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Abstract
Resolution is an often used method for deduction in propositional logic. Here a proper organization of deduction
is proposed which avoids redundant computations. It is based on a generic framework of decompositions and local
computations as introduced by Shenoy and Shafer. The system contains the two basic operations with information,
namely marginalization (or projection) and combination; the latter being an idempotent operation in the present
case. The theory permits the conception of an architecture of distributed computing. As an important application
assumption-based reasoning is discussed.
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1 Introduction

In many practical applications knowledge and information are essentially encoded in propo-
sitional logic. Using and exploiting such propositional knowledge bases involve essentially
deduction and theorem proving. There is of course a wealth of well-known and established
methods and procedures in propositional logic for doing exactly this. Nevertheless, we pro-
pose here a new look at this problem based on a decomposition of the knowledge base. This
is an unusual point of view in logic. However, it is a widespread method in other formalisms
of reasoning such as Bayesian networks [24], evidence theory [29], and others.

It will be argued and shown that propositional logic fits well into the corresponding ax-
iomatic framework of local propagation in decomposed systems as introduced by Shafer and
Shenoy [29]. Therefore, the computational methods derived from this formalism may be
valuable alternatives to the usual deduction and theorem proving methods. In particular, this
is true with respect to assumption-based reasoning, a variant of ATMS (Assumption-Based
Truth Maintenance Systems). In fact, it is well known that assumption-based reasoning is
closely related to evidence theory [23, 26]. Therefore, it is obvious that methods useful in
evidence theory are also valuable in logic.

The techniques presented in this paper have been successfully implemented in ABEL1, a
logic-based language for assumption-based reasoning under uncertainty [2, 3]. The inference
mechanism of ABEL is based on a combination of classical deduction techniques such as
resolution and the ideas of decomposition and local propagation.

1More information about ABEL as well as a free copy of the software can be obtained from
http://www-iiuf.unifr.ch/tcs/abel.
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1.1 Formulation of the problem and overview

Formally, suppose that knowledge is encoded in a setΣ = {ξ1, ξ2, . . . , ξn} of propositional
formulae over a set of propositional symbolsP . Basically we are interested in consequences
h of Σ which belong to the propositional sub-language over a subset of symbolsQ ⊆ P . For
example, we may want to know all prime implicates ofΣ belonging to this sub-language or
we may want to decide on many queriesh in the sub-language, whetherΣ entailsh, written
Σ |= h, or not (see Section 1.2 for a discussion of these problems and their interest). It may
be worthwhile in such a case to first compile the knowledgeΣ into a setΣ′ of formulae over
Q and then useΣ′ instead ofΣ to see whether the hypotheses can be deduced or not. Of
courseΣ′ must satisfy the conditions

(C1) Σ |= Σ′,
(C2) Σ |= h impliesΣ′ |= h, for all h expressible with symbols inQ ⊆ P.

Such a set of formulaeΣ′ will be called a marginal ofΣ with respect toQ. A special case
arises forQ = Ø. Then, only⊥ and> are possible marginals with respect to Ø. In the
first caseΣ is not satisfiable. Thus, the problem of computing marginals encloses also the
problem of deciding about satisfiability.

Once a marginalΣ′ of Σ toQ is found, there are cases for which it is conceivably simpler
to test whetherΣ′ |= h or to derive consequences ofΣ′, than to decide whetherΣ |= h or
to compute consequences ofΣ. However, note that in particular cases the size ofΣ′ grows
exponentially with the number of symbols inP − Q. Thus, marginalization is not always
preferable. The usefulness of marginalization depends on the structure of the particular prob-
lem to which it is applied. For the problem of satisfiability checking, a comparison of the
marginalization technique with other classical algorithms can be found in [11].

The problem of finding a marginalΣ′ of Σ with respect to someQ is called themarginal-
ization problem. Its solution is discussed in Section 2. It is well known that it can be solved
by resolution for systems of clauses [13]. The same problem can also be solved by methods
of mathematical programming [13, 34]. Here, also more general systems of disjunctive nor-
mal forms will be considered (Section 2.5). Often one wants the marginal to several subsets
Q, not to just one subset. A convenient organization of the computations may then reduce the
effort considerably by avoiding repeating the same computations. It may also help in updating
marginals when new knowledge is added. That is where decomposition and local computa-
tion in join trees enters just in the same way as in comparable problems of marginalizations
of probability distributions in Bayesian networks or of belief functions in evidence nets. The
propagation algorithms provide a compilation of the knowledge base, from which sound and
faster deductions can be carried out. In fact, it will be shown that propositional informationΣ
satisfies the basic axioms introduced by Shenoy, Shafer [29] for local propagation in join trees
(Section 2.2). Actually, propositional information systems satisfy an additional idempotency
axiom which permits to simplify computations.

In Section 3 an important application of marginalization is discussed. Assumption-based
reasoning is closely related to abduction and circumscription [14] but also to evidence theory
[23, 26]. And it has already been shown that it can be put into the framework of propagating
information in join trees [16, 10]. However, an alternative approach based on the theory of
propositional information systems will be exploited in Section 3 and its connection to the
former approach will be outlined. The method described here corresponds to the inference
mechanism implemented for ABEL. This implementation was the main motivation for the
development of the theory described in this paper.



Propositional Information Systems653

The idempotent algebraic structure underlying these local propagation methods is very ap-
pealing. In fact, information must be combined and it must be possible to reduce information
to some coarser frame. Propositional information systems are a case. For propositional in-
formationΣ1 andΣ2 combination is just union. The reducing of information corresponds to
marginalization. The related general abstract algebraic structure of information is discussed
in [20].

1.2 Application of marginalization

The marginalization problem is basic to a number of important application fields related to
consequence finding. Assumption-based reasoning in particular is an important application
domain of consequence finding. We will use this application to illustrate the importance
of marginalization and to compare it with other approaches to consequence finding. The
fundamental problem of assumption-based reasoning can be described as follows:

Let Σ be a finite set of propositional formulae over propositional symbols in a setN . A
subsetA ⊆ N is singled out and the symbols inA are called assumptions. LetCA denote
the set of all conjunctions of literals fromA not containing simultaneously a literal and its
negation. The elements ofCA are called arguments. Ifh is another propositional formula
overN , then an argumenta ∈ CA is called support forh givenΣ, if

(1) Σ, a |= h,
(2) Σ, a 6|= Ø (that isΣ anda are satisfiable).

The set
QS(Σ, h) = {a ∈ CA : Σ, a |= h} (1.1)

is called the set of quasi-supports of hypothesish. In particular,

QS(Σ,⊥) = {a ∈ CA : Σ, a |= Ø} (1.2)

is called the set of contradictions. The set

SP (h,Σ) = QS(Σ, h)−QS(Σ,⊥) (1.3)

is then the set of all supports forh given Σ. Support can therefore be expressed in terms
of quasi-support. Thus, the main problem of assumption-based reasoning consists in com-
puting sets of quasi-supports. Note that such a system is closely related to abduction and
circumscription as Inoue [14] has pointed out.

Generally, the setQS(Σ, h) of all quasi-supports of a hypothesish is too big to be com-
puted or stored explicitly. Therefore, all methods developed in the domain of assumption-
based reasoning use a shorter representation ofQS(Σ, h). Every subsetQS′ ⊆ QS(Σ, h)
for which ∨

{a ∈ QS′} ≡
∨
{a ∈ QS(Σ, h)} (≡means logical equivalence) (1.4)

can be used as an alternative representation ofQS(Σ, h). One particular subset is the set of
minimal quasi-supportsµQS(Σ, h), that is all elementsa ∈ QS(Σ, h) such that no proper
sub-conjunction ofa belongs toQS(Σ, h). Note thatµQS(Σ, h) is the set of prime impli-
cants of any subsetQS′ for which (1.4) holds. From this point of view it becomes clear that
often a setQS′ exists which is considerably smaller thanµQS(Σ, h).

In view of these remarks let us formulate two basic problems:
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(P1) For a formulah overQ, find a subsetQS′ ⊆ QS(Σ, h) which is logically equiva-
lent toQS(Σ, h) in the sense of (1.4).

(P2) For a formulah overQ, find the setµQS(Σ, h) of all minimal quasi-supports.

Note that (P2) is clearly a special case of (P1). (P2) is essentially the problem of finding
minimal labels in ATMS. In probabilistic assumption-based reasoning [18], if probabilities
are assigned to the assumptions, then the problem is to compute numerical degrees of support,
i.e. the probability thath is supported givenΣ. For this problem, solving (P1) is sufficient
and often much simpler than (P2).

Inoue [14] solves (P2) by linear resolution. He defines the notion of characteristic clauses
of Σ with respect toP , Carc(Σ, P ), which are the minimal clauses overP that are conse-
quences ofΣ (i.e. prime implicates ofΣ containing only literals of symbols fromP ). Then,
it can be shown [14, 19] that

µQS(Σ, h) = ∼Carc(Σ ∪ {∼h}, A), (1.5)

µQS(Σ,⊥) = ∼Carc(Σ, A), (1.6)

µSP (Σ, h) = ∼(Carc(Σ ∪ {∼h}, A)− Carc(Σ, A))
= ∼Newcarc(Σ,∼h,A). (1.7)

Here ∼Carc(Σ, A) denotes the set of conjunctions obtained by negating the clauses in
Carc(Σ, A). The basic operation of Inoue is to computeNewcarc(Σ,∼h,A), or more gen-
erallyNewcarc(Σ, F, A) for an arbitrary formulaF . This operation is first used to compute
incrementallyCarc(Σ, A), and then, each time a formulah arises, to obtainµQS(Σ, h) and
µSP (Σ, h).

A well-known result of Reiter and de Kleer [27] also solves (P2). The idea is that if
h is a clause, then the minimal quasi-supports can easily be filtered from the set of prime
implicatesPI(Σ). The problem here is that in most cases the setPI(Σ) is too big and
cannot be determined explicitly. IfΣ consists of Horn clauses, then very efficient algorithms
exist [9].

Marginalization can help to solve the problems (P1) and (P2) in two different ways:

(1) From Theorem 3.3 given later in Section 3.1 we know that ifΣ′ is a marginal ofΣ to
Q ∪A, then for all formulah overQ

QS(Σ, h) = QS(Σ′, h). (1.8)

This theorem tells us that we may first marginalizeΣ toQ ∪A and only then solve (P1)
or (P2) with respect to the marginalΣ′. If there are different hypotheses, all expressible
in Q, then the marginalΣ′ has only to be computed once. In this way, a number of
redundant resolutions can be avoided. If, for example, the problem is to compute the set
of supportsSP (Σ, h), then by (1.3) it is necessary to know the contradictionsQS(Σ,⊥),
and therefore we have at least one other hypothesish = ⊥ which is always expressible
in Q. Furthermore, as we will see in Subsection 2.2, if there are hypotheses on different
subsetsQ1, Q2, . . ., then the computation can be organized by join trees which again
helps to avoid many redundant resolutions.

