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Abstract

To introduce agent-based technologies in real-world systems, one needs to acknowledge that the

agents often have limited access to resources. They have to seek after resource objectives and compete

for those resources.

We introduce a class of resource games where resources and preferences are specified with the

language of a resource-sensitive logic. The agents are endowed with a bag of resources and try to

achieve a resource objective. For each agent, an action consists in making available a part of their

endowed resources. All the resources made available can be used towards the agents’ objectives.

We study three decision problems, the first of which is deciding whether an action profile is a Nash

equilibrium: when all the agents have chosen an action, it is a Nash Equilibrium if no agent has an

incentive to change their action unilaterally.

When dealing with resources, interesting questions arise as to whether some equilibria can be elim-

inated or constructed by a central authority by redistributing the available resources among the agents.

In our economies, division of property in divorce law exemplifies how a central authority can redis-

tribute the resources of individuals, and why they would desire to do so. We thus study two related

decision problems:

• rational elimination: given an action profile’s outcome, can the endowed resources be redis-

tributed so that it is not the outcome of a Nash equilibrium.

• rational construction: given an action profile’s outcome, can the endowed resources be redis-

tributed so that it is the outcome of a Nash equilibrium.

Among other results, we prove that all three problems are PSPACE-complete when the resources

are described in the very expressive language of the propositional multiplicative and additive Linear

Logic.

We also identify a new modest fragment of Linear Logic that we call MULT, suitable to represent

multisets and reason about the inclusion and equality of bags of resources. We show that when the

resources are described in MULT, the problem of deciding whether a profile is a Nash equilibrium is in

PTIME.

1 Introduction

Agents, or players, are entities capable of action and trying to reach their goals. In the physical or cyber

world, these agents have limited access to resources. They have to seek after resource objectives and

compete for those resources.
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This paper makes use of resource-sensitive logics, Linear Logic [16] specifically, to model and solve

problems of rational agents interacting in a resource-aware environment. We use Linear Logic to define

and reason about a new class of non-cooperative games [30]. Every Linear Logic formula represents

a resource. In these games, each agent is endowed with a bag of resources, and has an objective to

achieve by transforming the resources made available from the agents’ endowed resources. Can we

decide whether the resources made available by the agents constitute a Nash equilibrium, that is, whether

it is locally optimal under individual strategic considerations? If a local optimal is not desirable, could an

arbitrator redistribute the resources in the endowments among the agent so that is not a Nash equilibrium

anymore, thus eliminating it? To the contrary, if an outcome is desirable, could an arbitrator redistribute

the resources so that is becomes the outcome of a Nash equilibrium, thus constructing it? In this paper

we are going to address the computational complexity of the decision problems corresponding to these

questions.

As we study the computational complexity of answering these questions about resource-sensitive

game theoretical interactions, we will be particularly interested in a few varying parameters:

• What kind of preferences the agents have?

– Do they only care about reaching their resource objectives? (dichotomous)

– Do they also care about how much resource the consume? (parsimonious)

• What is the exact language for talking about resources, and what is the complexity of reasoning

about resources in this language?

• Which resource-sensitive logic exactly is used to reason about the resources?

– Can resources be disposed of freely during reasoning? (affine reasoning)

– Must all resources be accounted for during reasoning? (linear reasoning)

This paper is putting together:

1. Linear Logic, which enables the specification of resources and the reasoning about them.

2. Game theory and Nash equilibria, which give us a guideline to characterize normatively good

outcome in games whose actions and preferences are defined in terms of the resources expressed

in Linear Logic.

3. Computational complexity, which helps us towards an algorithmic treatment of our resource

games. It is intimately affected by the precise Linear Logic used to represent the resources.

The models and the algorithms presented here can be used as analytical tools at the disposition of

actors and policy makers, for instance in interconnected economies [2, 7]. They can serve at gauging the

possible strategic behaviours of the actors and of their competitors, and at identifying possible issues of

resource scarcity in a commons.

Our games are reminiscent of notable models existing in the literature. They share the logic-based

approach of Boolean games [19, 4]. In Boolean games, each player controls a set of Boolean variables

and produces truth values which can be used without restriction towards the Boolean goals. As such,

resources proper are absent from Boolean games. Our games also share the resource-sensitiveness of

congestion games [39]. In congestion games, the players choose a set of resources (e.g., edges to travel in

a graph), and their utility depends on the cost (e.g., delays) of using the shared resources, which depends

on the number of players travelling them. Despite some apparent similarities, they are rather superficial.

One thing should be obvious: the resources in congestion games are limited to basic resources and lack a

rich specification language of resources like the one of resource-sensitive logics.

Using resource-sensitive logic languages to represent goods that are transformed and exchanged be-

tween agents owes to previous work, e.g., [17, 33, 34], in multiagent systems and computational social

choice [12, 6].

A short version of this paper appeared as [42].
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Logic: exploiting resource-sensitive logics. In this paper, we study games of resources that are aimed

at representing the strategic interactions between rational agents where some combinations of resources

replace the abstract notions of action and preferences. In these games, players are endowed with some

resources and have preferences upon some resources to be available after the game is played. Players’

actions also consist in making available some of the resources they are endowed with.

We propose a class of games of resources that exploits the formalisms and reasoning methods com-

ing from the literature in knowledge representation and computational logics, namely resource-sensitive

logics: e.g., Linear Logic, Separation Logic, BI Logic [16, 38, 29]. The languages of these logics al-

low a fine-grained description of resources, processes, and their harmonious combinations. In computer

science, they have been quite successful at modeling systems for multi-party access and modification of

shared structures, by allocation and deallocation of resources. The resources used in this paper are not

based on a trivial and naı̈ve set theory. Instead, they are based on rich logical languages, supported by

elaborate reasoning features.

A resource is represented by one formula of a resource-sensitive logic LOG. More specifically, we

assume here that LOG is some propositional variant of Linear Logic. We provide an informal presentation

of the resource interpretation of Linear Logic in Section 2 so that the conceptual aspects of the paper can

be grasped without a great understanding of Linear Logic.

Game theory: individual resource games. We will consider individual resource games defined for-

mally in Section 3. Each player i of a game will be endowed with a multiset of resources ǫi. An action for

Player i will be to contribute a subset of ǫi. An (action) profile specifies a contribution for every player.

An outcome will be a context consisting of a multiset of resources resulting from a profile. Then, each

player i has a goal γi, which is a resource, represented by one formula of LOG. An outcome X satisfies

the goal of Player i if there is a proof of X ⊢ γi in the logic LOG. This will mean that the resources in X
can be consumed so as to produce γi.

1

Intuitively, we can imagine a game taking place around a table. Each player has an objective

to create some resource. Each player has also a bag of resources. To play, each player

chooses to take some resources (possibly none) from their respective bags and put them on

the table in front of them. The outcome is the collection of resources on the table after every

player has chosen. A player is satisfied if we can transform the resources on the table so as

to produce her goal. It is a Nash equilibrium when no player has an incentive to take back

any resources she put on the table, or to add more resources from her bag.

What should be an incentive to take back or to add resources? We will study these games of resources

with two kinds of preferences. We will first consider, in Section 4, preferences over outcomes that are

dichotomous. We can thus initially say that Player i prefers an outcome X over an outcome Y iff X ⊢ γi
and Y 6⊢ γi. Some formal results will lead us to define in Section 5, parsimonious preferences, a finer

notion of preference where i may be qualitatively indifferent between X and Y , but still prefer X over Y
because i’s contribution is strictly less in X than in Y .

Algorithms and complexity: solving problems. We will study three decision problems defined also

in Section 3, the first of which is deciding whether an action profile is a Nash equilibrium. A Nash

equilibrium is, under strategic considerations, a local optimal. A situation in which every agent has

picked an action is a Nash equilibrium when no agent has an incentive to change their mind. A variant of

this example, with one additional player, will be formalized later in Section 6.3.

1Indeed, X ⊢ γi indicates that the resources X are sufficient to produce γi, and X ⊢ γj indicates that the resources X are

sufficient to produce γj . It may be however that the resources X are not sufficient to produce γi and γj simultaneously.
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Example 1. In a local telecom industry, anti-trust laws forbid a priori cooperation, and regulations

oblige the companies to accept traffic from each other. (These telecom companies operate in an intercon-

nected economy [2, 7].) Consider two competing telecommunication companies. Company A manages

a 3G network of comprised capacity 3 (bundled as capacities 1, and 2). Company B manages a 4G

network of capacity 3 (bundled as capacities 1, and 2). Company A need to offer their customers 3G at

capacity 2 and 4G at capacity 1. Company B need to offer their customers 3G at capacity 2 and 4G at

capacity 2.

Activating a network at some capacity has a cost. Companies can privately activate and deactivate

networks on the fly. What are the possible equilibria?

There are two Nash equilibria. First, there is the one where Company A provides a bundle of two

3G antennas and Company B provides a bundle of two 4G antennas. Both companies can achieve their

goal, and none has an incentive to reduce their contribution as they would not satisfy their goal anymore.

Second, there is the one where both Company A and Company B contribute nothing. None of them has

an incentive to change their contribution since they would not be able to achieve their goal on their own.

When dealing with resources, interesting questions arise as to whether some equilibria can be elim-

inated or constructed by a central authority by redistributing the available resources among the play-

ers [18]. In the tradition of social mechanism design, redistribution schemes can be used by a central au-

thority to enforce some behavior, either by disincentivizing a behavior or incentivizing a behavior. Formal

frameworks dealing with redistribution schemes and economic policies have been studied [11, 25, 28].

