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Abstract
The modal logic literature is notorious for multiple axiomatizations of the same logic and for conflicting overloading
of axiom names. Many of the interesting interderivability results are still scattered over the often hard to obtain clas-
sics. We catalogue the most interesting axioms, their numerous variants, and explore the relationships between them
in terms of interderivability as both axiom (schema) and as simple formulae. In doing so we introduce the Logics
Workbench (LWB, see http: / / l s b v x . unib*. ch: 8080/LWBinfo. html), a versatile tool for proving theorems
in numerous propositional (nonclassical) logics. As a side-effect we fulfill a call from the modal theorem proving
community for a database of known theorems.

Keywords: Modal logic, automated theorem proving, sequent calculi. Logics Workbench.

1 Introduction

The modal logic literature is quite diverse but most beginners turn to the introductory works
by Hughes and Cresswell [9, 10],BullandSegerberg [1], Lemmon and Scott [ll],orChellas
[2]. The classic by Segerberg [13] is indispensable but is probably the hardest to get hold of
Oegally). Unfortunately the nomenclature used in these works is not uniform, and the proof
techniques range from semantic, to proof-theoretic, to algebraic. Consequently, it is difficult
to form a clear picture of the many interesting results contained in these works, and even harder
to keep track of the many different versions of the basic axioms, their different names, and
even the overloading of names. In what follows we try to give a general picture of this nomen-
clature, the interesting interconnections between some of these logics, and the interderivability
of different axiomatizations of the same logic.

Our basic tool is the Logics Workbench (LWB) [8], a program developed at the University
of Bern that contains automated proof procedures based on modal Gentzen systems for nu-
merous propositional (nonclassical) logics. Although the class of modal logics which have
been automated in the LWB is relatively small, namely K, KT, KT4, KT45 and KW, we can
work with extensions of these logics by using a finite number of appropriate formula instances
of the desired axioms, as explained below.

1 Work supported by a visiting fellowship from the IAM.
2 Work supported by the Swiss National Science Foundation, SPP 5003-34279.
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2 Definitions and notational conventions

We assume that formulae are built as usual from the classical connectives A, V, -+, ->, T, X
and the modal connectives • and O. The binding strengths of the connectives from strongest
to weakest is: ->, D, O, A, V, —K We also assume that -+ associates so that A —> B —> C is to
be read as A —• (B —• C). We use => to separate the two halves of Gentzen's sequents, and
use t- to denote derivability in a Hilbert system for a particular modal logic. This notation has
been chosen carefully to avoid the confusion that may arise from the fact that the 'deduction
theorem' for modal logics is not the same as in classical logic.

We assume that our modal logics are formulated by taking all classical propositional tau-
tologies as axioms, and then adding a finite set of formulae (called the axioms) together with
the inference rules of modus ponens, universal substitution, and necessitation. The formula
D(p —+ q) —• (Op —• Oq) is always one of the axioms (hence we deal only with normal
modal logics). The name of the logic is obtained by concatenating the names of the axioms to
the prefix K. A formula A is derivable in a modal logic L axiomatized in this manner iff there
is a finite sequence of formulae A\, Ait..., An such that An = A and each member of the
sequence is either a classical tautology, an axiom, or is obtained from previous members of the
sequence by one of the inference rules. If the formula A is derivable in L we write L I- A and
call A a theorem of L. Substitutions c are denoted as follows: Aa := A{p := B] means
that in A all occurrences of the propositional variable p are replaced simultaneously with B.
A{p := B] is called an instance of A. In general, just using instances of axioms is not suf-
ficient for our purposes, so let O°A = A and • n + M = D(Dn A) for n > 0. For any given
m > 0, the formula Om (Acr) is a modalized instance of A. We use A1, A1, A3, .. .to denote
modalized instances of A and use / \J= 1 A

1 to denote the formula A1 A A2 A . . . A Ak obtained
by conjoining k modalized instances of A, for some finite k > 1.

LEMMA 2.1

Let L be a normal modal logic, and A, B formulae. Then there exist a finite number (say k)

of modalized instances of A such that L h /\,l=i A*' —> B iff LA h B.

Now suppose that we wish to use the LWB to prove that a particular formula P is a theo-
rem of the logic KT4A obtained by adding A as an axiom to KT4. Since the LWB does not
have a proof procedure for KT4A we must use the one for KT4 by finding enough modalized
instances of A such that KT4 h /\*=1 A

1 —• P. Lemma 2.1 then allows us to conclude that
KT4A h P.

