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Abstract. Context unification is a variant of second-order unification
and also a generalization of string unification. Currently it is not known
whether context unification is decidable. An expressive fragment of con-
text unification is stratified context unification. Recently, it turned out
that stratified context unification and one-step rewrite constraints are
equivalent.

This paper contains a description of a decision algorithm SCU for strat-
ified context unification together with a proof of its correctness, which
shows decidability of stratified context unification as well as of satisfia-
bility of one-step rewrite constraints.

1 Introduction

Context unification is a variant of second-order unification and also a gener-
alization of string unification. There are unification procedures for the more
general problem of higher-order unification (see e.g. [Pie73,Hue75,SG89,Pre95]).
It is well known that higher-order unification and second-order unification are
undecidable [Gol81,Far91,LV00].

String unification was shown to be decidable by Makanin [Mak77]. Recent
upper complexity estimations are that it is in EXPSPACE [Gut98], in NEXP-
TIME [Pla99a] and even in PSPACE [Pla99b].

Context unification problems are restricted second-order unification prob-
lems. Context variables represent terms with exactly one hole in contrast to a
term with an arbitrary number of (equally named) holes in the general second-
order case. The name conterts was coined in [Com93]. Currently, it is not known
whether context unification is decidable. It is known that it is A'P-hard (cf.
[SSS98]), and that satisfiability of formulas in a logical theory of context unifi-
cation is undecidable [NPR97a,Vor98].

There are some decidable fragments: i. If for every context variable X all oc-
currences of X have the same argument [Com98a,Com98b]; ii. If the number
of occurrences of every first-order variable and context variable is at most two
[Lev96]; iii. if there are at most two context variables [SSS99]. In this paper



we show that stratified context unification is decidable, which provides a rather
expressive fragment with a decidable unification problem.

A decidable restriction of second-order unification similar in spirit to con-
text unification is bounded second-order unification [SS99], where second-order
variables represent terms with at most n number of holes, where n is a positive
integer selected beforehand.

Applications of context unification are for example in computational linguis-
tics [NPR97a], in particular as a uniform framework for semantic underspecifi-
cation of natural language [NPR97b]. The fragment of stratified context unifi-
cation is expressive enough for applying it in computational linguistics. It was
also used in equational unification as an important step in showing decidability
of distributive unification [SS98]. Recently it was noticed that one-step rewrite
constraints and stratified context unification can be interreduced [NTT00]. The
result in this paper then implies that satisfiability of one-step rewrite constraints
1s decidable. Hence this decidability result is also a contribution to research on
one-step rewriting [Tre96,CSTT99]. To my best knowledge, there is no other
decidability proof for both problems.

An important motivation for writing this paper is to describe a correct de-
cision algorithm for stratified context unification and also to provide a rigor-
ous proof. Previous descriptions of algorithms and proofs are [SS94,5595] and
[Lev96], where the algorithms are not correct and/or proofs contain gaps or
the termination proof is incomplete. The treatment in [SS98] covers only a very
restricted signature.

The algorithm SCU that is described in this paper optimizes simplicity of
the description and not efficiency. This improves upon [SS95,5594] insofar as no
parametric terms are necessary and that there is no call of a decision algorithm
for string unification [Mak77]. It also improves and generalizes the algorithm
in [SS98], where the signature is restricted to containing only one non-constant
binary function symbol. Instead of syntactically introducing integer exponents
for ground contexts, the algorithm SCU uses an n-fold copy. This again simplifies
the description of the algorithm sacrificing efficiency.

SCU makes use of a lemma on the exponent of periodicity of a minimal solu-
tion of context unification problems, proved in [SSS98], which is a generalization
of a similar result for string unification [Mak77,KP96].

An experimental implementation of stratified context unification (with ex-
ponents) was done in [Hoh97].

The following result is proved in this paper:

Theorem: Stratified context unification i1s decidable.
A corollary following from [NTTO0] is:
Theorem: Satisfiability of one-step rewrite constraints is decidable.

The structure of the paper is as follows. After section 2 on preliminary defini-
tions, section 3 contains an overview of the algorithm SCU, and also a proposition



on the connection between deterministic and non-deterministic unification algo-
rithms. Sections 3 contains the definition of decomposition steps. Sections 4 and
5 contain the definition of the rules and proofs of their correctness.

2 Preliminaries

Let X be a signature of function symbols. Every function symbol comes with
an arity, denoted ar(f), which is a nonnegative integer. Function symbols with
ar(f) = 0 are also called constant symbols. We assume that the signature con-
tains at least one constant symbol and at least one non-constant function symbol,
in particular we allow also that the signature may be infinite or monadic. Let
V1 be the set of first-order variables z,y, z, ..., Vo be the set of context variables
XY . Z .., and V:=V, UVs.

Termst are formed using the grammar

ti=x | f(t1a~~~atar(f)) | X(to),

where x is a first-order variable, f is a function symbol, X is a context variable,
and f; are terms. For a constant a, we write a instead of a(). We denote terms
using the letters s,¢. Syntactic equality of terms s,¢ is denoted as s = ¢. The set
of variables occurring in the term s is denoted as Var(s). A term s is called a
first-order term if it has no occurrences of context variables and called ground
term if s has no occurrences of variables.

Contexts are formed using the grammar

ClY = [ X(CLD | £t O tan).
by

where [] is called the hole (also trivial context, Id ), f is a function symbol, X
is a context variable, ' is a context, and ¢; are terms. Contexts must contain
exactly one occurrence of the hole. We denote contexts as C[-], or as C, if it
is not ambiguous, and the subterm X ([-]) is abbreviated as X (-). The notation
C[t] means the term where the term ¢ is plugged into the hole of C[]. We
denote syntactic equality of contexts by =. A ground context is a context without
occurrences of variables, 1.e.; it can be seen as a ground term with a single hole,
where a signature with the additional constant [-] is used. The size of terms is
the number of occurrences of symbols, and the size of contexts is the number of
occurrences of symbols not counting the hole. This may be denoted as size(s).

A (ground) substitution is a mapping from terms to ground terms with
the following properties. A substitution ¢ can be represented as {z; —

i, X; — Cji=1,...,n,j =1,...,m}, where ¢;,7 = 1,...,n is a ground
term and X;, 7 =1,...,mis a ground context. ¢ operates on terms ¢ by replac-
ing all occurrences of variables x; by ¢;,7 = 1, ..., n and replacing all occurrences

of context variables X; by C;,j = 1,..., m. The replacement of X by C[-] means
to replace all subterm occurrences X (s) by C[s], and the replacement of X by



Id 1s done by replacing all subterm occurrences X( ) by s. The ground sub-
stitution 0 = {z; = 4, X; — Cj,i = 1,..., = 1,...,m} has as domain
the set {=z; | i=1,...,nfU{X; | j=1,. } and as codomain the set
foe) i= 1, m}U{o(X)) =1, m}

We will also use multi-contexts C'[ 1,---,'n], which are terms over X U
{[1], -, ['n]}, where [4],4 = 1,...,n are added as constants to the signature,
and where every hole [;] occurs exactly once in Clq, ..., ]

Terms and contexts can be seen as labelled trees. The tree addresses are also
called positions, which are words of positive integers. The expression t|, (C/|p)
denotes the subterm (subcontext) of ¢ (of C') at position p.

If ¢y, Cy are contexts, then we denote the context C1[Cs[]] also as C1Cs. A
prefir of a context C'is a context C'7, such that C1C5 = C' for some context Cs.
For a context C[] = f(t1,...,ti—1,C'[],tit1,- .., tn] we define deraill(C) :=
(... i—1i+1,... n}.