Some profiles that are not equilibria can have desirable outcomes. Some equilibria can have outcomes

that are undesirable. Desirability must here be understood from the point of view of a system designer. A

system designer can redistribute the resources of the players in a game so as to steer the interaction to or

away from a particular outcome.

A redistribution consists in reallocating the resources endowed to the players. To every

redistribution corresponds a new game where the players maintain their objectives, but their

possible actions have changed. If Gǫ is the original game, and ǫ′ is a redistribution of the

endowment function ǫ, then Gǫ′ is a new game.

We will investigate how resource distribution schemes can contribute to eliminate undesirable game equi-

libria, and construct desirable game equilibria. They are a form of redistribution of wealth, which consists

in wealth being transferred from some individuals to others. In our economies, it exists in the form of

social mechanisms such as taxation, public services, and confiscation. Division of property and division

of debt in divorce law are good imagery of what a designer can do in the mechanisms we propose in this

paper. This example will be formalized later in Section 6.2.

Example 2. Ann and Bernard, a couple of bakers, have filed for divorce. Ann is officially the tenant of

the business premises of the bakery. Bernard is the owner of the baking equipment. He also owns enough

flour to make bread for two years. Ann would like to be able to keep the means of production, and being

able to make bread for one year. Bernard wants to keep the shop. In this context, if Ann and Bernard are

parsimonious, the outcome is very likely to be the one where Ann does not use the shop and Bernard does

not use the breadmaking equipment and the flour. It is the only equilibrium. Neither of them satisfy their

objective.

However, an arbitrator can redistribute their endowments. He can give the equipment and half the

flour to Ann, and give the shop to Bernard. Doing so, the outcome where Ann and Bernard do not use any

of their endowment can be eliminated. Moreover, a new outcome equilibrium can be constructed where

both satisfy their objectives.

We will thus look at two decision problems related to Nash equilibria: rational elimination and ratio-

nal construction of Nash equilibria.
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In a game Gǫ, a profile can be rationally eliminated from a game if there exists a redistribu-

tion ǫ′ of ǫ such that there is no profile with the same outcome which is a Nash equilibrium in

Gǫ′ . A profile can be rationally constructed if there exists a redistribution ǫ′ such that there

is a profile in Gǫ′ with the same outcome, which a Nash equilibrium.

Outline. We make a brief presentation of Linear Logic in Section 2. We explain how the language can

be used to capture a variety of resources which we will put to use in the remainder of the paper. We present

individual resource games formally in Section 3. We also introduce precisely the decision problems

NASH EQUILIBRIUM, RATIONAL ELIMINATION, and RATIONAL CONSTRUCTION. We will use

and study two kinds of preferences over action profiles. We define dichotomous preferences in Section 4.

We study all three decision problems. We propose general algorithms and general complexity results

depending on the complexity of sequent provability in LOG, and on whether LOG admits the weakening

rule or not (that is, whether LOG is linear or affine). We do the same for parsimonious preferences in

Section 5. We also illustrate the decision problems with a few small examples. We present more thorough

examples in Section 6. In particular, we formalize Example 2 in Section 6.2, and a variant Example 1 in

Section 6.3, and we illustrate the findings of this paper on them. Some concluding remarks are offered in

Section 7.

We provide a technical appendix. Specifically, Appendix A presents the sequent rules of the biggest

fragment of Linear Logic used in the paper. Appendix B briefly summarizes some elements of computa-

tional complexity that can be useful to the reader.

2 Resources and Linear Logic

One contribution of this paper is to show that resource-sensitive logics are a useful tool for studying the

formal aspects of resources in game theoretical settings. Another contribution is to demonstrate that it is

possible to obtain rather general results for a large class of games of resources depending on the formal

properties of the logic LOG we start with. This offers the opportunity to tailor a game to the needs of a

certain application without changing the framework. We can indeed choose any sensible fragment of a

resource-sensitive logic.

We will work with some fragments of Linear Logic [16]. The conceptual aspects of the paper can

be grasped without a great understanding of Linear Logic, but the technical results will draw upon the

proof theory and its rules presented in the Appendix A. A basic understanding of logic is thus necessary

to follow the proofs in general, and some intuitions about the resource interpretation of Linear Logic can

hopefully contribute to make reading through the remainder of this paper less dull.

2.1 Formulas and sequents

A good introduction to Linear Logic and its variants is [41]. We will use logics defined on the language

of propositional Linear Logic. The classical tautology splits into the additive ⊤ and the multiplicative 1.

The classical falsum splits into the additive 0 and the multiplicative ⊥. The additive conjunction and

disjunction are respectively & and ⊕. The multiplicative conjunction and disjunction are respectively `

and ⊗. The linear implication is A ⊸ B and combines with the multiplicative conjunction such that

(A⊗ (A ⊸ B)) ⊸ B is a valid principle. The linear negation is ∼A.

MLL is the multiplicative fragment, whose language is formalized by the grammarA ::= 1|⊥|p| ∼A|
A ` A|A ⊗ A|A ⊸ A, where p is an atomic formula. It only contains the multiplicative connectives.

MALL is the fragment with both additive and multiplicative operators A ::= ⊤|0|1|⊥|p| ∼A|A`A|A⊗
A|A ⊸ A|A&A|A⊕A.
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∼∼A ⊣⊢ A

∼(A&B) ⊣⊢ (∼A)⊕ (∼B)

A`B ⊣⊢ (∼A) ⊸ B

∼(A⊗B) ⊣⊢ (∼A)` (∼B)

A`⊥ ⊣⊢ A

A⊗ 1 ⊣⊢ A

A&⊤ ⊣⊢ A

A⊕ 0 ⊣⊢ A

0 ⊣⊢ ∼⊤

⊥ ⊣⊢ ∼ 1

Table 1: Remarkable relationship between the Linear Logic connectives. The symbol ⊣⊢ indicates

provability in both directions.

We now introduce some terminology and notations. A sequent is a statement Γ ⊢ ∆ where Γ and

∆ are finite multisets of occurrences of formulas of LOG. Often, we can conveniently write a multiset

{A1, . . . , An} as the list of formulas A1, . . . , An. Also, we use the notation Γ∗ =
⊗

A∈ΓA and ∅∗ = 1.

An intuitionistic sequent is a sequent Γ ⊢ A with only one formula to the right. Sequent provability

will play an important part in the technical work of the paper. A sequent Γ ⊢ ∆ is provable in LOG

if there exists a linear proof using the rules of the logic LOG. Intuitively, Γ ⊢ ∆ being provable means

that the resources in Γ can be transformed into either of the resources in ∆. If a sequent Γ ⊢ ∆ is not

provable, we can write Γ 6⊢ ∆, although we will also often simply write “not Γ ⊢ ∆”. Section 2.4

summarizes the computational complexity characterizations of a few fragments of Linear Logic in terms

sequent provability.

In the individual resource games introduced in this paper, the action of a player i consists in making

available a multiset Ci of formulas/resources. The outcome of an action is the multiset union of all the

individual actions: Γ =
⊎

iCi.
2 The goal of a player is a formula/resource γ. To decide whether the pro-

file with outcome Γ satisfies the goal γ of a player, we will evaluate the provability of the (intuitionistic)

sequent Γ ⊢ γ.

The logic captured by all the rules in the Appendix A is Affine MALL.

A rule that is not part of the calculus is the structural rule of contraction. One rule of contraction (left

contraction) says that if something can be proved with two occurrences of A, then it can be proved with

only one occurrence. Symbolically,
Γ, A,A ⊢ ∆

Γ, A ⊢ ∆
.

This is prohibited in every resource-sensitive logic. Integrating it into Linear Logic, one consequence

would be that A ⊢ A ⊗ A. If we interpret formulas as resources—as we do—contraction would be a

license to duplicate resources at will. (See [37] for a detailed account of logics without contraction.)

We must concede that some of the connectives of MLL and MALL do not have an intuitive interpre-

tation in terms of resources, in and of themselves. This is the case of the multiplicative and the additive

falsums (⊥, 0), and of the somehow infamous multiplicative disjunction `. Fortunately, we do not need

them to enjoy the full expressivity of Linear Logic. To see that, Table 1 shows how the connectives

interact. From it, it is clear that we can as well make without some language redundancy. The resource-

2We use
⊎

for the multiset union, and
⋃

for the set union.
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interpretable language of MLL is

A ::= 1 | p | ∼A | A⊗A | A ⊸ A ,

and the resource-interpretable language of MALL is

A ::= ⊤ | 1 | p | ∼A | A⊗A | A ⊸ A | A&A | A⊕A .

It suffices to see the other connectives as definitions, following the equivalences of Table 1. We define

⊥ = ∼ 1, 0 = ∼⊤, and A`B = (∼A) ⊸ B.

2.2 Resources as propositions

A resource captured by a proposition of Linear Logic, can be atomic like one mole of hydrogen H or one

mole of oxygen O. It can be a simultaneous combination of resources, e.g., O ⊗ O being two moles of

oxygen. A resource can be a process transforming resources, e.g., H2O⊗ H2O ⊸ H2 ⊗ H2 ⊗O2 would

be the well known chemical reaction of electrolysis. It consumes two moles of water to produce two

moles of dihydrogen and one mole of dioxygen. Working harmoniously with resources and resource

transformation processes with this meticulous control over their combination is made possible using

resource-sensitive logics. In a game where a player is endowed with 2q moles of water and a player

is endowed with q processes of electrolysis, it is possible to consume these resources and produce 2q
moles of hydrogen gas and q of oxygen gas. But not more!

