A direct Proof of the Completeness
of SLDNF-resolution

ROBERT STARK, Institute of Informatics, University of Fribourg, Rue
Faucigny 2, CH-1700 Fribourg, Switzerland.
E-mail: robert.staerk@unifr.ch

Abstract

We give a direct proof of the following theorem: if a goal Go is a logical consequence of the partial
completion of an arbitrary normal logic program P, then each fair, non-floundering SLDNF-tree T
for G yields an answer substitution # which is more general than o. If the negation G is a logical
consequence of the partial completion of P, then T is finitely failed. A tree is fair, if each negative
main branch ends in failure or each literal in the branch is selected at a certain point. A tree is
floundering if it contains a positive node that consists of negative, non-ground literals only.

Keywords: Loigc programming, negation as failure, SLDNF-resolution.

1 Introduction

Most completeness proofs for SLDNF-resolution are of the following kind: if a goal G
and a logic program P have the property that each SLDNF-tree for G with respect
to P is non-floundering, and if the goal Go is a (two- or three-valued) logical conse-
quence of (the completion of) P, then there exists an SLDNF-tree for G with respect
to P which contains a successful branch with an answer substitution that is more
general than o. That all SLDNF-trees for G and P are non-floundering is usually
a consequence of syntactic conditions. For example, if G and P are correct with
respect to a mode assignment in the sense of [11], then each SLDNF-tree for G and P
is non-floundering.

In this paper a direct proof of a stronger theorem is presented. Given a fair, non-
floundering SLDNF-tree of G with respect to the normal logic program P we construct
a term model of the partial completion of P such that, if Go it is true in the model,
then the tree contains a successful branch with an answer substitution that is more
general than o and, if G is true in the model, then the tree is finitely failed. Hence
we do not require that all SLDNF-trees for G and P are non-floundering, but just the
given, fair SLDNF-tree must have the property.

Similar constructions of term models have been used in the proof of the complete-
ness of the negation-as-failure rule for definite programs by Wolfram, Maher and
Lassez in [14] and in the proof of the completeness of SLDNF-resolution for stratified,
allowed programs by Cavedon and Lloyd in [5].

What is the difference to Drabent’s result in [8]? First, our proof is direct and
elementary and does not make a detour via SLDFA-resolution as Drabent’s proof
does. Second, we consider an extension of SLDNF-resolution. The extension can be
characterized by the following two rules:

e A succeeds, if A is ground and A fails.

J. Logic Computat., Vol. 9 No. 1, pp. 47-61 1999 © Oxford University Press

A direct Proof of the Completeness of SLDNF-resolution 48
o A fails, if A succeeds with the identity substitution.

Drabent requires that the atom A must be ground in the second rule, too.

Buchholz proves in [4] a similar theorem under the stronger assumption that the
goal G satisfies an additional condition which ensures that all SLDNF-trees for G are
non-floundering. The notion of SLDNF-tree we use in this paper differs from that of
Buchholz. We distinguish between positive and negative nodes in SLDNF-trees. A
tree is fair if every negative branch is fair, i.e. ends in failure or each literal is selected
at a certain point. A tree is floundering if it contains a positive node that consists of
negative, non-ground literals only.

2 Basic notions

We assume that for each positive relation symbol R there exists a relation symbol R
of the same arity. Atomic formulas R(t) are called positive literals or sometimes just

atoms. They are denoted by A, B. Atomic formulas R(f) are called negative literals.
The complement of a literal L is defined as follows:

o If L = R(f), then T := R({).
o If L = R(t), then L := R().

Finite conjunctions of literals Li A...A L, are called goals and denoted by G, H. The
empty goal is 0. If G is the goal Ly A ... A Ly, then G is the formula L; V...V L,.
A clause K is a formula G — A. The clause O — A is identified with the atom A. A
normal logic program P is a finite set of clauses.

We use small greek letters o, 7, 8, a, 8 for substitutions. The identity substitution
is denoted by €. We define

e dom(o) :={z | z # z0},
e ran(o) := | J{vars(zo) | z € dom(o)},
e vars(o) := dom(o) Uran(o).

We will use the following well-known properties of substitutions:

e A substitution o is idempotent [0 o o = o] iff dom(o) Nran(c) = .

e If 7 is an idempotent, most general unifier of the two atoms A and B [written
7 = mgu(A, B)], then vars(r) C vars(A) U vars(B).

o If ¢ is idempotent, 7 = mgu(Ao, B) and B does not contain variables from Ag or
dom(c), then o7 is idempotent, too.