In the following we will use the notation C[]*, where C[] is a context and
n is an integer. This is defined as C[]' := C[], C[]*"*! := C[C[]"]. If we use
this notation in a term, it is meant as a meta-notation of a term, not as explicit
syntax. Le. C™[t] is the term C[...C[¢] .. ].

N——’

A context unification problem (CUP) is a set of equations I', denoted as
{s1 = t1,...8, = 1,}. We use = as a symmetric operator, i.e. s = ¢ € I' iff
t = s € I'. An equation of the form X(s) = Y (¢) is called flat equation. The
multiset term(I) is defined to be {s,t | (s = t) € I'}. The size of I' is the
sum of the sizes of the terms in term(I"), denoted as size(I"). With Var(I") we
denote the set of variables occurring in I', and with Var;(I') we denote the set
Var(I')NV; for i = 1,2.

A unifier of I is a ground substitution ¢ with domain containing Var(I"), which
solves all equations in I'. Le., o(s) = o(t) for all (s =t) € I'. A CUP I' is called
untfiable, if there 1s a unifier of I

A unifier o of I' is called minimal if there is no other unifier o’ of I" with

S (size(@(X)) < D (size(o(X))).

xe Vary(1) xe Vary(1)

A ground substitution ¢ has exponent of periodicity n ([Mak77,55598]), iff n is
the maximal number, such that there is some context variable X and ground

contexts A, B, C, such that ¢(X) = AB"C.

Proposition 2.1.  ([S5598]) There is a constant ¢, such that for every unifi-
able context unification problem I' and for every minimal unifier o of I its
exponent of periodicity is at most 2¢*572¢(I),

Note that an estimation of the constant ¢ is ¢ < 2.14 [SSS98], hence there
are no hidden (large) constants.

The application of this proposition is that for a unifiable CUP I, it is possible
to focus on a minimal unifier, which has then also an upper bound on the number
n of repetitions A” of a ground context A. This does not directly lead to a



computation of an upper bound on the size of a unifier, since the size of A is not
known.

Definition 2.2. Let I" be a CUP. We define second-order prefixes (SO-prefixes)
for I' as words in (Va)* for occurrences (of variables) in I

— Let s,t be terms. If s =t 1s in I', then s,t have empty SO-prefiz.

— Let [ be a function symbol. If an occurrence of a subterm f(s1,...,s,) has
SO-prefiz w, then the subterm occurrence s; has SO-prefiz w fori =1,... n.

— If an occurrence of a subterm X(s) has SO-prefir w, then the occurrence of
X has SO-prefiz w, and the occurrence of s has SO-prefir w - X.

If for every context variable X and for all SO-prefizes wy, wq of occurrences of
X in I', wy = ws holds, and for every first-order variable x and all SO-prefizes
wy, we of occurrences of x wn I', wi = ws holds, then I' is called a stratified
context unification problem (SCUP).

Usually, the CUP I' is clear, so it is in general unambiguous to speak of the
SO-prefiz without mentioning I'.

If I' is an SCUP, then the SO-prefix of a variable (a context variable) is
independent of the occurrence, which means it is unique. Hence we may speak
of SO-prefixes of context variables or first-order variables instead of SO-prefixes
of occurrences.

Ezample 2.3. Examples for SCUPs are {X(z) = Y(y)}, whereas the follow-
ing two context unification problems are non-stratified: {X(X(z)) = Y(y)},

{(X(2) =Y (2)}.

Ezample 2.4. Let us consider the SCUP {X(f(a)) = f(X(a))}, which is trans-
lated from the string-unification problem zf = fz. The unifiers are X — Id,
X = f([D), X = f(f([']),- .-, which can be represented as X — f™([-]). Propo-
sition 2.1 then gives us an upper bound for n, if we are only interested in a
minimal unifier.

The following two definitions will be essential ones for the decision algorithm
SCU in the following (see section 3).

Definition 2.5. A set of equations X1(s1) = r1,..., Xn(sn) = rp is called a
second-order cycle (SO-cycle), if the following holds: X; occurs in r;_1,i =
2,...,n, Xy occurs in ry, and at least one such occurrence is not at the top.
The length of an 50-cycle s the number of equations in it.

An SO-cycle 1s called ambiguous, if either for some i > 1 the term r; contains
more than 1 occurrence of X;y1, or r1 conlains more than 1 occurrence of X, .
An SO-cycle 1s standardized, if it is of the form

Xi(s1) = Xo(t1), .., Xnoi(sno1) = Xn(tno1), Xn(sn) = CX1(tn)],

where C[-] is a nontrivial context. Le. all equations but one in the SO-cycle are

flat.

We sometimes represent the terms r; in an SO-cycle as Ci[X;41(t)], and
Cn[X1(t)] where Cs, i =1,...,n is a context.



Note that every SO-cycle of length 1 is standardized.
Note also that for an ambiguous SO-cycle

Xl(Sl) = Cl[Xz(tl)], . .,Xn(sn) = Cn[Xl(tn)]

the representation is ambiguous insofar as there is some C; that contains the
context variable X;4, (or C), contains X1, respectively). Hence the jt" equation
could also be written X;[s;] = C}[X;41(t;)] for a context C} # Cj.

Lemma 2.6. Let I' be an SCUP with an 50-cycle
X1(s1) = C1[Xa(t1)], .-, Xn(sn) = Cu[X1(tn)]-
Then for all i, the position of the hole of C;[-] has an emply SO-prefiz.
Proof. This follows from stratification. a

Definition 2.7. Let I be an SCUP. Let ~ be the equivalence relation on context
variables generated by all pairs X1 ~ Xo where an equation X1(s) = Xa(t) is in
I.

Let > be the transitive closure of the relation generated by all the pairs
X1 = X9 where X1, X2 have empty SO-prefiz and there is an equation
X1(8) = f(t1,...,tn) in I and Xo occurs in f(t1,...,tn).

Let 2 be the pre-ordering generated by the transitive and reflexive closure of
= U~

If there are context variables X,Y with X =Y and Y 2 X, then we say 2, has
a cycle conflict.

If 2 has no cycle conflict, then an equivalence class K (of context variables)
of ~ is called a second-order cluster (SO-cluster). An SO-cluster K is called a
top-SO-cluster, iff the context variables in K are marimal w.r.t. 2.

The set EQ(K) is a set of equations s =t in I', where a context variable from
the SO-cluster K occurs at the top-level of s ort.

A top-S50-cluster K, where all equations in EQ(K) are flat, is called flat top-
SO-cluster.

Ezample 2.8. The SCUP It = {X(x1) = f(Y(22)),Y (23) = g(X(24))} has as
orderings:

~ = (X, X), v,")}, = = {(X,Y),(Y,X)}, and thus
2 = {(X,X),(X,)Y),(Y,X),(Y,Y)}, We have X = Y, but Y2 X, hence 2
has a cycle conflict.

Let another SCUP be I's = {X(2) = Y(y), X(2) = f(u, Z(v)), Z(a) = U(b)}.
The orderings are X ~Y, X = Z,Z ~ U. I'; has {X, Y} as top SO-cluster, but
it is not flat. The SO-cluster {Z,U} is flat, but not a top-SO-cluster. The set
EQ({X,Y}) is the set of equations {X(z) = Y (y), X(2) = f(u, Z(v))}.