In Section 6.1, we will illustrate our games with an example using chemical reactions. But for the

time being, we explain in more details how the refined operators of Linear Logic can be used to formalize

and grasp a variety of resources. Table 2 reports possible readings of the connectives.

A⊗B A and B simultaneously

A&B a deterministic choice between A and B; not both

A⊕B A or B non-deterministically; not both

A ⊸ B A is sufficient to produce B (losing A in the process)

1 vacuous resource

⊤ some resource

Table 2: Possible resource interpretations of formulas.

Now, whether the occurrence of a resource indicates a consumption or a production of the resources

depends on where a formula appears in the sequent. The sequent of Linear Logic

A ⊢ B

can be read as

“if you give A you can receive B” .

Hence, as it should be expected, we give the resources at the left of the sequent, and receive the resources

at the right of the sequent. Table 3 reports possible readings of the sequents. The linear negation allows

one to switch the give/receive mode. The sequent A ⊢ ∼B represents “give A and B, and receive

nothing”. The sequent A,∼B ⊢ ⊥ represents “give A and receive B”.

Example 3. A few items can be obtained from vending machine in exchange of money. For instance,

giving $1 you can choose to receive a chocolate bar or a soft-drink. This is captured by

$1 ⊢ chocobar& drink .

7



Γ ⊢ A⊗B receive A and B simultaneously

Γ ⊢ A&B choose whether to receive A or B; you can’t receive both

Γ ⊢ A⊕B receive A or B; you don’t choose; you won’t receive both

Γ ⊢ A ⊸ B receive a resource that can be used in such a way that, if you give A, you

receive B (losing A in the process)

A⊗B ⊢ ∆ give A and B simultaneously

A&B ⊢ ∆ choose whether to give A or B; you don’t give both

A⊕B ⊢ ∆ give A or B; you don’t choose; you don’t give both

A ⊸ B ⊢ ∆ give a resource that can be used in such a way that, if you give A, you

receive B (losing A in the process)

Table 3: Possible resource interpretations of sequents.

Also, giving $0.8 you can receive 2 packs of gum. This is captured by:

$0.8 ⊢ gum⊗ gum .

In the previous example, the formula chocobar&drink denotes a deliberative choice between chocobar

and drink. One and the other can be obtained from $1, but not both. This is significantly different from

$1 ⊢ chocobar ⊕ drink which denotes something more akin to the classical disjunction: chocobar or

drink can be obtained from $1. But for all we know, it might be impossible to actually get one or to get

the other, and we don’t get to decide.

Example 4. We can represent a simple act of gambling. The sequent

$1 ⊢ ($1⊗ $1)⊕ 1

captures the fact that you can give $1 to receive $2 or nothing (the vacuous resource); but you don’t

choose what you get.

The next example uses most of the resource-interpretable connectives.

Example 5. We can capture the fact that $17 get you a menu:

$17 ⊢ menu .

The menu consists of a main dish, a side dish, and a dessert:

menu ⊢ dish⊗ side⊗ dessert .

As main dish, you can choose between fish and meat:

dish ⊢ fish&meat .

The side dish depends on the season; you don’t choose; it is either aubergine, or parsnip with leek, or

asparagus:

side ⊢ aubergine⊕ (parsnip⊗ leek)⊕ asparagus .

Finally, as dessert, you choose between the strudel and the chocolate tart. Moreover, you choose whether

to have ice cream for $1 extra, or to have no extra (the vacuous resource).

dessert ⊢ (strudel& chocotart)⊗ (($1 ⊸ icecream) & 1) .

8



We have not illustrated the additive unit ⊤ yet. The next example hints at the upcoming formalization

of Example 2 in Section 6.2.

Example 6. We can formalize the function of the whole baking equipment (mixer, oven, etc) as the

resource transformation process flour ⊸ bread. That is, the equipment transforms flour into bread.

(Arguably ignoring that we would also need water and electricity. For simplicity, water and electricity

could here be considered resources that are provably equivalent to the vacuous resource 1.) The sequent

flour, flour, flour ⊸ bread ⊢ bread⊗⊤

indicates that with two ‘tokens’ of flour and the breakmaking equipment, one can make bread, and some

resources will remain in excess, viz., flour.

The additive unit ⊤ has some connection with the relationship between linear and affine reasoning

that we now discuss briefly.

2.3 Linear vs. affine reasoning and preferences

Weakening (rules (W ) in the Appendix A) in the logic LOG can play a crucial role in the satisfaction

of the goals of the players. It will also have striking consequences for the algorithmic solutions of the

decision problems that we study in this paper.

In the context of resource-sensitive logic, one rule of weakening (left weakening) says that if some-

thing can be obtained from a set of resources then it can also be obtained from more resources. Symboli-

cally,
Γ ⊢ ∆

Γ, A ⊢ ∆

Weakening gives a monotonic flavor to the process of deduction in the logic. Following the terminology

in Linear Logic, a logic LOG admitting weakening will be referred to as affine and a logic LOG without

weakening will just be referred to as linear.

Despite the fact the Affine Logic admits more inference rules than Linear Logic, the unit ⊤ allows

one to simulate the reasoning in Affine Logic with the provability of Linear Logic. Indeed, the sequent

Γ ⊢ A is provable in a logic LOG with the rule of weakening iff the sequent Γ ⊢ A ⊗ ⊤ is provable the

logic LOG without using weakening.

In the affine case, A,B ⊢ A is a provable sequent. If a player has a goal γ = A, then she will find her

objective satisfied with an outcome {A,B}. In the linear case, we have in general A,B 6⊢ A (unless B
is a vacuous resource equivalent to 1). A player with a goal γ = A will not be satisfied with an outcome

{A,B} as she wants A and nothing more. If she is indeed indifferent to leftover resources, her goal can

be expressed as γ = A⊗⊤, when LOG is linear.

Affine logic should be used when extra resources can be disposed of freely. That is, when we can

assume that a player satisfied with an outcome would be satisfied with a more sizeable outcome. As we

will see in Section 5, this does not prevent players to behave more parsimoniously when they can.

2.4 Sequent provability and some complexity characterizations

Given a sequent in a fragment LOG of Linear Logic, the problem of sequent provability (or provability

for short) asks whether the sequent is provable from the sequent rules for LOG. When convenient, we

write “LOG is in C” when the problem of sequent provability in the logic LOG is in the complexity class

C.

Before moving to the technical part of this paper, we quickly summarize the complexity of sequent

provability in some fragments and variants of Linear Logic that could be used as the LOG parameter in
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our analysis resource games.3 The results of this paper will be applicable to every fragment mentioned

here. MALL is PSPACE-complete; MLL is NP-complete; Affine MLL is NP-complete; Affine MALL

is PSPACE-complete; Intuitionistic MALL is PSPACE-complete; Intuitionistic MLL is NP-complete.

Remarkably, and unlike classical logic, these fragments of Linear Logic behave well computationally

also in the first-order case. First-Order MLL is NP-complete and First-Order MALL is NEXPTIME-

complete. See [26, 20].

We will also consider the weaker fragment that we call MULT:

A ::= 1 | p | A⊗A .

Proposition 7. Sequent provability in Intuitionistic Affine and Intuitionistic Linear MULT is in PTIME.

Proof. Linear MULT is captured by the rules (ax), (cut), (E), (⊗R), (⊗L), (1L), and (1R). Affine MULT

also requires (W ). To check whether the Intuitionistic sequent Γ ⊢ A is provable, it suffices to check

whether ♭•(Γ) ⊇ ♭(A) in the case of Affine MULT or ♭•(Γ) = ♭(A) in the case of Linear MULT, where

the flattening functions ♭ and ♭• are defined as follows:

• ♭(1) = ∅
• ♭(p) = {p}
• ♭(A⊗B) = ♭(A) ⊎ ♭(B)
• ♭•(∅) = ∅
• ♭•({A} ⊎∆) = ♭(A) ⊎ ♭•(∆)

Both multiset inclusion and multiset equality can be performed in linear time in the number of elements

in the sets.

3 Individual resource games and decision problems

We formally define our models of individual resource games.4

Definition 8. An individual resource game (IRG) is a tuple G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) where:

• N = {1, . . . , n} is a finite set of players;

• γi is a formula of LOG (i’s goal, or objective);

• ǫi is a finite multiset of formulas of LOG (i’s endowment).

Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn), we define: the set of possible actions of i as the set of mul-

tisets chi(G) = {C | C ⊆ ǫi}, and the set of profiles in G as ch(G) =
∏

i∈N chi(G). When

P = (C1, . . . , Ck) ∈ ch(G) and 1 ≤ i ≤ k, then P−i = (C1, . . . , Ci−1, Ci+1, . . . , Ck). That is,

P−i denotes P without player i’s contribution. The outcome of a profile P = (C1, . . . , Cn) is given by

the multiset of resources out(P ) =
⊎

1≤i≤n Ci.

We will define “i strongly prefers P over P ′” in due time, reflecting dichotomous preferences first

(Section 4) and parsimonious preferences second (Section 5).

Definition 9. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn). A profile P ∈ ch(G) is a Nash equilibrium iff for all

i ∈ N and for all Ci ∈ chi(G), we have that i does not strongly prefer (P−i, Ci) over P .

Let us note NE(G) the set of Nash equilibria in ch(G).

A basic decision problem is the one of determining whether a choice profile is a Nash equilibrium.

3See Appendix B for some elements of complexity that will be useful in the proofs in this paper.
4Individual resource games were called ideal resource games in [42].
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NASH EQUILIBRIUM (NE)

(in) An individual resource game G and P ∈ ch(G).

(out) P ∈ NE(G)?

