see also L.A.Wallen. Automated Proof Search in Non-Classical Logics:
Efficient Matrix Proof Methods for Modal and Intuitionistic Logics. Thesis,
University of Edinburgh, 1987.

C. Walther. A Many-sorted Calculus Based on Resolution and
Paramodulation. Research Notes in Artifical Intelligence, Pitman Ltd.,
London, M. Kaufmann Inc., Los Altos, 1987.

G. Wrightson. On some tableau proof procedures for modal logic.
Dissertation, Fak. f. Informatik, University of Karlsruhe. Also published by
VDI-Verlag 1983.

49

INDEX

accessibility relation 19

accessibility relation property predicates 18

algebra 11

application function 14; 28

ARP-predicates 18

Barcan formula 22

codomain of a substitution 12

completeness

of the translation 25; 32

completeness of a translation 7

composition function 14; 28

constant domain 40

context 6

context access function 26

context sort 28

domain 20

of a function 9

of a substitution 12

domain sort 20

domain variable 20

extended Skolemization 35

flexible symbol 18

formula

closed 7

prefIx stable 34

well sorted 10

formula morphism 28

frame 19

function

flexible 18

rigid 18

functional signature 14

functional sort 14

functional sorts 13

functional specifIcation 14

functional translation 26

Herbrand interpretation 11

Herbrand universe 11

homomorphism

of ~:-structures 12

of L-algebras 11

idempotent substitution 12

initial world 20

interpretation 6

interpretation morphism 7; 23; 29

logic 6

logic compiler 8

logic morphism 7

M-Logic 17

modal logic 17

model 7

morphism

composition of 8

interpretation 7

logic 7

specifIcation 7

Order Sorted Predicate Logic 9

OSPL 9; 12

paramodulation 13

simultaneous 38

predicate declaration 10

prefIx 34

prefIx stability 34

prefIx stable formula 34

quantifIcation over functions 13

relational translation 20

49

INDEX

accessibility relation 19

accessibility relation property predicates 18

algebra 11

application function 14; 28

ARP-predicates 18

Barcan formula 22

codomain of a substitution 12

completeness

of the translation 25; 32

completeness of a translation 7

composition function 14; 28

constant domain 40

context 6

context access function 26

context sort 28

domain 20

of a function 9

of a substitution 12

domain sort 20

domain variable 20

extended Skolemization 35
flexible symbol 18

formula

closed 7

prefix stable 34

well sorted 10

formula morphism 28

frame 19

function

flexible 18

rigid 18

functional signature 14

functional sort 14

functional sorts 13

functional specification 14

functional translation 26

Herbrand interpretation 11

Herbrand universe 11

homomorphism

of Z—structures 12

of Z-algebras 11

idempotent substitution 12

initial world 20

interpretation 6

interpretation morphism 7 ; 23; 29

logic 6

logic compiler 8

logic morphism 7

M-Logic 17

modal logic 17

model 7

morphism

composition of 8

interpretation 7
logic 7

specification 7

Order Sorted Predicate Logic 9

OSPL 9; 12

paramodulation 13

simultaneous 38

predicate declaration 10

prefix 34

prefix stability 34

prefix stable formula 34

quantification over functions 13

relational translation 20

50

resolution 13; 37

rigid symbol 18

L-algebra 11; 12

L-assignment 11

L-formula 6

L-homomorphism 11

L-interpretation 12

L-structure 12

L-term6

satisfiability 7

satisfiability relation 6; 12

semantics 6

of M-Logic 19

signature 6

sorted 9

signature interpretation 6

signature morphism 20; 28

simultaneous paramodulation 37

Skolemization 35

extended 35

optimized 40

sort

declaration 10

of a variable 9

sort declaration 14

for predicates 10

for terms 10

soundness

of the translation 23; 30

soundness of a translation 7

specification 7

specification morphism 7; 22; 29

standard unification algorithm 37

subsort declaration 9

substitution 12

symbol

flexible 18

rigid 18

syntax 6

of M-Logic 18

tautology 7

term

well sorted 10

term algebra 11

term declaration 21

theorem 7

theory unification 41

top sort 10

translation

functional 26

relational 20

unification 37

unsatisfiability 7

variable assignment 6

ro-extension 27

well formed formula 10

well sorted term 10

wise men puzzle 42

world 19

initial 20

world sort 20

world variable 20

resolution 13; 37

rigid symbol 18

)}algebra 11; 12

Zrassignment 11

Z—formula 6

Z—homomorphism 11

E—interpretation 12

Z-structure 12

Z—term 6

satisfiability 7

satisfiability relation 6; 12

semantics 6

of M—Logic 19

signature 6

sorted 9

signature interpretation 6

signature morphism 20; 28
simultaneous paramodulation 37

Skolemization 35

extended 35

optimized 40

sort

declaration 10
of a variable 9

sort declaration 14

for predicates 10
for terms 10

soundness

of the translation 23; 30

soundness of a translation 7

specification 7

specification morphism 7; 22; 29

standard unification algorithm 37

subsort declaration 9

substitution 12

50

symbol

flexible 18

rigid 18

syntax 6

of M—Logic 18

tautology 7

term

well sorted 10

term algebra 11

term declarau'on 21

theorem 7

theory unification 41

top sort 10

translation

functional 26

relational 20

unification 37

unsatisfiability 7

variable assignment 6

(m)-extension 27

well formed formula 10

well sorted term 10

wise men puzzle 42
world 19

initial 20

world sort 20

world variable 20