The SCUP Ty = {X(g(Z(e1))) = ¥(g(e)), X(olm)) = Y (o(s2)), Ui (21) =
fla,Us(z2))} has a flat top-SO-cluster {X,Y}.

Remark 2.9. A top-SO-cluster K of I' is a set of context variables that is con-
nected by equations X(s) = Y(¢), and the context variables from K do only
occur at top level in terms of term(I") .



3 An overview of the Stratified Context Unification
Algorithm (SCU)

3.1 Structure of SCU

The overall idea of the context unification algorithm SCU is to guess the in-
stantiations of the context variables in a controlled top-down way. The SO-
prefix as a syntactic criterion permits to identify levels for this top-down guess-
ing. In the case that an SO-cycle of the form Xi(.) = Ci[X2()], X2(.) =
Co[X3()], .., Xn(l) = Cp[X1(1)] is detected (or generated), a series of trans-
formations guarantees the elimination of at least one context variable. If there is
no SO-cycle, then a careful guessing reduces SO-clusters and finally eliminates
a context variable. Eventually, all context variables are eliminated.

The common terminology in higher-order unification procedures distinguishes
equations as rigid-rigid (f(...) = f(...)), rigid-flexible (f(...) = X(...)), and
flexible-flexible (X (...) = Y'(...)). The rigid-rigid case will be treated in the
decomposition rules, the rigid-flexible case will be treated in SO-cycle elimination
and SO-cluster elimination. The treatment of flexible-flexible equations is done
by the rules for elimination of flat SO-clusters.

Note that it would be possible to eliminate all the first-order variables at the
beginning by nondeterministically replacing them by terms of the form X(a),
where a is some constant. However, there is no real gain in clarity, and since
there are steps in the algorithm that can better be described using first-order
variables, and moreover the termination proof relies among others on the dis-
tinction between first-order and context variables, we refrain from eliminating
first-order variables in this way.

Definition 3.1. SCU is the following nondeterministic algorithm:

Given an wnitial stratified contexrt unification problem I, an upper bound E
is fired for the exponent of periodicity (see Proposition 2.1). Then the rules for
decomposition (see section 4) are applied exhaustively. The rules for eliminating
SO-cycles and SO-clusters are applied (see subsections 5 and 6), where the SO-
cycle rules are applied if there is an SO-cycle, and the SO-cluster rules are
applied if there 1s no SO-cycle. After every rule application, there is a subsequent
erhaustive application of decomposition rules. This is done until a Fail occurs, or
the resulting system is empty. In the latter case, the answer is “yes: unifiable”.
Using SCU as a decision algorithm is as follows: If there 1s a possibility to answer
“yes: unifiable”, then [Gnq: is recognized as unifiable. If all possibilities end in a
Fail, then Iynqe 1s not unifiable

The algorithm SCU computes only a yes/no answer, however, a slight exten-
sion would enable it to output a unifier: Following the rule applications in the
backwards direction, it is easy to construct a unifier.

In the following we assume that an upper bound E given in Proposition 2.1
for the exponent of periodicity of a unifier of I7j,;; is fixed, in order to simplify
the presentation of the rules.



The (non-deterministic) algorithm is presented by describing rules that are
applied to a SCUP I', and may output a SCUP I/, where the number of choices
for the output problem is always finite. It is necessary that all rules are effective,
and also that all the choices can effectively be computed.

Definition 3.2. A rule is called sound, if whenever the rule transforms an
SCUP I' into the SCUP I'', unifiability of I'! implies the unifiability of I'.

A rule s called complete, if for all input SCUPs I', and all unifiers o of I
with exponent of periodicity < E, the rule has a possibility to output an SCUP
I’ that has a unifier o’ with exponent of periodicily < E.

We show under which circumstances we can claim SCU to be a decision
algorithm for unifiability of SCUPs by computing the hole tree of the non-
deterministic transformations.

Proposition 3.3. Assume the following holds:

Euvery execution possibility of SCU termanates, of the input is a SCUP.
Every rule of SCU 1s sound and complete, and also effective.

FBvery rule has only a finite number of execution possibilities.

SCU stops only in two cases: either it 1s saying Fail, or the final SCUP 1s
empty.

T o o~

Then SCU 1s a decision algorithm for stratified context unification.

Proof. Since every execution possibility of SCU terminates, and since every rule
has only a finite number of choices, using Konig’s Lemma, the computation tree
of all possibilities of SCU is finite. Hence it is effectively possible in finite time
to compute all possible outputs of SCU and check them whether there is or is
not an empty SCUP as output.

If the input SCUP [3,;: is not unifiable, then soundness implies that there
is no execution possibility that leads to a unifiable (i.e. empty) SCUP.

If the input SCUP [I7},;; is unifiable, then there is a minimal unifier that
has exponent of periodicity < E by proposition 2.1. Completeness shows, using
induction on the number of rule applications, that there is a final SCUP with a
unifier that has also exponent of periodicity < E. Since the final SCUP is empty,
it 1s unifiable. a

Note that it is possible that there is an execution path of SCU, where the
minimal unifier is lost, e.g. for a I'* on this path there are only unifiers with ex-
ponent of periodicity strictly greater than E| but the execution path terminates
successfully with an empty SCUP. This does not contradict the method used,
since the soundness proof shows that in this case the input SCUP is unifiable,
and the completeness part shows, that there is another execution possibility that
belongs to a minimal unifier.

Proposition 3.3 structures the correctness proof into showing the following
claims:

1. Every execution possibility of SCU terminates, if the input is a SCUP.



2. Every rule of SCU is sound.

Every rule of SCU is complete.

4. SCU stops only in two cases: either it 1s saying Fail, or the final SCUP is
empty.

wo

3.2 The Termination Ordering

In order to show termination of SCU, we define a well-founded measure for
SCUPs, and show that every rule of SCU strictly decreases this measure.

Definition 3.4. Let L be an SO-cycle. The measure (L) is a lexicographic
combination of the following components:

1. The length of L.
2. The length of L munus the marimal number of successive flat equations in

L.

Definition 3.5. The measure p for termination, also written pu(I') is a lexico-
graphic combination (p1,. .., pe) of the following well-founded measures:

1. py: The number of context variables in I'.

2. ps: A measure for SO-cycles: oo, if there is no SO-cycle, otherwise, the
minimal (L) for all SO-eycles in I'. We use that oo > a for all a # co.

3. ps: The number of first-order variables in I.

4. pa: If there s an SO-cycle or if there is no flat top-SO-cluster, then co. If
there 1s a flat top-SO-cluster, then the minimal number of context variables
wn a flat top-SO-cluster.

5. ps: The multi-set of the sizes of all terms in term(I") that start with a
function symbol. The ordering 1s the multiset ordering.

6. pe: The number of equations in I'.

Proposition 3.6. The measure p is well-founded.
For more information on orderings, see [DM79,Der87, BN98]

Proposition 3.7. If for every rule application with input I', the output is either
Fail, or a I'" with p(I') > p(I), then every execution of SCU terminates.

Proof. This follows from the well-foundedness of the measure p. a

3.3 Stratification

For ensuring termination, it is necessary that all intermediate CUPs are strati-

fied, i.e., are SCUPs.

Proposition 3.8. If the initial CUP Iy, is stratified, and every rule of SCU
keeps stratification, then every intermediate CUP wn every run of SCU is also
stratified.

Proof. Follows using induction on the number of rule applications. a



4 Decomposition Rules

4.1 Definition of the Rules

The rules in this subsection transform I' until all equations are of the form

X(s)=Y(t),or X(t) = f(...).
Definition 4.1. We describe the basic rules, also called the decomposition rules.

