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Abstract

Resolution is an often used method for deduction in propositional logic. Here a proper organization of deduction

is proposed which avoids redundant computations. It is based on a generic framework of decompositions and local
computations as introduced by Shenoy and Shafer. The system contains the two basic operations with information,
namely marginalization (or projection) and combination; the latter being an idempotent operation in the present

case. The theory permits the conception of an architecture of distributed computing. As an important application

assumption-based reasoning is discussed.
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tion networks.

1 Introduction

In many practical applications knowledge and information are essentially encoded in propo-
sitional logic. Using and exploiting such propositional knowledge bases involve essentially
deduction and theorem proving. There is of course a wealth of well-known and established
methods and procedures in propositional logic for doing exactly this. Nevertheless, we pro-
pose here a new look at this problem based on a decomposition of the knowledge base. This
is an unusual point of view in logic. However, it is a widespread method in other formalisms
of reasoning such as Bayesian networks [24], evidence theory [29], and others.

It will be argued and shown that propositional logic fits well into the corresponding ax-
iomatic framework of local propagation in decomposed systems as introduced by Shafer and
Shenoy [29]. Therefore, the computational methods derived from this formalism may be
valuable alternatives to the usual deduction and theorem proving methods. In particular, this
is true with respect to assumption-based reasoning, a variant of ATMS (Assumption-Based
Truth Maintenance Systems). In fact, it is well known that assumption-based reasoning is
closely related to evidence theory [23, 26]. Therefore, it is obvious that methods useful in
evidence theory are also valuable in logic.

The techniques presented in this paper have been successfully implemented ik, ABEL
logic-based language for assumption-based reasoning under uncertainty [2, 3]. The inference
mechanism of ABEL is based on a combination of classical deduction techniques such as
resolution and the ideas of decomposition and local propagation.

IMore information about ABEL as well as a free copy of the software can be obtained from
http://www-iiuf.unifr.ch/tcs/abel.
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1.1 Formulation of the problem and overview

Formally, suppose that knowledge is encoded in &set {¢;, &s, . .., &, } of propositional
formulae over a set of propositional symbétsBasically we are interested in consequences

h of ¥ which belong to the propositional sub-language over a subset of sygbol$’. For
example, we may want to know all prime implicatessbbelonging to this sub-language or

we may want to decide on many querie the sub-language, whethErentailsh, written

¥ E h, or not (see Section 1.2 for a discussion of these problems and their interest). It may
be worthwhile in such a case to first compile the knowledgeto a set’ of formulae over

(@ and then us&’ instead ofX to see whether the hypotheses can be deduced or not. Of
courseX’ must satisfy the conditions

(Cl) EY,
(C2) Y = himpliesY’ = h, for all h expressible with symbols i@ C P.

Such a set of formula®&’ will be called a marginal oE with respect taQ. A special case
arises forQ = @. Then, onlyL andT are possible marginals with respect to &. In the
first caseX is not satisfiable. Thus, the problem of computing marginals encloses also the
problem of deciding about satisfiability.

Once a marginal’ of ¥ to @ is found, there are cases for which it is conceivably simpler
to test whetheE’ = h or to derive consequences Bf, than to decide whethét = h or
to compute consequencesXf However, note that in particular cases the siz&ofrows
exponentially with the number of symbols id — Q. Thus, marginalization is not always
preferable. The usefulness of marginalization depends on the structure of the particular prob-
lem to which it is applied. For the problem of satisfiability checking, a comparison of the
marginalization technique with other classical algorithms can be found in [11].

The problem of finding a marginal’ of X with respect to somé is called themarginal-
ization problem. Its solution is discussed in Section 2. It is well known that it can be solved
by resolution for systems of clauses [13]. The same problem can also be solved by methods
of mathematical programming [13, 34]. Here, also more general systems of disjunctive nor-
mal forms will be considered (Section 2.5). Often one wants the marginal to several subsets
Q, not to just one subset. A convenient organization of the computations may then reduce the
effort considerably by avoiding repeating the same computations. It may also help in updating
marginals when new knowledge is added. That is where decomposition and local computa-
tion in join trees enters just in the same way as in comparable problems of marginalizations
of probability distributions in Bayesian networks or of belief functions in evidence nets. The
propagation algorithms provide a compilation of the knowledge base, from which sound and
faster deductions can be carried out. In fact, it will be shown that propositional information
satisfies the basic axioms introduced by Shenoy, Shafer [29] for local propagation in join trees
(Section 2.2). Actually, propositional information systems satisfy an additional idempotency
axiom which permits to simplify computations.

In Section 3 an important application of marginalization is discussed. Assumption-based
reasoning is closely related to abduction and circumscription [14] but also to evidence theory
[23, 26]. And it has already been shown that it can be put into the framework of propagating
information in join trees [16, 10]. However, an alternative approach based on the theory of
propositional information systems will be exploited in Section 3 and its connection to the
former approach will be outlined. The method described here corresponds to the inference
mechanism implemented for ABEL. This implementation was the main motivation for the
development of the theory described in this paper.
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The idempotent algebraic structure underlying these local propagation methods is very ap-
pealing. In fact, information must be combined and it must be possible to reduce information
to some coarser frame. Propositional information systems are a case. For propositional in-
formationX; and3X; combination is just union. The reducing of information corresponds to
marginalization. The related general abstract algebraic structure of information is discussed
in [20].

1.2 Application of marginalization

The marginalization problem is basic to a number of important application fields related to
consequence finding. Assumption-based reasoning in particular is an important application
domain of consequence finding. We will use this application to illustrate the importance
of marginalization and to compare it with other approaches to consequence finding. The
fundamental problem of assumption-based reasoning can be described as follows:

Let X be a finite set of propositional formulae over propositional symbols in &se
subsetd C N is singled out and the symbols i are called assumptions. L€ty denote
the set of all conjunctions of literals from not containing simultaneously a literal and its
negation. The elements 6f4 are called arguments. I is another propositional formula
over N, then an argumert € C4 is called support foh giveny, if

1) X,a Eh,
(2) £, a }£ D (that isX anda are satisfiable).
The set
QS(E,h)={ae€Ca: Z,a E h} (1.1)
is called the set of quasi-supports of hypothésim particular,
QSE, L)y={a€Cs: X,a =0} (1.2)

is called the set of contradictions. The set

is then the set of all supports fargiven . Support can therefore be expressed in terms
of quasi-support. Thus, the main problem of assumption-based reasoning consists in com-
puting sets of quasi-supports. Note that such a system is closely related to abduction and
circumscription as Inoue [14] has pointed out.

Generally, the sef)S(X, h) of all quasi-supports of a hypothediss too big to be com-
puted or stored explicitly. Therefore, all methods developed in the domain of assumption-
based reasoning use a shorter representatighsgh:, ). Every subse®S’ C QS(3, h)
for which

\/{a € @5} =\/{a € QS(,h)} (= means logical equivalence) (1.4)

can be used as an alternative representati@p (-, 4). One particular subset is the set of
minimal quasi-supports@S(3, h), that is all elementa € QS(X, h) such that no proper
sub-conjunction of: belongs toQ.S (3, h). Note thatu@QS (X, h) is the set of prime impli-
cants of any subsé&} S’ for which (1.4) holds. From this point of view it becomes clear that
often a se).S’ exists which is considerably smaller tha@S (X, h).

In view of these remarks let us formulate two basic problems:
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(P1) For a formula over@, find a subse®S’ C QS(3, h) which is logically equiva-
lenttoQS (X, k) in the sense of (1.4).
(P2) For a formula over@, find the seu@.S (X, k) of all minimal quasi-supports.

Note that (P2) is clearly a special case of (P1). (P2) is essentially the problem of finding
minimal labels in ATMS. In probabilistic assumption-based reasoning [18], if probabilities
are assigned to the assumptions, then the problem is to compute numerical degrees of support,
i.e. the probability that is supported givet. For this problem, solving (P1) is sufficient

and often much simpler than (P2).

Inoue [14] solves (P2) by linear resolution. He defines the notion of characteristic clauses
of X with respect toP, Carc(%, P), which are the minimal clauses ovErthat are conse-
quences ok (i.e. prime implicates oE containing only literals of symbols froi®). Then,
it can be shown [14, 19] that

uQS(X,h) = ~Carc(XU{~h}, A), (1.5)
pQS(E, L) = ~Carc(%, A), (1.6)
wSP(X,h) = ~(Carc(XU{~h}, A) — Carc(%, A))

= ~Newcarc(Z,~h, A). @.7)

Here ~Carc(X, A) denotes the set of conjunctions obtained by negating the clauses in
Carc(X, A). The basic operation of Inoue is to compNewcarc(3, ~h, A), or more gen-
erally Newcarc(3, F, A) for an arbitrary formulg. This operation is first used to compute
incrementallyCarc(X, A), and then, each time a formulaarises, to obtaip@.S (3, ) and
wSP(X, h).