Let x be a new symbol. Goal forms are expressions ' of the form G A x A G5. The
symbol * marks a hole in the goal form. If I' is the goal form G; A * A G, then I'[H]
is the goal G1 A H A Ga; T[] is the goal Gi A Gs; T'o is the goal form Gio A % A Gao.
For example, T'o[HT] is the goal Gio A HT A Ga0.

We write G > H, if there exists a substitution o such that Go = H. If G > H,
then we say that G is more general than H, or that H is an instance of G. We write
F[#] to indicate that all free variables of the formula F' are contained in the list Z.
V(F) denotes the universal closure of a formula F. For unexplained notions we refer
to [1] and [7].

A direct Proof of the Completeness of SLDNF-resolution 49

3 The partial completion of logic programs

The partial completion of normal logic programs has been introduced in [9, 12]. Tt is
called doubled program in [13]. The difference to Clark’s completion in [6] is that the
positive relation symbols R are not the logical complements of the relation symbols R.
For example, the axiom R(#) V R(%#) does not belong to the partial completion of
logic programs. The axiom expresses that R(f) succeeds or fails and this not true
in general. The goal R(f) can also loop. The partial completion is obtained from
Clark’s completion by splitting it into two parts, axioms for R and axioms for R.
The partial completion of P [denoted by pcomp(P)] comprises the universal closures

of the following axioms:

I. Clark’s equational theory CET for unification:

1)z ==

2z=y—-y=n=x.

B)r=yAy=z—z==z2

Dzy=nAN...ANep=yn— flx1,...,2n) = (Y1, ,Yn)- [if f is n-ary]
(5) flwr, -y xn) = fyr,-- -, yn) = T = yi- [if fis n-ary and 1 <i < n]
(6) f(z1,---s2n) #9(WY1, - Ym)- [if fis n-ary, g is m-ary, and f # g|
(7) t(x) # x. [if t(z) is a term, t(x) # x, and x occurs in t(z)]

II. Equality axioms for relation symbols:

@)1=y A A=y AR(z1,..., %) = R(Yy1,---,Yn)
Dvi=pA...Azp=yp AR(z1,...,2,) = R(y1,---,Yn)

II1. The clauses in P:
(10) G — A, for each clause (G — A) € P.

IV. Axioms for the relation symbols R: Let R be an n-ary relation symbol and
assume that the clauses for R in P are

LiJ[’L—[] A /\Ll,kl[ﬁ] — R(tiyl[ﬁ],...,ti’n[ﬁ]), fori=1,...,m.

Then we have the following axiom for R, where i/ is a list of new variables:
m.o,n . ki _ . —
a0 | A7 (N 25 =171 = W Tijl7]) | = R, 2a).
i=1 j=1 j=1

The left hand side of (11) is obtained by negating Clark’s completed definition of
a predicate and putting it into negation normal form. Axiom (11) can be read as
follows: if for all clauses in P, such that the head of the clause matches R(Z), one of
the literals in the body fails, then R(Z) fails.

4 SLDNF-resolution

We follow Buchholz’ presentation in [4]. We distinguish, however, between positive
and negative nodes in SLDNF-trees. Moreover, we separate the current substitution

A direct Proof of the Completeness of SLDNF-resolution 50

from a goal. This simplifies the notation in the completeness proof. The nodes of
an SLDNF-tree are not resultants but so-called frames, i.e. triples (S, G, o) such that
S € {+,-}, G is a goal and o is an idempotent substitution. The sign S indicates
whether we are looking for a solution for the goal Go or whether we want the goal Go
to fail. The frame is called positive or negative according to its sign S. A floundering
frame is a positive frame (+,G, o) such that Go consists of negative non-ground
literals only.
First we define the notions resolvent and applicable clause.

DEFINITION 4.1
The frame (S,I'[H],o7) is called a resolvent of (S, G, o) with respect to (I', K, 1) [in
symbols: (S,G,0) — (1 Kk, (S,[[H],07)], if there exist A and B such that

.G =Tl4],
e H — B is the variant obtained from clause K by adding the index ¢ to each
variable of K, and

e 7 = mgu(Ao, B) [an idempotent most general unifier].

In the triple (T, K,¢) the goal form I indicates the position of the selected literal
in G, K is the input clause of the resolution step and the index ¢ is used to uniquely
rename the variables of K to make them different from any new variable that is used
elsewhere in a computation. If variables with index ¢ do not occur in G or ¢ and the
substitution o of the frame is idempotent, then the substitution o7 of the resolvent
is idempotent, too.

DEFINITION 4.2
A clause H — B is applicable to A if there exist ¢ and 7 such that Ac = Br. We set
P(A) :={K € P | K is applicable to A}.