(2) The problem (P1) can be solved by computing a marginalΣ′′ of Σ ∪ {∼h} relative to
the setA of assumptions. Alternatively, it is also possible to useΣ′ from above and to
compute a marginalΣ′′ of Σ′∪{∼h} relative toA. Then, according to Theorem 3.2 given
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in Section 3.1, we know thatQS′ = ∼Σ′′ is a subset ofQS(Σ, h) for which (1.4) holds.
Again, note that this set is often considerably smaller thanµQS(Σ, h), but nevertheless,
sufficient for the computation of numerical degrees of support, and for solving (P2) by
computing the prime implicants.

If we combine the techniques of computingNewcarc proposed by Inoue and the marginal-
ization method presented in this paper, then as illustrated in Figure 1 it is possible to solve
the problems (P1) and (P2) in a number of different ways. The method recommended in this

Ø

Σ

Σ′

(P2)

(P1)

 Newcarc

 Marginal

 Marginal

Prime
Implicants

Degree of
Support

 Newcarc

 Marginal

FIGURE 1. Different ways of computing quasi-support

paper consists then of three sequential steps: (1) use a join tree to obtain a marginalΣ′ of Σ to
Q∪A; (2) useΣ′ to solve the problem (P1) as described above; (3) compute either numerical
degrees of support, or if necessary solve (P2).

The main advantage of this method is that the intermediate results stored in the join tree
(for exampleΣ′) can be reused for other hypotheses (for exampleh = ⊥). Another important
point is that the result obtained for (P1) is often considerably smaller than the result for (P2).

The application of marginalization to assumption-based reasoning will be discussed more
in detail in Section 3.

2 Computation with propositional information

A propositional information is given by a set of well-formed propositional formulaeΣ =
{ξ1, . . . , ξm}. These formulae are of course to be interpreted in a conjunctive way:ξ1 andξ2
and . . . andξm are true. We denote byc(Σ) the set of propositional symbols occurring in the
formulae ofΣ. Furthermore,LP denotes the set of well-formed formulas over the setP of
propositional symbols. The elements ofΣ can be considered as belonging toLP , whenever
c(Σ) ⊆ P . Now, for the purpose of the computational theory to be developed, a propositional
informationΣ should always be considered as belonging to aLP for a determined setP of
propositional symbols. More precisely, apropositional information is considered to be
a pair(Σ, P ) with c(Σ) ⊇ P . Note that(Σ, P ) and (Σ, P ′) are to be considered as two
different propositional informations unlessP = P ′. P is called thelabel of a propositional
information(Σ, P ).

EXAMPLE 2.1
Consider a propositional information(Σ, P ) with Σ = {ξ1, . . . , ξ17} defined as follows:
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ξ1 : ∼b ∨ ∼a1 ∨ a = b ∧ a1 → a, ξ10 : ∼a4 ∨ ∼g = a4 → ∼g,
ξ2 : ∼e ∨ ∼a1 ∨ a = e ∧ a1 → a, ξ11 : a ∨ ∼g = ∼a→ ∼g,
ξ3 : ∼a2 ∨ a = a2 → a, ξ12 : ∼a ∨ ∼a5 ∨ d = a ∧ a5 → d,
ξ4 : b ∨ e ∨ a2 ∨ ∼a = ∼b ∧ ∼e ∧ ∼a2 → ∼a, ξ13 : a5 ∨ ∼d = ∼a5 → ∼d,
ξ5 : a1 ∨ a2 ∨ ∼a = ∼a1 ∧ ∼a2 → ∼a, ξ14 : a ∨ ∼d = ∼a→ ∼d,
ξ6 : ∼a ∨ w = a→ w, ξ15 : ∼e ∨ ∼a6 ∨ c = e ∧ a6 → c,
ξ7 : ∼a3 ∨ w = a3 → w, ξ16 : e ∨ ∼c = ∼e→ ∼c,
ξ8 : a ∨ a3 ∨ ∼w = ∼a ∧ ∼a3 → ∼w, ξ17 : a6 ∨ ∼c = ∼a6 → ∼c.
ξ9 : ∼a ∨ a4 ∨ g = a ∧ ∼a4 → g,

The label of this propositional information can be taken as

P = c(Σ) = {a, b, c, d, e, g, w, a1, a2, a3, a4, a5, a6}.

This propositional information describes a small story around an alarm system [25]. The
propositional symbols occurring in the clauses have to be interpreted as follows:

a: the alarm system in the house of Mr Holmes is ringing,
b: there is a burglary,
e: an earthquake has occurred,
c: there is confirmation of the earthquake on the radio,
w: the neighbour of Mr Holmes, Mr Watson phones Mr Holmes,
g: the neighbour, Mrs Gibbson phones Mr Holmes,
d: the daughter of Mr Holmes phones.

The first four rules (ξ1 to ξ5) tell us, that a burglary generates an alarm in the house of Mr
Holmes, if the alarm system is functioning (a1), but so does also an earthquake. Other causes
(a2) may also cause an alarm. And these are the only ways an alarm can arise (rulesξ4 and
ξ5). Then the next three rulesξ6 to ξ8 say that the neighbour of Mr Holmes, Mr Watson,
phones Mr Holmes, if there is an alarm. But Mr Watson may also alarm Mr Holmes as a joke
(a3). The other neighbour of Mr Holmes, Mrs Gibbson, phones also Mr Holmes, when there
is an alarm and she is able to hear it (a4) (rulesξ9 to ξ11). Furthermore, if the daughter of Mr
Holmes is at home (a5), then she surely phones also, if there is an alarm. Finally, if there is
an earthquake, there is a confirmation of it on the radio, if the earthquake was registered (a6)
(this is what rulesξ15 to ξ17 say).

If additional facts become known likeξ18 = w (Mr Watson phones),ξ19 = ∼g (Miss
Gibbson does not phone) ,ξ20 = ∼c (there is no confirmation of an earthquake), the proposi-
tional informationΣ is enlarged by adding these three formulae. The label does not change
in this particular case.

As explained in the introduction one might be interested especially in hypotheses which can
be expressed by propositional formula over a subsetQ ⊆ P of propositional symbols. In the
example above one might be interested especially whether the alarm rang or not and whether
there is a burglary or not, hypotheses which can be expressed by symbols inQ = {a, b}.
In fact, in this example the symbols inA = {a1, . . . , a6} play a particular role and we
may want to include them into the computation. This is made clear in Section 3. It means
that we are interested in formulae which can be expressed using the symbols inQ ∪ A =
{a, b, a1, . . . , a6}.
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2.1 The marginalization problem

It has been argued in Section 1 that it is often advantageous tomarginalize propositional
information to a subsetQ of propositional symbols. Here we take up this idea and formalize
first the notion of a marginalization relation. If(Σ, P ) is a propositional knowledge with
labelP , and(Σ′, Q) a propositional information with labelQ, then(Σ, P ) and(Σ′, Q) are
said to satisfy themarginalization relation M , ((Σ′, Q), (Σ, P )) ∈M , if

(C1) Σ |= Σ′,
(C2) Σ |= h impliesΣ′ |= h, for all h expressible with symbols inQ ⊆ P.

Σ′ is then said to be amarginal of Σ with respect toQ. This means thatΣ′ is as informative
asΣ when it comes to decide whether a formulah ∈ LQ is a consequence ofΣ or not.
Note that the marginal of a propositional informationΣ with respect to someQ is not unique.
However, ifΣ′ andΣ′′ are two marginals ofΣ with respect toQ , then it is evident that they
are (logically) equivalent, that is,Σ′ |= Σ′′ andΣ′′ |= Σ′.

The fundamental problem which will be considered in this section is then themarginal-
ization problem: given a propositional information(Σ, P ) and a subsetQ ⊆ P , compute a
marginal(Σ′, Q) of (Σ, P ) such that((Σ′, Q), (Σ, P )) ∈M .

In order to solve this problem we use the Davis–Putnam procedure to eliminate the propo-
sitional symbols [7, 8]. However, note that our goal is different: Davis and Putnam were
concerned with satisfiability, whereas we are interested in marginalization. So, even though
the basic operation is the same, its overall organization and use in the computations will be
different. Dechter and Rish [11] also highlight this role of the Davis–Putnam resolution pro-
cedure as a compilation algorithm. However, they do not achieve the full capabilities of this
approach that will be obtained in this paper through the use of the join tree structure. Order
the elements ofP in an arbitrary way, such thatP = {p1, p2, . . . , pn}. The goal is then to
eliminate the symbolp1, that is to marginalize(Σ, P ) toQ = P−{p1}. For the following we
suppose that all formulae ofΣ areclauses(for a more general case see Section 2.5). Essen-
tially, Σ is then a conjunctive normal form. It is well known, that anyΣ can be transformed
into such an equivalent normal form, if necessary.

As a preparation define the sets

Σ+ = {ξi ∈ Σ : p1 ∈ ξi}, (2.1)

Σ− = {ξi ∈ Σ : ∼p1 ∈ ξi}. (2.2)

One or both of these sets may be empty. Ifξi is a clause containingp1 andξj a clause contain-
ing∼p1, then the resolventρ(ξi, ξj) can be formed by concatenatingξi andξj , eliminatingp1

and∼p1, as well as all multiple occurrences of literals.ρ(ξi, ξj) is set equal to> (tautology)
if ξi andξj contain another literaland its negation besidep1 and∼p1. The procedure goes
then as follows:

(1) If both Σ+ andΣ− are empty, that is, if the literalp1 does not occur in the formulae of
Σ, then put(Σ′, P − {p1}) = (Σ, P − {p1}).

(2) If Σ− is empty, butΣ+ not, then put(Σ′, P − {p1}) = (Σ − Σ+, P − {p1}), that is
eliminate all clauses inΣ containingp1.

(3) Similarly, if Σ+ is empty, butΣ− not, then put(Σ′, P − {p1}) = (Σ − Σ−, P − {p1}),
that is eliminate all clauses inΣ containing∼p1.
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(4) Finally, if neitherΣ+ norΣ− is empty, then put

(Σ′, P−{p1}) = (Σ∪{ρ(ξi, ξj) : ξi ∈ Σ+, ξj ∈ Σ−}−(Σ+∪Σ−)), P−{p1}). (2.3)

Here all the clauses containing eitherp1 or ∼p1 are removed fromΣ, but all the clauses
obtained by resolving these clauses with respect top1 are added.

Clearly, this procedure eliminates the symbolp1 from Σ, it no longer occurs inΣ′. And the
following theorem tells us that the resulting propositional information is indeed a marginal of
(Σ, P ) with respect toP − {p1}.

THEOREM 2.2
If (Σ′, P − {p1}) is defined as in the procedure above, then

((Σ′, P − {p1}), (Σ, P )) ∈M. (2.4)

(Proofs of theorems are to be found in the Appendix.)
This indicates that the marginalization problem could be solved by eliminating the symbols

in the setP −Q sequentially fromΣ. However, in order that this is indeed a way to solve the
marginalization problem, it must be verified that ifp1 and thenp2 are sequentially eliminated,
that this gives a marginal toP−{p1, p2}; or, more generally, that a sequential marginalization
first to Q′ ⊇ Q and then toQ is also a marginalization directly toQ. This is what the
following theorem affirms.

THEOREM 2.3
If Q′ ⊇ Q′′, and((Σ′, Q′), (Σ, P )) ∈M and((Σ′′, Q′′), (Σ′, Q′)) ∈M , then also((Σ′′, Q′′),
(Σ, P )) ∈M .