A well-known result of Reiter and de Kleer [27] also solves (P2). The idea is that if
h is a clause, then the minimal quasi-supports can easily be filtered from the set of prime
implicatesPI(X). The problem here is that in most cases the BétY) is too big and
cannot be determined explicitly. B consists of Horn clauses, then very efficient algorithms
exist [9].

Marginalization can help to solve the problems (P1) and (P2) in two different ways:

(1) From Theorem 3.3 given later in Section 3.1 we know that’ifs a marginal of: to
Q U A, then for all formulah over@

QS(S,h) = QS(X', h). (1.8)

This theorem tells us that we may first marginalizéo Q U A and only then solve (P1)
or (P2) with respect to the margingl. If there are different hypotheses, all expressible
in @, then the marginat’ has only to be computed once. In this way, a number of
redundant resolutions can be avoided. If, for example, the problem is to compute the set
of supportsSP(%, ), then by (1.3) it is necessary to know the contradicti@sgy, 1),
and therefore we have at least one other hypothiesis | which is always expressible
in Q. Furthermore, as we will see in Subsection 2.2, if there are hypotheses on different
subsets), Q-, . . ., then the computation can be organized by join trees which again
helps to avoid many redundant resolutions.

(2) The problem (P1) can be solved by computing a margiifabf ¥ U {~h} relative to
the setA of assumptions. Alternatively, it is also possible to d38€rom above and to
compute a marginal” of ¥’ U{~h} relative toA. Then, according to Theorem 3.2 given
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in Section 3.1, we know th&p s’ = ~X" is a subset of)S(X, h) for which (1.4) holds.
Again, note that this set is often considerably smaller @5 (%, 2), but nevertheless,
sufficient for the computation of numerical degrees of support, and for solving (P2) by
computing the prime implicants.

If we combine the techniques of computingewcarc proposed by Inoue and the marginal-
ization method presented in this paper, then as illustrated in Figure 1 it is possible to solve
the problems (P1) and (P2) in a number of different ways. The method recommended in this

5 Newcarc > (PZ)
S
| Margir@l
Marginal ~ Prime Degree of
I N Implicants Support
| Newcarc \\\
A ~
Q s Marginal 1 (P1)

FIGURE 1. Different ways of computing quasi-support

paper consists then of three sequential steps: (1) use a join tree to obtain a m&rgirtato
QU A; (2) useX’ to solve the problem (P1) as described above; (3) compute either numerical
degrees of support, or if necessary solve (P2).
The main advantage of this method is that the intermediate results stored in the join tree
(for exampleX’) can be reused for other hypotheses (for exarhple ). Another important
point is that the result obtained for (P1) is often considerably smaller than the result for (P2).
The application of marginalization to assumption-based reasoning will be discussed more
in detail in Section 3.

2 Computation with propositional information

A propositional information is given by a set of well-formed propositional formalae-
{&,...,&n}- These formulae are of course to be interpreted in a conjunctivegvandés
and ...and,, are true. We denote byX) the set of propositional symbols occurring in the
formulae ofY. Furthermorefp denotes the set of well-formed formulas over the Retdf
propositional symbols. The elementsX¥fcan be considered as belongingdp, whenever
¢(X) C P. Now, for the purpose of the computational theory to be developed, a propositional
informationX should always be considered as belonging torafor a determined seP of
propositional symbols. More precisely,propositional information is considered to be
a pair(X, P) with ¢(X) 2 P. Note that(X, P) and (%, P’) are to be considered as two
different propositional informations unlegs= P’. P is called thdabel of a propositional
information(%, P).

EXAMPLE 2.1
Consider a propositional informatidix, P) with ¥ = {&1, ..., &7} defined as follows:
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&L ~bV~arVa =bAa; — a, &0 ~aq VvV ~g = a4 — ~g,

& ~eVearVa =eAap — a, &11: aV g = ~a — ~¢,

& ~asVa =ay — a, 190 ~aV~asVd=aAlas — d,
&1: bVeVasVea=~bA~eA~ay — ~a, 13 a5 V ~d = ~as — ~d,
& a1 VasVea =~ap A ~ag — ~a, 14 aV~d = ~a — ~d,

& ~aVw =a— w, 151 ~eV~agVe =eNag — c,
&0 ~agVw =az — w, £16: eV ~e = ~e — ~C,

& aVasV~w =~al~az— ~wW, &7 ag V ~c = ~ag — ~C.
&: ~aVayVyg =al~ags — ¢,

The label of this propositional information can be taken as
P = C(E) = {a’ﬂ bv ¢, da €, 9,w,a,a2,as,a4,as, a6}~

This propositional information describes a small story around an alarm system [25]. The
propositional symbols occurring in the clauses have to be interpreted as follows:

the alarm system in the house of Mr Holmes is ringing,
there is a burglary,

an earthquake has occurred,

there is confirmation of the earthquake on the radio,

the neighbour of Mr Holmes, Mr Watson phones Mr Holmes,
the neighbour, Mrs Gibbson phones Mr Holmes,

the daughter of Mr Holmes phones.

s

The first four rules §; to &5) tell us, that a burglary generates an alarm in the house of Mr
Holmes, if the alarm system is functioning; §, but so does also an earthquake. Other causes
(a2) may also cause an alarm. And these are the only ways an alarm can aris€,(larels

&5). Then the next three ruleg to & say that the neighbour of Mr Holmes, Mr Watson,
phones Mr Holmes, if there is an alarm. But Mr Watson may also alarm Mr Holmes as a joke
(a3). The other neighbour of Mr Holmes, Mrs Gibbson, phones also Mr Holmes, when there
is an alarm and she is able to heawit)((ruleséy to £11). Furthermore, if the daughter of Mr
Holmes is at homea(;), then she surely phones also, if there is an alarm. Finally, if there is
an earthquake, there is a confirmation of it on the radio, if the earthquake was regigtgred (
(this is what ruleg5 to &;7 say).

If additional facts become known likgs = w (Mr Watson phones)ig = ~g (Miss
Gibbson does not phonedsy = ~c (there is no confirmation of an earthquake), the proposi-
tional informationY is enlarged by adding these three formulae. The label does not change
in this particular case.

As explained in the introduction one might be interested especially in hypotheses which can
be expressed by propositional formula over a suggset P of propositional symbols. In the
example above one might be interested especially whether the alarm rang or not and whether
there is a burglary or not, hypotheses which can be expressed by symlipls-if{a, b}.

In fact, in this example the symbols i = {a1,...,a¢} play a particular role and we

may want to include them into the computation. This is made clear in Section 3. It means
that we are interested in formulae which can be expressed using the symipls ih =

{a,b,a1,...,a6}.
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2.1 The marginalization problem

It has been argued in Section 1 that it is often advantageonmsatginalize propositional
information to a subse) of propositional symbols. Here we take up this idea and formalize
first the notion of a marginalization relation. (E, P) is a propositional knowledge with
label P, and (%', Q) a propositional information with labé)p, then(X, P) and (¥, Q) are
said to satisfy thenarginalization relation M, ((X/,Q), (3, P)) € M, if

(Cl) TEY,
(C2) Y = himpliesY’ = h, for all h expressible with symbols i@ C P.

Y is then said to be marginal of 3 with respect ta@Q. This means that’ is as informative
as Y when it comes to decide whether a formiélac L, is a consequence af or not.
Note that the marginal of a propositional informatd®nvith respect to somé is not unique.
However, ifY)’ andX” are two marginals of with respect ta) , then it is evident that they
are (logically) equivalent, that &}’ = X" andX” = ¥'.

The fundamental problem which will be considered in this section is them#rginal-
ization problem: given a propositional informatiof®, P) and a subsef) C P, compute a
marginal(¥’, @) of (X, P) such tha{ (¥, @), (£, P)) € M.

In order to solve this problem we use the Davis—Putnam procedure to eliminate the propo-
sitional symbols [7, 8]. However, note that our goal is different: Davis and Putnam were
concerned with satisfiability, whereas we are interested in marginalization. So, even though
the basic operation is the same, its overall organization and use in the computations will be
different. Dechter and Rish [11] also highlight this role of the Davis—Putnam resolution pro-
cedure as a compilation algorithm. However, they do not achieve the full capabilities of this
approach that will be obtained in this paper through the use of the join tree structure. Order
the elements oP in an arbitrary way, such tha = {pi,ps,...,pn}. The goalis then to
eliminate the symbal,, that is to marginalizéx, P) to Q@ = P—{p }. For the following we
suppose that all formulae &f areclauses(for a more general case see Section 2.5). Essen-
tially, 3 is then a conjunctive normal form. It is well known, that @nayan be transformed
into such an equivalent normal form, if necessary.