An SLDNF-tree is a finitely branching, downward growing (possibly infinite) tree of
signed frames which is correct with respect to the rules of Table 1. Before we give a
mathematical definition of SLDNF-tree, we explain the rules of Table 1 informally:

T1: If the goal of the frame is empty, then the frame is a leaf node.

T2: (Resolution node) In the frame (S,I'[A4], o), a positive literal A is selected. The
successors of the node are the resolvents using clauses applicable to Ao. We
assume that the variables of the input clause H; — B; are new and are not used
elsewhere in the tree for the renaming of input clauses.

T3: (Positive NaF node) In the positive frame (+,T[A],0) a negative literal A is se-
lected, such that Ao is ground. By deleting the literal A in the frame we obtain
the left successor of the node. The right successor is the negative frame (—, Ao, €).

T4: (Negative NaF node) In a negative frame (—,T[A], o) the literal Ao may contain
free variables when it is selected. Therefore it is not deleted in the left successor of
the node. (In a fair computation it must be selected later again, when it is more
instantiated.) The right successor of the node is the positive frame (+, A, o).

T5: Floundering frames are leaf nodes in the tree.

Each time when a negative literal is selected the sign switches from plus to minus and
vice versa (in the right subtree, only).

A direct Proof of the Completeness of SLDNF-resolution 51

TABLE 1. Rules for an SLDNF-tree

T1: (S,0,0)
(S,F[A],O’> P(AU) :{Klv---aKn};
T2: vd N\ if < H; — B; a variant of K,
(S,L[H1],om1) - (S, T[Hp],07) 7; = mgu(Ao, B;).
(+,T[A],0)
T3: N4 ¢ if vars(Ao) = 0.

(
T4 : v Ny

T5: (+, A1 A AN Ap, o) if vars(4;0) #0 (1 <i < n).

DEFINITION 4.3
(Cf. Buchholz [4]) Let P be a logic program. An SLDNF-tree for P is a function T'
such that

e dom(T') C {(to,---stn-1) |n € N& ; € PU{0,1} for j < n},

° dOm(T) # 0,

o Y{(ig,...,tn) € dom(T) ((to,...,tn_1) € dom(T)),

e for each £ € dom(T') and J = {¢ | £ * () € dom(T)}, T(£) is a signed frame and

one of the conditions T1-T5 is satisfied:
T1: T(¢) =(S,0,0) and J = 0.
(S,

T2: T(¢) = (S,T[A],0), J = P(Ao) and
T(¢) (1, K,ex(Ky) T(§* (K)) for each K € J.
T3: T(¢) = (+,T[A],0), vars(As) =0, J = {0,1},
T(€*(0)) = (+,I],0) and T'(§ % (1)) = (-, Ao, &).
T4: 7() = (=, T[4, 0), J = {0,1},
T(§*(0)) = (—,T[A],0) and T(§ * (1)) = (+, 4, 0).
T5: T(€) is ﬂounderlng and J = 0.

A node ¢ € dom(T) is called positive or negative according to whether the frame T'(§)
is positive or negative. In cases T1 and T5, £ is called a leaf. In case T2, £ is called a
resolution node and A is called the selected atom. If J is empty in T2, then £ is called
a leaf, too. In cases T3 and T4, ¢ is called a NaF node and A is called the selected
literal. We set A := () (the root of the tree).

Given an SLDNF-tree T we can define what it means that a node returns an answer.
We define a relation £ = X between nodes of T' and generalized answers. A generalized

A direct Proof of the Completeness of SLDNF-resolution 52

answer is a substitution or the symbol no. The relation ‘€ I+ 8’ is read as ‘€ yields
computed answer #’; the relation ‘¢ k= no’ is read as ‘€ is finitely failed’. Table 2
makes the following definition more transparent.

DEFINITION 4.4

(Cf. Buchholz [4]) Let T be an SLDNF-tree. The relation ‘-’ is the least relation
between nodes and generalized answers satisfying the following conditions for each
¢ edom(T) and J = {i | &= (1) € dom(T)}:

AL T =(+,0,0) = £to.

A2: £ a positive resolution node, K € J (£ x (K) - 0) = £ 0.

A3: ¢ a negative resolution node, VK € J ({ x (K) k- no) = £ H no.

A4: € a positive NaF node, &% (0) =0, Ex (1) - no = &t 6.

A5: € a negative NaF node, £ x (0) - no = &+ no.