— (Replace-variable) If ¥ = t is an equation in I', and © ¢ Var(t), then
remove the equation x = t, and replace x by t everywhere in I'.

— (Decomposition) Replace an equation f(si,...,8n) = f(t1,...,1n) by the
equations sy = t1,...,8, = ty.

— (Trivial) Remove equations s = s from I.

— (Clash) Return Fuil, if there is an equation g(s1,...,sm) = f(t1,...,tn),
where f, g are function symbols and g # f.

— (Occurs-check) Return Fail, if there is an equation x = t, where x € Var(t),
and t £ x.

A SCUP I' is called decomposed, if no decomposition rule is applicable.

Note that the rule X(s) = X(¢) — s =t is not used, since it would destroy
stratification. It is used for several equations at once in a rule solving SO-clusters.

4.2 Correctness of Decomposition Rules

Lemma 4.2. Fvery decomposition rules either fails, or transform an input

SCUP nto a stratified CUP.

Proof. The critical operation is replacing a first order variable. Replacing a first-
order variable z by ¢ triggered by an equation z = ¢ in I retains stratification,
since the replacement is done everywhere, and the SO-prefix of = i1s empty at
every occurrence. Thus the SO-prefixes of the new occurrences of variables in ¢
remain the same after the replacement. a

Lemma 4.3. The decomposition rules are sound and complete

Proof. The proof for all rules except occurs-check is the standard one for decom-
position rules in the first-order case.

For the rule (occurs-check), it is obvious that # = f(¢1,...,t,) is not unifiable
if # occurs in some t;. For an equation # = X (t), stratification ensures that » is
not contained in ¢. a

Note that the situation is the same as for first order unification problems.
Basically, the transformations do not change the set of unifiers.

Lemma 4.4. The decomposition rules strictly decrease the measure p:

Proof. The rule (Replace-variable) either generates an SO-cycle, i.e. it may
strictly reduce ps, or it leaves this invariant, and strictly decreases the number of
first-order variables. The rule (Decomposition) may generate an SO-cycle, or a
flat top-SO-cluster, otherwise it strictly decreases p5. The rule (Trivial) strictly
reduces . a

10



4.3 Property of Decomposed CUPs

Proposition 4.5. Let I' be a nonempty and decomposed SCUP. Then either I
has an SO-cycle, or there is a top-SO-cluster.

Proof. This follows by standard arguments on the orderings in definition 2.7. If
there is a cycle-conflict, then no SO-cluster is defined, however, the generation
of the ordering from the basic relations shows that in this case an SO-cycle is in
I O

5 Elimination of SO-cycles

5.1 Definition of the Rules

In this subsection we describe transformation rules that operate on SO-cycles.
Assume we have a shortest SO-cycle:

X1() = X)) Xa() = CalXa ()]s X () = CalXa ()]

The critical path of the transformation is as follows: First contexts C; are shifted
in a shortest SO-cycle to a single equation, i.e., such that a standardized SO-cycle
of the form

Xi(s1) = Xo(t1), ..., Xno1(sh—1) = Xp(tho1), Xn(sn) = Cp[X1(ts)]

is generated. The next step is to operate on this standardized SO-cycle.

Two cases have to be distinguished: i) that Xy occurs in Cj, which due to the
stratification condition can only be with trivial SO-prefix and ii) that X; does not
occur in C},. In any case the SO-cycle will be shortened by some transformation.
The last step is to use the bound F on the exponent of periodicity to eliminate
one context variable in an SO-cycle of length 1.

The non-critical possibilities of the algorithm are for example eliminating a
context variable, or generating a (different) shorter SO-cycle, which may then
be used as the target of the transformations, since then the measure p is strictly
decreased.

The possibilities of the rules are either that a context variable can be in-
stantiated (CV-eliminate, Partial-prefix), or there is a standardization operation
(Full-prefix), or the position of the hole of some context variable does not follow
the direction (rails) given by the selected SO-cycle. We call this possibility “de-
railing“. After a derailing, the operated-upon SO-cycle is destroyed, and after
that the remaining pieces contain a shorter SO-cycle.

We make the following assumption on the applicability of the rules in this section:

— The SO-cycle elimination rules are only applied if the SCUP is decomposed.
— The SO-cycle elimination rules are applied to a shortest SO-cycle.
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Definition 5.1. Rule (Standardize-cycle)

This rule 1s only applicable, if a shortest SO-cycle s non-standardized. Let L be
such an SO-cycle in I' that has among the shortest, non-standardized SO-cycles
the mazimal number of successive flat equations. In particular, the SO-cycle has
length at least 2.

The SO-cycle L can be represented as

Xl(sl) = Xz(tl), .. .,Xj_l(Sj_l) = Xj(tj_l),
Xj(s5) = Ci[X41()]5 - -+, Xn(sn) = Cp[Xi(ta)]

All equations with index © < j are flat, and the equation with index j is non-
flat, i.e., C;,Cy are nontrivial and j # h. Note that there s no occurrence of
XZ',Z'I 1,...,j m Cj.

Then select one of the following possibilities:

1. (CV-elimination) Select some i € [1..h] and instantiate X; by Id, i.e., remove
it from I'.

2. (Partial-prefiz) Select some prefix C; 1 of Cj, i.e., C; = C;1C} 2, and replace
X; etther by C;1[X[()] or by Ci1[] for all i =1,...,j, where X are new
context variables. For at least one 1 = 1,..., 7, select the replacement of X;
by Cja[]-

3. (Full Prefiz) For all i = 1,...,j, replace X; using X; = C;[X/(-)] where
X! are new context variables. Apply (Decomposition) to the first j equations
after the instantiation until (among others) the equations Xi(s;) = X/ | (t;)
fori=1,...j—1 and Xj(s;) = X;j11(t;) are obtained.

4. (Derailing) Select a prefiz C;1 of C;, such that C; = C;1C; 2, and Cj 5 is
not trivial. Let f be the top level function symbol of C; o of arity n. Fail, if

n=1.

For everyi = 1,...,7, select an index 1 < k; < n, such that for at least one

i: ki € deraill(Cj2). Replace X; by Cj1[f(@in, ..., X[("),...,2xin)], where
N

ki
X! are new context variables and z; j; are new variables.
Then exhaustively apply (Decomposition) and after that exhaustively apply
(Replace-variable) to the equations that are the result of instantiating the
first j equations of the SO-cycle.

If several successive applications of the rule (Standardize-cycle) do not
strictly reduce the number p; of context variables or the length of a shortest
SO-cycle, then it will transform in several steps a minimal SO-cycle into a (min-
imal) standardized SO-cycle.

Ezample 5.2. Anillustrating example for an application of the rule (Standardize-
cycle) is the SCUP

12X (21) = f(X2(y1)), Xalz2) = 9(Xa(y2), Y(a)), X5(z3) = h(X1(ys))}

Note that this is a non-ambiguous SO-cycle.