As a preparation define the sets

Z+ = {fz eX Ip1 € 51}7 (21)
Yoo= {&GeXiap e} (2.2)

One or both of these sets may be empty; I a clause containing; and¢; a clause contain-
ing ~p1, then the resolvent(&;, £;) can be formed by concatenatiggandé;, eliminatingp;
and~p1, as well as all multiple occurrences of litergig¢;, £;) is set equal ta (tautology)
if & and¢; contain another literand its negation besidg; and~p;. The procedure goes
then as follows:

() If both X, and>_ are empty, that is, if the literal; does not occur in the formulae of
¥, then pUt(Elv P — {pl}) = (Ev P — {pl})'

(2) If ¥_ is empty, but, not, then putlX', P — {p1}) = (X — X4+, P — {p1}), thatis
eliminate all clauses i containingp; .

(3) Similarly, if = is empty, but>_ not, then pulX’, P — {p1}) = (X —X_, P — {p;}),
that is eliminate all clauses i containing~p; .
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(4) Finally, if neither>, norX_ is empty, then put
(', P—{p}) = BU{p(&,&) : & €Ty, § €T} —(24UX_)), P—{p1}). (2.3)

Here all the clauses containing eith@r or ~p; are removed fronkt, but all the clauses
obtained by resolving these clauses with respept tare added.

Clearly, this procedure eliminates the symppfrom ¥, it no longer occurs ift’. And the
following theorem tells us that the resulting propositional information is indeed a marginal of
(2, P) with respect taP — {p1 }.

THEOREM 2.2
If (X', P — {p1}) is defined as in the procedure above, then

(X, P—{p}), (%, P)) € M. (2.4)

(Proofs of theorems are to be found in the Appendix.)

This indicates that the marginalization problem could be solved by eliminating the symbols
in the setP — @ sequentially fronk. However, in order that this is indeed a way to solve the
marginalization problem, it must be verified thapifand therp, are sequentially eliminated,
that this gives a marginal t8— {p1, p2 }; or, more generally, that a sequential marginalization
first to Q' D @ and then toQ is also a marginalization directly t§. This is what the
following theorem affirms.

THEOREMZ2.3
If Q' 2 Q" and((X,Q"), (X%, P)) € Mand((X",Q"), (¥,Q")) € M, thenalsq (X", Q"),
(3,P)) e M.

According to this theorem and Theorem 2.2 a margindPafP) with respect taQ can be
computed by eliminating the symbolsih— @ from X in any sequence. This is essentially a
sequence of resolutions which solves the marginalization problem. Note that the resolutions
p(&,&;) may introduce redundant clauses. A clause subsuming (containing) another clause
is redundant and may be eliminated Xfis a set of clauses, ther® denotes the subset of
clauses ot which are not subsuming another clauséofThe tautologyT is assumed to
subsume any other clause, heficappears never in3, exceptinX = {T }. Point (4) of the
procedure above can then be changed into

(E/aP_ {pl}) =
(WEU{p& &) G ey, el - (B U8)), P—{p}). (25)

There exist even more involved methods to reduce the siz& (gee for example [6]). In
the next subsection this procedure will be studied in more detail and it will be shown that it
permits one to solveeveralmarginalization problems at the same time with little additional
effort.

Before discussing this issue, let us illustrate the procedure with the simple example intro-
duced above.

EXAMPLE 2.4

Consider the propositional knowleddg, ¢(X)), whereX: contains the clauseg to &3
introduced in Example 2.1. Suppose we want to eliminate the symbglsi, c in this order.
To eliminatew we consider the clauses
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&1 ~aVw, & aVazV~w,
&7 ~az VvV w, 180 w.

With respect to the symbab the set ;. is formed by the clauses, {7 and s, whereas the
setY_ contains onl\¢s. All these clauses are removed frain Added are all the resolvents
of these clauses with respectito There is actually only one, which is not a tautology:

p(€s,&18) = a V as.

Next, to eliminatgy , the clauses

o ~aVagVg, 11t aV~g,
101 ~ag V ~g, §19 1 ~G,

have to be removed. Again only one resolvent is to be added:

p(69,&19) = ~a V ay.

The symbold is eliminated by removing the claus€s to £14. No resolution can be added.
Finally, to eliminate the symbal, the clauseg;; to &7 andé&sg are to be removed and the
resolvent

p(&15,&20) = ~e V ~ag

is to be added. The resulting marginal to the remaining symhoéls, a1, . . ., ag is thus:
&0 ~bV~ay Va, & a1 VagV~a,
&1 ~eV~ay Va, p(&s,&18) = aVas,
§3: ~az Va, p(&o,&19) 1 ~aV ay,
&4 bVeVasV ~a, p(fm,fgo) : ~eV ~ag.
Suppose now, in a second phase, we want to marginalizegta:1, . .., ag. Clearly, if the

intermediate results of the previous computation were stored, then it is not necessary to start
from scratch for this second marginalization. For example, if we chose an elimination se-
quencew, ¢, b, e, then at least the elimination of the first symholis exactly as before.
Although in the former elimination sequengevas eliminated next, which appears not to
match the present sequence, we may note that the clauses involved in the elimingtion of
do in no way interfere with those involved in the eliminationcof Thus, it seems that the
previous computations can even be reused for eliminating

Such considerations will be discussed more systematically in the following subsection. It will
be shown how computations can be organized such that intermediate results can be reused for
different marginalizations with a minimum of additional effort.

2.2 The organization of computations

We need to introduce some preliminary notions before discussing the organization of com-
putations of marginals. IfZ, P) is a propositional information, then we associate to every
clause¢; of X the sete(¢;) C P of the symbols it contains. The family of the sets;)
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form a hypergrap{c(&;), & € X}, The sets:(;) are called its hyperedges. The notion of

join (or Markov) tree plays a central role in the following discussion. A join tree is a tree
whose nodes are subsets of symbols, such that if a given symbol belongs to two nodes, then it
belongs to every node on the unique path between the two nodes. A join tree is said to cover
the hypergrapHKc(¢;), & € X} if every hyperedge(&;) is contained in at least one node of

the join tree.

It is well known that any elimination sequence of symbols generates a join tree covering
the hypergrapHc(¢;), & € X} (see for example [1] or [19] for a discussion of these issues).
Figure 2 displays a covering join tree for the hypergraph associated with the example of
the previous subsection. If we number the nodes of a covering join tree in some way by
1 = 1,2,... then letX; be the subset of clauses covered by nad&here may be clauses
covered by several nodes of the join tree; such clauses are arbitrarily affected to one of the
covering nodes, such that¥; = > and¥:; N X; = @if ¢ # j.

EXAMPLE 2.5

Again, consider the propositional information of Example 2.1. According to Figure 2 we
may takeX; = {£1,62,83,84,85) B2 = {6, 67,88, 18} B3 = {£0, 610,611,610}, Xa =
{&12,&13, &4}y andXs = {15, &6, 17, E20 -

FIGURE 2. A covering join tree for the hypergraph associated with the example of Section 2.1

An important issue in the elimination process is the order in which symbols are removed.
Though with different orders the final calculated set of clauses are equivalent, the complexity
of the computations can be quite different. The problem of obtaining an optimal sequence in
relation to the associated computations (for example that minimizing the number of resolu-
tions) looks a difficult one. It is similar to the problem of obtaining an optimal triangulation
of an undirected graph, which is known to be NP-hard (see for example Kjeerulff [15]).

However, there are several heuristics which can be used [11]. For example, eliminate in
each case the literal for which the product of the number of elemenis @nd the number
of elements of_ is minimal. That is, in each case the symbol involving a minimal number
of resolutions is removed. This does not guarantee that the total number of resolutions is
minimal, but it is better than choosing an arbitrary order.
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To each node of the covering join tree a propositional informaion P;) is associated,
whereP; is the set of symbols forming node This represents then somehow a decomposi-
tion of the original propositional information into distinct pieces which together reconstitute
the original information. This is a very fruitful point of view which is widespread in fields
like Bayesian or belief networks and also in linear equations with sparse matrices, but not so
in logics. In order to exploit this way of looking at information we introduce the operation of
combination of propositional information.

If (31, P1) and (X, P») are two items of propositional information, then they combine
naturally into(Xy, P1) @ (21, P1) = (31 U 32, P; U P2). Combination is thus union. Note
that here too, subsuming clauses can be removed, replacing s by (31 UX,). Clearly,
(X,¢(X)) = Di=1,...m({&}, c(&)) and, more importantly,

(,P) =P, P, (2.6)

(3

if the (3;, P;) are the propositional information associated with the nodes of a covering join
tree for(%, P).

It is from here on convenient to consider classes of logically equivalent propositional in-
formation with identical labels. Ip denotes such a class, then= (X, P) means thatX, P)
belongs to the clasg and if ¢ = (¥, P) andy = (X", P), thenX’ andX"” are logically
equivalent. The label of the class, its domain, is denoted(py; hence, ifp = (%, P),
thend(p) = P. The combination carries over to these classesy,if= (31, P;) and
w2 = (X2, Py), thenpy @ va = (u(X1 U X3), Py U Py). The operationd is associative
and commutative. The propositional informatipriorm a commutative semigroup with re-
spect to combination. If a propositional information is decomposed according to a covering
join tree (like (2.6)), then this defines a corresponding decomposition

v = @% (2.7)

If ¢ = (X, P) is a propositional information, then we denotegoy? the equivalence class of
its marginals tay. In the following theorem two fundamental properties of marginalization
and combination of propositional information are affirmed.