Some profiles that are not equilibria can have desirable outcomes. Some equilibria can have outcomes

that are undesirable. Hence, it is interesting to investigate how resource distribution schemes influence

how undesirable game equilibria can be eliminated and how desirable game equilibria can be constructed.

In the tradition of social mechanism design, redistribution schemes can be used by a central authority

to enforce some behavior, either by disincentivizing a behavior or incentivizing a behavior.

We will study redistribution schemes in individual resource games. Let ǫ be an endowment function

such that for every player i we have ǫ(i) = ǫi, a multiset of formulas of LOG. A redistribution scheme of

ǫ is an endowment function ǫ′ such that

⊎

i∈N

ǫ(i) =
⊎

i∈N

ǫ′(i) .

We note redis(ǫ) the set of redistributions of the endowment function ǫ.
Given the individual resource game Gǫ = (N, γ1, . . . , γn, ǫ(1), . . . , ǫ(n)) we can apply a redistribu-

tion scheme where we modify the endowment function ǫ into ǫ′. We thus obtain the individual resource

game Gǫ′ = (N, γ1, . . . , γn, ǫ
′(1), . . . , ǫ′(n)).

We will investigate two decision problems inspired by [18], which are related to resource redistri-

butions. We will look at whether the outcome of a resource game can be rationally eliminated. That is

whether there is a resource redistribution such that no Nash equilibrium of the new resource game yields

this outcome.

RATIONAL ELIMINATION (RE)

(in) An individual resource game Gǫ and P ∈ ch(Gǫ).

(out) Is there a redistribution ǫ′ of ǫ such that for all P ′ ∈ ch(Gǫ′), if out(P ′) = out(P ) then P ′ 6∈
NE(Gǫ′)?

Conversely, we will look at whether the outcome of a resource game can be rationally constructed.

That is whether there is a resource redistribution such that the outcome is the outcome of some Nash

equilibrium in the new resource game.

RATIONAL CONSTRUCTION (RC)

(in) An individual resource game Gǫ and P ∈ ch(Gǫ).

(out) Is there a redistribution ǫ′ of ǫ such that there is P ′ ∈ ch(Gǫ′) where out(P ′) = out(P ) and

P ′ ∈ NE(Gǫ′)?

Note that being a game equilibrium is without ambiguity a property of profile. However, after a

redistribution of resources in an individual resource game, the space of actions and the space of profiles

change. Thus, elimination and construction are more about the outcomes of profiles. Section 4.2 and

Section 5.1 will illustrate these decision problems in due time.
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4 Dichotomous preferences

Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game. Player i, whose goal is γi, realizes

her objectives in a profile P when out(P ) ⊢ γi. That is, the resources in out(P ) can be transformed into

a shareable resource γi. For P ∈ ch(G) and Q ∈ ch(G), we say that player i ∈ N (dichotomously)

strongly prefers P over Q (noted Q ≺i P ) iff out(P ) ⊢ γi and not out(Q) ⊢ γi.

Proposition 10. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game, two profiles P ∈
ch(G) and Q ∈ ch(G), and a player i ∈ N . The problem of deciding whether Q ≺i P is: in PTIME

when provability in LOG is in PTIME. It is NP ∧ coNP = BH2-complete when provability in LOG is

NP-complete. It is PSPACE-complete when provability in LOG is PSPACE-complete.

Proof. The language corresponding to the problem is L = {(P,Q) | Q ≺i P} = L1 ∩ L2 with L1 =
{(P,Q) | out(P ) ⊢ γi}, and L2 = {(P,Q) | not out(Q) ⊢ γi}. In particular, when the problem of

provability in LOG is in NP, we clearly have that L1 is a NP language and L2 is a coNP language.

For hardness, we consider a newly fabricated decision problem that we call PROV-NONPROV. The

problem PROV-NONPROV takes in input two sequents of LOG Γ1 ⊢ ∆1 and Γ2 ⊢ ∆2, and outputs

true iff Γ1 ⊢ ∆1 is provable and Γ2 ⊢ ∆2 is not provable. It is easy to see that if LOG is NP-complete,

then PROV-NONPROV is BH2-complete, and if LOG is PSPACE-complete, then PROV-NONPROV

is PSPACE-complete.

We propose a reduction of PROV-NONPROV into the problem of deciding whether in an individual

resource game, a profile is strongly preferred to another profile by a player.

Let Γ1 ⊢ ∆1 and Γ2 ⊢ ∆2 be two sequents of LOG. We can prove using ⊥L, ⊥R, (cut) and (E) that

Γ ⊢ ∆ iff Γ ⊢ ∆,⊥. Thus, we have Γ1 ⊢ ∆1 iff Γ1,∼∆1 ⊢ ⊥, and we have Γ2 ⊢ ∆2 iff Γ2,∼∆2 ⊢ ⊥.5

Now we construct the game G = ({1}, γ1 = ⊥, ǫ1 = Γ1 ⊎ ∼∆1 ⊎ Γ2 ⊎ ∼∆2). It is now easy to see

that PROV-NONPROV instantiated with Γ1 ⊢ ∆1 and Γ2 ⊢ ∆2 returns true iff Player 1 strongly prefers

(Γ1 ⊎ ∼∆1) over (Γ2 ⊎ ∼∆2) in G.

4.1 Finding Nash equilibria

We study the complexity of the problem NASH EQUILIBRIUM with dichotomous preferences.

4.1.1 Hardness

We are about to prove the lower bound of the complexity NE with dichotomous preferences. Before we

do so, observe that by applying the rules L∼ and R∼,

A1, . . . , An ⊢ B1, . . . , Bm iff A1, . . . , An,∼B2, . . . ,∼Bm ⊢ B1

is immediate. Hence, we can, without loss of generality, consider only the intuitionistic sequents of LOG

in the many-to-one reductions of this paper.

Proposition 11. NE is as hard as the problem of checking sequent provability in LOG, even when there

is only one player.

Proof. We reduce the problem of sequent provability for the logic LOG. W.l.o.g., we only consider

intuitionistic sequents. Let Γ ⊢ δ be the intuitionistic sequent where Γ is an arbitrary multiset of formulas

of LOG and δ is an arbitrary formula.

We can construct the individual resource game G such that G = ({1}, δ,Γ ∪ {δ}). G is thus the

one-player individual resource game where Player 1’s goal is to achieve δ, and Player 1 is endowed with

5For Γ = {A1, . . . , Ak} we note ∼Γ the set {∼A1, . . . ,∼Ak}.
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Γ ∪ {δ} (this is a set union but we could have chosen the endowment Γ ⊎ {δ} as well). A profile in G is

a choice of Player 1, that is, a subset C1 of Γ ∪ {δ}. In this case for any profile P in G, out(P ) = P .

We show that Γ ⊢ δ iff Γ ∈ NE(G).
From left to right, suppose that Γ ⊢ δ. We need to show that Γ ∈ NE(G). That is, for all C1 ⊆

Γ ∪ {δ}, if C1 ⊢ δ then Γ ⊢ δ. Since we supposed Γ ⊢ δ, this is trivially true.

From right to left, suppose that Γ ∈ NE(G). This means that for all C1 ⊆ Γ ∪ {δ}, if C1 ⊢ δ then

Γ ⊢ δ. Let in particular C1 = {δ}. Indeed, C1 ⊆ Γ ∪ {δ}. Moreover, by (ax) we have δ ⊢ δ. Hence,

Γ ⊢ δ follows.

4.1.2 Algorithms

To establish an upper bound on the complexity of NE let us first outline an algorithm for solving its

complement. That is, checking whether a profile is not a Nash equilibrium. Let P ∈ ch(G) be a profile.

To determine whether P 6∈ NE(G), we can employ a simple non-deterministic algorithm, showed as

Algorithm 1.

Algorithm 1 General algorithm for co-NE

1: non-deterministically guess (i, C′
i) ∈ N × chi(G).

2: return P ≺i (P−i, C
′
i).

Proposition 12. If the problem of provability in LOG is in PTIME then NE is in coNP. If the problem

of provability in LOG is in NP then NE is in coNPBH2 and indeed in Π
p
2. If the problem of provability in

LOG is in PSPACE then NE is in PSPACE.

Proof. Consider Algorithm 1. If sequent provability in LOG is in NP, we can check P ≺i (P−i, C
′
i) in

BH2 (Proposition 10). Thus we can check whether P 6∈ NE(G) in NPBH2 . Finally, we can solve NE in

coNPBH2 . It is the case that BH2 ⊆ ∆
p
2, and also that NP∆

p
2 = Σ

p
2 so we can solve NE in Π

p
2. The proofs

for the cases of sequent provability in PTIME and PSPACE proceed with similar considerations about

Algorithm 1.

Affine logic admits the rule of weakening (W ), which allows one to discard resources. In this set-

ting, if a player can achieve her goal with the resources Γ, she can as well achieve her goal with the

resources Γ ∪ {A}. A consequence is the following lemma, which will have a significant impact on the

computational complexity of NE.

Lemma 13. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game. When LOG is affine,

P 6∈ NE(G) iff ∃i ∈ N : P ≺i (P−i, ǫi).

Proof. Suppose P 6∈ NE(G). There is i ∈ N and Ci ∈ chi(G) s.t. P ≺i (P−i, Ci). By definition,

out((P−i, Ci)) ⊢ γi and out(P ) 6⊢ γi. We have Ci ⊆ ǫi, so by applying weakening (W ) with every

instance of formulas in ǫi \ Ci, we can prove that out((P−i, ǫi)) ⊢ γi. We thus have that there is i ∈ N
s.t. P ≺i (P−i, ǫi). The other way around is immediate from the definition of Nash equilibria.