12



The assumption that the rule is applied only to shortest SO-cycles prevents
occurrences of e.g. X7 in the right term of the second equation. Applying the
rule (Standardize-cycle) to it using the third possibility using the replacement

X1 = f(X1())
results after decomposition in

{XT (1) = Xo(y1), Xo(x2) = 9(X3(y2), Y (a)), Xs(2s) = h(f(X](y3))}

Now there is one flat equation in the SO-cycle.
We show two different possibilities:

1. We may choose possibility 3 of the rule.
Let the replacements be

Xp = g(X{(),Y(a), X2 = g(X9 (), Y(a))
The result is:

XY (21) = X5 (), X5 (22) = X5(y2),
XS(l‘S)ih(f( (X ( 3),Y(a))))}

Now the SO-cycle is standardized.
2. We may also choose possibility 4 (derailing).
Applying the replacements

X{=g(X7 (), 21), X2 = g(z2, X5 ()
to

{X1(21) = Xa(y1), Xo(22) = 9(X3(y2), Y (), Xs(23) = h(F( X (y3)))}
results in:

{X{(21) = 20,20 = XY (1),
za = X3(y2), XY (22) = Y(a),
Xa(z3) = h(f(9(XY (y3),21)))}

Application of the rule (Replace-variable) for the variable zo generates the
following SO-cycle of length 2:

X1 (1) = X3(y2), Xa(xs) = h(f(9(XT (y3),21)))

Ezample 5.3. A slight variation shows the application of (Standardize-cycle) to
a SCUP with an ambiguous SO-cycle.

1Xa(z1) = F(X2(11)), Xo(z2) = 9(X3(y2), Y (a), Xs(a)), Xz(2s) = h(X1(ys))}

Applying the rule (Standardize-cycle) to it using the third possibility using the
replacement

X1 = f(X1()

13



results after decomposition in

{X1(21) = Xa(y1), Xo(w2) = 9(X3(y2), Y (a), Xs(a)), Xs(ws) = h(f(X7(y3)))}
Now we choose possibility 3. Let the replacements be
X1 1= (XU, Y (a), Xa(a), Xo := g(X4 (), Y (a), Xa(a))
The result after decomposition 1s

{ XV (1) = X5 (1), X5 (x2) = X3(y2),
Xs(z3) = h(f(9(XT (y3),Y (a), X3(a))))}

Analyzing the result, there is now the SO-cycle

Xs(xs) = h(f(9(X{ (), Y (a), X3(a))))
of length 1.

Now we describe two rules that operate on standardized SO-cycles, either
removing a context variable, or shortening the SO-cycle. The difference lies in
the derailing part. If the SO-cycle is ambiguous, then only one instantiation
round in the SO-cycle is necessary. In a standardized SO-cycle, there may be
more instantiation rounds before derailing. The number of rounds can be limited
by the exponent of periodicity.

Definition 5.4. Rule (Solve-standardized-ambig-cycle)
This rule has to be applied to a shortest SO-cycle that is in addition standardized
and ambiguous: Let the SO-cycle be of the form

Xi(s1) = Xo(t1), ..., Xno1(sh—1) = Xn(tho1), Xa(sn) = C[X1(t)],

where C' s a context, and X1 occurs i C.
Select one of the following possibilities:

1. (CV-elimination) Select some X;,i € [1..h] and instantiate it by Id, i.e.,
remove it from I'.

2. (Partial-prefiz) Select Cy,Cy such that C' = C1Cy, C1,Ca are not trivial,
and X, does not occur in Cy. Fail, if this 1s not possible.

Replace X; either by C1[X[()] or by Ci[] for alli=1,... h, where X are
new. There must be at least one index j € [1..h] such that X; is replaced by
Chl]-

3. (Derailing) This case is only applicable, if the SO-cycle has length h > 1.
Select C,Cy such that C' = C1C5, Cy is not trivial, and X1 does not occur
wmn C1. Fail, if this is not possible.

Let [ be the top level function symbol of Cy and let n = ar(f). Fail, if
n = 1. For every i, select an indexr 1 < k; < n, such that for at least one i,

ki € deraill(C3).
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Replace X; by Cy[f(win, ..., X;(),...,&in)] fori=1,... h, where z; , X!
——

are new. "

Then exhaustively apply (Decomposition) and after that exhaustively apply

(Replace-variable) to the equations that are the result of instantiating the

equations wn the SO-cycle.

Definition 5.5. Rule (Solve-standardized-cycle)
This rule has to be applied to a shortest SO-cycle that is in addition standardized
and not ambiguous. Let the SO-cycle be of the form

Xi(s1) = Xo(t1), ..., Xno1(sh—1) = Xn(tho1), Xa(sn) = C[X1(t)],

where C' is a context, and X1 ts not contained in C.

Let 0 < e < E be an integer where E is the fizred upper bound for the exponent
of periodicity, given in Proposition 2.1 for the initial problem ;.

Select one of the following possibilities:

1. (CV-elimination) Select some X;,i € [1..h] and instantiate it by Id, i.e.,
remove it from I'.

2. (Partial-prefiz) Let Cy be a prefiv of C. Replace X; either by C¢[C1[X!(-)]]
or by C°[C1[]] for all i =1,..., h, where X! is a new context variable.

For at least one i = 1,... h, select the replacement of X; by C¢[C1[]].

3. (Derailing) This selection is only possible for h > 1. Let Cy be a prefir of
C, such that C1Cs = C and C'y 1s nontrivial. Let f be the top level function
symbol of Cy and let n = ar(f). Fail, if n = 1.

For every i, select an index 1 < k; < n, such that for at least one i, k; €

deraill(Cs).

For alli =1,...,h, replace X; by C°C[f(zin, ..., X[(*),...,xin)], where
——

2

ki
zi g, X! are new.
Then exhaustively apply (Decomposition) and after that exhaustively apply
(Replace-variable) to the equations that are the result of instantiating the
equations wn the SO-cycle.

Ezample 5.6. Consider the SCUP {X(z) = g(f(X(a), X(a)),b)}. There are in-
finitely many solutions as second-order unification problem, but as a SCUP,
there are only finitely many possibilities for X. The possibilities are covered in
the rule (Solve-standardized-ambig-cycle). One is X = Id, which results in the
unifier {& = ¢(f(a,a),b)}. The other possibility is X = g(X'(-),b). The SCUP
after applying the instantiation X = g(X’(-), ) is:

X'(@) = fg(X'(a),b), 9(X'(a), b))

Now only X’ = Id is possible, which results in a unifiable SCUP.
Suppose the instantiation were X' = f(X”(-),t). Then t = ¢(f(X"(a),t),b)
has to be unifiable, which is not possible since the sizes are different. The same
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holds for the instantiation X’ = f(¢, X"'(-)). These instantiations are precluded
in the rule (Solve-standardized-ambig-cycle), since (Derailing) is not possible for
an SO-cycle of length 1, and the selection (Partial-prefix) is not possible, since
every nontrivial prefix C; would contain the context variable X".

5.2 Correctness of SO-Cycle-Elimination

Lemma 5.7. The SO-cycle rules either fail, or transform an input SCUP into
a stratified CUP.

Proof.

— Intermediate decomposition keeps stratification, as already proved in lemma
4.2

— Removing a context variable X (-) keeps stratification, since it is removed
from all SO-prefixes.

— Replacing a context variable X with empty SO-prefix by a context, where
the hole has empty SO-prefix also keeps stratification. That this is the only
possibility 1s stated in lemma 2.6.

— Replacing a context variable X by C[X’(-)] is done only if the SO-prefix
is empty, and the new SO-prefix for X’ is also empty. The variable X in
SO-prefixes is replaced by X', hence the stratification condition for other
variables remains true.

O

Lemma 5.8. The rules for SO-cycle elimination are sound and complete.

Proof. Soundness can easily be verified by inspecting the rules.