THEOREM2.6

(1) If ¢ is an item of propositional information wit( ) = P, and@” C Q' C P, then
(p19)1" = ! (28)

(2) If p1 andy- are two items of propositional information witlip1) = P andd(yp2) = Q,

then

(o1 ® p2)'F = o1 ® (05779, (2.9)

(2.8) and (2.9) show that propositional information satisfies the axioms introduced by Shenoy
and Shafer [29] which permit one in many cases to improve the efficiency of the computations
for the solution of the marginalization problem. The important property is (2.9). In our case
it means the following (compare also the proof of Theorem 2.6): in both marginals on the
left and the right-hand side the symbolsin— P must be eliminated. This involves in both
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cases, ifp; = (X1, P) andps = (X2, Q), only resolutions with clauses frodl,, because
the clauses of, contain no symbols outside. However, the search for clauses containing
symbols fromQ — P is simpler in¥s than inX; UX,. Inthis sense it is better first to eliminate
symbols in the propositional informatidis, @) and only then to combine witt®,, P),
rather than first to combine the two items of propositional information and to eliminate the
symbols afterwards. That is, once a decomposition of the propositional information has been
organized, it is convenient to use it.

A covering join tree of propositional informatiop = (3, P) can now, on the base of
properties (2.8) and (2.9), be used to compute margingisfor any sets) which are subsets
of some node sef; of the join tree. Computational schemes to do this have been discussed
in [29]. These methods can be adapted to the present case, which, in addition to the basic
properties (2.8) and (2.9), exhibits a further property, which can be exploited. This is the fact,
that the combination of propositional information is cleddgmpotent, or, more generally,
foranyQ € d()

0@ (p'9) =o. (2.10)

One way to organize the computations is to direct the edges of the join tree such that it
becomes a rooted tree. This can be done using any construction sequence of the tree. Once
this is done, every nodeof the tree, except the root nodehas a unique successg(i).

Assume that the nodes are numbered corresponding to the construction sequence, then the
root is number 1 and(:) < i foralli = 2,...,m. DefineH; = U;j—1 . ;P;. Itis well

known [29], that for a join tree

PiNPyy =P NH_,. (2.11)

Theorem 2.6 has then the following corollary [29].
COROLLARY 2.7

Definego;m) =p;,forj=1,....m.If, fori=m,...,2
(piz’(;)l) _ (SOZ(_i))leP;(i) ® ()0((:()14)7 (2.12)
PN = QW forj =101 § # (i), (2.13)
then,fori=m —1,...,1
andd(¢\"”) = P;. (2.14)

The proof of this theorem will not be given here. It is an immediate consequence of Theo-
rem 2.6 and has been proved by Shafer and Shenoy [29].
From this theorem the following computational scheme on the join tree can be derived:

Nodem (necessarily a leaf in the tree) computesy” )!P="Psom) and sends this marginal
as a message to its successor ngde) which combines it with its own stored information

gaim")L). More generally, foi = m, ..., 2, we have the following computations:

nodep;: memorygp;” nodep,,): memory:e'{),
- marginalizeyy; = (¢!”)!PNP

- send message; (1) 9

combinegps(i) =Y @ goi(i)
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At the end, fori = 1, we obtain, according to the theorem,
i = P, (2.15)

Note that in this computational scheme, always only propositional information with respect
to subsets?; of P have to be handled. It can be expected that this is much simpler than to
work within the whole sef’ of symbols.

Any node; of the join tree is the root of a subtrg&:) which is itself a join tree. It is then
clear that by analogy to (2.15) , if we restrict the consideration above to the slilfinehat

LP;

V= P | - (2.16)

JET (1)

This is the first part of a two-phase scheme. It is calleditineard (or collect) phase. The
computations at the end of the previous subsection correspond exactly to such an inward
propagation in the join tree of Figure 2 is rooted at node 1. This illustrates that the inward
phase is nothing other than the elimination of symbols in the sequence which generated the
covering join tree.

Note that the idempotency of the combination of propositional information systems has not
been used in this phase, that is the general Shafer—Shenoy theory applies just as for example
in Bayesian networks. This is different for the second phasegptiteard (or distribute)
phase, where marginals gfwith respect to all otheP;, j = 1,2, ..., m, are computed. The
following theorem makes use of the idempotency of the information calculus.

THEOREM2.8
Let @5’) be the propositional information obtained at stepg = m,m — 1,...,2) of the
inward phase. Then

(plpi _ (plpiﬂps(a,) e Saz(i)- (2.17)
On the basis of this theorem, we may, starting with nodfor each of its predecessojs
(that is,j such thats(j) = 1) compute the marginab!"*"%i and send this marginal as a
message to nodg where it is combined Witho§” to get a marginap!”i. More generally,
fori = 2,...,m we compute according to the following scheme:

nodep;(;): memoryp! nodep;: memory,!”
- marginalizey; = (p!Fx )10
- send messagg; —— combinep!’ = ¢; & %@

In this computational scheme again only propositional information with respect to subsets
P; of P have to be handled. Thus the computational simplification of the first phases is
maintained in this second phase.

In this outward phase we compute thus indeed, as proposed, a margiRalrdfto every
set P; of the join tree. Now, finally if we look for a marginal with respect to some subset
@ C Pj, then according to Theorem 2.6 (1), all we need to do is to eliminate the symbols in
P; — Q from (X, P)‘Fi.

Here we have thus a computational organization which caches intermediate results in order
to efficiently obtain the marginals to a multitude of subggts
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The calculation of messages in this distribution phase is different from the case of Bayesian
networks [29]. In that case, the messageontains the value

LPiNPs 4y

P ¢, : (2.18)

JET(4)

Here, since the idempotency property is verified, the final result can be obtained if the mes-

sagey; contains
LPiNPg4)

B v : (2.19)

je{l,....m}

The same type of messages as in the Bayesian networks is possible here, but the messages we
propose are not only simpler to express, but also easier to calculate. The reason is as follows:
our message is the Bayesian message combined with the message of the collect phase. Let us
call the message of the collect phase This information was already calculated and defined

on symbolsP; N P,;). Our message is the Bayesian message combined with this message
and marginalized o; N Py;). Thatis,

LPiNPg s

D o | owl : (2.20)
JET(2)

This computation is a particular case of a calculatiofiyf ¢')!*’, whered(¢') = P’ C
P = d(¢). In general, this computation is easier than the computati@m%'f. The reason
is as follows. Assume = (X, P), ¢’ = (X', P’), andyp* = (X*, P), whereX* is the set
of clauses i not subsumed by a clause i (i.e. ¥* = p(X U Y') — ¥'). Under these
conditions:

(p@ ) = (e @)V = (") @y (2.21)
Thatis, in this case we have to carry out a marginalization but of a reduced set of élduses

EXAMPLE 2.9

Consider again the example of the previous subsection. As already said, the computation
corresponds to the inward propagation, if the join tree, Figure 2, is rooted at node 1. The
outward propagation is then as follows: for the message to node 2, the syirdrals must

be eliminated fron{X!., P..), that is from

&0 ~bV ~ay Va, & a1 Vas Vo~a,
&1 ~eV~ayVa, p(€s,&18) = aVas,
&3 ~az Va, p(&o,&19) 1 ~aV ag,
&4: bVeVasV ~a, p(&15,820) 1 ~eV ~ag.
This gives the message
&3 ~ag Va, p(€s,&i8) © aVas,

55 .al V as \Y ~Q, (fg,glg) C~aV aq.
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The same message will also be sentto nodes 3 and 4. For the message to node 5, the symbols
a andb must be eliminated froni>!,, P,.) in a similar way. The resulting messages are then
combined with the cached information on each node and we finally get the following results

on the nodes 2 to 5:

Nodey : {~asVa, aVasz, ~aVas, a1 VasV ~a, w},

Nodes : {~a2Va, aVag, ~aVag a1 VazV~a, ~g},

Nodey : {~a2Va, aVas, ~aVag, a1 VagV~a, ~aV ~asVd, a5V ~d, aV ~d},
Nodes : {~eV ~ag, ~eV ~a1 V ayq, ~az V aq, azV ag, a1 Vaz Vag, ~c}.

2.3 Incremental procedure

If some new propositional information is added in a node of the join tree, then an identical
distribute phase can be used to update the marginals with respect to every;n&lgppose

that a new propositional informatiopy = (¥}, P1) is added to nodé, then according to
Theorem 2.6 (2), ifp’ = ¢ @ ¢} is the new, updated global information,

P= (e el) T = ey (2.22)

@ © D P

Thus, the updating on nodeis readily made. The next theorem shows how the marginals
¢V P with respect to the other nodes of the join tree can be computed.