It means that, in a profile, if no player has an incentive to deviate by making available their whole

endowment, then the profile is a Nash equilibrium. The very profile where all the players make available

their whole endowment is trivially such a profile. The next proposition follows immediately:

Proposition 14. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game. When LOG is

affine: NE(G) 6= ∅ and (ǫ1, . . . , ǫn) ∈ NE(G).

Lemma 13 also helps us to establish the following result.
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Proposition 15. When LOG is affine, if the problem of sequent provability in LOG is in PTIME then NE

is in PTIME. If the problem of sequent provability in LOG is in NP then NE is in PNP||. If the problem

of sequent provability in LOG is in PSPACE then NE is in PSPACE.

Proof. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game and let P ∈ ch(G) be a

profile. One can check whether P ∈ NE(G) with Algorithm 2.

Algorithm 2 Algorithm for NE with dichotomous preferences and affine LOG

1: for each i ∈ N do:

2: if (out(P ) ⊢ γi):
3: continue;

4: else if (out((P−i, ǫi)) ⊢ γi):
5: return false.

6: return true.

For correctness, note that the instructions of the lines 2−4 are equivalent to a test of whether out(P ) 6⊢
γi and out((P−i, ǫi)) ⊢ γi, that is, P ≺i (P−i, ǫi). Lemma 13 ensures that exactly when there is an i ∈ N
such that P ≺i (P−i, ǫi) we can conclude that P is not a Nash equilibrium.

Suppose sequent provability in LOG is in NP. The algorithm can be simulated by a deterministic

oracle Turing machine in polynomial time with 2n non-adaptive queries to an NP oracle. Indeed, P ∈
NE(G) is thus a PNP||[2n] predicate. The problem is in PNP||. When sequent provability in LOG is in

PTIME (resp., PSPACE), the algorithm runs in polynomial time (resp., polynomial space).

4.2 Elimination

A very simple illustration of RATIONAL ELIMINATION is given by the individual resource game Gǫ =
({1, 2}, γ1 = B, γ2 = A, {A}, {B}). There are two players. Player 1 wants B but is endowed with {A},

while Player 2 wants A but is endowed with {B}. The game Gǫ can be represented as on Figure 1. (We

indicate the realized objectives assuming that LOG is affine.)

1 2 ∅ {B}

∅ ∅� {B}� : γ1

{A} {A}� : γ2 {A,B}� : γ1, γ2

Figure 1: The game Gǫ. γ1 and γ2 indicate that Player 1 and Player 2 have their goals satisfied, assuming

LOG is affine. The symbol � denotes a Nash equilibrium.

One can readily check that all profiles are Nash equilibria. However, the profile ({A}, {B}) is more

‘socially desirable’ than the others since it satisfies both players’ goal.

A centralized authority could effectively eliminate the others by redistributing the resources present

in Gǫ so as to obtain Gǫ′ = ({1, 2}, γ1 = B, γ2 = A, {B}, {A}). The game Gǫ′ can be represented as

on Figure 2.

The only Nash equilibrium is now the one with outcome {B,A}.

4.2.1 Algorithms

As a consequence of Proposition 14, we already know that:
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1 2 ∅ {A}

∅ ∅ {A} : γ2

{B} {B} : γ1 {A,B}� : γ1, γ2

Figure 2: The game Gǫ′ .

Proposition 16. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game. When LOG is

affine, the profile P such that out(P ) =
⊎

j ǫj is not rationally eliminable.

This is very specific to the affine case (and dichotomous preferences), and even then, it is of course not

true of all Nash equilibria. To decide whether some outcome is rationally eliminable, one naı̈ve approach

consists in trying all possible redistributions and check whether the outcome is a Nash equilibrium in the

resulting individual resource game. Instead, we are going to exploit a pleasant property, analogous to [18,

Corollary 4].

Let Gǫ = (N, γ1, . . . , γn, ǫ(1), . . . , ǫ(n)) be an individual resource game. For each player i ∈ N , we

define G[ǫ⊲i] where [ǫ ⊲ i] is the redistribution of ǫ where all resources are assigned to i, that is:

[ǫ ⊲ i](j) =

{

⊎

k∈N ǫ(k) when j = i

∅ otherwise.

Because there is only one active player in G[ǫ⊲i], we will sometimes write a profile of G[ǫ⊲i] as (Ci) with

Ci ∈ chi(G
[ǫ⊲i]) instead of (∅, . . . , ∅, Ci, ∅, . . . , ∅), by abuse of notation.

Lemma 17. Let Gǫ be an individual resource game and P ∈ ch(Gǫ). P is rationally eliminable iff there

is a player i ∈ N and a profile Q ∈ ch(G[ǫ⊲i]), such that out(Q) = out(P ) and Q 6∈ NE(G[ǫ⊲i]).

Proof. From right to left. Suppose Q 6∈ NE(G[ǫ⊲i]) for some i ∈ N . Let also P ∈ ch(Gǫ) be a profile

and assume out(P ) = out(Q). When there is at most one player with a non-empty endowment, as in

[ǫ ⊲ i], there is a one-to-one correspondence between the set of profiles and the set of outcomes. Thus,

there is one and only one profile in G[ǫ⊲i] with outcome out(P ) and it is Q. So there is a redistribution

of ǫ, namely [ǫ ⊲ i], such that for all profiles Q ∈ ch(G[ǫ⊲i]) with outcome out(P ), we have Q 6∈
NE(G[ǫ⊲i]). So P is rationally eliminable.

From left to right. Suppose that P is rationally eliminable. Thus, there is a redistribution ǫ′ of ǫ
such that for all P ′ ∈ ch(Gǫ′), if out(P ′) = out(P ) then P ′ 6∈ NE(Gǫ′). So let R ∈ ch(Gǫ′) be an

arbitrary profile with out(R) = out(P ). By assumption, we have that R 6∈ NE(Gǫ′). By definition

of Nash equilibria, this means that there is i ∈ N and C′
i ∈ chi(G

ǫ′) such that R ≺i (R−i, C
′
i). Now

consider the game G[ǫ⊲i]. We have out(R) ∈ chi(G
[ǫ⊲i]) and out((R−i, C

′
i)) ∈ chi(G

[ǫ⊲i]). Let the

profile R1 ∈ ch(G[ǫ⊲i]) with R1
i = out(R) and R1

j = ∅ when j 6= i. Let R2 ∈ ch(G[ǫ⊲i]) be the profile

with R2
i = out((R−i, C

′
i)) and R2

j = ∅ when j 6= i. Since, R ≺i (R−i, C
′
i), we also have R1 ≺i R

2.

So R1 6∈ NE(G[ǫ⊲i]). The profile R1 is the only profile of G[ǫ⊲i] with outcome out(P ). So we can

conclude.

We establish an upper bound on the complexity of RE when LOG does not admit the weakening rule.

Proposition 18. When LOG is linear, RE is in NP when provability in LOG is in PTIME, in NPBH2 and

indeed in Σ
p
2 when LOG is in NP, and in PSPACE when LOG is in PSPACE.
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Algorithm 3 General algorithm for RE

1: non-deterministically guess (i, C′
i) ∈ N × chi(G

[ǫ⊲i]).
2: return P ≺i (P−i, C

′
i).

Proof. Let P ∈ ch(Gǫ) be a profile. To determine whether P is rationally eliminable, we can use

Algorithm 3.

Straightforwardly, it guesses a player i and a deviation in the game G[ǫ⊲i] for Player i from the profile

(out(P )) ∈ ch(G[ǫ⊲i]), and checks whether Player i has an incentive to do this deviation. By Lemma 17,

if such a player and deviation exist and only if they exist, the profile P is rationally eliminable in Gǫ.

So the algorithm is correct. It can of course be simulated by a non-deterministic oracle Turing machine

with one call to an oracle for P ≺i (P−i, C
′
i). Proposition 10 informs us of a containing class of this

oracle.

When LOG admits the weakening rule, we can propose a surprisingly simple algorithm, which takes

advantage of both Lemma 13 and Lemma 17.

Proposition 19. When LOG is affine, RE is in PTIME when provability in LOG is in PTIME, in PNP||

when LOG is in NP, and in PSPACE when LOG is in PSPACE.

Proof. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game and let P ∈ ch(G) be a

profile. Consider Algorithm 4.

Algorithm 4 Algorithm for RE with dichotomous preferences and affine LOG

1: for each i ∈ N do:

2: if (P ≺i ([ǫ ⊲ i](i))):
3: return true.

4: return false.

The algorithm is correct. Indeed, by Lemma 17, P is eliminable in G iff there is i ∈ N where

(out(P )) 6∈ NE(G[ǫ⊲i]). By Lemma 13, we know that (out(P )) 6∈ NE(G[ǫ⊲i]) iff P ≺i ([ǫ ⊲ i](i)).
Notice that the test of line 2 is equivalent to P 6⊢ γi and [ǫ ⊲ i](i) ⊢ γi. Thus, it can be simulated by

a deterministic oracle Turing machine in polynomial time with at most 2n non-adaptive queries to an

oracle for the problem of sequent provability. When the problem of sequent provability in LOG is in NP

it yields a complexity of PNP||. When it is in PTIME (resp., PSPACE), it yields a complexity of PTIME

(resp., PSPACE).

4.2.2 Hardness

The linear and affine cases both use the same proof strategy which we present at once.

Proposition 20. RE is as hard as the problem of checking sequent non-provability in LOG.