In this way, we can 'prove' theorems in the logic KT4A even though the LWB itself is ca-
pable of proving theorems only in the sublogic KT4 (say). It is easy to generalize this process
to use only the logic K by looking for modalized instances of the axioms T and 4 as well, and
attempting to prove that:

K h A1 A /I2 A . . . A A* A r 1 A r* A . . . A 7* A 41 A 42 A . . . A 4* — P.

For many logics, the literature contains more than one axiomatization, say KAB and KAC
where the axiom A is common but the axioms B and C differ. We can show the equivalence
between these axiomatizations using the technique described above by proving that each logic
contains the axioms of the other as theorems.

In the rest of this paper we do the following: in Section 3 we list the axiom names, associ-
ated formula and some variants that we use throughout our paper. In Section 4 we cover the
relations between some of these axioms, namely the basic axioms, the axioms of convergence,
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axioms related to McKinsey's axiom, the axioms of provability logics, and finally some ax-
ioms from logics of time. The appendix contains a useful cross-reference to names used in the
basic texts.

As a side-effect we provide a database of known theorems and their relationships for many
propositional modal logics, thus answenng a call from the modal theorem proving community
(where testing an implementation calls for such a database).

3 Formulae

The tables below list all the formulae we consider and the names we use for them.

name

D

D*

T

4

4M

5

5M

B

BM

G

Go

H

/r
L

V

LT

hi

Mi

M3

Pt

W

Wo

z

formula

Dp—>Op

OT

Op — p

Dp —* DDp

D p A O ? - » O(DpAg)

Op —• DOp

Op A Oq —<• O(Op A q)

p—> DOp

pAOq-* O(Op A q)

ODp - • DOp

O(pAD 9 ) ->D(pVOg)

D(p V q) A D(Dp V q) A D(p V Oq) -+ Dp V Oq

D(Dp V q) A D(p V Oq) — Dp V Oq

D(p A Dp —> q) V O(q A Oq —> p)

O(Op-+q) V O(Oq ^ p)

D(Dp —»• Dg) V O(Oq -* Op)

DOp -+ ODp

OD(p - Dp)

DOp A OOq -> O(p A q)

O(p V Op) —• O(p A Dp)

D(Dp - • p) — Dp

DOT — D±

D(Dp - p) - (ODp - Dp)
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Dum

Dum\

Dun\2

D1VTI3

Dum.\

Gn
Gm
Gni

Grt3

GOA

Grzt,

F

H.
P

R

X

Zem

D(D(p - Dp) - p) - (ODp ->

D(D(p -> Dp) - p) - (ODp -

D(D(p -* Dp) -+ Dp) — (ODp -

D(D(p -> Dp) — Dp) -H. (ODp -

D(D(p -> Dp) - p) - (ODp -

D(D(p — Dp) _• p) - p

D(D(p _> Dp) - • p) - Dp

D(D(p - . Dp) _ Dp) — p

D(D(p —+ Dp) -+ Dp) -+ Dp

D(D(p —f Dp) - t p ) - t p V D p

D(D(p — Dq) -* Dq) A D(D(-ip

(ODp — q) V D(D9 - p)

p — D(Op -* p)

ODOp — (p -+ Dp)

O D p —• (p —+ Dp)

D D p —»• D p

D O D p —• (p -» Dp)

Dp)

- P )
-Dp)

pVDp)

4 Tables and diagrams

In the diagrams, Li —• Lj means every theorem of Li is also a theorem of L j .

4.1 Relations concerning D, T, 4, 5, B

The most basic normal modal logics are obtained by adding combinations of the formulae T,
D, 4, 5 and B as axioms to the basic normal modal logic K. There are fifteen distinct logics
obtained in this way and the relationships between them are quite well known (see [11] or
[2] for a complete diagram). In the table, we simply confirm some of these relationships, and
show the equivalence between different versions of these axioms.