THEOREMZ2.10
If ' = o ® ¢}, withd(y}]) C P, then
1]

0 P _ ¢/1Piﬂps(i) D (plPi_ (2.23)

This theorem shows in fact, that the new information can be propagated outwards using the
old marginals stored in the nodes of the join tree and using exactly the outward phase com-
putational scheme. If the new information is added to a nadifferent from nodel, then

there is always a constructing sequence starting with nodence the updating can be done

in the same way starting with this node.

In general, we can think of an incremental procedure in which the pieces of information
are incorporated and propagated in subsequent stages. Assume that we have a join tree and
several pieces of informatiofy, . . ., v, } such that for each piece of information there
is a nodeP; of the tree withd(y;) C P;.

For the incremental algorithm we assume that there is an informafjstored in each
nodeP; and that there is a messagg; stored for each pair of connected nodgsand P;.

This message will be used to store messages fpto P; and vice versa. Sending a message
from P; to P; means to calculate; ; = ¢; """ and change); to ¢, & v; ;.

The algorithm starts with an initial state in which the information stored in the nodes and
the messages are vacuoys; = (&, P;) andy; ; = (&, P N P;). Then, the pieces of
information{¢1,. .., ¢, } are added one by one. For each one of them, a fpieselected
such thatd(¢;) C P;. Then,y; is integrated intap’; by changing it top’; & ¢;, and the
corresponding messages are sent out from this node to the rest of the network.

Eachtime a piece of information is integrated into the network, the information in the nodes
¢ and the messages ; become more informative (more formulae can be deduced from
them). The advantage of organizing the computations this way is the following: originally
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only very few clauses are in the network and the messages contain a small number of clauses.
When new informatiorp; is added into the network, i.e. each time a message is sentffom

to P, then messages have already been sent fiptto ;. These messages are defined on

P; N P, and by the arguments given in the previous section, this simplifies the computation
by reducing the number of clauses to be marginalized.

The disadvantage is that messages have to be recalculated several times. This problem is
not very important if some procedure is determined by which the same resolution is never
repeated. This can be done in the following way: imagine that ngdaas received a
message from nod®; and a message from this node to a different adjacent dbdes
to be computed. Assume that the marginalizatiorPton P, requires the deletion of the
propositional symbagb; and consider the following sets:

. E‘jjd the set of positive, clauses stored i), before receiving the message,

e Y%l the set of negative, clauses stored in}, before receiving the message,

e 29! the set of clauses not containipgstored iny), before receiving the message,
¢ X'°¢ the set of positive; clauses contained in the received message,

e > 7¢¢ the set of negative; clauses contained in the received message,

e >7°¢ the set of clauses not contained in the received message.

From these clauses calculate new clauses as follows:
° Ziew — M(z:@c U Z(jrld U Z(o)ld U dec) _ (Zild U Z(o)ld U dec),
o YW — p(xnree Yy yold y Zgld U X§¢¢) — (xotd y Zgld U X§°).

That is, remove from the received clauses those clauses which are subsumed by clauses not
containingpy, or by oldp; clauses. The message frdf to P, can then be calculated as

p(SEC U {p(€,€) - £ € D1 € € (B USRI} U {p(€,€) 1 € € B9 € € oY),
(2.24)
Therefore, it is not necessary to carry out the resolutions of old clauses with old clauses,
because this information was been previously sent. Note that the former messagés from
to P, which are incorporated iRg'?, are used to reduced the number of clauses for which a
resolution has to be carried out.

Another problem of the incremental procedure is that the new information has to be inte-
grated in one of the nodes of the tree. If some piece of information arrives which is defined
for a set of propositional symbols which is not included in any of the nodes of the tree, then
the structure of the tree has to be recalculated, in order to encompass this new set of clauses.
This may happen if the pieces of knowledge arrive in a sequential way and they are not known
when we build the join tree.

However, in a concrete situation two kinds of knowledge can be distinguished [12]: the
general knowledge known in advance (rules generally involving several variables and repre-
senting relationships verified for all the elements of a population) and the facts (represent-
ing observations for a particular case and involving generally less variables). Since general
knowledge usually involves more variables than the facts, it is more important in the construc-
tion of the join tree. On the other hand it represents the more static part of the knowledge and
a lot of time can be allocated to the compilation of this knowledge. The compilation involves
the construction of a reasonable join tree and the propagation.

Observations change from case to case. The observations are introduced for a particular
case in order to produce deductions for some questions of interest. The observations generally
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involve very few propositional symbols and can be integrated into a tree node. So propagation
can be done incrementally starting from the previous propagation of generic knowledge. In
this way, the deductions can be speeded up with respect to a global propagation of the general
and particular knowledge on a simple propagation algorithm: a part of the resolutions have
been done with the generic knowledge only and the messages sent in the first stage can be
used to reduce the additional resolutions when observations arrive.

2.4 Implementation and complexity

Itis well known that in order to solve sparse linear systems of equations hypertree or join trees
are very useful to maintain sparsity of the matrices involved during the solution process [28].
It will be shown here that essentially the same idea applies to marginalization in propositional
information systems. In fact, one way to store aXSeif clauses is to define a table with
columns corresponding to the propositional symhglsppearing inx: and a row for each
clause. Appearances of a positive literal in a clause are noted-byia the corresponding
column, a negative literal by a’, all other columns containind)’. In practice such a table

of dimension|X| x |N| associated to a set of clauseften contains many)’. Then the

table is calledsparseand the organization of the computation as described in the previous
subsection is useful.

In fact, in eliminating propositional symbols one would like to keep the newly generated
clauses short. This corresponds to the purpose of selecting an elimination sequence of sym-
bols which generates a join tree covering a hypergrap ), ; € ¥} such that the cardi-
nalities of the hyperedges remain as small as possible. This guarantees small clauses during
the marginalizations because one never generates clauses beyond the nodes of the join tree.

In other words, such a join tree allows to replace the table of dimenXSpr |N| by a
set of much smaller tables, each one corresponding to a node of the join tree. The number
of columns of each table corresponds to the cardinality of the node in the join tree. This
is already a considerable reduction in memory space. All the elimination of propositional
symbols can be done within these smaller tables. This reduces the time to search for clauses
containing the symbol to be eliminated because of the smaller number of rows of the small
table. Given that only clauses containing literals of the symbols of the node of the join tree
are generated, this keeps the number of new clauses conceivably small.

The search for an optimal covering join tree is known to be NP-hard. But in practice there
exist good heuristics [5, 35, 22, 31, 32, 21, 4, 1, 33] for the construction of such join trees
if the underlying table is sparse. So, just as in the case of systems of linear equations, the
organization of the computations based on a covering join tree can be very efficient.

2.5 A more general approach: disjunctive normal forms

The procedure for the elimination of propositional symbols considered so far assumes that all
formulae inX are clauses. Although it is always possible to transform a set of propositional
formulaeX into an equivalent set of clauses, this may not be efficient. Though the intro-
duction of artificial symbols could transform this formulae into clauses without a significant
increment in the size of the representation, these artificial symbols should be finally deleted,
with then the possibility of increasing the size of the representations. Furthermore, the inclu-
sion of the artificial symbols will make more difficult the determination of an optimal deletion
sequence.
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Therefore, we consider here elimination of symbols in the more general sets of formulae
in disjunctive normal form. That is, each formua X is supposed to be of the form

E=P1 Vi V- Vi (2.25)

where eachy; is a conjunction of literals; that ig); = a1 Aas A ... A ap, anda; is either a
p; or a~p;. It will be assumed that in a conjunction never appears a literal and its negation.
If this were the case, the conjunction would be the falsity and could be removed from the
formula, yielding an equivalent formula.

First we define the operation of thieletion of a symbolp from a formula¢ in such
disjunctive normal form: in all conjunctions g@f which containp or ~p this literal will
be removed and then all the conjunctions subsuming (containing) other conjunction will be
deleted. The result of this operation will be called. If one of the conjunction of is p or
~p, then the resulting formul&™? is the tautology.

Let&; andg, be formulae in disjunctive normal form such tgatontaing andés contains
~p, such that

&= (AP V-V AL VYTV v (2.26)

& = (AU V-V (sp A VTV vy, (2.27)

where the conjunctioruﬁi“, ...,%¥ do not contairp andwgﬂ, ..., %% do not contain.p.
Then a generalized resolution betwegrand¢, with respect tg can be defined as follows:

. . —p

pp(€1,62) = (wi“ VovgRvgdttv.oy wg) : (2.28)
Note that~p may be present in the conjunctioﬂé“, ...,%¥ or p in the conjunctions
;“, ...,k That is why it is necessary to deletein the generalized resolution. Fur-

thermore, note that in generg) (&1, &2) # pp(&2,&1).