Proof. Let Γ ⊢ δ be an arbitrary intuitionistic sequent. Let ϕ = Γ∗ ⊸ δ. (Remember that Γ∗ =
⊗

A∈Γ A.) Let Gǫ = ({1, 2}, ϕ,1, ∅, {ϕ}) be an individual resource game. So, we have ǫ1 = ∅ and

ǫ2 = {ϕ}. There is only one other distinct redistribution ǫ′ of ǫ where ǫ′1 = {ϕ} and ǫ′2 = ∅. It is the case

that redis(ǫ) = {ǫ, ǫ′}. Let Gǫ′ = ({1, 2}, ϕ,1, {ϕ}, ∅) be the individual resource game resulting from

the redistribution ǫ′. Both games are represented on Figure 3.

We show that both in the case of linear and of affine logics, we have Γ 6⊢ δ iff (∅, ∅) is rationally

eliminable in Gǫ.
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1 2 ∅ {ϕ}

∅ ∅ {ϕ}

(a) G
ǫ.

1 2 ∅

∅ ∅

{ϕ} {ϕ}

(b) G
ǫ′ .

Figure 3: Games Gǫ and Gǫ′ . The profile (∅, ∅) is a Nash equilibrium in Gǫ. The profile (∅, ∅) is a Nash

equilibrium in Gǫ′ iff Γ ⊢ δ. (The profile ({ϕ}, ∅) is a Nash equilibrium in Gǫ′ . Depending on whether

Γ ⊢ δ and whether LOG is linear or affine, (∅, {ϕ}) may or may not be Nash equilibria in Gǫ. This is

inconsequential for the reduction in the proof of Proposition 20.)

We first show that

Γ ⊢ δ iff ∅ ⊢ ϕ . (1)

From left to right, suppose Γ ⊢ δ. By applying (⊗L) enough times we obtain Γ∗ ⊢ δ. Then we obtain

∅ ⊢ Γ∗ ⊸ δ using (⊸R). From right to left, suppose ∅ ⊢ Γ∗ ⊸ δ. With (ax) and ⊗R we can show

Γ ⊢ Γ∗. Using ⊗R on the sequents Γ ⊢ Γ∗ and ∅ ⊢ Γ∗ ⊸ δ we obtain

Γ ⊢ Γ∗ ⊗ Γ∗
⊸ δ . (2)

Without assumption we can also show

Γ∗ ⊗ Γ∗
⊸ δ ⊢ δ , (3)

using the rules (ax), (⊸L), and (⊗L). We conclude that Γ ⊢ δ using (cut) on the sequents 2 and 3.

We can proceed. Suppose Γ 6⊢ δ. We show that (∅, ∅) is not a Nash equilibrium in Gǫ′ . Since Γ 6⊢ δ,

we also have ∅ 6⊢ ϕ (by Equation 1). On the other hand, using (ax), we have {ϕ} ⊢ ϕ. So in the profile

(∅, ∅), Player 1 has an incentive to deviate to the profile ({ϕ}, ∅). So (∅, ∅) is not a Nash equilibrium in

Gǫ′ .

Suppose Γ ⊢ δ. We show that (∅, ∅) is a Nash equilibrium both in Gǫ and in Gǫ′ .

In Gǫ. We have ∅ ⊢ 1 from 1R, so Player 2 has no incentive to deviate from the profile (∅, ∅) in Gǫ.

Moreover, Player 1 is dummy in Gǫ. So (∅, ∅) is a Nash equilibrium in Gǫ.

In Gǫ′ . Since Γ ⊢ δ, we also have ∅ ⊢ ϕ (by Equation 1), so Player 1 has no incentive to deviate from

the profile (∅, ∅) in Gǫ′ . Moreover, Player 2 is dummy in Gǫ′ . So (∅, ∅) is a Nash equilibrium in Gǫ′ .

4.3 Construction

For elimination, Lemma 17 provided a remarkable necessary and sufficient condition for the rational

eliminability of a profile. For the rational constructibility of a profile, we can only indicatively provide

sufficient conditions. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an IRG, and let P ∈ ch(G) be a profile in

G. If there is a player i ∈ N such that out(P ) ⊢ γi, then P can be rationally constructed by redistributing

all the resources to Player i. Also, if there is a player i ∈ N such that
⊎

k∈N ǫk 6⊢ γi ⊗ ⊤, then P can be

rationally constructed by redistributing all the resources to Player i.
We tackle the complexity of RATIONAL CONSTRUCTION with dichotomous preferences.
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4.3.1 Hardness

We prove a lower bound of the problem RC in presence of dichotomous preferences.

Proposition 21. RC is as hard as the problem of checking sequent provability in LOG.

Proof. Let ϕ = Γ∗ ⊸ δ and G = ({1}, ϕ, ǫ1 = {ϕ}). We can see that (∅) ∈ NE(G) iff ∅ ⊢ ϕ, that is

Γ ⊢ δ. As redis(ǫ) = {ǫ}, we conclude that: for every sequent Γ ⊢ δ, (∅) is rationally constructible in G
iff Γ ⊢ δ is provable.

4.3.2 Algorithms

Let Gǫ be an individual resource game, and let P ∈ ch(Gǫ). To decide whether the profile P can

be rationally constructed we can use Algorithm 5. This algorithm will serve for all cases of rational

construction in this paper.

Algorithm 5 General algorithm for RC

1: non-deterministically guess (ǫ′, P ′) ∈ redis(ǫ)× ch(Gǫ′).
2: return out(P ′) = out(P ) and P ′ ∈ NE(Gǫ′).

The algorithmic analysis is rather simple: we use the problem NE as a blackbox, for which complexity

upper bounds have been established in Proposition 12 and Proposition 15.

Proposition 22. When LOG is in PTIME, RC is in Σ
p
2. When LOG is in NP, RC is in Σ

p
3. When LOG

is in PSPACE, RC is in PSPACE.

Proof. When LOG is in PTIME, from Proposition 12, we know that the test of line 2 is in coNP. So RC
is in NPcoNP = Σ

p
2. Similarly, when LOG is in NP, from Proposition 12, we know that the test of line 2

is in Π
p
2. So RC is in NPΠ

p
2 = Σ

p
3. The case for LOG in PSPACE is analogous.

Again, an affine LOG seems to bring some relative algorithmic ease.

Proposition 23. If LOG is affine, when provability in LOG is in PTIME, then RC is in NP. When LOG

is in NP, RC is in Σ
p
2. When LOG is in PSPACE, RC is in PSPACE.

Proof. The proof is similar to the one of Proposition 22, using the result of Proposition 15 and, for the

case of NP the fact that NPPNP||

⊆ NP∆
p
2 = Σ

p
2.

5 Parsimonious preferences

Weakening (W ) is sometimes a desirable property of LOG and of our preferences of resources. However,

it has the untoward consequence of incentivizing players to spend all their resources in individual resource

games with dichotomous preferences. This is well exemplified for instance by Proposition 14.

We can teach our players parsimony by attaching to them finer preferences that take into account the

realization of their objective, but also the optimality of their contribution.

In an individual resource game G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn), we now say that player i ∈ N
(parsimoniously) strongly prefers P ∈ ch(G) over Q ∈ ch(G) (noted Q ≺i P ) iff one of the following

conditions is satisfied:

1. not out(P ) ⊢ γi and not out(Q) ⊢ γi and Pi ⊂ Qi;

2. out(P ) ⊢ γi and not out(Q) ⊢ γi;
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3. out(P ) ⊢ γi and out(Q) ⊢ γi and Pi ⊂ Qi.

Similar preferences have been called pseudo-dichotomous in the literature.

We recognise that the second condition corresponds to profile P being dichotomously strongly pre-

ferred by Player i to profile Q. The following proposition is a simple consequence.

Lemma 24. If Player i dichotomously strongly prefers P over Q then Player i parsimoniously strongly

prefers P over Q.

This has another immediate consequence on Nash equilibria.

Lemma 25. If a profile P is a Nash equilibrium in presence of parsimonious preferences, then P is a

Nash equilibrium in presence of dichotomous preferences.

Proof. Let ≺d
i (resp., ≺p

i ) denote Player i’s parsimonious (resp., dichotomous) preferences; Let NEd(G)
(resp., NEp(G)) denote the set of Nash equilibria in G when considering dichotomous (resp., parsimo-

nious) preferences. Now suppose that P ∈ NEp(G). That is, for every i ∈ N and for every Ci ∈ chi(G)
we have not P ≺p

i (Ci, P−i), and by Lemma 24, we have not P ≺d
i (Ci, P−i). So P ∈ NEd(G).

Lemma 25 indicates that every Nash equilibrium in presence of parsimonious preferences is also a

Nash equilibrium in presence of dichotomous preferences. The next proposition, which will help us later

to prove some hardness result, says that the other way around holds when the profile is the one where

every player plays the empty set of resources.

Lemma 26. The profile (∅, . . . , ∅) is a Nash equilibrium in presence of parsimonious preferences iff it is

a Nash equilibrium in presence of dichotomous preferences.

Proof. Left to right is a consequence of Lemma 25. For right to left, assume (∅, . . . , ∅) is in NEd(G).
With parsimonious preferences, the only incentive to deviate from a Nash equilibrium in presence of di-

chotomous preferences, would be to play a smaller multiset of resources. This is impossible in (∅, . . . , ∅).

We now address the complexity of the decision problem of deciding whether a player parsimoniously

strongly prefers a profile over another profile.

Proposition 27. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game. Let also P ∈
ch(G) and Q ∈ ch(G) be two profiles, and i ∈ N be a player. The problem of deciding whether Q ≺i P
is: in PTIME when provability in LOG is in PTIME. It is in PNP||[2] when provability in LOG is NP-

complete. It is in PSPACE when provability in LOG is PSPACE-complete.