A6: € a negative NaF node, T'(§ x (1)) = (+,4,0), Ex (1) 6, A > Ao = £ I no.
It is easy to see that for any node ¢, if T'(§) = (+,G, o) and £ I 6, then there exists
a substitution 7 such that o7 = 6. Therefore, in A6, the condition A8 > Ao implies

that Af is a variant of Ao. Rule A6 thus says: if Ao succeeds with answer the identity
substitution, then the goal I'[A]o fails.

5 Soundness of SLDNF-resolution

The main result of Clark in [6] is that SLDNF-resolution is sound with respect to
the completion of a logic program (which is not so complete as its name suggests).
Clark’s completion of a logic program can be obtained from the partial completion
by adding the following axioms for each relation symbol R:

—~(R(Z) AR(Z)), R(¥)V R(Z).

The axioms say that R is the complement of R. Although the completion is stronger
than the partial completion, Clark’s proof works for the partial completion, too. This
means that SLDNF-resolution is sound for the partial completion as well.

THEOREM 5.1
(Soundness) Let T' be an SLDNF-tree and £ € dom(T).

(a) ET (&) = (+,G,0) and & {0, then pcomp(P) |= V(GH).
(b) If T(¢) = (—,G,0) and & I no, then pcomp(P) |= V(Go).

The main purpose of this paper is to prove the converse of this theorem for fair,
non-floundering SLDNF-trees.

6 The completeness proof

Before we start with the proof we have to say what we mean by fair and non-
floundering. We need the notion of a negative main branch. A negative main branch in
an SLDNF-tree consists of negative resolution and negative NaF nodes (T2 and T4).
In a NaF node (T4), the left successor node is chosen. A negative main branch is
infinite or stops at a leaf node.

A direct Proof of the Completeness of SLDNF-resolution 53

TABLE 2. Rules for computing answers in an SLDNF-tree
Al: (+,0,0) o

(+,T[A),0) 6
A2: 0
<+,F[Hi],0'7'i> H‘ 9

(=, T[A],0) I+ no

A3: N N
(=, [[H1],om) =no --- (= [[H,],om) F no

(+,T[A],0) t- 6

A4 N N

(+,T],0) + 6 (—, Ao, e) F no

<_7F[A]>U> t=no
A5

hY

(—,T[A],0) no

<_7F[A]7U> t= no
A6 : N if A0 > Ao.
(+,A4,0) -0

DEFINITION 6.1
(Cf. Buchholz [4]) A negative main branchin T is a sequence of negative nodes (§;)j<n
such that 0 < N < w and for all j < N:

¢j+1< N = &1 =& + (1) for some ¢« € PU{0},
ej+1=N = ¢ isaleaf nodein T.

DEFINITION 6.2

A negative main branch (§;);<n is called fair if

e it terminates in a leaf node ¢ such that & + no, or
e for each literal L in it, after finitely many steps a descendent of L is selected.

An SLDNF-tree T is called fair if all its negative main branches are fair. The tree T’
is called non-floundering if it does not contain a floundering node.

Let T be a fair, non-floundering SLDNF-tree for P. Our goal is to extract from T a
term model M of pcomp(P) with the following properties:

A direct Proof of the Completeness of SLDNF-resolution 54

(1) If T(A) = (+,G,¢e) and M = Y(Go), then there exists an answer € such that
At 6 and GO > Go.

(2) If T(A) = (—,G,e) and M | V(G), then A I no.

Let I be the set of nodes ¢ € dom(T") such that T'(t) = (—, 4,¢), ¢ ¥ no and ¢ is the
successor of a positive NaF node, i.e. the right child in a configuration T3. (Note that
vars(A) = 0 in this case.) If T(A) = (—, G,¢) and A I no, then we include A into I,
too. For each ¢ € I let (§});<n, be a negative main branch in T" such that

(3) & =1,
(4) & ¥ no for each j < N,,

(5) T(&5) = (=, G, 05) for j < N.,.

Such negative main branches always exist. We show how they can be found. Assume
that an initial segment of the branch has been constructed up to &} and that & i no.
If £} is a negative resolution node, then, by rule A3, there exists a K € P such that
& x (K) i no and we set &, := &+ (K). If £ is a negative NaF node, then, by
rule A5, & * (0) I no and we set ;. 1= & * (0).

The negative main branches (f]‘) j<n, have the following properties:
(6) (£5)j<n, is a fair branch in T" for each ¢ € I.

() If 1,k € T and ¢ # K, then the set vars(G},) U vars(o?,) is disjoint from the set
vars(G%) U vars(oF) for all m < N, and n < N,.