According to this theorem and Theorem 2.2 a marginal of(Σ, P ) with respect toQ can be
computed by eliminating the symbols inP −Q from Σ in any sequence. This is essentially a
sequence of resolutions which solves the marginalization problem. Note that the resolutions
ρ(ξi, ξj) may introduce redundant clauses. A clause subsuming (containing) another clause
is redundant and may be eliminated. IfΣ is a set of clauses, thenµΣ denotes the subset of
clauses ofΣ which are not subsuming another clause ofΣ. The tautology> is assumed to
subsume any other clause, hence> appears never inµΣ, except inΣ = {>}. Point (4) of the
procedure above can then be changed into

(Σ′, P − {p1}) =
(µ(Σ ∪ {ρ(ξi, ξj) : ξi ∈ Σ+, ξj ∈ Σ−} − (Σ+ ∪ Σ−)), P − {p1}) . (2.5)

There exist even more involved methods to reduce the size ofΣ′ (see for example [6]). In
the next subsection this procedure will be studied in more detail and it will be shown that it
permits one to solveseveralmarginalization problems at the same time with little additional
effort.

Before discussing this issue, let us illustrate the procedure with the simple example intro-
duced above.

EXAMPLE 2.4
Consider the propositional knowledge(Σ, c(Σ)), whereΣ contains the clausesξ1 to ξ20
introduced in Example 2.1. Suppose we want to eliminate the symbolsw, g, d, c in this order.
To eliminatew we consider the clauses



Propositional Information Systems659

ξ6 : ∼a ∨ w, ξ8 : a ∨ a3 ∨ ∼w,
ξ7 : ∼a3 ∨ w, ξ18 : w.

With respect to the symbolw the setΣ+ is formed by the clausesξ6, ξ7 andξ18, whereas the
setΣ− contains onlyξ8. All these clauses are removed fromΣ. Added are all the resolvents
of these clauses with respect tow. There is actually only one, which is not a tautology:

ρ(ξ8, ξ18) = a ∨ a3.

Next, to eliminateg , the clauses

ξ9 : ∼a ∨ a4 ∨ g, ξ11 : a ∨ ∼g,
ξ10 : ∼a4 ∨ ∼g, ξ19 : ∼g,

have to be removed. Again only one resolvent is to be added:

ρ(ξ9, ξ19) = ∼a ∨ a4.

The symbold is eliminated by removing the clausesξ12 to ξ14. No resolution can be added.
Finally, to eliminate the symbolc, the clausesξ15 to ξ17 andξ20 are to be removed and the
resolvent

ρ(ξ15, ξ20) = ∼e ∨ ∼a6

is to be added. The resulting marginal to the remaining symbolsa, b, e, a1, . . . , a6 is thus:

ξ1 : ∼b ∨ ∼a1 ∨ a, ξ5 : a1 ∨ a2 ∨ ∼a,
ξ2 : ∼e ∨ ∼a1 ∨ a, ρ(ξ8, ξ18) : a ∨ a3,
ξ3 : ∼a2 ∨ a, ρ(ξ9, ξ19) : ∼a ∨ a4,
ξ4 : b ∨ e ∨ a2 ∨ ∼a, ρ(ξ15, ξ20) : ∼e ∨ ∼a6.

Suppose now, in a second phase, we want to marginalize toa, g, a1, . . . , a6. Clearly, if the
intermediate results of the previous computation were stored, then it is not necessary to start
from scratch for this second marginalization. For example, if we chose an elimination se-
quencew, c, b, e, then at least the elimination of the first symbolw is exactly as before.
Although in the former elimination sequenceg was eliminated next, which appears not to
match the present sequence, we may note that the clauses involved in the elimination ofg
do in no way interfere with those involved in the elimination ofc. Thus, it seems that the
previous computations can even be reused for eliminatingc.

Such considerations will be discussed more systematically in the following subsection. It will
be shown how computations can be organized such that intermediate results can be reused for
different marginalizations with a minimum of additional effort.

2.2 The organization of computations

We need to introduce some preliminary notions before discussing the organization of com-
putations of marginals. If(Σ, P ) is a propositional information, then we associate to every
clauseξi of Σ the setc(ξi) ⊆ P of the symbols it contains. The family of the setsc(ξi)
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form a hypergraph{c(ξi), ξi ∈ Σ}. The setsc(ξi) are called its hyperedges. The notion of
join (or Markov) tree plays a central role in the following discussion. A join tree is a tree
whose nodes are subsets of symbols, such that if a given symbol belongs to two nodes, then it
belongs to every node on the unique path between the two nodes. A join tree is said to cover
the hypergraph{c(ξi), ξi ∈ Σ} if every hyperedgec(ξi) is contained in at least one node of
the join tree.

It is well known that any elimination sequence of symbols generates a join tree covering
the hypergraph{c(ξi), ξi ∈ Σ} (see for example [1] or [19] for a discussion of these issues).
Figure 2 displays a covering join tree for the hypergraph associated with the example of
the previous subsection. If we number the nodes of a covering join tree in some way by
i = 1, 2, . . . then letΣi be the subset of clauses covered by nodei. There may be clauses
covered by several nodes of the join tree; such clauses are arbitrarily affected to one of the
covering nodes, such that∪iΣi = Σ andΣi ∩ Σj = Ø if i 6= j.

EXAMPLE 2.5
Again, consider the propositional information of Example 2.1. According to Figure 2 we
may takeΣ1 = {ξ1, ξ2, ξ3, ξ4, ξ5}, Σ2 = {ξ6, ξ7, ξ8, ξ18}, Σ3 = {ξ9, ξ10, ξ11, ξ19}, Σ4 =
{ξ12, ξ13, ξ14}, andΣ5 = {ξ15, ξ16, ξ17, ξ20}.

Ø

a,w,
a

1
,...,a

6

a,g,
a

1
,...,a

6

a,d,
a

1
,...,a

6

e,c,
a

1
,...,a

6

a,b,e,
a

1
,...,a

6

Σ
1

Σ
5

Σ
4

Σ
3

Σ
2

FIGURE 2. A covering join tree for the hypergraph associated with the example of Section 2.1

An important issue in the elimination process is the order in which symbols are removed.
Though with different orders the final calculated set of clauses are equivalent, the complexity
of the computations can be quite different. The problem of obtaining an optimal sequence in
relation to the associated computations (for example that minimizing the number of resolu-
tions) looks a difficult one. It is similar to the problem of obtaining an optimal triangulation
of an undirected graph, which is known to be NP-hard (see for example Kjærulff [15]).

However, there are several heuristics which can be used [11]. For example, eliminate in
each case the literal for which the product of the number of elements ofΣ+ and the number
of elements ofΣ− is minimal. That is, in each case the symbol involving a minimal number
of resolutions is removed. This does not guarantee that the total number of resolutions is
minimal, but it is better than choosing an arbitrary order.
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To each node of the covering join tree a propositional information(Σi, Pi) is associated,
wherePi is the set of symbols forming nodei. This represents then somehow a decomposi-
tion of the original propositional information into distinct pieces which together reconstitute
the original information. This is a very fruitful point of view which is widespread in fields
like Bayesian or belief networks and also in linear equations with sparse matrices, but not so
in logics. In order to exploit this way of looking at information we introduce the operation of
combination of propositional information.

If (Σ1, P1) and(Σ2, P2) are two items of propositional information, then they combine
naturally into(Σ1, P1) ⊕ (Σ1, P1) = (Σ1 ∪ Σ2, P1 ∪ P2). Combination is thus union. Note
that here too, subsuming clauses can be removed, replacingΣ1 ∪Σ2 byµ(Σ1 ∪Σ2). Clearly,
(Σ, c(Σ)) = ⊕i=1,...,m({ξi}, c(ξi)) and, more importantly,

(Σ, P ) =
⊕

i

(Σi, Pi), (2.6)

if the (Σi, Pi) are the propositional information associated with the nodes of a covering join
tree for(Σ, P ).

It is from here on convenient to consider classes of logically equivalent propositional in-
formation with identical labels. Ifϕ denotes such a class, thenϕ = (Σ, P ) means that(Σ, P )
belongs to the classϕ and ifϕ = (Σ′, P ) andϕ = (Σ′′, P ), thenΣ′ andΣ′′ are logically
equivalent. The label of the class, its domain, is denoted byd(ϕ); hence, ifϕ = (Σ, P ),
then d(ϕ) = P . The combination carries over to these classes: ifϕ1 = (Σ1, P1) and
ϕ2 = (Σ2, P2), thenϕ1 ⊕ ϕ2 = (µ(Σ1 ∪ Σ2), P1 ∪ P2). The operation⊕ is associative
and commutative. The propositional informationϕ form a commutative semigroup with re-
spect to combination. If a propositional information is decomposed according to a covering
join tree (like (2.6)), then this defines a corresponding decomposition

ϕ =
⊕

i

ϕi. (2.7)

If ϕ = (Σ, P ) is a propositional information, then we denote byϕ↓Q the equivalence class of
its marginals toQ. In the following theorem two fundamental properties of marginalization
and combination of propositional information are affirmed.

THEOREM 2.6
(1) If ϕ is an item of propositional information withd(ϕ) = P , andQ′′ ⊆ Q′ ⊆ P , then

(ϕ↓Q′
)↓Q′′

= ϕ↓Q′′
. (2.8)

(2) If ϕ1 andϕ2 are two items of propositional information withd(ϕ1) = P andd(ϕ2) = Q,
then

(ϕ1 ⊕ ϕ2)↓P = ϕ1 ⊕ (ϕ↓P∩Q
2 ). (2.9)

(2.8) and (2.9) show that propositional information satisfies the axioms introduced by Shenoy
and Shafer [29] which permit one in many cases to improve the efficiency of the computations
for the solution of the marginalization problem. The important property is (2.9). In our case
it means the following (compare also the proof of Theorem 2.6): in both marginals on the
left and the right-hand side the symbols inQ− P must be eliminated. This involves in both
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cases, ifϕ1 = (Σ1, P ) andϕ2 = (Σ2, Q), only resolutions with clauses fromΣ2, because
the clauses ofΣ1 contain no symbols outsideP . However, the search for clauses containing
symbols fromQ−P is simpler inΣ2 than inΣ1∪Σ2. In this sense it is better first to eliminate
symbols in the propositional information(Σ2, Q) and only then to combine with(Σ1, P ),
rather than first to combine the two items of propositional information and to eliminate the
symbols afterwards. That is, once a decomposition of the propositional information has been
organized, it is convenient to use it.

A covering join tree of propositional informationϕ = (Σ, P ) can now, on the base of
properties (2.8) and (2.9), be used to compute marginalsϕ↓Q for any setsQwhich are subsets
of some node setPi of the join tree. Computational schemes to do this have been discussed
in [29]. These methods can be adapted to the present case, which, in addition to the basic
properties (2.8) and (2.9), exhibits a further property, which can be exploited. This is the fact,
that the combination of propositional information is clearlyidempotent, or, more generally,
for anyQ ⊆ d(ϕ)

ϕ⊕ (ϕ↓Q) = ϕ. (2.10)

One way to organize the computations is to direct the edges of the join tree such that it
becomes a rooted tree. This can be done using any construction sequence of the tree. Once
this is done, every nodei of the tree, except the root noder, has a unique successors(i).
Assume that the nodes are numbered corresponding to the construction sequence, then the
root is number 1 ands(i) < i for all i = 2, . . . ,m. DefineHi = ∪j=1,...,iPj . It is well
known [29], that for a join tree

Pi ∩ Ps(i) = Pi ∩Hi−1. (2.11)

Theorem 2.6 has then the following corollary [29].