Consider now propositional information syste(@s P), where all formula€ of X are in
disjunctive normal form. The elimination of a propositional symppform this system is
defined as follows: leE, be the set of formulae frorit containingp; andX_ the set of
formulae containing.p;. Note that these sets are in general not disjoint. Form then

(X", P—{pm}) =
(&P 6eBtul{p(§1,8) & el & eX & #&LP—{m}). (2.29)
Clearly, this propositional information system contains no maqre

EXAMPLE 2.11
To illustrate and clarify this procedure consider= {(a A b) V (~a A ¢),(a Ac) V b, (a A
d) V (~a A 'b)}. To eliminate the symbal, form

X = {(anbd)V(~anc),(anc)Vb (and)V (~aAb)},
5. = {@anb)V(~anc),(and)V (~aAD)}.

Then we have

{P:¢cex}t = {bVeeVvbbvd},
{pp(£1,6) & €T, L eX & #& = {cVd,bVbbVvdbVb}
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Of course, we can simplify here by eliminating identical formulae and replacibg/df by
b. Finally, we get thus the following result of eliminating

{bve,bvd,evd b}, {bcd}).

For this procedure of elimination of a propositional symbol in sets of disjunctive norm forms
a result analogous to Theorem 2.2 holds.

THEOREM2.12
If (£”,P — {p1}) is defined by (2.29), then

(X", P—{p1}), (%, P)) € M. (2.30)

Furthermore, Theorem 2.3 and its proof carry over to this more general case. Thus, even in
this case marginalization can be done by eliminating the symbols in an arbitrary sequence,
just as in Section 2.1.

Combination of two such propositional informatiofs;, P;) and (X5, P») is defined as
before:

(31, P1) @ (82, P) = (£1 U S, Py UP). (2.31)

With this, not only Theorem 2.6 (1), but also (2) and its proof are valid in the more general
case of disjunctive normal forms. This is to say that the whole computational theory of
Section 2.2 applies to this case.

The computation can even be more refined by considering the following form of subsump-
tion: if & = ] Vol V- Vbl andéy = ¢F V3 v -+ V92 are two disjunctive normal
forms, then¢; is subsumed by if for each conjunction)? in &, there is a conjunctiow}
in & such thatwjl is subsumed, that is contained«i. Thus clearlyé, = &. A disjunc-
tive normal form which is subsumed by another one can therefore be deleted without loss
of information. Thus, ifuX denotes the set of disjunctive normal forms¥bivhich are not
subsumed by another form &f then the combination can also be defined as

(El,Pl)@(ZQ,Pg)Z (M(21U22),P1 UPQ) (232)
And the elimination of a symbol (2.29) can be rewritten as

(X", P—{p}) =
({EP £ eXU{pp,(€1,82) &1 €8, € X .6 #&}), P —{p1}). (2.33)

This may help to avoid excessive growth of the number of formulae when combining and
marginalizing propositional information systems.

3 Assumption-based information systems

In this section we look more into the details of the subject introduced in Subsection 1.2. The
idea of assumption-based reasoning is now developed from the point of view of information
systems.
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3.1 Basic notions

Let (X, N) be a propositional information as introduced in the previous section. If a subset
of propositionsA C N is declared asssumptions P = N — A, then the tripleg(3, A, P)

is calledassumption-based information The idea behind this view is that assumptions are
propositions for which we cannot be sure whether they are true or not. They are used to define
uncertain logical relations. W is an assumption, themA b — ¢, for example, means that

b — cis an uncertain rule (implication) whose validity depends on whether the assumption
holds or not.

ExAMPLE 3.1

In the example introduced at the beginning of Section 2.1 the propositjdns:s can in fact

be considered as assumptions. For example, the cfause-bV ~a; V a says that a burglary

(b) implies an alarmd) under the assumption that the alarm system functions propanly (

& = ~ag V a says that under some other circumstaneg3 the alarm §) triggers itself
without an explicit reason; etc.

The concepts of quasi-support and support can now be adapted for assumption-based infor-
mation (X, A, P). For that purpose, we use agairto denote the whole class of logically
equivalent assumption-based informatian.= (%, A, P) means again thaf:, A, P) be-
longs to the clas. The label ofyp is now its domaini(p) = (A, P) of assumptions and
other propositions. Ik is a hypothesis expressible p C A U P, then we writeQ.S,(h)
andSP,(h) instead ofQS(X, h) and SP(X, h) to denote the corresponding sets of quasi-
supports and supports. Then, the main problem is again to compute a@##3setQ.S,, (h)
which is logically equivalentt@)S,, (k). One particular solution is the sef)S,, (k) of mini-
mal quasi-supports. Different methods are known for this problem (see Subsection 1.2). The
method we propose here is based on marginalization.

Let ~H be a set of clauses representing the negated hypothlesiady;, = (~H, A, P)
the corresponding assumption-based information. The following theorem tells us then how
to compute the quasi-supports for

THEOREM 3.2
Lety = (X, A, P) andp, = (~H, A, P) be two items of assumption-based information as
described above. If' = (¢ @ @)t = (¥, A, @) is a marginal ofp © ¢, to A, then

QS =% (3.1)
is a set of quasi-supports dfwhich is equivalent t@ S, (h).

The resulting setY’ is a set of conjunctions obtained by negating the clausgs.ihis the-
orem describes an alternative way of computing quasi-supports by means of marginalization.
The advantage is that the resulting set of arguments is logically equivalent but often consid-
erably smaller tham@S,(h). This is of particular importance when numerical degrees of
supports are computed.

Another important theorem describes a second way that marginalization can help to find
the quasi-supports.

THEOREM3.3
Let (X, A, P) be an assumption-based information &pd- A U P. If ¢ = ¢!4Y?is a
marginal ofp to Q U A, then

QS,(h) = QS (h) forallh e Lo. (3.2)
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This theorems tells us that we may first marginalize ¢Q U A and then compute the quasi-
supports relative to this reduced information, instead of working with the full original infor-
mation. If there are different hypotheses, all expressibl&inthen the marginap’ has
only to be computed once. In this way, a number of redundant resolutions can be avoided.

3.2 Algebraic structure of assumption-based reasoning

In Section 2 we introduced an algebraic structure of propositional information systems con-
sisting of a commutative semigroup with respect to the combination operatemd of an
operation of marginalization. This structure will be adapted here to assumption-based infor-
mation and then extended also to the domain of quasi-supports. These algebraic structures
will clarify the different ways to compute quasi-supports.

The operations of combination and marginalization of propositional systems can without
difficulty be extended to assumption-based information. In fach;it= (%;, A;, P;) for
1=1,2, then

01 @ g2 = (X1 UX2, A1 U Az, PLU P). (3.3)

Here, as in the sequel we assume that sets of assumptjarsd sets of propositions; are
always disjoint, i.e.A; N P; = @. If ¢ is the set of all assumption-based information over
finite setsA and P, then the operatiom provides this set with the structure a@dmmutative
semigroup. If we define(Aq, P1) U (A2, P3) = (41 U Az, Py U P») (similarly for the
intersection), then the labels satisfy furthermore the relation

d(p1 ® p2) = d(p1) U d(ip2). (3.4)

If A’ and P’ are subsets ofi and P respectively, then the marginal of assumption-based
informationy = (X, A, P) to (A’, P’) can also be defined in terms of marginals of the
corresponding propositional informatidR, V). Indeed, if(¥’, N') is a marginal of &, V)

with respecttaV’ = A’ U P’, then we define

PHAPD) = (3 A P, (3.5)
Of course we have
d(p" APy = (A, P). (3.6)

This process is called the marginalization of assumption-based information. Note that of-
ten the assumptions are not reduced, that’is= A, because in general one does not want
to eliminate assumptions from the consideration (see for example Theorem 3.3). In certain
cases however, in order to simplify, one may be ready to eliminate some assumptions, con-
sidered as not so relevant for some questions. This yields, on the level of supports, of course
only an approximation of the complete support. Nevertheless it is worthwhile to include this
possibility for the sake of generality.

It is evident, that Theorem 2.6 can be adapted to assumption-based information:

Q)Mo= (3,A P)andA” C A’ C A, P" C P' C P,then
l(A/7P/))l(A,I,PI,)

(¢ = HA"P, (3.7)
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(2) If p1 = (El, Al, Pl) and<p2 = (EQ, AQ, PQ), then
(g1 @ @) A1) = o) @ (pylArPINA Ty (3.8)

This is nothing new, it is only a way of writing adapted to assumption-based information
rather than to propositional information.

To assumption-based informatign= (X, A, P) corresponds a family of up-setsS,(h)
of quasi-supportsh € Ly, N = AU P. @S, can be considered as a mappingwof £y
into the family of up-subsets @f'4. This mapping? S, has the following basic properties
(proved in [16]):

(S1) QS,(T) = Ca,
(S2) QSp(h1 Ahe) = QS (hi) NQS,(ha).

These properties can also be viewed in a slightly different way. For a set of propositional
symbolsN let Liy denote the Lindenbaum algebra ©6f;, that is the Boolean algebra of
logically equivalent formulae of  (see for example Sikorski [30]). Denote the equivalence
class of a formulé& € £y by [h]. Then a quasi-support StS,, (k) can also be represented

by a uniquely determined elementbf 4, namely

aso ()= \/ [l (3.9)

a€QS,(h)

gs, becomes then a mapping from the Lindenbaum algebiasinto Li4. (S1) and (S2)
translate into the equivalent properties

(S1) gs,([T]) =[T],
(S2) gsu([h] A [h2]) = gse([M]) A gse([ha]).