Proof. First, we can evaluate Pi ⊆ Qi efficiently. We store the result in the Boolean variable v⊆.

We can then perform two non-adaptive queries to an oracle to solve sequent validity in LOG on

out(P ) ⊢ γi and on out(Q) ⊢ γi, and store the results in the Boolean variables vP and vQ respectively.

The formula ((¬vp ∧ ¬vq ∧ v⊆) ∨ (vp ∧ ¬vq) ∨ (vp ∧ vq ∧ v⊆)) is true iff Q ≺i P .

This yields a correct algorithm for deciding Q ≺i P in PTIME when LOG is in PTIME, in PNP||[2]

when LOG is in NP, and in PSPACE when LOG is in PSPACE.

To compare the complexity of dichotomous and parsimonious preferences, remember from Proposi-

tion 10 that when LOG is in NP, the same problem for dichotomous preferences is in BH2. From [21]

we know that PNP||[1] ⊆ BH2 ⊆ PNP||[2]. It is not known whether these inclusions are strict.
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5.1 Illustration of redistribution and parsimony

Consider again the individual resource game of Section 4.2. (Unless stated otherwise, suppose we are in

the affine case.) With parsimonious preferences, we have NE(G) = {(∅, ∅)}. The profile ({A}, {B}) is

not a Nash equilibrium as it was with dichotomous preferences. It would be more desirable from a social

welfare point of view than any other outcome (it satisfies both players), but the players would nonetheless

not be individually rational by choosing it. They have indeed no bearing upon the outcome that satisfies

them and thus are rational in withholding their resources.

Nonetheless, like in the case of dichotomous preference, we can effectively eliminate the current Nash

equilibrium in Gǫ and construct the Nash equilibrium yielding {A,B} by redistributing the resources

present in Gǫ so as to obtain Gǫ′ = ({1, 2}, γ1 = B, γ2 = A, {B}, {A}). The only Nash equilibrium is

now ({B}, {A}).

Unlike dichotomous preferences, parsimonious preferences do not ensure the existence of a Nash

equilibrium in the affine case. Consider the individual resource game Hǫ = ({1, 2}, γ1 = A, γ2 =
A⊗A, {A}, {A}). There are two players. The game Hǫ can be represented as on Figure 4.

1 2 ∅ {A}

∅ ∅ {A} : γ1

{A} {A} : γ1 {A,A} : γ1, γ2

Figure 4: The game Hǫ. There is no Nash equilibrium under parsimonious preferences.

The game Hǫ has no Nash equilibrium: At (∅, ∅), Player 1 does not realize her objective, but she

can deviate and play {A} to satisfy it. At ({A}, ∅), Player 2 has an incentive to deviate and play {A} to

realize her objective. At ({A}, {A}) Player 1 has an incentive to deviate and play ∅. (In the affine case

this is because she can still satisfy her objective by contributing less. In the linear case, this is because

she can satisfy her objective while she does not before deviating.) At (∅, {A}), Player 2 does not satisfy

her objective and thus has an incentive to deviate to play ∅.

However, we can construct the Nash equilibrium yielding {A,A}. Let ǫ′ be the redistribution of ǫ
such that ǫ′(2) = {A,A} and ǫ′(1) = ∅. We obtain the game depicted on Figure 5.

1 2 ∅ {A} {A,A}

∅ ∅ {A} : γ1 {A,A}� : γ1, γ2

Figure 5: The game Hǫ′ . The symbol � denotes a Nash equilibrium.

In Hǫ′ , by assigning all the resources to Player 2, the profile (∅, {A,A}) is a Nash equilibrium and

the only one. In affine logics, both players satisfy their objectives, but only Player 2 does when the logic

is linear.

5.2 Finding Nash equilibria

We study the complexity of NASH EQUILIBRIUM with parsimonious preferences.
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5.2.1 Hardness

We are now getting used to many-to-one reductions from sequent (non-)provability. It was a fruitful

problem in presence of dichotomous preference, and it will remain one in presence of parsimonious

preferences. We prove a complexity lower bound for the problem of NE in presence of parsimonious

preferences.

Proposition 28. The problem NE is as hard as the problem of checking sequent non-provability in LOG,

even when there is only one player.

Proof. As before, we consider w.l.o.g. only the intuitionistic sequents of LOG in the following reduction.

Let Γ ⊢ δ be an intuitionistic sequent of LOG. We define ϕ = Γ∗ ⊸ δ. We can construct the

individual resource game G such that G = ({1}, ϕ, {ϕ}). In G, Player 1 has exactly two choices:

chi(G) = {∅, {ϕ}}.

We show that Γ ⊢ δ iff ϕ 6∈ NE(G).
Suppose ({ϕ}) 6∈ NE(G). So ({ϕ}) ≺1 (∅). Since by (ax) ϕ ⊢ ϕ (the profile ({ϕ}) satisfies

Player 1’s objectives) and ∅ ⊂ {ϕ} (Player 1’s contribution is strictly less in the profile (∅) than it is in

({ϕ})), it must be that ∅ ⊢ ϕ. We infer Γ ⊢ δ, as we did in part of the proof of Proposition 20.

Suppose Γ ⊢ δ. We obtain Γ∗ ⊢ δ by using (⊗L) enough times, and we deduce ⊢ ϕ with (⊸R). We

thus have ∅ ⊢ ϕ and ∅ ⊂ {ϕ}. So ({ϕ}) ≺1 (∅) and ({ϕ}) 6∈ NE(G).

5.2.2 Algorithms

In the individual resource game G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn), we can use Algorithm 1 to check

whether a profile P 6∈ NE(G), even for parsimonious preferences. We have a result analogous to

Proposition 12 for parsimonious preferences.

Proposition 29. If the problem of sequent provability in LOG is in PTIME then NE is in coNP. If the

problem of sequent provability in LOG is in NP then NE is in Π
p
2. If the problem of sequent provability

in LOG is in PSPACE then NE is in PSPACE.

Proof. We use Proposition 27 and, for the case of NP, the fact that coNPPNP||[2][1] ⊆ coNPPNP

=
coNP∆

p
2 = coΣ

p
2 = Π

p
2.

When LOG is affine, we can do better than using Algorithm 1. We first state a technical lemma which

is analogous to Lemma 13.

Lemma 30. Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game. When LOG is affine,

P 6∈ NE(G) iff ∃i ∈ N : s.t. either:

1. out(P ) 6⊢ γi and Pi 6= ∅;

2. out(P ) 6⊢ γi and out((P−i, ǫi)) ⊢ γi;
3. out(P ) ⊢ γi and ∃A ∈ Pi: out((P−i, Pi \ {A})) ⊢ γi.

Proof. Right to left is immediate. From left to right, suppose P 6∈ NE(G). So there exists i ∈ N and

Ci ∈ chi(G) such that P ≺i (P−i, Ci). There are three cases to consider:

1. not out((P−i, Ci)) ⊢ γi and not out(P ) ⊢ γi and Ci ⊂ Pi;

2. out((P−i, Ci)) ⊢ γi and not out(P ) ⊢ γi;
3. out((P−i, Ci)) ⊢ γi and out(P ) ⊢ γi and Ci ⊂ Pi.

21



Suppose (1) is the case. It implies that there is Ci ⊂ Pi and thus that Pi 6= ∅. Suppose (2) is the case. We

essentially use the same argument as the one used in the proof of Lemma 13. We have out((P−i, Ci)) ⊢
γi. By applying weakening (|ǫi| − |Ci|) times, we easily obtain that out((P−i, ǫi)) ⊢ γi. Suppose (3)

is the case. We thus have out((P−i, Ci)) ⊢ γi with Ci ⊂ Pi. Take a formula A ∈ Pi \ Ci. Then, by

applying weakening (|Pi| − |Ci| − 1) times, we easily obtain that out((P−i, Pi \ {A})) ⊢ γi.

Algorithm 6 can then be used to check whether P ∈ NE(G).6

Algorithm 6 Algorithm for NE with parsimonious preferences and affine LOG

1: for each i ∈ N do:

2: if (out(P ) ⊢ γi) : {
3: for each A ∈ Pi do:

4: if (out((P−i, Pi \ {A})) ⊢ γi):
5: return false.

6: } else {
7: if (out((P−i, ǫi)) ⊢ γi):
8: return false.

9: if (Pi 6= ∅):

10: return false.

11: }
12: return true.

Proposition 31. When LOG is affine, if the problem of sequent provability in LOG is in PTIME, then NE

is in PTIME. If the problem of sequent provability in LOG is in NP, then NE is in PNP||. If the problem

of sequent provability in LOG is in PSPACE, then NE is in PSPACE.

Proof. Lemma 30 justifies the correctness of Algorithm 6. The algorithm can be simulated by a deter-

ministic oracle Turing machine in polynomial time with less than Σi∈N (1+ |Pi|) non-adaptive queries to

an oracle for sequent provability in LOG. When the complexity of sequent provability in LOG is in NP

it yields a complexity of PNP||.

5.3 Elimination

We study the complexity of RATIONAL ELIMINATION with parsimonious preferences.

5.3.1 Algorithms

Lemma 17 also holds for parsimonious preferences. It is easy to see that the proof carries over.

Algorithm 3 can still be used in the case of parsimonious preferences because Lemma 17 is still

granted. We thus have the analog to Proposition 18 for parsimonious preferences.

Proposition 32. When LOG is linear, RE is in NP when sequent provability in LOG is in PTIME, in Σ
p
2

when LOG is in NP, and in PSPACE when LOG is in PSPACE.