(8) If 1,k € I and ¢ # k, then ¢, o0 =0k ool for all m < N, and n < N.
(9) If m <n < N,, then ¢!, o0, =0},
Let SUB be the set of substitutions a}i o.. .oa;: sothat k € N, 11,...,1, are pairwise

different elements from I and j; < N,,,...,jr < N,,. From (8) and (9) it follows
that the set of substitutions SUB has the following properties:

(10) If 0 € SUB and 7 € SUB, then there exists a substitution § € SUB such that
cgof=0=r1080.

(11) If o € SUB then s oo = 0.
The algebraic part of the model M is defined in the following way:

(12) The universe | M| is the set of all terms (with variables).
(13) fM(a1,-..,an) := f(ar,...,a,) for ay,...,a, € IM|.
(14) s =M t <= 36 € SUB(s6 = t0).

Equality is not interpreted as identity but by the equivalence relation =*. For

§=s1,...,spand t=t1,...,t, we write §=M ¢, if s; =M t; fori =1,...,n.
LEMMA 6.3

M |= CET.

ProoF. The set SUB is directed (cf. [1] or [3]). ||

For ¢ € I we define LIT, := {L [3j < N, (L occurs in G%)}. Moreover, we set

LIT := U LIT,.
el

A direct Proof of the Completeness of SLDNF-resolution 55

The set LIT is in general not a model of P, since it need not satisfy clauses which are
never used in a negative main branch of the tree. It is, however, supported by P in
the sense of Apt, Blair and Walker [2] as the following lemma shows.

LEMMA 6.4
If R(3) € LIT, then there exists an instance L; A ... A L, — R(f) of a clause of P
such that § =M f and {Ly,...,L,} C LIT.

PROOF. Assume that R(§) € LIT. There exists a ¢ € I such that R(§") € LIT,. There
exists an m < N, such that R(S) occurs in G%,. Since the negative main branch
(&5)j<n, is fair, there exists a k > m such that R(5) is selected at ;. This means

that T'(¢4) = (—,T[R(%)],0}) and there exists a variant H — R(t) of a clause K of P
such that
e dom(ot) Nvars(R(1)) = 0,
o 7 = mgu(R(3)a}, R(1)),
b 51@4_1 =& * (K) and
o T (&) = (= T[H],00T).
We have o}, = o7 and R(5)o},, = R(f)a}cﬂ. Since o}, , € SUB, we obtain that
§=M{. Since GY_, = I'[H], all the literals of the body H belong to LIT. ||
Since we want the structure M to have property (2), we have to ensure that, if

R(f) is in LIT, then R(#) is not true in M. This is the motivation for the following
interpretation of the relation symbols R in M:

(15) R = {(t) |V§(t =M & = R(3) ¢ LIT)}.
Since =M is transitive, we immediately obtain:

() MEz =y Ac. A2y =Y AR(Z1,...,20) = R(Y1,- .. Yn)-
Since, by (11), o =M i for each substitution o € SUB, we obtain:

(17) If () € B and o € SUB, then (fo) € B

Since we want that M is a model of the clauses of P, each positive literal, which
can be derived from negative, true literals in M using clauses from P, has to be true
in M, too. To make this more clear we need the notion of an implication tree (cf. [2]
and [10]).

DEFINITION 6.5

Implication trees (w.r.t. to P and M) are generated as follows:

oIf () € EM, then R(f) is an implication tree for R(#).
o If F}; is an implication tree for L; (1 < j <n)and L1 A...AL, = Ais an instance
of a clause of P, then A(Fy,...,F,) is an implication tree for A.

We say that L has an implication tree, if there exists an implication tree for L.

Let IMP := {L | L has an implication tree}. The set IMP is closed under substitu-
tions from SUB:

A direct Proof of the Completeness of SLDNF-resolution 56

(18) If L € IMP and o € SUB, then Lo € IMP.

The interpretations of the relation symbols R in M are defined by:
(19) RM := {(f) | 3o € SUB (R(f)o € IMP)}.

The structure M is now fully defined and we have:

LEMMA 6.6
MEzi=y1AN...AN2y =y AR(z1,...,25) = R(y1,-..,Yn).

PROOF. Assume that § =M ¢ and (3) € RM. According to (19), there exists a
substitution o € SUB such that R(5)oc € IMP. Moreover, by (10), there exists
a substitution # € SUB such that §9 = i and 0@ = 6. It follows, by (18), that
R(3)06 € IMP. Thus R(#)6 € IMP and, by (19), (i) € RM. [|

LeEMMA 6.7

Assume that & is an arbitrary node of T' and T'(&) = {4+, G, 0¢). Assume that « is
a substitution such that every literal of Ggopa has an implication tree. Then there
exists an answer o, such that & t o, and Gyo, > Gyopa.