Such a meet-homomorphism between Boolean algebras is calladbaation of support
[17].

Now, if o1 = (21, A1, P1) andps = (2o, Ag, P) are two assumption-based informa-
tions, thenp; @ o = (X7 U X9, A1 U As, Py U P). To it corresponds an allocation of
support fromLin, un, iNto Li,ua,. It can also be obtained from the allocations of support
relative to the two original assumption-based informations as follows:

qSiPl@QOQ([h]) = \/{qswl([hl]) A qSAPQ([hQ]) thy € £N17h2 € £N27h1 A ha ': h} (310)

foreveryh € Ly, un, (see [17] for a proof). This defines then a combination operation
the domain¥ of allocations of support, such th@d,, ¢, = ¢5,, @ ¢s,,. It has been shown
that ¥ becomes an idempotent, commutative semigroup under the opetatismefined by
the right-hand side of (3.10) (see [17]Furthermore, we define the label of an allocation of
supportgs from a Lindenbaum algebr&i y, N = AU P, to a Lindenbaum algebr&i 4 by
d(gs) = (A, P), such that, in particulati(gs,) = d(y).

If o = (%, A, P) is assumption-based informatiof, C A, P’ C P, then to the marginal-
ized assumption-based informati@h(A'!P') corresponds again an allocation of support from
Lin/, with N = A’ U P/, into Li 4. The following theorem is a generalization of Theo-
rem 3.3:

2Note that we have not proved that every allocation of support is induced by an assumption-based information.
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THEOREM3.4

If ¢ = (3, A4, P) is assumption-based informatiod, C A, P/ C P, andp!(A"P) =
(X, A’, P') the marginalized assumption-based information, them,ferCy,, N’ = A’ U
P,

gsgicaren ((h]) = \/{[a'] : &’ € O, [a'] < gsy ([h])}- (3.11)

Note that, if A" = A, thengs.ca.») ([h]) = gse([h]) for b € Laups. This is the special
case of Theorem 3.3.

(3.11) defines a marginalization operation in the domiof allocations of support, that
is

(A", P)

qse = qSguarp). (3.12)

The marginalization of allocations of support has been defined in this way in [17].

The association of an allocation of suppgst, to any assumption-based informatign
defines a mapping: from @ into ¥, m(¢) = ¢s,. This mapping is in view of (3.10) and
Theorem 3.4 domomorphismwith respect to combination and marginalization,

m(p1 ® p2) = mp1) B mpa), meHA ) = (m(p)) AP, (3.13)

Furthermore, the mapping maintains labels,

d(m(p)) = d(¢). (3.14)

Note that this homomorphism carries properties (1) and (2) of Theorem 2.6 over to alloca-
tions of support. Indeed,

(1) If ¢ is an assumption-based information witfy) = (A, P) and(A”, P") C (A, P’) C
(A, P), then by (2.8) and (3.13)
(m(w)l(A/7Pl))l(A”7P”) _ m((wl(A/7P/))l(AN7P//))7
m(p A7) = (m(p) P (3.15)
(2) If o1 andyp, are two assumption-based informations witly, ) = (4’, P’) andd(y2) =
(A”, P"), then by (2.9) and (3.13))

L(A",P") m((p1 @ s02)1(14’713/))7

= m(p1 @ (p2)
= m(p1) @ (m(p))H A FINATET - (3,16)

(m(p1) ® m(p2))
l(A/7P/)m(A//7P//)),

This important remark allows us to develop two different computational approaches to assumption-
based reasoning, both based on local computations in join trees as will be shown in the next
subsection.

3.3 Computational structure of assumption-based reasoning

Consider an assumption-based informatjpa= (X, A, P) and suppose there is a join tree
covering this propositional information such that with nédéthis tree the assumption-based
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Assumption-Based Allocation of
Information Support
m
¢ =09 > m(¢) = 0 m()
marginalization marginalization
\/ y
g 9P - > m(p* (AiPD) = m(g)’ (AiP)

FIGURE 3. The commutative diagram for computing marginalized allocation of support

informationy; = (X;, A;, P;) is associated and = @®,¢;. The corresponding allocations of
support aren(p) = m(®;p;) = ®im(v;). The problem is now to compute the marginals
m(p) AP of the allocation of support(y) for the nodes of the join tree.

As the diagram in Figure 3 illustrates, there are two ways to compute these marginals.
In the first approach, we compute in a first step the margjnéd: ) of the assumption-
based information by the methods of Section 2.2. In a second step the allocations of sup-
portm (A1) of these marginalized assumption-based information are then derived. By
(3.13) this equals the marginalized allocations of suppgip)* (4i-F).

The second approach consists in first computing the allocations of suppgr} relative
to the assumption-based informatipn Then, in the second step, these allocations of support
are combined and marginalized, that is

m(p) AP = (@m(p;)) AP (3.17)

is computed. This gives according to (3.13) the same result as the first approach, in other
words, the diagram in Figure 3 @@mmutative.

As (3.15) and (3.16) are valid for allocations of support, the combination and marginaliza-
tion of allocations of support can be similarly organized in the join tree as the combination
and the marginalization of assumption-based information. This is illustrated in Figure 4.

If a node: of the join tree, at a given moment of the propagation (in- or outwards) contains
assumption-based informatiqr) = (X, 4;, P;), then the message to a neighbour ngde
the assumption-based informati@@l(A"”P"’)ﬂ(Af’PJ). In the receiving nodg this message
will be combined with the assumption-based information already there,

4,0; @5021(14;713;)0(14‘;7?7{)- (3.18)
Similarly, in the computation with allocations of support, at the same moment, the hodes
of the join tree contain the associated allocations of suppé¢t;) of the assumption-based
information ¢, contained in the nodes in the first approach. The message sent
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Node i Node j

9=
(Z5.A,Pi)

¢+ (AiPi)N (A},P))

|
i

! i

! i
m| mi
|

' |

|

\/
m(g%)* (Ai,Pi)n (Aj,Pj)

@

FIGURE 4. Message passing on the join tree in the two formalisms

AL PN, ) (HALPONCS P

m(¢h = m(y; and the combination in the receiving node
j correspond also to the associated allocations of support

/l(AhPi)m(AJ?]DJ))

The details of the computations with allocations of support in this second approach are de-
scribed in [16].

In both approaches, there is the need to pass from assumption-based information
(3, A, P) to the corresponding allocation of supporty). In the first approach this is done
at the end, in the second one at the beginning. As noted in Section 3.1 this passage to the
allocation of support is essentially the problem underlying ATMS. Different methods for its
solution have been described in [18, 19]. It is not evident which one of the two approaches
above is computational more efficient. The general computational scheme discussed in this
paper for both propositional and assumption-based information systems is an instance of a
general theory of information systems. It displays the general issues of combination and
marginalization of information. This generic point of view permits to introduce new dis-
tributed architectures into classical techniques such as propositional logic.

The methods presented in this paper can be applied to different computational problems
related with propositional information. An important example is the problem of finding ar-
guments for hypotheses in the domain of assumption-based reasoning. Practical experimen-
tation and a comparison with other existing approaches will be necessary in the future.
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Appendix
A Proof of Theorems
A.1 Proof of Theorem 2.2

In all cases (1) to (4) of the procedws€x) C P impliesc(X’) C P — {p1}, s.t. P — {p1} is a label ofZ'.
Letz € {0,1}/"| andz the Boolean vectar with 1 = 1, z_ the Boolean vector witlt; = 0s.t.zy = p1,
z_ = ~p1,and eitherr =z orz = z_.
(1) In case (1) of the procedure condition (1) and (2) of the marginalization relation are trivially fulfilled.
(2) In case (2) clearh)E = ¥/ C . Now, if z = ¥/ thenzy = X, but thenz = h andz_ |= h (because
h € Lp_p,31), hencer |= hand thusy’ = h.
(3) In case (3) a similar argument to that in case (2) holds.
(4) T | p(&;, & ) for &, &5 € . This impliesY = X,
Letz = X'. Thenz = {p(&:,&;) : & € 24,8 € X_}. If . = 24, then clearlyx |= {¢; € ¥4}, There are
two possible cases:
If & — p1 are the clauses; wherep; is eliminated then, either
() z ={& —p1:& € X4} Butinthiscaser— |= {& € ¥y} andz_ = {§; € X_} and hence finally
z_ EX.
(i) otherwise there is ; € X1 s.t.x [= & — p1, but thenz |= p(&;,&;) V& € E_ impliesz = {¢; € _}.
Hencex = z4 = %.
Similarly, if z = z_ eithere = z_ = XS orzy = X.
Thus,z |= ¥’ implies alwaysz = S orz_ |= 3. Butin both cases andz_ = h € Lp_(,) if & |= h,
hencez |= h and therefore finally2’ = h. O