KAi...AkHC
Ai,...,At

4

4M

5

5M

B

BM

C

4M

4

5M

5

BM

B

modalized instances of A\,..., Ak

4

4M {q :=~'Dp}

5

5M{q:=^Op}
B

Bjtf{g:=->Op}
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K A i . . . A k h C

Ai,...,At

D

D2

T

T,5

T,5

4,B

5,B

D,4,B

C

D2

D

D

4

B

5

4

T

modalized instances of A\,..., At

D

D2

T{p:=l}

T{p := O-.p}, 5{p := Dp}, DJ{p := ^p}

7-{p:=-p}.5

D4{p := ^p}, B{p := Op}

D5{p := -.p}, B{p := Dp}

D,4,B{p:=^p}

4.2 Relations concerning G, Go, H,H*,L, L*,L"

K A i . . . A k h C

Ai,...,Ak

G

D,G0

L

H

V

tr

C

Go

G

H

L

tr
V

modalized instances of A\,..., At

G{p:=q}

DD, Go{p := Dp, q := p}

L

H{p := p A Dp - • q, q := q A Dq -> p}

V

ff{p := Dp — q,q := Dq -+ p}
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K A j . . . A k h C

Ai,...,At

V

T,L
T,L~

4,L
5

D,LT

5

C

L

V
V
L~
LT

G
G

modalized instances of A\,..., At

U
DT,DT{p:=q},L

OT,OT{p:=q},L"
4{p :=pADp-» q}, 4{p := q A Uq -* p), U4, O4{p := q}, L

5{p := Dp}, D5{p := -.p}

O£>{p:=-,p},L~{9:=-p}

5,5{p:=^p}

4.3 Relations concerning M, Pt

The axioms discussed in this section are loosely grouped around the famed McKinsey-axiom
M. Variants of M are discussed in [14]. The formula M appears to be one of the simplest
axioms defining a pure second-order property (M is not canonical), thus falling out of the class
of Sahlqvist axioms [12]. In the presence of 4, however, M defines a first-order property: every
point in the frame has a successor which is a (reflexive) dead end point.

K A j . . . A k h C

Ai,...,Ak

T.4.M

T,4,M2

4,M

M3

M

4,M

Pt

C

M2

M

M3

M

D

Pt

M

modalized instances of Ai,..., At

T{p := M), O4, DM

T{p:=M2},4{p:=O-,p},M7

4{p := Oq A (->p V -<q)}, M

M3{q := -.p}

M

4{p := (p V Op) A (--p V O-.p)},

D4{p:= ->pAOp},

M
Pt

4.4 Relations concerning W, Wo, Z

The formula we call W (and sometimes called G) has only one variant but it is related to the
formula Z, used by Goldblatt [6] to describe the (temporal) logic of the frame (w, <) where
u is the set of natural numbers and < is the usual ordering on the natural numbers. (See also
the figure in Section 4.5.)
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K A i . . . A k h C

Ai,...,Ak

W

w
w

W0,Z

w
4,Z

C

4

Wo

Z

w
Gni

Dum i

modalized instances of Ai,..., At

W{p:=pAOp)

W{p := _L}

W

W0,Z

W{p := p A D(Dp — p)}, DOW

D4,Z

4.5 Relations concerning Dum, Grz

The formulae known as Dum and Grz are two of the most bizarre formulae that occur in the
literature. They each have numerous variants and the relationships between these variants has
attracted considerable attention in the literature. For example, Segerberg [13] proves (using
semantic means) that these variants are 'deductively equivalent' [13, p. 108] in KT4. We not
only show that KT4Dum = KT4Dumi but we give the exact substitutions necessary to prove
(using LWB) that 'Dumi is deductively equivalent to Dum in KT4'. A detailed syntactical
analysis of these axioms based on K4 (explicitly benefitting from the usage of modal rules),
has been undertaken in [7].

KT4Dum = KTDumi = KTDum3 = KTDum3 = KTDum4

KT4Grz = KTGrzi = KTGrz2 = KTGrzj = KTGrz* = KTGrz5

KGrz = KT4MDum

KT4

K4

KGrz KT4Dum

KW

K4Dum

K4Duim

K4Z
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K A i . . . A k h C

Ai,...,Ak

4, Dum

T,Dunti

T,Dum

T.Dum-i

T, 4, Dum

T,Dum3

Dum

T,Duni4

Gn

T,Grzi

Gn

T,Grzj

Gn

T,Gnz
Gn

T,Gn*
Gn

T,4,Grzs

Gn

Gn

Gn

Gn

Gn\
T,M,Dum

C

Dum\

Dum

Dum?.