PROOF. (See also [10].) Let n be the total number of literals in the implication trees
for the literals in Gyopa. By induction on ¢ < n, we show that there exists a branch
&o,-.-,& in T and sequences Gy, ...,G;, 0g,...,04 Po,-- ., 3 such that the following
conditions are satisfied:

(a) T(&) = (+,Gi, 03).

(b) Gooif3i = Goooa.

(c) Each literal in G;0;3; has an implication tree, such that the total number of literals
in the trees is equal to n — 1.

(d) If 0 < i and &_; is a NaF node, then &_1 * (1) = no and & = &_1 * (0).

Assume that ¢ < n and that (a)—(d) are satisfied. We show that there exist suitable
&iv1, Giy1, 0441 and B;41. Since the SLDNF-tree T is not floundered, we have the
following two cases:

Case I. &; is a resolution node, i.e. G; = ['[A] and A is the selected literal in G;.
There exists a clause K = (H — B) in P and a substitution # such that Ao;8; = Bf
and each literal in I'c;3;[H6] has an implication tree such that the total number of
literals in the implication trees is equal to n — (i + 1). The clause K is applicable
to Ao;. Let &y := & x (K). Let H' — B’ be the variant of K that is used in the
resolution step from &; to &+1. Let 7 = mgu(Ao;, B'), Gi41 = T'[H'] and 0441 = o;7.
Let

V := vars(Goo;) U vars(G;o;) U dom(o;).

Then we have vars(H' — B')NV = (), since the variables of H' — B’ carry the index
& x(K) whereas the indices of variables in V' are initial segments of ;. We can assume
that dom(3;) C V. Let 6’ be the substitution with

(H— B))=(H'"— B) and dom(¢') C vars(H' — B').
Let Biy1 := 3; Uf'. Then
Aoifiy1 = Aoiffi = B8 = B'0' = B'3;11.

A direct Proof of the Completeness of SLDNF-resolution 57

Thus B;41 is a unifier of Ao; and B’. Since 7 is an idempotent most general unifier
of Ao; and B’, we obtain that 78;+1 = Biy1-

(a) T(&it1) = (+,Giy1,0041)-
(b) Gooiy1Bi+1 = GooiTfir1 = Gooifiy1 = Gooiff; = Goooa.
(¢) Giy10i41Biv1 = T[H'|037Bi41 = T0ifip1[H' Biv1] = Lo 5 [H'0').

Since ; is not a NaF node, condition (d) is trivially satisfied.
Case II. ¢ is a NaF node, i.e. G; = T'[4], A is the selected literal in G; and
vars(Ao;) = . Then

T(&*(0) = (+,T[,o0) and T(& * (1)) = (=, Aoi,e).

Let &1 := & *(0), Gip1 :=T], 0441 := 0; and Bi+1 := B;. Then conditions (a)—(c)
are satisfied. Assume that A = R(f)._ Since vars(Ao;) = (), we have Ao; = Ao, ;.
From assumption (c) we obtain that R(#)o; has an implication tree. By definition,
this means that (fo;) € B, Suppose that & * (1) # no. Then & * (1) € I and
R(to;) € LIT. Thus (fo;) ¢ R™. Contradiction. Thus & * (1) + no and condition (d)
is satisfied.

Finally, consider the branch (§;)i<n. By (c), the goal G, must be the empty goal.
By (d) and rules A2 and A4 for propagating answers in an SLDNF-tree, we obtain
& - oy, for all i < n. Hence, & F o, and, by (b), Goon 3, = Goopa. [|

We write M = L [id], if the literal L is true in the structure M under the trivial
variable assignment that assigns the element z € | M| to each variable . We have:

(20) M E R(t) [id] < (i) € RM < 3o € SUB (R()o € IMP).
(21) M = R(P) id] <= @) e R" < R() e IMP.

LEMMA 6.8
LeLIT = M £ L[id].

PRrOOF. Case I. L is positive. Assume that R(f) € LIT. By (15), (f) ¢ RM. Thus
M = R(E) [id].

Case II. L is negative. Suppose that R(f) € LIT and M |= R(f) [id]. By definition,
this means that there exists a ¢ € I such that R(f) € LIT, and that there exists a
7 € SUB such that R(f)7 € IMP. There exists an m < N, such that R(f) occurs
in G*,. By (7), there exists an n < N, such that R({)7 = R()o’,. (If the substitution
7 € SUB contains a component with superscript ¢, then we take this component,
otherwise we take o = €.) Consider the negative main branch (£});<n,. Since the
branch is fair, there exists a k > max(m,n) such that the negative literal R(#) is
selected in node ¢j,. This means that

T(&) = (= TRE)],0h) and T(& * (1) = (+, R(F), o})-

Since R(#)ol, € IMP, it follows, by (18), that R(f)o,oL € IMP. Since n < k, we
obtain, by (9), that ¢/, o o}, = o}, and thus R(F)U]Lc € IMP. By Lemma 6.7, it follows
that there exists an answer 6 such that &, * (1) I 6 and R(#)8 > R(f)o},. This implies
&, 1= no according to rule A6. Hence we have a contradiction to (4). ||

A direct Proof of the Completeness of SLDNF-resolution 58

LEMMA 6.9
M |= pcomp(P).