COROLLARY 2.7
Defineϕ(m)

j = ϕj , for j = 1, . . . ,m. If, for i = m, . . . , 2

ϕ
(i−1)
s(i) = (ϕ(i)

i )↓Pi∩Ps(i) ⊕ ϕ(i)
s(i), (2.12)

ϕ
(i−1)
j = ϕ

(i)
j , for j = 1, . . . , i− 1; j 6= s(i), (2.13)

then, fori = m− 1, . . . , 1

ϕ↓Hi = ϕ
(i)
1 ⊕ ϕ

(i)
2 ⊕ · · · ⊕ ϕ

(i)
i ,

andd(ϕ(i)
j ) = Pj . (2.14)

The proof of this theorem will not be given here. It is an immediate consequence of Theo-
rem 2.6 and has been proved by Shafer and Shenoy [29].

From this theorem the following computational scheme on the join tree can be derived:
Nodem (necessarily a leaf in the tree) computes(ϕ(m)

m )↓Pm∩Ps(m) and sends this marginal
as a message to its successor nodes(m) which combines it with its own stored information
ϕ

(m)
s(m). More generally, fori = m, . . . , 2, we have the following computations:

nodepi: memoryϕ(i)
i nodeps(i): memory:ϕ(i)

s(i)

- marginalizeψi = (ϕ(i)
i )↓Pi∩Ps(i)

- send messageψi −−−−−−−−−−−→ combineϕ(i−1)
s(i) = ψi ⊕ ϕ(i)

s(i)
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At the end, fori = 1, we obtain, according to the theorem,

ϕ
(1)
1 = ϕ↓P1 . (2.15)

Note that in this computational scheme, always only propositional information with respect
to subsetsPj of P have to be handled. It can be expected that this is much simpler than to
work within the whole setP of symbols.

Any nodei of the join tree is the root of a subtreeT (i) which is itself a join tree. It is then
clear that by analogy to (2.15) , if we restrict the consideration above to the subtreeT (i) that

ϕ
(i)
i =


 ⊕

j∈T (i)

ϕj




↓Pi

. (2.16)

This is the first part of a two-phase scheme. It is called theinward (or collect) phase. The
computations at the end of the previous subsection correspond exactly to such an inward
propagation in the join tree of Figure 2 is rooted at node 1. This illustrates that the inward
phase is nothing other than the elimination of symbols in the sequence which generated the
covering join tree.

Note that the idempotency of the combination of propositional information systems has not
been used in this phase, that is the general Shafer–Shenoy theory applies just as for example
in Bayesian networks. This is different for the second phase, theoutward (or distribute )
phase, where marginals ofϕ with respect to all otherPj , j = 1, 2, . . . ,m, are computed. The
following theorem makes use of the idempotency of the information calculus.

THEOREM 2.8
Let ϕ(i)

i be the propositional information obtained at stepi (i = m,m − 1, . . . , 2) of the
inward phase. Then

ϕ↓Pi = ϕ↓Pi∩Ps(i) ⊕ ϕ(i)
i . (2.17)

On the basis of this theorem, we may, starting with node1, for each of its predecessorsj
(that is,j such thats(j) = 1) compute the marginalϕ↓P1∩Pj and send this marginal as a

message to nodej, where it is combined withϕ(j)
j to get a marginalϕ↓Pj . More generally,

for i = 2, . . . ,m we compute according to the following scheme:

nodeps(i): memoryϕ↓Ps(i) nodepi: memoryϕ(i)
i

- marginalizeψi =
(
ϕ↓Ps(i)

)↓Pi∩Ps(i)

- send messageψi −−−−−−−−−−−→ combineϕ↓Pi = ψi ⊕ ϕ(i)
i

In this computational scheme again only propositional information with respect to subsets
Pj of P have to be handled. Thus the computational simplification of the first phases is
maintained in this second phase.

In this outward phase we compute thus indeed, as proposed, a marginal of(Σ, P ) to every
setPj of the join tree. Now, finally if we look for a marginal with respect to some subset
Q ⊆ Pj , then according to Theorem 2.6 (1), all we need to do is to eliminate the symbols in
Pj −Q from (Σ, P )↓Pj .

Here we have thus a computational organization which caches intermediate results in order
to efficiently obtain the marginals to a multitude of subsetsQ.
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The calculation of messages in this distribution phase is different from the case of Bayesian
networks [29]. In that case, the messageψi contains the value


 ⊕

j 6∈T (i)

ϕj




↓Pi∩Ps(i)

. (2.18)

Here, since the idempotency property is verified, the final result can be obtained if the mes-
sageψi contains 

 ⊕
j∈{1,...,m}

ϕj




↓Pi∩Ps(i)

. (2.19)

The same type of messages as in the Bayesian networks is possible here, but the messages we
propose are not only simpler to express, but also easier to calculate. The reason is as follows:
our message is the Bayesian message combined with the message of the collect phase. Let us
call the message of the collect phaseψo

i . This information was already calculated and defined
on symbolsPi ∩ Ps(i). Our message is the Bayesian message combined with this message
and marginalized onPi ∩ Ps(i). That is,





 ⊕

j 6∈T (i)

ϕj


⊕ ψo

i




↓Pi∩Ps(i)

. (2.20)

This computation is a particular case of a calculation of(ϕ ⊕ ϕ′)↓P ′
, whered(ϕ′) = P ′ ⊆

P = d(ϕ). In general, this computation is easier than the computation ofϕ↓P ′
. The reason

is as follows. Assumeϕ = (Σ, P ), ϕ′ = (Σ′, P ′), andϕ∗ = (Σ∗, P ), whereΣ∗ is the set
of clauses inΣ not subsumed by a clause inΣ′ (i.e. Σ∗ = µ(Σ ∪ Σ′) − Σ′). Under these
conditions:

(ϕ⊕ ϕ′)↓P ′
= (ϕ∗ ⊕ ϕ′)↓P ′

= (ϕ∗)↓P ′ ⊕ ϕ′. (2.21)

That is, in this case we have to carry out a marginalization but of a reduced set of clausesΣ∗.

EXAMPLE 2.9
Consider again the example of the previous subsection. As already said, the computation
corresponds to the inward propagation, if the join tree, Figure 2, is rooted at node 1. The
outward propagation is then as follows: for the message to node 2, the symbolsb ande must
be eliminated from(Σ′

r, Pr), that is from

ξ1 : ∼b ∨ ∼a1 ∨ a, ξ5 : a1 ∨ a2 ∨ ∼a,
ξ2 : ∼e ∨ ∼a1 ∨ a, ρ(ξ8, ξ18) : a ∨ a3,
ξ3 : ∼a2 ∨ a, ρ(ξ9, ξ19) : ∼a ∨ a4,
ξ4 : b ∨ e ∨ a2 ∨ ∼a, ρ(ξ15, ξ20) : ∼e ∨ ∼a6.

This gives the message

ξ3 : ∼a2 ∨ a, ρ(ξ8, ξ18) : a ∨ a3,
ξ5 : a1 ∨ a2 ∨ ∼a, (ξ9, ξ19) : ∼a ∨ a4.
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The same message will also be sent to nodes 3 and 4. For the message to node 5, the symbols
a andb must be eliminated from(Σ′

r, Pr) in a similar way. The resulting messages are then
combined with the cached information on each node and we finally get the following results
on the nodes 2 to 5:

Node2 : {∼a2 ∨ a, a ∨ a3, ∼a ∨ a4, a1 ∨ a2 ∨ ∼a, w},
Node3 : {∼a2 ∨ a, a ∨ a3, ∼a ∨ a4, a1 ∨ a2 ∨ ∼a, ∼g},
Node4 : {∼a2 ∨ a, a ∨ a3, ∼a ∨ a4, a1 ∨ a2 ∨ ∼a, ∼a ∨ ∼a5 ∨ d, a5 ∨ ∼d, a ∨ ∼d},
Node5 : {∼e ∨ ∼a6, ∼e ∨ ∼a1 ∨ a4, ∼a2 ∨ a4, a3 ∨ a4, a1 ∨ a2 ∨ a3, ∼c}.

2.3 Incremental procedure

If some new propositional information is added in a node of the join tree, then an identical
distribute phase can be used to update the marginals with respect to every nodePj . Suppose
that a new propositional informationϕ′

1 = (Σ′
1, P1) is added to node1, then according to

Theorem 2.6 (2), ifϕ′ = ϕ⊕ ϕ′
1 is the new, updated global information,

ϕ′↓P1 = (ϕ⊕ ϕ′
1)

↓P1 = ϕ↓P1 ⊕ ϕ′
1. (2.22)

Thus, the updating on node1 is readily made. The next theorem shows how the marginals
ϕ′↓Pj with respect to the other nodes of the join tree can be computed.

THEOREM 2.10
If ϕ′ = ϕ⊕ ϕ′

1, with d(ϕ′
1) ⊆ P1, then

ϕ′↓Pi = ϕ′↓Pi∩Ps(i) ⊕ ϕ↓Pi . (2.23)

This theorem shows in fact, that the new information can be propagated outwards using the
old marginals stored in the nodes of the join tree and using exactly the outward phase com-
putational scheme. If the new information is added to a nodei different from node1, then
there is always a constructing sequence starting with nodei. Hence the updating can be done
in the same way starting with this node.

In general, we can think of an incremental procedure in which the pieces of information
are incorporated and propagated in subsequent stages. Assume that we have a join tree and
several pieces of information{ϕ1, . . . , ϕm} such that for each piece of informationϕi there
is a nodePj of the tree withd(ϕi) ⊆ Pj .

For the incremental algorithm we assume that there is an informationϕ′
j stored in each

nodePj and that there is a messageψi,j stored for each pair of connected nodesPi andPj .
This message will be used to store messages fromPi toPj and vice versa. Sending a message
fromPi to Pj means to calculateψi,j = ϕ′

i
↓Pi∩Pj and changeϕ′

j toϕ′
j ⊕ ψi,j .

The algorithm starts with an initial state in which the information stored in the nodes and
the messages are vacuous:ϕ′

j = (Ø, Pj) andψi,j = (Ø, Pi ∩ Pj). Then, the pieces of
information{ϕ1, . . . , ϕm} are added one by one. For each one of them, a nodePj is selected
such thatd(ϕi) ⊆ Pj . Then,ϕi is integrated intoϕ′

j by changing it toϕ′
j ⊕ ϕi, and the

corresponding messages are sent out from this node to the rest of the network.
Each time a piece of information is integrated into the network, the information in the nodes

ϕ′
j and the messagesψi,j become more informative (more formulae can be deduced from

them). The advantage of organizing the computations this way is the following: originally
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only very few clauses are in the network and the messages contain a small number of clauses.
When new informationϕi is added into the network, i.e. each time a message is sent fromPj

to Pk, then messages have already been sent fromPk to Pj . These messages are defined on
Pj ∩ Pk and by the arguments given in the previous section, this simplifies the computation
by reducing the number of clauses to be marginalized.