Completeness:  Let o be a (ground) unifier of I with an exponent of period-
icity < E. In the proof below it is shown that an output SCUP I exists. The
construction of a corresponding unifier ¢’ is either obvious, or there are hints
on the construction. For the SO-cycle elimination rules the following is easy to
verify: The (ground) unifier ¢’ has also an exponent of periodicity not greater
than F, since every ground context in the codomain of ¢’ is already a subcontext
of a term or context in the codomain of o.

We show which I may be selected to show completeness.

If there is some X; in the SO-cycle with o(X;) = Id, then we use selection
1) in the appropriate rule. Hence in the rest of this proof we can assume that
o(X;) # Id for all i.

The cases are:

1. The (minimal) SO-cycle is non-standardized. Then h > 1. The rule
(Standardize-cycle) will be applied. Let A be the greatest common prefix
of the ground instances ¢(X;) of the context variables X; for i = 1,...,j
and of o(C}).

The different cases are:
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— 0(X;) = A for some 4. Then selection 2 is used.
— 0(C;) = A. Then selection 3 is used.
— A is a proper prefix of ¢(C;) and of all ¢(X;),i = 1,...,j. Let A; be
such that o(X;) = AA;, i =1,...,j and let o(C;) = AC}. The context
(" 1s nontrivial. Since ¢ is a unifier, the top level function symbol f
of all A; and C’} is the same. Cq, Cy can be select such that ¢(Cj1) =
A, 0(Cj2) = . Since A is a proper prefix of ¢(X;) and ¢(C}), the arity
of f is greater than 1. For ¢ = 1,...,j, the index k; is chosen as the
first character of the position of the hole of A;. There must be one k; in
deraill(c(C; 2)), since otherwise the prefix A is not maximal.
In every case we can choose a possibility in (Standardize-cycle), such that
the output SCUP has a unifier.
. The SO-cycle is standardized and ambiguous. In this case the rule (Solve-
standardized-ambig-cycle) is used.
First we treat the case that the SO-cycle has length 1. Then the SO-cycle can
be represented as Xi(s1) = f(t1,...,t,). Assume, there are two indices k #
J, such that X; occurs in ¢, and ¢;. W .l.o.g. assume that k € deraill(c(X1)).
Then o(t;) is properly contained in o(X;), which contradicts the fact that
o(X1) is contained in o(t;). Thus there is only one index j, such that ¢;
contains occurrences of X;. By induction on the length of the largest common
prefix of the paths to all occurrences of X; in C, there is a nontrivial context
Cy with ¢ = C1C5, and without occurrences of Xy, such that o(X;) =
o(Cy). We can use selection 2.
For the case h > 1 let A be the greatest common prefix of ¢(X;),i = 1,...,h
and of ¢(C). Assume A = o(C'). Since X; is contained in C, this implies
that A as a prefix of ¢(X1) would be properly contained in ¢(C') = A, which
is a contradiction.
Hence A is a proper prefix of o(C), and we can select Cy,Csy, such that
C' = 104, Cy is not trivial, and o(Cy) = A. Tt is clear that X cannot occur
in Cp. If 6(X;) = A for some ¢, then use selection 2. Otherwise use selection
3. Now we can use similar arguments as for the rule (Standardize-cycle).
. The SO-cycle is standardized and not ambiguous. In this case the rule (Solve-
standardized-cycle) is used.
Let A be the greatest common prefix of o(X;) for i = 1,...h and of ¢(C¥).
Let A= o(C)°C" with 0 < e < F and €’ a proper prefix of ¢(C), let C* be
a context such that C'C" = ¢(C'). This choice of e is possible, since we have
assumed that the exponent of periodicity of ¢ is not greater than E.
First let o = 1. We have to show that ¢(X;) = A. Assume this is false.
Then o(X1) = Af(t1, ... N .y tn) D for some ground context D, where
2
..., 1y) is not a prefix of o(C¥). Since o solves the equations

Aftte, ooy -

2
in the SO-cycle, the equation

Af(ty, .., U oo tn) = a(C)VAF(ty, ..., 7 o t)
k k
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holds. Decomposition shows:

Flr, ..o, b)) =C" (b, )
k k

Let k' be the first letter of the position of the hole of C”. Then k' # k by
. . " S
assumption, and #;s contains f(t1,..., %%, .. .,\tk/_/. ..ytpn), which is a con-

tradiction. Now it is clear that selection 2 can be used.
Now let A > 1. If 0(X;) = A for some i, then use selection 2. If A is a proper
prefix of all o(Xj;), then let f be the top level function symbol of . This
function symbol must be of arity at least 2, since otherwise the common
prefix A would be longer, for ¢ solves the equations in the SO-cycle. Select
the prefix Cy of C such that ¢(C}) = C’. Now we select the indices k; as
the first letter of the position of the hole of A;, where o(X;) = AA; for i
= 1,...,h. It 1s also clear that there is some ¢, such that k; 1s not the first
letter of the position of the hole in C" = ¢(C4), since otherwise, the prefix
A would not be maximal.

|

5.3 Termination of SO-Cycle Rules

We show in this subsection, that every application of an SO-cycle rule either
decreases the measure u, or leads to a Fail.

Lemma 5.9. The rule (Standardize-cycle) strictly decreases the measure p.

Proof. First we argue that the instantiations do not increase the number of
context variables. Assume there is a shortest non-standardized SO-cycle. Since
the SO-cycle is a shortest one, the context C; does not contain X;,e=1,..., ],
since j < h, and thus the instantiations do not contain the context variables
Xi=1,...,4.

The rule (Standardize-cycle) either strictly reduces the number of context
variables (possibilities 1 and 2), or generates a new SO-cycle of shorter length
than h, or of the same length, but a strictly greater number of successive flat
equations (possibility 3). Hence p is strictly decreased for selections 1,2, and 3.

The selection possibility 4 strictly decreases the length of a shortest SO-cycle
after applying exhaustively (Decomposition) and (Replace-variable), as can be
seen as follows:

Let the context Cj3 and the index £k;41 be defined by C;», =

Frsee Ciald, o).
N —
kjt1
After instantiating the first j equations and exhaustively applying (Decomposi-
tion) (i.e., decomposing away C} 1), the following first j equations are obtained:
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f(xl,la .. .,X{(Sl), .. ~ax1,n) = f(l‘zyl, .. .,Xé(tl), .. .,l‘zyn)
N——

N——’
k1 k2
f(@j—l,l,uw ‘;_1(Sj_1),...,l‘j_1yn) = f(l‘jyl,...,X‘;(tj_l),...,l‘jyn)
S—— S——
Ejos k;
Flaga, o Xi(s5), v xgm) = flre, .o O sl X (ti=1)], o)
N — —_——
k‘j kj+1

Applying (Decomposition) and focussing the position k;41 yields the following
equations. For index j in the SO-cycle the equation is one of

ik = CialXgn(tj-1)]  for kj # ki
Xj(sj) = Cja[Xjua(tj—)]  for kj = kjpa

For the other equations, the following pairs are possible:

Uil = Tik;q

Tikiyr = Us

or

Since k; 41 is different from at least one k; with 1 <7 < j, the chain of equations
contains at most j context variables at the top, i.e.; at least one i1s missing.
Moreover, after replacing variables z; ;, a strictly shorter SO-cycle is obtained,
since both x;z,,, and X7 is contained in the right term of the equation with
index A of the input SO-cycle L after the first instantiation. It is also clear that
all the freshly introduced variables z; ; will be replaced, and thus the measure
43 18 not increased.
In summary, the measure g is strictly decreased.