A.2 Proof of Theorem 2.3

We have
(1) X =¥ =%, henceX = X7,
(2) Suppose& = h € Ly C Lgr. ThusY |= h, henceX” = h.
This shows that(~", Q"), (X, P)) € M. O

A.3 Proof of Theorem 2.6

(1) follows from Theorem 2.3. (2) I is a set of symbols, then let(Q) denote an ordered sequence of these
elements. Furthermore for a $etof clauses, le&~7 (%) denote the marginal obtained fromby eliminating the
symbols ofQ in the sequence(Q). If X1 o denotes a subset of clausessbtontaining symbols of) andX_g a
subset of clauses af containing no symbols af, andX = X o U X _q, then clearly

2@ =97 us_q.
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Now, letp1 = (X1, P), p2 = (32, P). Thus we have
1 D2 =(X1UX2, PUQ)

and in order to marginalize this information & we have to remove the symbols@ — P. But 3; contains no
such symbols. Hence, it follows that

(¢1 @ ¢2)lP _ (21 U ZQ*G(Q*P)J)) )
On the other hand
PiFNQ = (E;a(QfPﬁQ)JgﬂQ) )
Note thatQ — PN Q = Q — P, hence
pr@ps 9 = (21 U ZQG(pr)vP) = (p1 B p2)*”

which proves the theorem. O

A.4 Proof of Theorem 2.8
Let
P = go(li) 6990(2“ DD 905?1
P2 = 901(-”
such thadd(y1) = H;—1, d(v2) = P; (Theorem 2.7). Also by Theorem 2.7 we have then
eHHi =11 @ 1.
It follows now from the joint-tree property (4; N Py(;y = P; N H;—; that
(1 @ 2) PP @ g = (31 ® o) PN Him1 @ gy

By Theorem 2.6 (1) and (2) we have

AH: N\ LPinH; 1
W @) P = (@ @) )
P;NH;_ 1PiNH; 1 PiNH;_ P;NH;_
= (0" @) = gt FinHi-1 gy L PinHi—1

Using the idempotency of the combination of propositional information and again Theorem 2.6 (2), it follows there-
fore

(1 ® o) PP @y = T gl PO g,
P;NH;_ .
= P g g = (g @ g) P

As P; C H;, we obtain from this result

) ) i N\ HPiNPs 4y i ) )
PHPiNPs) g %(- ) (wLm) e‘9%(_ ) = (1 ® 92) PiNPo) @ 4y

(1 ® Ya2)t i = (Wle,)lP"’ _iPi

This proves the theorem. |
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A.5 Proof of Theorem 2.10

Apply Theorem 2.8 to

o =(p1®V)) BL2® - B om
to obtain

gOllPi :So’lpiﬁps(i) @ng)' (A.l)
Note here that, according to the inward phazsg,) is not changed by the new informatigsri . Let nowT'(¢) be the
subtree of the join tree associated with nedad put

Y1 = @ @i, Y2 = @ 5

JET (i) JET(4)

such thatp = 1 ® ¥2, P; C d(¥1), Pi C Hpm = d(p) andw%P"' = go,Ei) (see (2.16)). We obtain then, using
Theorem 2.6 (2) and the idempotency of the combination of propositional information

PProel = (W ev) e = (1 @) N Im @yt

= ( %Pi @ (Y1 691!)2)) W (Y1 @ Pa)\ Fi = ol Pi,

and, similarly

LP; LPiNHm

el = (pael) @t = (pay)) @ pthi

) LP; P )
- (solpzee(<p€9so’1)) = (p@eh) " =gt
From this and (A.1) it follows then that

w/lPi _ Lp/lPi e [plPL' _ (p’lPiﬁPs(i) ® lpgi) ® (plpi

P;NP,; :
_ go/l i M .;(Z)EBSOLPI'

This proves the theorem. O

A.6 Proof of Theorem 2.12

Let X1 be the set of all clause&g , which can be obtained by selecting a forméla X and then choosing a literal
from each one of the conjunctions &f If a symbol appears in two conjunctions and it is selected in one of them,
then it will also be selected in the other one. We never choose a symbol and its negation.

This set of clauseX; is equivalent ta- because every disjunctighof conjunctions from is converted into a
conjunctive normal form (interpreted as a set of clauses) where subsumed clauses are eliminatédeltie set
of clauses obtained from; by deletingp; in clausal form and” the set of formulae obtained frok by deleting
p1 in disjunctive normal form. We will show that| and X"’ are equivalent, with which this theorem will be a
consequence of Theorem 2.2.

First, we are going to show that all the formulae3if) are a consequence BY’. If a clause¢ belongs ta2],
then we have two possibilities:

1. Clauset] was inX1, which means it does not contain nor ~ps. In this case it can be obtained by choosing
a literal from each one of the conjunctions of a formula in disjunctive normal fgren,>. None of the chosen
literals isp1 or ~p1. In this case it is immediate thg{ is a consequence gf P1 which is a formula belonging
to .

2. Clauset) was not inZ;. In this caseg] is the result of the resolution of two clauses fraia, £;” andé;,
containingp; and~p; respectively. Two situations are now possible:
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(a) ffr and¢&; come from the same formufac 2. We can express as

£ APV V(01 AYR)V (~P1 A1) VeV (~p1 AY) Y (Yrp1) VeV (3s),
wherey; 1, ..., 1s do not contairp; nor ~py. gf” and¢; will be expressed as
+ .
& ¢ p1Vigg1 V... Vis,
& 1 V...V Vepi Vg V.. Vg,
wherety1,...,ts are literals frompy 1, ..., s respectively aney, ..., rg, 41, ..., s are literals from

Y1y Yk, Yiga, - -, Ps respectively.
The resolution oEfr and¢; will be expressed as

tge1 V.. . ViEsVri V... VrgVrig1 V... Vrg
and it is immediately clear that this formula is a consequence of
ETPL s VL VY Ve Ve VY VY VY s,
(b) gj comes from a formulg € ¥ and{; from a different formulap € ¥. Assume that,

£ MAY)V.. V(0L AYE)V Wrt1) V.V (),

¢t (vPrAC) V.V (~PLAG) V (Cs1) VLV (Ca),
wherey 1, ..., do not containp; and(s+1, - - ., ¢4 do not contain-p; . Furthermore,
+ .
& ¢ p1iVigpi V...V,
& ¢ ~p1Vrsp1V...Vrg,
wherety1,...,t; are literals from conjunctiong, 1, ...,; respectively andsy1,..
from {s+1,...,{q, all these literals being different fropy and~p; .

The resolution o€ and¢; is:
thk1 V...V Vrsp1 V... Vrg

and this formula is a consequence of formula

p1(&0) = ((Wrr) V. V() V(Cst1) V..V ()P,

which belongs ta=".

.,Tq are literals

Inversely, every formula itC” is a consequence &f . Let£ € ", then this formula does not contgin and it is
a consequence af. As X} generates all the logical consequence& ¢fX is equivalent 1) not containingp:,

then¢ can be deduced from, such that finallyz] = .

A.7 Proof of Theorem 3.2

This theorem can be proved by transforming the definition of quasi-supports as follows:

QSp(h) = {ae€Cs: Z,al=h}
— {aGCA: Z,Nh):»va}.

Then, according to (C2) and knowing that are clauses i, we can replacéX, ~h) by =/

{a€Cy: ¥ E ~a}
{a€Cy: al=~T}

QS,(h)

Therefore X andQ S, (h) are logically equivalent.

O
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A.8 Proof of Theorem 3.3

Leto = (3,A,P), ¢ = (X,A,Q). First, leta € QS,(h) st. a,% = horE = hV ~a. But, then
hV ~a€ Lavgandy EhV ~aorae,X Ehstac QS (h).

Inversely, leta € QS,/(h)s.t.a, X' Ehor¥ = hV ~a. Buty = ¥ implies® = hV ~aora,X = h
hencea € QS (h). O

A.9 Proof of Theorem 3.4
Letyp = (3, 4, P) andypt (A P") = (37, 4’, P') and
a € QS iar,pry(h) = {a' €Cyqr:d, Y = h}
for someh € L/ pr. Now, o/, 3’ = his equivalent toX! = hV ~a’ € Lypr. AsE E ¥/ we have

Y EhV~ad ord,T = h. This shows that' € QS (h) or [a'] < gse([h])-
On the other hand, if

[@]<gsp(B)= \/ [a, d ecCu
a€QSy(h)

for someh € L 4/ pr, then this inequality implies

d = \/ a

a€QS,(h)

and therefore,

= \/ a,X E h,

a€QS,(h)

which shows that’ € QS (h). But then this implies = h V ~a’ € L 4y ps Which in turn impliesY’ =
hV ~a’, henced’, ¥’ |= h and thus finally

a € QSwl(A/,p/) (h).
This proves that for everig € £ o/ p/
QS (ar,pry(h) = {a’ € Car : [a'] < gse([A])}

and this proves the theorem. O
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