The disadvantage is that messages have to be recalculated several times. This problem is
not very important if some procedure is determined by which the same resolution is never
repeated. This can be done in the following way: imagine that nodePk has received a
message from nodePj and a message from this node to a different adjacent nodeP` has
to be computed. Assume that the marginalization toPk ∩ P` requires the deletion of the
propositional symbolp1 and consider the following sets:

• Σold
+ the set of positivep1 clauses stored inϕ′

k before receiving the message,

• Σold− the set of negativep1 clauses stored inϕ′
k before receiving the message,

• Σold
0 the set of clauses not containingp1 stored inϕ′

k before receiving the message,

• Σrec
+ the set of positivep1 clauses contained in the received message,

• Σrec
− the set of negativep1 clauses contained in the received message,

• Σrec
0 the set of clauses not contained in the received message.

From these clauses calculate new clauses as follows:

• Σnew
+ = µ(Σrec

+ ∪ Σold
+ ∪ Σold

0 ∪ Σrec
0 )− (Σold

+ ∪ Σold
0 ∪ Σrec

0 ),
• Σnew

− = µ(Σrec
− ∪ Σold

− ∪ Σold
0 ∪ Σrec

0 )− (Σold
− ∪ Σold

0 ∪ Σrec
0 ).

That is, remove from the received clauses those clauses which are subsumed by clauses not
containingp1, or by oldp1 clauses. The message fromPk toP` can then be calculated as

µ(Σrec
0 ∪ {ρ(ξ, ξ′) : ξ ∈ Σnew

+ , ξ′ ∈ (Σnew
− ∪Σold

− )} ∪ {ρ(ξ, ξ′) : ξ ∈ Σold
+ , ξ′ ∈ Σnew

− }).
(2.24)

Therefore, it is not necessary to carry out the resolutions of old clauses with old clauses,
because this information was been previously sent. Note that the former messages fromP`

toPk, which are incorporated inΣold
0 , are used to reduced the number of clauses for which a

resolution has to be carried out.
Another problem of the incremental procedure is that the new information has to be inte-

grated in one of the nodes of the tree. If some piece of information arrives which is defined
for a set of propositional symbols which is not included in any of the nodes of the tree, then
the structure of the tree has to be recalculated, in order to encompass this new set of clauses.
This may happen if the pieces of knowledge arrive in a sequential way and they are not known
when we build the join tree.

However, in a concrete situation two kinds of knowledge can be distinguished [12]: the
general knowledge known in advance (rules generally involving several variables and repre-
senting relationships verified for all the elements of a population) and the facts (represent-
ing observations for a particular case and involving generally less variables). Since general
knowledge usually involves more variables than the facts, it is more important in the construc-
tion of the join tree. On the other hand it represents the more static part of the knowledge and
a lot of time can be allocated to the compilation of this knowledge. The compilation involves
the construction of a reasonable join tree and the propagation.

Observations change from case to case. The observations are introduced for a particular
case in order to produce deductions for some questions of interest. The observations generally
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involve very few propositional symbols and can be integrated into a tree node. So propagation
can be done incrementally starting from the previous propagation of generic knowledge. In
this way, the deductions can be speeded up with respect to a global propagation of the general
and particular knowledge on a simple propagation algorithm: a part of the resolutions have
been done with the generic knowledge only and the messages sent in the first stage can be
used to reduce the additional resolutions when observations arrive.

2.4 Implementation and complexity

It is well known that in order to solve sparse linear systems of equations hypertree or join trees
are very useful to maintain sparsity of the matrices involved during the solution process [28].
It will be shown here that essentially the same idea applies to marginalization in propositional
information systems. In fact, one way to store a setΣ of clauses is to define a table with
columns corresponding to the propositional symbolsN appearing inΣ and a row for each
clause. Appearances of a positive literal in a clause are noted by a ‘+’ in the corresponding
column, a negative literal by a ‘−’, all other columns containing ‘0’. In practice such a table
of dimension|Σ| × |N | associated to a set of clausesΣ often contains many ‘0’. Then the
table is calledsparseand the organization of the computation as described in the previous
subsection is useful.

In fact, in eliminating propositional symbols one would like to keep the newly generated
clauses short. This corresponds to the purpose of selecting an elimination sequence of sym-
bols which generates a join tree covering a hypergraph{c(ξi), ξi ∈ Σ} such that the cardi-
nalities of the hyperedges remain as small as possible. This guarantees small clauses during
the marginalizations because one never generates clauses beyond the nodes of the join tree.

In other words, such a join tree allows to replace the table of dimension|Σ| × |N | by a
set of much smaller tables, each one corresponding to a node of the join tree. The number
of columns of each table corresponds to the cardinality of the node in the join tree. This
is already a considerable reduction in memory space. All the elimination of propositional
symbols can be done within these smaller tables. This reduces the time to search for clauses
containing the symbol to be eliminated because of the smaller number of rows of the small
table. Given that only clauses containing literals of the symbols of the node of the join tree
are generated, this keeps the number of new clauses conceivably small.

The search for an optimal covering join tree is known to be NP-hard. But in practice there
exist good heuristics [5, 35, 22, 31, 32, 21, 4, 1, 33] for the construction of such join trees
if the underlying table is sparse. So, just as in the case of systems of linear equations, the
organization of the computations based on a covering join tree can be very efficient.

2.5 A more general approach: disjunctive normal forms

The procedure for the elimination of propositional symbols considered so far assumes that all
formulae inΣ are clauses. Although it is always possible to transform a set of propositional
formulaeΣ into an equivalent set of clauses, this may not be efficient. Though the intro-
duction of artificial symbols could transform this formulae into clauses without a significant
increment in the size of the representation, these artificial symbols should be finally deleted,
with then the possibility of increasing the size of the representations. Furthermore, the inclu-
sion of the artificial symbols will make more difficult the determination of an optimal deletion
sequence.
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Therefore, we consider here elimination of symbols in the more general sets of formulae
in disjunctive normal form. That is, each formulaξ ∈ Σ is supposed to be of the form

ξ = ψ1 ∨ ψ2 ∨ · · · ∨ ψk (2.25)

where eachψi is a conjunction of literals; that is,ψi = a1 ∧ a2 ∧ . . . ∧ ah, andai is either a
pi or a∼pi. It will be assumed that in a conjunction never appears a literal and its negation.
If this were the case, the conjunction would be the falsity and could be removed from the
formula, yielding an equivalent formula.

First we define the operation of thedeletion of a symbolp from a formulaξ in such
disjunctive normal form: in all conjunctions ofξ which containp or ∼p this literal will
be removed and then all the conjunctions subsuming (containing) other conjunction will be
deleted. The result of this operation will be calledξ−p. If one of the conjunction ofξ is p or
∼p, then the resulting formulaξ−p is the tautology.

Letξ1 andξ2 be formulae in disjunctive normal form such thatξ1 containsp andξ2 contains
∼p, such that

ξ1 = (p ∧ ψ1
1) ∨ · · · ∨ (p ∧ ψi

1) ∨ ψi+1
1 ∨ · · · ∨ ψk

1 , (2.26)

ξ2 = (∼p ∧ ψ1
2) ∨ · · · ∨ (∼p ∧ ψj

2) ∨ ψ
j+1
2 ∨ · · · ∨ ψh

2 , (2.27)

where the conjunctionsψi+1
1 , . . . , ψk

1 do not containp andψj+1
2 , . . . , ψh

2 do not contain∼p.
Then a generalized resolution betweenξ1 andξ2 with respect top can be defined as follows:

ρp(ξ1, ξ2) =
(
ψi+1

1 ∨ · · · ∨ ψk
1 ∨ ψ

j+1
2 ∨ · · · ∨ ψh

2

)−p

. (2.28)

Note that∼p may be present in the conjunctionsψi+1
1 , . . . , ψk

1 or p in the conjunctions
ψj+1

2 , . . . , ψh
2 . That is why it is necessary to deletep in the generalized resolution. Fur-

thermore, note that in generalρp(ξ1, ξ2) 6= ρp(ξ2, ξ1).
Consider now propositional information systems(Σ, P ), where all formulaeξ of Σ are in

disjunctive normal form. The elimination of a propositional symbolp1 form this system is
defined as follows: letΣ+ be the set of formulae fromΣ containingp1 andΣ− the set of
formulae containing∼p1. Note that these sets are in general not disjoint. Form then

(Σ′′, P − {p1}) =
({ξ−p1 : ξ ∈ Σ} ∪ {ρp1(ξ1, ξ2) : ξ1 ∈ Σ+, ξ2 ∈ Σ−, ξ1 6= ξ2}, P − {p1}) . (2.29)

Clearly, this propositional information system contains no morep1.

EXAMPLE 2.11
To illustrate and clarify this procedure considerΣ = {(a ∧ b) ∨ (∼a ∧ c), (a ∧ c) ∨ b, (a ∧
d) ∨ (∼a ∧ b)}. To eliminate the symbola, form

Σ+ = {(a ∧ b) ∨ (∼a ∧ c), (a ∧ c) ∨ b, (a ∧ d) ∨ (∼a ∧ b)},
Σ− = {(a ∧ b) ∨ (∼a ∧ c), (a ∧ d) ∨ (∼a ∧ b)}.

Then we have

{ξ−p1 : ξ ∈ Σ} = {b ∨ c, c ∨ b, b ∨ d},
{ρp1(ξ1, ξ2) : ξ1 ∈ Σ+, ξ2 ∈ Σ−, ξ1 6= ξ2} = {c ∨ d, b ∨ b, b ∨ d, b ∨ b}.
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Of course, we can simplify here by eliminating identical formulae and replacing ofb ∨ b by
b. Finally, we get thus the following result of eliminatinga:

({b ∨ c, b ∨ d, c ∨ d, b}, {b, c, d}).

For this procedure of elimination of a propositional symbol in sets of disjunctive norm forms
a result analogous to Theorem 2.2 holds.

THEOREM 2.12
If (Σ′′, P − {p1}) is defined by (2.29), then

((Σ′′, P − {p1}), (Σ, P )) ∈M. (2.30)

Furthermore, Theorem 2.3 and its proof carry over to this more general case. Thus, even in
this case marginalization can be done by eliminating the symbols in an arbitrary sequence,
just as in Section 2.1.

Combination of two such propositional informations(Σ1, P1) and(Σ2, P2) is defined as
before:

(Σ1, P1)⊕ (Σ2, P2) = (Σ1 ∪ Σ2, P1 ∪ P2). (2.31)

With this, not only Theorem 2.6 (1), but also (2) and its proof are valid in the more general
case of disjunctive normal forms. This is to say that the whole computational theory of
Section 2.2 applies to this case.