Note that an occurs-check situation (as in the next proofs) is not possible,
since the SO-cycle is not standardized, and C} 5 is not trivial. a

Lemma 5.10. After application of the rule (Solve-standardized-ambig-cycle) ei-
ther the measure u s strictly decreased or there is an occurs-check failure.
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Proof. First it is clear that (7 in the definition of the rule does not contain
any of the context variables X; due to the following reasons: the SO-cycle is of
minimal length, we assumed that X; is not contained in €, and I is stratified.

The selection possibilities 1 and 2 of rule (Solve-standardized-ambig-cycle)
strictly reduce the number of context variables.

If selection 3 is applied, then it generates a new SO-cycle of shorter length
than h after decomposition:
The arguments are almost the same as for the possibility 4 of the termination
proof of (Standardize-cycle) of Lemma5.9 to show that the length of the SO-cycle
1s strictly reduced and that the number of first order variables is not increased.
There is exactly one exception: if after decomposition there are only variable
equations, 1.e., if k; # kpyq for all j, where kj41 is the first letter of the position
of the hole in Cs. Let Cs,r; be determined by Co = f(r1,...,Cs[], ..., ),

——

khi1
and assume that all k; are different from kp11. Then after decomposition, the

equations are of the form

L1 kppr = L2k
Th1knyr = Thkni
Thkny1 = C3Cl[f(x171a s s T kpgrs e Xi(t])’ ] xly”)]
k1

and after some applications of (Replace-variable), the occurs-check failure rule
is applicable. a

Lemma 5.11. After application of the rule (Solve-standardized-cycle) either the
measure j 1s strictly decreased or there is an occurs-check failure:

Proof. Since the SO-cycle is not ambiguous, cases 1 and 2 strictly decrease the
measure fi.

In the derailing case, after instantiating and decomposing the equations and
looking for the equations that result from eliminating the context C°Cy by
decomposition, the same arguments as in the proof of termination of (Solve-
standardized-ambig-cycle) can be used (see proof of Lemma 5.10). a

6 Elimination of SO-Clusters

6.1 Definition of the SO-Cluster Elimination Rules

This subsection contains rules to resolve top-SO-clusters K. The critical path
of the transformation is first to generate a flat top-SO-cluster from non-flat
ones by a generalized imitation rule. Once a flat top-SO-cluster is generated, a
guess by a generalized flexible-flexible rule generates smaller and smaller top-SO-
clusters, until it is possible to remove a context variable. The uncritical paths
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of the transformation are that a context variable is eliminated or an SO-cycle is
generated, which strictly reduces the measure of .
We assume that the rules in this subsection are only applied to decomposed

SCUPs.

Definition 6.1. Rule (Solve-non-flat-cluster)
This rule 1s only applicable if there are no SO-cycles, no flat top-SO-clusters,
but a non-flat top-SO-cluster.

Let K = {X1,...,Xn} be a non-flat top-SO-cluster, and let X;(s) =
f(t1,...,tn) be an equation in FQ(K).
Then select one of the following two possibilities:

1. (CV-elimination) Select some X;,i € [1..h] and instantiate it by Id, i.e.,
remove it from I'.

2. (Rigid-flexible) For everyi=1,..., h, select an index 1 < k; < n and replace
every X; € K by f(zi1,..., X[ (), ..., %in) where x; j, X] are new variables.

7—/

Then one application of (Decomposition) has to be made for every resulting
equation from EQ(K) and afterwards use (Replace-variable) for the variables
Li -

In the following rule we use a new function symbol F, which makes it easier to
describe the effects of the rule, and permits also an infinite signature X. This
function symbol is only for intermediate use, since it is not contained in the

resulting SCUP.

Definition 6.2. Rule (Solve-flat-cluster)

This rule 1s applicable «f there are no SO-cycles, but a flat top-SO-cluster.
Let K = {X1,...,Xn} be a flat top-SO-cluster of minimal cardinality.
Select one of the following possibilities:

1. (CV-elimination) Select some X;,i € [1,,h] and instantiate it by Id, i.e.,
remove it from I'.

2. (flexible-flexible branching) This case requires |K| > 1 and that the mazimal
arity of function symbols in the signature X is greater than 1.
Let F be a new function symbol with n .= ar(F) with 2 < n < |K|.
For every context variable X; € K, select an index 1 < k; < n and re-
place X; by F(ziq, ..., X[("),...,xin), where x; ;, X! are new. There must

——

K3

ki
be different indices k;.

Then exhaustively apply (Decomposition) and after that exhaustively apply
(Replace-variable) to the equations that are the result of instantiating the
equations wn the SO-cluster.

Note that the function symbol F' will be eliminated by the rule after decomposing
the instantiated equations.
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Ezample 6.3. A (previously non-visible) SO-cycle may pop up after application
of rules.

Let the SCUP be {X(Z(z)) = X(¢9(Z(y)))}. Then there is no SO-cycle, but a
top-SO-cluster {X}. Guessing X = Id gives the SCUP {Z () = ¢(Z(y))}, which
has an SO-cycle.

Ezxample 6.4. The following SCUP demonstrates the rule for flat SO-clusters.
Let I' be:

X(a) =Y (D)

Y(a) = X(b)

The guess X =Y = Id leads to Fail.
Selection 2 of (Solve-flat-cluster) has to be used: A guess may be X =
F(X'(:),%),Y = F(y,Y'(")). The resulting SCUP is:

F(X'(a),z) = F(y,Y'())

Fly,Y'(a)) = F(X'(b), x)
Decomposition and variable-replacement yield X'(a) = X'(b),Y'(a) = Y/(b),
which leads to failure after another application of the rule.

If the rule (Solve-flat-cluster) would allow to guess instantiations with equal
indices of the holes, then a correct guess would be X = F(X'(:),2),Y =
F(Y'(:),y) and the resulting SCUP would be:

F(X'(a),z) = F(Y'(b),9)
F(Y'(a)y) = P(X'(5),2)

This leads to the SCUP

which 1s a renamed variant of the initial SCUP, and hence termination of the
algorithm would be lost.

6.2 Correctness of SO-Cluster Elimination Rules

Lemma 6.5. The SO-cluster rules either fail or transform an input SCUP into
a stratified CUP.

Proof. We check the different possible instantiations:

— Intermediate decomposition keeps stratification, as already proved in lemma
4.2.
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— Removing a context variable X (-) keeps stratification, since it is removed
from all SO-prefixes.

— Replacing a context variable X with empty SO-prefix by a context of the
form F(z;1,...,X'(+),..., 2 ) keeps stratification, since all occurrences of
X’ have empty SO-prefix, and in all other SO-prefixes, the X is replaced by
X'.

O

Lemma 6.6. The rules for SO-cluster elimination are sound.
Proof. We check the cases:

— The rule (Solve-non-flat-cluster) is applied to a non-flat top-SO-cluster K.
This is sound, since the rule applies only instantiations.

— The rule (Solve-flat-cluster) was applied to the SO-cluster K. There are the
following cases:

1. h=1.
Then all the equations in EQ(K) are of the form X;(s;) = X1(¢;). The
transformation replaces these equations by the equations s; = ¢;. This is
sound, since a unifier of the resulting I/ can be modified to a unifier of
I' by using an arbitrary instantiation for Xj.
2. The signature contains only constants and unary function symbols.
Then only guessing some X; as Id can be used, which is sound.
3. The signature contains some function symbol of arity at least two, and
K|>1.
We show soundness of the second selection possibility. Let ¢’ be a unifier
after the application of the rule. The interesting part is to construct an
instantiation for the variables X;,7 = 1,...,h before application. It is
easy to see that the application is sound in a signature extended with
the function symbol F. This leads to a unifier ¢ before application of
the rule, where o(X;) has a top occurrence of F. Instead of F, use a
ground multi-context ¢[1, ..., ,] with n holes, where n is the arity of F,
and ¢ has no occurrence of F'. Such a multi-context can be constructed,
if there is a function symbol of arity at least 2. Construct a unifier ¢’ of
the input SCUP by replacing every term F(t1,...,tm) by {[t1,...,tm].
O

Lemma 6.7. The rules for SO-cluster elimination are complete.