Dum

Duma

Dum

Dum*

Dum

Gni

Gn
Gni

Gn

Gn3

Gn

GnA

Gn

Gn->

Gn

T

4

M

Dum

Dumi

Gn

modal ized instances of A\,.. .,At

4{p := D(p -> Dp) —> p}, D4, Dum, Dum{p := p —• Dp}

T, Dum\

OT.Dum

T, DT{p := p —• Dp}, Dum7

OT, 4{p := D(p -+ Dp) — p}, O4,

Dum, Dum{p := p —• Dp}

T, OT{p :=p-^ Dp}, Dum3

Dum

T.Dumi

Gn{p := (D(p -> Dp) -4 p) A 4{p := D(p — Dp) — p}} ,

DGn

T,T{p:=Gni},°Gni

Gn, OGn

DT{p := p - . Dp}, T{p := -.D(D(p - • Dp) -* p)}, G^2

Ca{p := (D(p — Dp) - • Dp) A Gn

A4{p := (D(p -H. Dp) _• Dp) A C a } } ,

DGrz

r, D7{p := p —>• Dp}, Grj3

Grz{p := (D(p — Dp) - p) A 4{p := D(p — Dp) -* p}},

T.GOA

Gn{p := (D(p -» Dq) -+ Dg) A 4{p := D(p - Dg) — D,}},

Gn{p := (D((p -» Og) - D(p - Dq)) -» (p -» Dg))

A ^ p := D((p - Dg) - D(p - Dg)) - (p - Dg)}},

DGrz{p := p -+ Dg}

T{p := D(p - Dp) - p}, DD7{p := p -* Dp},

4{p := D(p -f Dp) — p}, D4, Grzs{g := p -^ Dp}

Crz

Gr:{p:=pA4}

DGrz, Grz{p := O->p}, Grz{p := O->p A 4{p := O->p}},

Gn{p := -<D(p - Dp) A4{p := ^D(p — Dp)}}

Gn

Gni

Dr{p:= ->p},M,Dum
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4.6 Miscellaneous relations

KAi...Akl-C

Ai,...,Ak

R

T,R

T,4,U,Zem

T,4,P
T,P

4,M,R

T,P

T,4,R

C

V

Zem

R

M

R

P

H,

Dum

modalized instances of A\,..., Ak

R{p := Dp — q}

T{p := OOp}, R

ODT{p := 4}, ODr{p := -.(DODp A Dp)}, U4,

L*{p := ODp, q := -iDp}, Zem

T{p := Op}, D7{p := -.DOp}, 4{p := Op}, DP

DD7{p := -.p}. P

4{p := -iDp}, DAf, R

DOOT.P, DP{p:=-1p}

T{p := D(p -» Dp) — p}, D4{p := p A (D(p - Dp) — p)},

R{p := p — Dp}

5 Checking the results and obtaining purely syntactic proofs

Since we give the instances required for the proofs, it is easy to check all the results using a
theorem prover for K.

One possibility is the Logics Workbench (see [8]). You can use it via the Internet. Open
h t t p : //lwbtnm. unibe . ch: 8080/LWBinlo. html in your WWW browser, choose the item
run a sess ion and type in your request.

It is also possible to check the results by hand (although it is a bit tiring in some cases).
One can for example make a backward search in the usual sequent calculus. (See [3] or [4]
for more information on such calculi.) Such proofs can then be converted into Hilbert-style
proofs (see [5] for details).
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Appendix

The following table shows the names used in the literature. Note that the formulae are only
equal modulo substitutions of the form {p := ->p}.

here
D
Ch
T
4

5
B
C

Go
H
W
L
L"
LT

M
Mi

W
Wo

z
Dun

Dum\
Gn

Gni
Grn

F
H.
P
R
X

Zem

[1]
D

T
4
E
B

G

H

M

W

Dum

Gn

[13]

C(p.47)
Tip. 47)
4 (p. 47)
£(p.47)
fl(p.47)
C(p. 47)

Co (p. 47)

Lemo (p. 47)
Urn (p. 47)

M(p. 107)

W(p.84)
Wo (p. 93)
Z(p.84)

Dumi (p. 107)

Gni (p. 107)
(p. 108)

F(p. 161)
//(p. 148)
P(P. 152)
Rip. 160)

Zem (p. 152)

[11]
D (p. 50)

np.50)
4 (p. 50)
£(p.5O)
B (p. 50)
G (p. 50)

H(p.69)
H* (p. 69)
rTQ (p. 80)
Ho (p. 80)

Af(p.47)

Gn (p. 81)

[9]

B

Gl

D2

Kb
Ka

Nl

Jl

HI

Rl

[10]
D

T
4
5
B

Gl

Dlo
Dl

M

W
Wo

Nl

Jl

mD
T
4
5
B

G

H
H*

V
V*
Gc

Gr

[6]
D

T
4
5
B

L
Li

W

Z

Dum

X
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