The computation can even be more refined by considering the following form of subsump-
tion: if ξ1 = ψ1

1 ∨ ψ1
2 ∨ · · · ∨ ψ1

k andξ2 = ψ2
1 ∨ ψ2

2 ∨ · · · ∨ ψ2
h are two disjunctive normal

forms, thenξ1 is subsumed byξ2 if for each conjunctionψ2
i in ξ2 there is a conjunctionψ1

j

in ξ1 such thatψ1
j is subsumed, that is contained inψ2

i . Thus clearlyξ2 |= ξ1. A disjunc-
tive normal form which is subsumed by another one can therefore be deleted without loss
of information. Thus, ifµΣ denotes the set of disjunctive normal forms ofΣ which are not
subsumed by another form ofΣ, then the combination can also be defined as

(Σ1, P1)⊕ (Σ2, P2) = (µ(Σ1 ∪ Σ2), P1 ∪ P2). (2.32)

And the elimination of a symbol (2.29) can be rewritten as

(Σ′′, P − {p1}) =
(µ({ξ−p1 : ξ ∈ Σ} ∪ {ρp1(ξ1, ξ2) : ξ1 ∈ Σ+, ξ2 ∈ Σ−, ξ1 6= ξ2}), P − {p1}). (2.33)

This may help to avoid excessive growth of the number of formulae when combining and
marginalizing propositional information systems.

3 Assumption-based information systems

In this section we look more into the details of the subject introduced in Subsection 1.2. The
idea of assumption-based reasoning is now developed from the point of view of information
systems.
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3.1 Basic notions

Let (Σ, N) be a propositional information as introduced in the previous section. If a subset
of propositionsA ⊆ N is declared asassumptions, P = N − A, then the triple(Σ, A, P )
is calledassumption-based information. The idea behind this view is that assumptions are
propositions for which we cannot be sure whether they are true or not. They are used to define
uncertain logical relations. Ifa is an assumption, thena ∧ b → c, for example, means that
b→ c is an uncertain rule (implication) whose validity depends on whether the assumptiona
holds or not.

EXAMPLE 3.1
In the example introduced at the beginning of Section 2.1 the propositionsa1 toa6 can in fact
be considered as assumptions. For example, the clauseξ1 = ∼b∨∼a1∨a says that a burglary
(b) implies an alarm (a) under the assumption that the alarm system functions properly (a1);
ξ2 = ∼a2 ∨ a says that under some other circumstances (a2) the alarm (a) triggers itself
without an explicit reason; etc.

The concepts of quasi-support and support can now be adapted for assumption-based infor-
mation(Σ, A, P ). For that purpose, we use againϕ to denote the whole class of logically
equivalent assumption-based information.ϕ = (Σ, A, P ) means again that(Σ, A, P ) be-
longs to the classϕ. The label ofϕ is now its domaind(ϕ) = (A,P ) of assumptions and
other propositions. Ifh is a hypothesis expressible inQ ⊆ A ∪ P , then we writeQSϕ(h)
andSPϕ(h) instead ofQS(Σ, h) andSP (Σ, h) to denote the corresponding sets of quasi-
supports and supports. Then, the main problem is again to compute a subsetQS′ ⊆ QSϕ(h)
which is logically equivalent toQSϕ(h). One particular solution is the setµQSϕ(h) of mini-
mal quasi-supports. Different methods are known for this problem (see Subsection 1.2). The
method we propose here is based on marginalization.

Let ∼H be a set of clauses representing the negated hypothesis∼h andϕh = (∼H,A, P )
the corresponding assumption-based information. The following theorem tells us then how
to compute the quasi-supports forh.

THEOREM 3.2
Let ϕ = (Σ, A, P ) andϕh = (∼H,A, P ) be two items of assumption-based information as
described above. Ifϕ′ = (ϕ⊕ ϕh)↓A = (Σ′, A,Ø) is a marginal ofϕ⊕ ϕh toA, then

QS′ = ∼Σ′ (3.1)

is a set of quasi-supports ofh which is equivalent toQSϕ(h).

The resulting set∼Σ′ is a set of conjunctions obtained by negating the clauses inΣ′. This the-
orem describes an alternative way of computing quasi-supports by means of marginalization.
The advantage is that the resulting set of arguments is logically equivalent but often consid-
erably smaller thanµQSϕ(h). This is of particular importance when numerical degrees of
supports are computed.

Another important theorem describes a second way that marginalization can help to find
the quasi-supports.

THEOREM 3.3
Let (Σ, A, P ) be an assumption-based information andQ ⊆ A ∪ P . If ϕ′ = ϕ↓A∪Q is a
marginal ofϕ toQ ∪A, then

QSϕ(h) = QSϕ′(h) for all h ∈ LQ. (3.2)
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This theorems tells us that we may first marginalizeϕ toQ ∪A and then compute the quasi-
supports relative to this reduced information, instead of working with the full original infor-
mationϕ. If there are different hypotheses, all expressible inQ, then the marginalϕ′ has
only to be computed once. In this way, a number of redundant resolutions can be avoided.

3.2 Algebraic structure of assumption-based reasoning

In Section 2 we introduced an algebraic structure of propositional information systems con-
sisting of a commutative semigroup with respect to the combination operation⊕ and of an
operation of marginalization. This structure will be adapted here to assumption-based infor-
mation and then extended also to the domain of quasi-supports. These algebraic structures
will clarify the different ways to compute quasi-supports.

The operations of combination and marginalization of propositional systems can without
difficulty be extended to assumption-based information. In fact, ifϕi = (Σi, Ai, Pi) for
i = 1, 2, then

ϕ1 ⊕ ϕ2 = (Σ1 ∪ Σ2, A1 ∪A2, P1 ∪ P2). (3.3)

Here, as in the sequel we assume that sets of assumptionsAi and sets of propositionsPj are
always disjoint, i.e.Ai ∩ Pj = Ø. If ϕ is the set of all assumption-based information over
finite setsA andP , then the operation⊕ provides this set with the structure ofcommutative
semigroup. If we define(A1, P1) ∪ (A2, P2) = (A1 ∪ A2, P1 ∪ P2) (similarly for the
intersection), then the labels satisfy furthermore the relation

d(ϕ1 ⊕ ϕ2) = d(ϕ1) ∪ d(ϕ2). (3.4)

If A′ andP ′ are subsets ofA andP respectively, then the marginal of assumption-based
informationϕ = (Σ, A, P ) to (A′, P ′) can also be defined in terms of marginals of the
corresponding propositional information(Σ, N). Indeed, if(Σ′, N ′) is a marginal of(Σ, N)
with respect toN ′ = A′ ∪ P ′, then we define

ϕ↓(A′,P ′) = (Σ′, A′, P ′). (3.5)

Of course we have

d(ϕ↓(A′,P ′)) = (A′, P ′). (3.6)

This process is called the marginalization of assumption-based information. Note that of-
ten the assumptions are not reduced, that isA′ = A, because in general one does not want
to eliminate assumptions from the consideration (see for example Theorem 3.3). In certain
cases however, in order to simplify, one may be ready to eliminate some assumptions, con-
sidered as not so relevant for some questions. This yields, on the level of supports, of course
only an approximation of the complete support. Nevertheless it is worthwhile to include this
possibility for the sake of generality.

It is evident, that Theorem 2.6 can be adapted to assumption-based information:

(1) If ϕ = (Σ, A, P ) andA′′ ⊆ A′ ⊆ A, P ′′ ⊆ P ′ ⊆ P , then

(ϕ↓(A′,P ′))↓(A
′′,P ′′) = ϕ↓(A′′,P ′′). (3.7)
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(2) If ϕ1 = (Σ1, A1, P1) andϕ2 = (Σ2, A2, P2), then

(ϕ1 ⊕ ϕ2)↓(A1,P1) = ϕ1 ⊕ (ϕ↓(A1,P1)∩(A2,P2)
2 ). (3.8)

This is nothing new, it is only a way of writing adapted to assumption-based information
rather than to propositional information.

To assumption-based informationϕ = (Σ, A, P ) corresponds a family of up-setsQSϕ(h)
of quasi-supports,h ∈ LN , N = A ∪ P . QSϕ can be considered as a mapping ofh ∈ LN

into the family of up-subsets ofCA. This mappingQSϕ has the following basic properties
(proved in [16]):

(S1) QSϕ(>) = CA,

(S2) QSϕ(h1 ∧ h2) = QSϕ(h1) ∩QSϕ(h2).

These properties can also be viewed in a slightly different way. For a set of propositional
symbolsN let LiN denote the Lindenbaum algebra ofLN , that is the Boolean algebra of
logically equivalent formulae ofLN (see for example Sikorski [30]). Denote the equivalence
class of a formulah ∈ LN by [h]. Then a quasi-support setQSϕ(h) can also be represented
by a uniquely determined element ofLiA, namely

qsϕ([h]) =
∨

a∈QSϕ(h)

[a]. (3.9)

qsϕ becomes then a mapping from the Lindenbaum algebrasLiN into LiA. (S1) and (S2)
translate into the equivalent properties

(S1) qsϕ([>]) = [>],
(S2) qsϕ([h1] ∧ [h2]) = qsϕ([h1]) ∧ qsϕ([h2]).

Such a meet-homomorphism between Boolean algebras is called anallocation of support
[17].

Now, if ϕ1 = (Σ1, A1, P1) andϕ2 = (Σ2, A2, P2) are two assumption-based informa-
tions, thenϕ1 ⊕ ϕ2 = (Σ1 ∪ Σ2, A1 ∪ A2, P1 ∪ P2). To it corresponds an allocation of
support fromLiN1∪N2 intoLiA1∪A2 . It can also be obtained from the allocations of support
relative to the two original assumption-based informations as follows:

qsϕ1⊕ϕ2([h]) =
∨
{qsϕ1([h1]) ∧ qsϕ2([h2]) : h1 ∈ LN1 , h2 ∈ LN2 , h1 ∧ h2 |= h} (3.10)

for everyh ∈ LN1∪N2 (see [17] for a proof). This defines then a combination operation⊕ on
the domainΨ of allocations of support, such thatqsϕ1⊕ϕ2 = qsϕ1 ⊕ qsϕ2 . It has been shown
thatΨ becomes an idempotent, commutative semigroup under the operation⊕ as defined by
the right-hand side of (3.10) (see [17]).2 Furthermore, we define the label of an allocation of
supportqs from a Lindenbaum algebraLiN , N = A ∪ P , to a Lindenbaum algebraLiA by
d(qs) = (A,P ), such that, in particular,d(qsϕ) = d(ϕ).

If ϕ = (Σ, A, P ) is assumption-based information,A′ ⊆ A, P ′ ⊆ P , then to the marginal-
ized assumption-based informationϕ↓(A′,P ′) corresponds again an allocation of support from
LiN ′, with N ′ = A′ ∪ P ′, into LiA′ . The following theorem is a generalization of Theo-
rem 3.3:

2Note that we have not proved that every allocation of support is induced by an assumption-based information.
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THEOREM 3.4
If ϕ = (Σ, A, P ) is assumption-based information,A′ ⊆ A, P ′ ⊆ P , andϕ↓(A′,P ′) =
(Σ′, A′, P ′) the marginalized assumption-based information, then, forh ∈ LN ′ , N ′ = A′ ∪
P ′,

qsϕ↓(A′,P ′)([h]) =
∨
{[a′] : a′ ∈ CA′ , [a′] ≤ qsϕ([h])}. (3.11)

Note that, ifA′ = A, thenqsϕ↓(A,P ′)([h]) = qsϕ([h]) for h ∈ LA∪P ′ . This is the special
case of Theorem 3.3.