PROOF. Let R be an n-ary relation symbol and assume that the clauses for R in P
are

LiJ[’L—[] A A Li,ki [’LT] — R(tiyl[ﬁ], ey tl’n[’L—I;]) (*)
fori=1,...,m. We have to show that M is a model of () and that

ki

M (/AV?J(M\”:J_':J \WI)) — R(m1,...,T,). (%)

To show that the clauses (x) are true in M we assume that @ € |[M| and
M= L@l id] forj=1,... k.
y (20) and (21), there exist substitutions o; € SUB such that
L;;l@dlo; e IMP forj=1,...,k;.
By (10) and (18), there exists a substitution 7 € SUB such that
L;;l@lr e IMP forj=1,... k.
By the definition of implication tree, it follows that
R(tiq[al, ..., tinl@])T € IMP.
By (20), we obtain that
M E R(t;q]al, ..., tin[d]) [id].

Thus M is a model of clause (x). .
In order to show (#x) we assume that M & R(aq,...,a,) [id]. We have to show

that
M AT (s = 1] W Tas1) i

Since (as,-..,an) ¢ EM, by the definition of R in (15), there exist si,...,s, such
that a; =™ s for j = 1,...,n and R(s1,...,s,) € LIT. By Lemma 6.4, there exists
an i and terms b such that 1 <i<m and

s; =M tzj[g] forj=1,...,n and Llj[g] e LIT forj=1,... k.
By Lemma 6.8, it follows that
M T ;b [id] forj=1,... k.
Hence we have
ME /)Qaj =t;;[b] [id] and M [~ \WL” [b] [id].
j=1

Thus (*x) is shown. ||

A direct Proof of the Completeness of SLDNF-resolution 59

Finally, we can turn to properties (1) and (2).

For property (1) assume that T(A) = (+,G,e) and M = V(Go). Then we have
M [Go [id]. We can assume that vars(Go) Ndom(r) = @ for all 7 € SUB. By
(20) and (21), it follows that each literal of Go has an implication tree. So we can
apply Lemma 6.7 and obtain a substitution € such that A - 6 and G8 > Go.

To show (2) we assume that T'(A) = (—,G,e) and A ¥ no. Then A € I and all
literals of G belong to LIT. By Lemma 6.8, we obtain that M [£ L [id] for each
literal L of G. Hence, M £ G [id] and M £ V(G).

So we have proved the following theorem:

THEOREM 6.10
Let T be a non-floundering, fair SLDNF-tree for G with respect to P. Then we have:

(a) If pcomp(P) = V(Go) and T(A) = (+,G,¢), then there exists a substitution 6
such that A + 6 and GO > Go.

(b) If pcomp(P) = V(G) and T'(A) = (-, G, €), then A I no.

7 Discussion

The model M constructed in the completeness proof is not very intuitive, since the

denotations RM and RM need not be disjoint in general. It is, however, always
possible to add to pcomp(P) the axioms

Vi (R(E) AR(F)) (%)

without increasing its deductive power as far as positive formulas are concerned. The
reason is that for each model of the partial completion there exists always a smaller
model satisfying the axioms (x) (cf. Theorem 6.1 in [12]).

Why is fairness required in negative branches only? This is because to get the
answer no, it suffices that one literal fails, and the other literals can be discarded. An
unfair computation would never consider this literal. In a positive branch, all literals
are considered eventually to reach a solution 6.

Why do we keep ['[4] in the left child instead of the more plausible I'[] in rule T4?
This is because we have to delay the computation of A until it is instantiated enough.
If we do not, then we lose completeness. Consider the program P := {R(c)}, where ¢
is a constant. Then

peomp(P) =V (R(z) V R(z)).

Hence, by our completeness theorem, for each fair and non-floundering SLDNF-tree
T with T(A) = (—, R(z) A R(z),¢) it must be that A = no. If we changed rule T4
and deleted the negative literal in the left child, then the following would be a fair
non-floundering SLDNF-tree:

(—, R() AR(x),e)

v N\
(—.R(@),e) (+R(@),e)
! 4
(-, O{c/z})) (+,0,{c/a})

A direct Proof of the Completeness of SLDNF-resolution 60

For this tree, however, we do not have A = no, since R(c) #? R(z) and we cannot
apply rule A6. Changing rule A6 would destroy the soundness of SLDNF-resolution.