Proof. Let ¢ be a unifier of I' with an exponent of periodicity < F. In the
proof below it is shown that an output SCUP I exists. The construction of a
corresponding unifier ¢’ is either obvious, or there are hints on the construction.
For the SO-cluster rules the following is easy to verify: the (ground) unifier ¢/ has
also an exponent of periodicity not greater than F, since every ground context in
the codomain of ¢’ is already a subcontext of a term or context in the codomain
of o.

If o(X;) = Id, then we select the (CV-elimination) case in the rules. Hence we
can assume that o(X;) # Id.

The other cases are:
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— There is a minimal flat top-SO-cluster K. Then the rule (Solve-flat-cluster)
is applied.
1. Case: h = 1. Then all the equations in EQ(K) are of the form X (s;) =
X1 (t;). The transformation replaces these equations by the equations
s; = t;. This is complete, since o(X1(s;)) = o(X1(#;)) implies o(s;) =
O'(ti).
2. Case: the signature contains only constants and unary function symbols.
We show that guessing some X; as Id is sufficient:
Let A be the common prefix of o(X;) for all X; € K and let o(X;) = AA4;
for « = 1,...,h. Since there are only unary function symbols, there is
some j such that o(X;) = A. We select to replace X; be Id. A unifier
o’ of the resulting I is ¢/ (X;) := A; for X; € K, and o (X) = o(X),
o'(z) := o(x), otherwise. This shows completeness in this case.
3. Case: the signature has at least one function symbol of arity at least two,
and |K| > 1.
Let A be the common prefix of all (X;), i =1,...,h. If A =0o(X;) for
some j, then use selection 1 and replace X; by /d. A unifier of the output
SCUP can be constructed as follows: ¢/(X;) := A; where o(X;) = AA4;
fori=1,...,h and ¢/'(X) := o(X), ¢'(2) := o(z), otherwise.
If A is a proper prefix of o(X;) for all ¢, then for o(X;) = AA;, ¢ =
., h, the top function symbol f of A; must be the same for all AZ,
and k := ar(f) > 2. Let k; be the first letter of the position of the hole
of Aj,i=1,... h,let L:={k; |7=1,...,h}. and let n := |L|. Tt is
obvious that n < |K]|.
Since K is a SO-cluster, for every i € L := ([1..k]\ L), and every j:
Aql; = Aj|;. Let the multl context [, n] be f(t1,...,tx), where

L[l ifiel
v 0 if iel

where ¢ 1s a function that arranges the holes in properly ascending se-
quence. Let F' be an n-ary new function symbol. For ¢ = 1,...,h, we
define o’/ (X]) := o'(®ij) = Ailg(j), and ¢’ is like o, otherwise.
This 1s a unifier of the system after the first replacement in the rule
(Solve-flat-cluster). The following steps are obviously complete.

— There is a non-flat, minimal SO-cluster. Then the rule (Solve-non-flat-
cluster) is applied to a minimal non-flat top-SO-cluster K. Since the re-
lation ~ in definition 2.7 is an equivalence relation, and there is an equation
Xi(s) = f(t1,...,tp) in I', every o(X;) for X; € K has f as top level
function symbol. Thus the imitation instantiation as described in the rule 1s
complete.

O

Lemma 6.8. The rule (Solve-non-flat-cluster) strictly decreases the measure pi:
Proof. If selection 1 is used, the number of context variables is strictly decreased.

Now consider the case that selection 2 1s used.
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After decomposing the instantiated equations from EQ(K), the measure is
strictly decreased: All the variables z; ; (but no other variables) are removed
by the replacement step, hence s 1s not increased by the rule. Moreover, the
number of context variables is not modified, and the values ps and p4 are oo
before application of the rule, thus cannot be increased.

Let T be the multiset of terms ¢ that occur in the equations of the form
X;(s) =t in EQ(K), where t is not of the form Y'(r). Note that T is not empty.
Let M be the multiset of the sizes of terms in term(t) corresponding to us, and
let M’ be the multiset after the application of the rule.

After application of (Decomposition) to the instantiated equations and after
the replacement of the variables x; ;, we make a comparison of the sizes of M
and M'. Tt is M \ My = M’ U Ms where M, are the sizes of the decomposed
terms, and Ms 1s the multiset of sizes of the added subterms. Since for every
mo € M, there is some m; € M; with m; > ms, the multiset M’ is strictly
smaller than M in the multiset ordering. Hence the multiset of sizes is strictly
decreased. a

Note that the measure psz is required to ensure that the decomposition and
variable replacement steps between the rule application do not really increase
the measure.

Lemma 6.9. The rule (Solve-flat-cluster) strictly decreases the measure pi:

Proof. 1t is easy to see that either the number of context variables 1s strictly
decreased, or the minimal cardinality of a flat top-SO-cluster is strictly decreased,
whereas the components s, 3 are not increased. This holds, since in case 2 at
least two different indices k; have to be selected, and the number of different
indices corresponds to the number of flat SO-clusters that are generated after
the rule as a partition of the old one. a

7 Results

Lemma 7.1. If the SCUP I' is not empty, then a transformation rule can be
applied.

Proof. Assume there is no decomposition applicable. If there is an SO-cycle,
then an SO-cycle rule is applicable. An action that is always possible is (CV-
elimination). Otherwise, by lemma 4.5, there is a top-SO-cluster, and a rule
for eliminating SO-clusters can be used, where it is always possible to use the
selection (CV-elimination). O

Theorem 7.2. Stratified context unification s decidable.

Proof. Given a unifiable SCUP I', we fix a minimal unifier and thus also an
upper bound E of the exponent of periodicity (see Proposition 2.1).
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We have already shown in the previous sections that every rule of the algo-
rithm SCU 1s sound and complete, and transforms SCUPs into SCUPs. More-
over, since the well-founded measure p 1s strictly decreased by every application
of a rule, we can apply proposition 3.3. Hence the algorithm SCU decides unifi-
ability of stratified context unification problems. O

Corollary 7.3. Solvability of one-step rewrite constraints (as defined in

[NTTO00]) is decidable.

Remark 7.4. The complexity estimation for stratified context unification that
follows from the algorithm SCU is rather bad: There are polynomially many steps
that may increase the size usage by an exponential. I.e. an estimated upper bound
of space usage may be a tower of exponentials where the tower has polynomial
height, and hence the obtained upper bound is non-elementary.

An obvious idea to improve space usage 1s to use a compact representation of
(¢, since it is known that e can be represented in linear space [SSS98]. However,
this does not directly imply a polynomial space bound, since (the representa-
tion of) C' may be too large, and moreover, the algorithm has to be modified
considerably.

Some remaining open questions are:

— What is the decidability status of context unification?

— What are better upper and lower bounds for the complexity of stratified
context unification?
The currently best known lower bound for the complexity is that it is AP-
hard [SSS98]. The author is working on giving a better upper complexity
bound for stratified context unification.
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