(3.11) defines a marginalization operation in the domainΨ of allocations of support, that
is

qsϕ
↓(A′,P ′) = qsϕ↓(A′,P ′) . (3.12)

The marginalization of allocations of support has been defined in this way in [17].
The association of an allocation of supportqsϕ to any assumption-based informationϕ

defines a mappingm from Φ into Ψ, m(ϕ) = qsϕ. This mapping is in view of (3.10) and
Theorem 3.4 ahomomorphismwith respect to combination and marginalization,

m(ϕ1 ⊕ ϕ2) = m(ϕ1)⊕m(ϕ2), m(ϕ↓(A′,P ′)) = (m(ϕ))↓(A
′,P ′). (3.13)

Furthermore, the mapping maintains labels,

d(m(ϕ)) = d(ϕ). (3.14)

Note that this homomorphismm carries properties (1) and (2) of Theorem 2.6 over to alloca-
tions of support. Indeed,

(1) If ϕ is an assumption-based information withd(ϕ) = (A,P ) and(A′′, P ′′) ⊆ (A′, P ′) ⊆
(A,P ), then by (2.8) and (3.13)

(m(ϕ)↓(A
′,P ′))↓(A

′′,P ′′) = m((ϕ↓(A′,P ′))↓(A
′′,P ′′)),

= m(ϕ↓(A′′,P ′′)) = (m(ϕ))↓(A
′′,P ′′). (3.15)

(2) If ϕ1 andϕ2 are two assumption-based informations withd(ϕ1) = (A′, P ′) andd(ϕ2) =
(A′′, P ′′), then by (2.9) and (3.13))

(m(ϕ1)⊕m(ϕ2))↓(A
′,P ′) = m((ϕ1 ⊕ ϕ2)↓(A

′,P ′)),

= m(ϕ1 ⊕ (ϕ2)↓(A
′,P ′)∩(A′′,P ′′)),

= m(ϕ1)⊕ (m(ϕ2))↓(A
′,P ′)∩(A′′,P ′′). (3.16)

This important remark allows us to develop two different computational approaches to assumption-
based reasoning, both based on local computations in join trees as will be shown in the next
subsection.

3.3 Computational structure of assumption-based reasoning

Consider an assumption-based informationϕ = (Σ, A, P ) and suppose there is a join tree
covering this propositional information such that with nodei of this tree the assumption-based
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Ø

Allocation of
Support

Assumption-Based
Information

ϕ  =  ⊕ ϕii

m

marginalizationmarginalization

m

m(ϕ)  =  ⊕ m(ϕi)i

ϕ ↓(Ai,Pi) m(ϕ ↓(Ai,Pi)) =  m(ϕ)↓(Ai,Pi)

FIGURE 3. The commutative diagram for computing marginalized allocation of support

informationϕi = (Σi, Ai, Pi) is associated andϕ = ⊕iϕi. The corresponding allocations of
support arem(ϕ) = m(⊕iϕi) = ⊕im(ϕi). The problem is now to compute the marginals
m(ϕ)↓(Ai,Pi) of the allocation of supportm(ϕ) for the nodes of the join tree.

As the diagram in Figure 3 illustrates, there are two ways to compute these marginals.
In the first approach, we compute in a first step the marginalϕ↓(Ai,Pi) of the assumption-
based information by the methods of Section 2.2. In a second step the allocations of sup-
portm(ϕ↓(Ai,Pi)) of these marginalized assumption-based information are then derived. By
(3.13) this equals the marginalized allocations of supportm(ϕ)↓(Ai,Pi).

The second approach consists in first computing the allocations of supportm(ϕi) relative
to the assumption-based informationϕi. Then, in the second step, these allocations of support
are combined and marginalized, that is

m(ϕ)↓(Ai,Pi) = (⊕im(ϕi))↓(Ai,Pi) (3.17)

is computed. This gives according to (3.13) the same result as the first approach, in other
words, the diagram in Figure 3 iscommutative.

As (3.15) and (3.16) are valid for allocations of support, the combination and marginaliza-
tion of allocations of support can be similarly organized in the join tree as the combination
and the marginalization of assumption-based information. This is illustrated in Figure 4.

If a nodei of the join tree, at a given moment of the propagation (in- or outwards) contains
assumption-based informationϕ′

i = (Σ′
i, Ai, Pi), then the message to a neighbour nodej is

the assumption-based informationϕ′
i
↓(Ai,Pi)∩(Aj ,Pj). In the receiving nodej this message

will be combined with the assumption-based information already there,

ϕ′
j ⊕ ϕ′

i
↓(A′

i,P
′
i )∩(A′

j ,P ′
j). (3.18)

Similarly, in the computation with allocations of support, at the same moment, the nodesi
of the join tree contain the associated allocations of supportm(ϕ′

i) of the assumption-based
information ϕ′

i contained in the nodes in the first approach. The message sent
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Ø

m(ϕ′i)

ϕ′i
↓(Ai,Pi)∩(Aj,Pj)

m(ϕ′j)

ϕ′i =
(Σ′i,Ai,Pi)

ϕ′j =
(Σ′j,Aj,Pj)

m m

m(ϕ′i)
↓(Ai,Pi)∩(Aj,Pj)

m

Node i Node j

FIGURE 4. Message passing on the join tree in the two formalisms

m(ϕ′
i)

↓(A′
i,P

′
i )∩(A′

j,P ′
j) = m(ϕ′

i
↓(A′

i,P
′
i )∩(A′

j ,P ′
j)) and the combination in the receiving node

j correspond also to the associated allocations of support

m(ϕ′
j)⊕m(ϕ′

i)
↓(Ai,Pi)∩(Aj ,Pj) = m(ϕ′

j ⊕ ϕ′
i
↓(Ai,Pi)∩(Aj,Pj)). (3.19)

The details of the computations with allocations of support in this second approach are de-
scribed in [16].

In both approaches, there is the need to pass from assumption-based informationϕ =
(Σ, A, P ) to the corresponding allocation of supportm(ϕ). In the first approach this is done
at the end, in the second one at the beginning. As noted in Section 3.1 this passage to the
allocation of support is essentially the problem underlying ATMS. Different methods for its
solution have been described in [18, 19]. It is not evident which one of the two approaches
above is computational more efficient. The general computational scheme discussed in this
paper for both propositional and assumption-based information systems is an instance of a
general theory of information systems. It displays the general issues of combination and
marginalization of information. This generic point of view permits to introduce new dis-
tributed architectures into classical techniques such as propositional logic.

The methods presented in this paper can be applied to different computational problems
related with propositional information. An important example is the problem of finding ar-
guments for hypotheses in the domain of assumption-based reasoning. Practical experimen-
tation and a comparison with other existing approaches will be necessary in the future.
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Appendix

A Proof of Theorems

A.1 Proof of Theorem 2.2
In all cases (1) to (4) of the procedurec(Σ) ⊆ P impliesc(Σ′) ⊆ P − {p1}, s.t.P − {p1} is a label ofΣ′.

Letx ∈ {0, 1}|P | andx+ the Boolean vectorxwith x1 = 1, x− the Boolean vector withx1 = 0 s.t.x+ |= p1,
x− |= ∼p1, and eitherx = x+ or x = x−.

(1) In case (1) of the procedure condition (1) and (2) of the marginalization relation are trivially fulfilled.
(2) In case (2) clearlyΣ |= Σ′ ⊆ Σ. Now, if x |= Σ′ thenx+ |= Σ, but thenx+ |= h andx− |= h (because

h ∈ LP−{p1}), hencex |= h and thusΣ′ |= h.
(3) In case (3) a similar argument to that in case (2) holds.
(4) Σ |= ρ(ξi, ξj) for ξi, ξj ∈ Σ. This impliesΣ |= Σ′.
Let x |= Σ′. Thenx |= {ρ(ξi, ξj) : ξi ∈ Σ+, ξj ∈ Σ−}. If x = x+, then clearlyx |= {ξi ∈ Σ+}. There are
two possible cases:

If ξi − p1 are the clausesξi wherep1 is eliminated then, either
(i) x |= {ξi − p1 : ξi ∈ Σ+}. But in this casex− |= {ξi ∈ Σ+} andx− |= {ξj ∈ Σ−} and hence finally
x− |= Σ.

(ii) otherwise there is aξi ∈ Σ+ s.t. x 6|= ξi − p1, but thenx |= ρ(ξi, ξj) ∀ξj ∈ Σ− impliesx |= {ξj ∈ Σ−}.
Hencex = x+ |= Σ.

Similarly, if x = x− eitherx = x− |= Σ or x+ |= Σ.
Thus,x |= Σ′ implies alwaysx+ |= Σ or x− |= Σ. But in both casesx+ andx− |= h ∈ LP−{p} if Σ |= h,

hencex |= h and therefore finallyΣ′ |= h. �

A.2 Proof of Theorem 2.3
We have

(1) Σ |= Σ′ |= Σ′′, henceΣ |= Σ′′,
(2) SupposeΣ |= h ∈ LQ′′ ⊆ LQ′ . ThusΣ′ |= h, henceΣ′′ |= h.
This shows that((Σ′′, Q′′), (Σ, P )) ∈M . �

A.3 Proof of Theorem 2.6
(1) follows from Theorem 2.3. (2) IfQ is a set of symbols, then letσ(Q) denote an ordered sequence of these
elements. Furthermore for a setΣ of clauses, letΣ−σ(Q) denote the marginal obtained fromΣ by eliminating the
symbols ofQ in the sequenceσ(Q). If Σ+Q denotes a subset of clauses ofΣ containing symbols ofQ andΣ−Q a
subset of clauses ofΣ containing no symbols ofQ, andΣ = Σ+Q ∪ Σ−Q, then clearly

Σ−σ(Q) = Σ
−σ(Q)
+Q ∪ Σ−Q.
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Now, letϕ1 = (Σ1, P ), ϕ2 = (Σ2, P ). Thus we have

ϕ1 ⊕ ϕ2 = (Σ1 ∪ Σ2, P ∪Q)

and in order to marginalize this information toP we have to remove the symbols inQ − P . But Σ1 contains no
such symbols. Hence, it follows that

(ϕ1 ⊕ ϕ2)↓P =
�

Σ1 ∪ Σ
−σ(Q−P )
2 , P

�
.

On the other hand

ϕ↓P∩Q
2 =

�
Σ

−σ(Q−P∩Q)
2 , P ∩Q

�
.

Note thatQ− P ∩Q = Q− P , hence

ϕ1 ⊕ ϕ↓P∩Q
2 =

�
Σ1 ∪Σ

−σ(Q−P )
2 , P

�
= (ϕ1 ⊕ ϕ2)↓P

which proves the theorem. �

A.4 Proof of Theorem 2.8
Let

ψ1 = ϕ
(i)
1 ⊕ ϕ

(i)
2 ⊕ · · · ⊕ ϕ

(i)
i−1

ψ2 = ϕ
(i)
i

such thatd(ψ1) = Hi−1, d(ψ2) = Pi (Theorem 2.7). Also by Theorem 2.7 we have then

ϕ↓Hi = ψ1 ⊕ ψ2.

It follows now from the joint-tree property (4)Pi ∩ Ps(i) = Pi ∩Hi−1 that

(ψ1 ⊕ ψ2)↓Pi∩Ps(i) ⊕ ψ2 = (ψ1 ⊕ ψ2)↓Pi∩Hi−1 ⊕ ψ2.