What is the difference to Buchholz’ notion of SLDNF-tree in [4]7 First, we cannot
define resolvents locally without a ‘standardizing apart condition’ on the variables
of input clauses, since in the completeness proof we use the fact that variables oc-
curring in input clauses of different negative main branches of the SLDNF-tree are
disjoint. Therefore we rename input clauses by attaching the address of the node
where the clause is used as an index to the variables of the clause. This comes close
to implementations where renaming of clauses means allocating a new unused block
on the stack. The address of the block corresponds to the address of a node in an
SLDNF-tree.

In Buchholz’ notion of SLDNF-tree there are no signs S € {4+, —}. In Table 1 he
applies rule T3 if Ao is ground, and rule T4 otherwise. Rule T5 is therefore not
needed in Buchholz’ definition. His notion of fairness is stronger, since each main
branch of the tree has to be fair, whereas our condition requires only negative main
branches to be fair. Nevertheless the following theorem is true for Buchholz’ notion
of SLDNF-tree.

THEOREM 7.1

Let T be a fair SLDNF-tree for G (in the sense of [4]). A node ¢ € dom(T) is called
positive if the number of 1s in £ is even, otherwise ¢ is called negative. A node
¢ € dom(T) is called floundering if T'(§) = G — H such that G consists of negative
non-ground literals only.

(a) If pcomp(P) = Y(Go) and no positive node ¢ of T is floundering, then there exists
a substitution € such that 7' # 6 and G0 > Go.

(b) If pcomp(P) = V(G) and no negative node ¢ of T is floundering, then T i no.

Acknowledgement

I am grateful to the anonymous referees for their valuable comments.

References

[1] K. R. Apt. Logic programming. In Handbook of Theoretical Computer Science, Volume B,
chapter 10, J. van Leeuwen, ed. pp. 495-574. Elsevier, 1990.

[2] K. R. Apt, H. A. Blair and A. Walker. Towards a theory of declarative knowledge. In Foundations
of Deductive Databases and Logic Programming, J. Minker, ed. pp. 89-148. Morgan Kaufmann,
Los Altos, 1987.

[3] H. A. Blair and A. L. Brown. Definite clause programs are canonical (over a suitable domain).
Annals of Mathematics and Artificial Intelligence, 1, 1-19, 1990.

[4] W. Buchholz. A note on SLDNF-resolution. Journal of Logic and Computation, 8, 159-168,
1998.

[5] L. Cavedon and J. W. Lloyd. A completeness theorem for SLDNF-resolution. Journal of Logic
Programming, 7, 177-191, 1989.

[6] K. L. Clark. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker, eds. pp.
293-322. Plenum Press, New York, 1978.

[7] K. Doets. From Logic to Logic Programming. The MIT Press, Cambridge, MA, 1994.

[8] W. Drabent. Completeness of SLDNF-resolution for non-floundering queries. Journal of Logic
Programming, 27, 89-106, 1996.

A direct Proof of the Completeness of SLDNF-resolution 61

[9] G. Jager and R. F. Stark. A proof-theoretic framework for logic programming. In Handbook of
Proof Theory, S. R. Buss, ed. pp. 639-682. Elsevier, 1998.

[10] R. F. Stdrk. A direct proof for the completeness of SLD-resolution. In Computer Science Logic,
selected papers from CSL ’89, E. Borger, H. Kleine Biining and M. M. Richter, eds. pp. 382-383.
Springer-Verlag, Lecture Notes in Computer Science 440, 1990.

[11] R. F. Stdrk. Input/output dependencies of normal logic programs. Journal of Logic and Com-
putation, 4, 249-262, 1994.

[12] R. F. Stark. From logic programs to inductive definitions. In Logic: From Foundations to
Applications, European Logic Colloguium 93, W. A. Hodges et al., eds. pp. 453-481. Clarendon
Press, Oxford, 1996.

[13] A. Van Gelder and J. S. Schlipf. Commonsense axiomatizations for logic programs. J. of Logic
Programming, 17, 161-195, 1993.

[14] D. A. Wolfram, M. J. Maher and J.-L. Lassez. A unified treatment of resolution strategies for
logic programs. In Proc. 2nd International Conference on Logic Programming, pp. 263-276,
Uppsala, Sweden, 1984.

Received 11 July 1997