By Theorem 2.6 (1) and (2) we have

(ψ1 ⊕ ψ2)↓Pi∩Hi−1 =
�

(ψ1 ⊕ ψ2)↓Pi

�↓Pi∩Hi−1

=
�
ψ
↓Pi∩Hi−1
1 ⊕ ψ2

�↓Pi∩Hi−1
= ψ

↓Pi∩Hi−1
1 ⊕ ψ↓Pi∩Hi−1

2 .

Using the idempotency of the combination of propositional information and again Theorem 2.6 (2), it follows there-
fore

(ψ1 ⊕ ψ2)↓Pi∩Ps(i) ⊕ ψ2 = ψ
↓Pi∩Hi−1
1 ⊕ ψ↓Pi∩Hi−1

2 ⊕ ψ2

= ψ
↓Pi∩Hi−1
1 ⊕ ψ2 = (ψ1 ⊕ ψ2)↓Pi .

AsPi ⊆ Hi, we obtain from this result

ϕ↓Pi∩Ps(i) ⊕ ϕ(i)
i =

�
ϕ↓Hi

�↓Pi∩Ps(i) ⊕ ϕ(i)
i = (ψ1 ⊕ ψ2)↓Pi∩Ps(i) ⊕ ψ2

= (ψ1 ⊕ ψ2)↓Pi =
�
ϕ↓Hi

�↓Pi
= ϕ↓Pi .

This proves the theorem. �
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A.5 Proof of Theorem 2.10
Apply Theorem 2.8 to

ϕ′ =
�
ϕ1 ⊕ ϕ′

1

�
⊕ ϕ2 ⊕ · · · ⊕ ϕm

to obtain

ϕ′↓Pi = ϕ′↓Pi∩Ps(i) ⊕ ϕ(i)
i . (A.1)

Note here that, according to the inward phase,ϕ
(i)
i is not changed by the new informationϕ′

1. Let nowT (i) be the
subtree of the join tree associated with nodei and put

ψ1 =
M

j∈T (i)

ϕj , ψ2 =
M

j /∈T (i)

ϕj

such thatϕ = ψ1 ⊕ ψ2, Pi ⊆ d(ψ1), Pi ⊆ Hm = d(ϕ) andψ↓Pi
1 = ϕ

(i)
i (see (2.16)). We obtain then, using

Theorem 2.6 (2) and the idempotency of the combination of propositional information

ϕ↓Pi ⊕ ϕ(i)
i = (ψ1 ⊕ ψ2)↓Pi ⊕ ψ↓Pi

1 = (ψ1 ⊕ ψ2)↓Pi∩Hm ⊕ ψ↓Pi
1

=
�
ψ↓Pi

1 ⊕ (ψ1 ⊕ ψ2)
�↓Pi

= (ψ1 ⊕ ψ2)↓Pi = ϕ↓Pi ,

and, similarly

ϕ′↓Pi ⊕ ϕ↓Pi =
�
ϕ⊕ ϕ′

1

�↓Pi ⊕ ϕ↓Pi =
�
ϕ⊕ ϕ′

1

�↓Pi∩Hm ⊕ ϕ↓Pi

=
�
ϕ↓Pi ⊕

�
ϕ⊕ ϕ′

1

��↓Pi
=
�
ϕ⊕ ϕ′

1

�↓Pi = ϕ′↓Pi .

From this and (A.1) it follows then that

ϕ′↓Pi = ϕ′↓Pi ⊕ ϕ↓Pi = ϕ′↓Pi∩Ps(i) ⊕ ϕ(i)
i ⊕ ϕ

↓Pi

= ϕ′↓Pi∩Ps(i) ⊕ ϕ↓Pi .

This proves the theorem. �

A.6 Proof of Theorem 2.12
Let Σ1 be the set of all clausesξ1, which can be obtained by selecting a formulaξ ∈ Σ and then choosing a literal
from each one of the conjunctions ofξ. If a symbol appears in two conjunctions and it is selected in one of them,
then it will also be selected in the other one. We never choose a symbol and its negation.

This set of clausesΣ1 is equivalent toΣ because every disjunctionξ of conjunctions fromΣ is converted into a
conjunctive normal form (interpreted as a set of clauses) where subsumed clauses are eliminated. LetΣ′

1 be the set
of clauses obtained fromΣ1 by deletingp1 in clausal form andΣ′′ the set of formulae obtained fromΣ by deleting
p1 in disjunctive normal form. We will show thatΣ′

1 andΣ′′ are equivalent, with which this theorem will be a
consequence of Theorem 2.2.

First, we are going to show that all the formulae inΣ′
1 are a consequence ofΣ′′. If a clauseξ′1 belongs toΣ′

1,
then we have two possibilities:
1. Clauseξ′1 was inΣ1, which means it does not containp1 nor ∼p1. In this case it can be obtained by choosing

a literal from each one of the conjunctions of a formula in disjunctive normal form,ξ ∈ Σ. None of the chosen
literals isp1 or ∼p1. In this case it is immediate thatξ′1 is a consequence ofξ−p1 which is a formula belonging
to Σ′′.

2. Clauseξ′1 was not inΣ1. In this case,ξ′1 is the result of the resolution of two clauses fromΣ1, ξ+1 andξ−1 ,
containingp1 and∼p1 respectively. Two situations are now possible:
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(a) ξ+1 andξ−1 come from the same formulaξ ∈ Σ. We can expressξ as

ξ : (p1 ∧ ψ1) ∨ . . . ∨ (p1 ∧ ψk) ∨ (∼p1 ∧ ψk+1) ∨ . . . ∨ (∼p1 ∧ ψl) ∨ (ψl+1) ∨ . . . ∨ (ψs),

whereψl+1, . . . , ψs do not containp1 nor∼p1. ξ+1 andξ−1 will be expressed as

ξ+1 : p1 ∨ tk+1 ∨ . . . ∨ ts,
ξ−1 : r1 ∨ . . . ∨ rk ∨ ∼p1 ∨ rl+1 ∨ . . . ∨ rs,

wheretk+1, . . . , ts are literals fromψk+1, . . . , ψs respectively andr1, . . . , rk, rl+1, . . . , rs are literals from
ψ1, . . . , ψk , ψl+1, . . . , ψs respectively.
The resolution ofξ+1 andξ−1 will be expressed as

tk+1 ∨ . . . ∨ ts ∨ r1 ∨ . . . ∨ rk ∨ rl+1 ∨ . . . ∨ rs

and it is immediately clear that this formula is a consequence of

ξ−p1 : ψ1 ∨ . . . ∨ ψk ∨ ψk+1 ∨ . . . ∨ ψl ∨ ψl+1 ∨ . . . ∨ ψs.

(b) ξ+1 comes from a formulaξ ∈ Σ andξ−1 from a different formulaϕ ∈ Σ. Assume that,

ξ : (p1 ∧ ψ1) ∨ . . . ∨ (p1 ∧ ψk) ∨ (ψk+1) ∨ . . . ∨ ( ψl),

ϕ : (∼p1 ∧ ζ1) ∨ . . . ∨ (∼p1 ∧ ζs) ∨ (ζs+1) ∨ . . . ∨ (ζd),

whereψk+1, . . . , ψl do not containp1 andζs+1, . . . , ζd do not contain∼p1. Furthermore,

ξ+1 : p1 ∨ tk+1 ∨ . . . ∨ tl,
ξ−1 : ∼p1 ∨ rs+1 ∨ . . . ∨ rd,

wheretk+1, . . . , tl are literals from conjunctionsψk+1, . . . , ψl respectively andrs+1, . . . , rd are literals
from ζs+1, . . . , ζd, all these literals being different fromp1 and∼p1.
The resolution ofξ+1 andξ−1 is:

tk+1 ∨ . . . ∨ tl ∨ rs+1 ∨ . . . ∨ rd
and this formula is a consequence of formula

ρp1(ξ, ϕ) = ((ψk+1) ∨ . . . ∨ ( ψl) ∨ (ζs+1) ∨ . . . ∨ (ζd))−p1 ,

which belongs toΣ′′.
Inversely, every formula inΣ′′ is a consequence ofΣ′

1. Let ξ ∈ Σ′′, then this formula does not containp1 and it is
a consequence ofΣ. As Σ′

1 generates all the logical consequences ofΣ ( Σ is equivalent toΣ1) not containingp1,
thenξ can be deduced fromΣ′

1, such that finallyΣ′
1 |= Σ′′. �

A.7 Proof of Theorem 3.2
This theorem can be proved by transforming the definition of quasi-supports as follows:

QSϕ(h) = {a ∈ CA : Σ, a |= h}
= {a ∈ CA : Σ,∼h |= ∼a}.

Then, according to (C2) and knowing that∼a are clauses inA, we can replace(Σ,∼h) by Σ′:

QSϕ(h) = {a ∈ CA : Σ′ |= ∼a}
= {a ∈ CA : a |= ∼Σ′}.

Therefore,Σ′ andQSϕ(h) are logically equivalent. �
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A.8 Proof of Theorem 3.3
Let ϕ = (Σ, A, P ), ϕ′ = (Σ′, A,Q). First, leta ∈ QSϕ(h) s.t. a,Σ |= h or Σ |= h ∨ ∼a. But, then
h ∨ ∼a ∈ LA∪Q andΣ′ |= h ∨ ∼a or a,Σ′ |= h s.t.a ∈ QSϕ′ (h).

Inversely, leta ∈ QSϕ′ (h) s.t. a,Σ′ |= h or Σ′ |= h ∨ ∼a. But Σ |= Σ′ impliesΣ |= h ∨ ∼a or a,Σ |= h
hencea ∈ QSϕ(h). �

A.9 Proof of Theorem 3.4

Letϕ = (Σ, A, P ) andϕ↓(A′,P ′) = (Σ′, A′, P ′) and

a′ ∈ QS
ϕ↓(A′,P ′)(h) = {a′ ∈ CA′ : a′,Σ′ |= h}

for someh ∈ LA′∪P ′ . Now, a′,Σ′ |= h is equivalent toΣ′ |= h ∨ ∼a′ ∈ LA′∪P ′ . As Σ |= Σ′ we have
Σ |= h ∨ ∼a′ or a′,Σ |= h. This shows thata′ ∈ QSϕ(h) or [a′] ≤ qsϕ([h]).

On the other hand, if

[a′] ≤ qsϕ([h]) =
_

a∈QSϕ(h)

[a], a′ ∈ CA′

for someh ∈ LA′∪P ′ , then this inequality implies

a′ |=
_

a∈QSϕ(h)

a

and therefore,

a′,Σ |=
_

a∈QSϕ(h)

a,Σ |= h,

which shows thata′ ∈ QSϕ(h). But then this impliesΣ |= h ∨ ∼a′ ∈ LA′∪P ′ which in turn impliesΣ′ |=
h ∨ ∼a′, hencea′,Σ′ |= h and thus finally

a′ ∈ QS
ϕ↓(A′,P ′) (h).

This proves that for everyh ∈ LA′∪P ′

QS
ϕ↓(A′,P ′) (h) = {a′ ∈ CA′ : [a′] ≤ qsϕ([h])}

and this proves the theorem. �
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