Proof. We use Proposition 27 and, in the case of NP, the fact that NPPNP||[2][1] ⊆ NPPNP

= NP∆
p
2 =

Σ
p
2.

Let G = (N, γ1, . . . , γn, ǫ1, . . . , ǫn) be an individual resource game and let P ∈ ch(G) be a profile.

We can use Algorithm 7 to check whether a profile P ∈ ch(G) is rationally eliminable.

6Algorithm 6 corrects an omission in [42, Algo. 5] by adding “if (Pi 6= ∅): return false” lines 9 and 10.
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Algorithm 7 Algorithm for RE with parsimonious preferences and affine LOG

1: for each i ∈ N do:

2: if ((out(P )) ≺i ([ǫ ⊲ i](i))):
3: return true.

4: for each A ∈ out(P ):
5: if ((out(P )) ≺i (out(P ) \ {A})):
6: return true.

7: return false.

Proposition 33. When LOG is affine, RE is in PTIME when provability in LOG is in PTIME. It is in

PNP|| when LOG is in NP. It is in PSPACE when LOG is in PSPACE.

Proof. Lemma 17 which still holds with parsimonious preferences ensures that it is enough to consider

the redistributions [ǫ ⊲ i] for some player i. Algorithm 7, then checks for each of these redistributions

whether Player i has an incentive to deviate in the game G[ǫ⊲i] from the profile (out(P )) ∈ ch(G[ǫ⊲i])
to any one of ([ǫ ⊲ i](i)) ∈ ch(G[ǫ⊲i]) and (out(P ) \ {A}) ∈ ch(G[ǫ⊲i]) for some A ∈ out(P ). It is

weakening (W ) that justifies that it is enough to consider these profiles, because X 6⊢ γi implies Y 6⊢ γi
for any couple of multisets Y ⊆ X . The correctness of Algorithm 7 follows.

The tests of line 2 and line 5 only involve the following instances of the sequent provability decision

problem: (out(P )) ⊢ γi and ([ǫ ⊲ i](i)) ⊢ γi for very Player i ∈ N , and (out(P ) \ {A}) ⊢ γi, for every

Player i ∈ N and every formula A ∈ out(P ). The algorithm can thus be simulated by a deterministic

oracle Turing machine in polynomial time with at most |N |(|out(P )|+2) non-adaptive calls to an oracle

for sequent provability.

5.3.2 Hardness

After Lemma 26 and the proof of Proposition 20, the following proposition does not come as a surprise.

Proposition 34. RE is as hard as the problem of checking sequent non-provability in LOG.

Proof. Let Γ ⊢ δ be an arbitrary intuitionistic sequent. We construct the same game as in the proof of

Proposition 20. Let ϕ = Γ∗ ⊸ δ. Let Gǫ = ({1, 2}, ϕ,1, ∅, {ϕ}).
In the proof of Proposition 20, we showed that, in presence of dichotomous preferences, both in the

case of linear and of affine logics, we have Γ 6⊢ δ iff (∅, ∅) is rationally eliminable in Gǫ.

Now with Lemma 26, we know that (∅, ∅) is a Nash equilibrium in presence of dichotomous prefer-

ences iff it is a Nash equilibrium in presence of parsimonious preferences (both in Gǫ and Gǫ′ , and no

matter if LOG is linear or affine, or if Γ ⊢ δ or Γ 6⊢ δ).

Hence, we have Γ 6⊢ δ iff (∅, ∅) is rationally eliminable in Gǫ, also in presence of parsimonious

preferences.

5.4 Construction

Finally, we tackle the complexity of RATIONAL CONSTRUCTION with parsimonious preferences.

5.4.1 Hardness

We establish a complexity lower bound for the problem of RC in presence of parsimonious preferences.

Proposition 35. RC is as hard as the problem of checking sequent non-provability in LOG.

Proof. Consider the games in the proof of Proposition 34. We can see that both for linear and affine

logics we have that Γ 6⊢ δ iff ({ϕ}, ∅) can be rationally constructed in Gǫ′ .
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5.4.2 Algorithms

Our algorithmic analysis is very similar to the analysis we made when the preferences are dichotomous

in Section 4.3.2. Let Gǫ be an individual resource game and P ∈ ch(Gǫ). To decide whether P can be

rationally constructed we can reuse Algorithm 5.

Again, we use the problem NE as a blackbox, for which complexity upper bounds have been estab-

lished in Proposition 29 and Proposition 31.

Proposition 36. When sequent provability in LOG is in PTIME, RC is in Σ
p
2. When LOG is in NP, RC

is in Σ
p
3. When LOG is in PSPACE, RC is in PSPACE.

Proof. The proof is similar to the one of Proposition 22, using the result of Proposition 29.

The next proposition also comes without surprise.

Proposition 37. If LOG is affine, when LOG is in PTIME, RC is in NP. When LOG is in NP, RC is in

Σ
p
2. When LOG is in PSPACE, RC is in PSPACE.

Proof. The proof is similar to the one of Proposition 23, using the result of Proposition 31.

6 Examples

We present more thorough examples. They involve several resources and objectives that are modeled

with a variety of logical operands. We take the opportunity to present fully the important formal proofs

of the realized objectives.

We start with a toy example, simple but rich enough, upon which we can demonstrate all the frame-

works and problems addressed in the paper.

Then, we formally study the divorce arbitration scenario of Example 2, as well as a three-player

variant of the scenario of interconnected economies from Example 1.

6.1 Alan and the fish

We first introduce the resources involved and how they are built in the logical language.

• Basic resources:

– one mole of dioxygen: O2

– one mole of dihydrogen: H2

– one mole of water: H2O

– one ‘token’ of thirst: thirst

• Anti-resources can be captured via the linear negation:

– one thirst quencher: ∼ thirst

• Resource transformation processes:

– one process of electrolysis: elec = H2O⊗ H2O ⊸ H2 ⊗ H2 ⊗ O2

– one process of drinking water: drink = H2O ⊸ ∼ thirst
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Game definition. Let Gǫ
af = ({a, f}, γa, γf , ǫa, ǫf) be the individual resource game with two players,

Alan a and the Fish f . The fish wants one mole of dioxygen: γf = O2. Alan wants one mole of dioxygen

for his fish and wants to quench his thirst: γa = O2 ⊗∼ thirst.

In the game Gǫ
af , Alan is endowed with ǫa = {drink, elec}. He can drink once and can electrolyse

water once. The fish is endowed with three tokens of water ǫf = {H2O,H2O,H2O}.

We suppose that LOG is affine. For this example, we will consider both cases of dichotomous and

parsimonious preferences.

As we did before, we will represent a Nash equilibrium under dichotomous preferences with the

symbol �, and under parsimonious preferences with the symbol �. By Lemma 25, the latter implies the

former. Then, when a profile is a Nash equilibrium under both dichotomous and parsimonious preferences

we will use the symbol �. The game Gǫ
af and the realized objectives can be depicted as on Figure 6.

a f ∅ {H2O} {H2O,H2O} {H2O,H2O,H2O}

∅ ∅� {H2O}� {H2O,H2O}� {H2O,H2O,H2O}

{drink} {drink}� {drink,H2O}� {drink,H2O,H2O}� {drink,H2O,H2O,H2O}

{elec} {elec} {elec,H2O} {elec,H2O,H2O}� : γf {elec,H2O,H2O,H2O} : γf

{drink, elec} {drink, elec} {drink, elec,H2O} {drink, elec,H2O,H2O}� : γf {drink, elec,H2O,H2O,H2O}� : γa, γf

Figure 6: The game Gǫ
af . Alan plays rows, and the fish plays columns. LOG is affine. The symbol �

marks the Nash equilibria under dichotomous preferences. The symbol � marks the profiles that are also

Nash equilibria under both dichotomous and parsimonious preferences.

Appendix C provides the detailed proofs of the realized objectives.

Dichotomous preferences: eliminations of bad equilibria. If the preferences are dichotomous, there

are plenty Nash equilibria in Gǫ
af . They are: (∅, ∅), (∅, {H2O}), (∅, {H2O,H2O}), ({drink}, ∅), ({drink},

{H2O}), ({drink}, {H2O,H2O}), ({elec}, {H2O,H2O}), ({drink, elec}, {H2O,H2O}), and ({drink, elec},
{H2O,H2O,H2O}).

However, only the profile ({drink, elec}, {H2O,H2O,H2O}), whose outcome is {drink,H2O,H2O,H2O,
elec}, satisfies the objectives of both players. It would thus be desirable to eliminate the other profiles.

To do so, let ǫ′ be the endowment such that ǫ′a = {drink, elec,H2O,H2O,H2O} and ǫ′f = ∅. The game

Gǫ′

af and the realized objectives can be (partially) depicted as on Figure 7.

It is readily seen that in Gǫ′

af , when preferences are dichotomous, only the profile

({drink, elec,H2O,H2O,H2O}, ∅) whose outcome is {drink,H2O,H2O,H2O, elec}, is a Nash equilib-

rium.

Parsimonious preferences: construction of a good equilibrium. If the preferences are parsimonious,

the profile (∅, ∅) is a Nash equilibrium in the game Gǫ
af , and is the only one. One can nonetheless

redistribute the resources so as to construct an equilibrium where Alan and the fish both realize their

objectives. That is, one can construct the profile ({drink, elec}, {H2O,H2O,H2O}). To do so, let ǫ′′ be

the endowment such that ǫ′′a = {drink,H2O,H2O,H2O} and ǫ′′f = {elec}. The game Gǫ′′

af and the realized

objectives can be depicted as on Figure 8.

When preferences are parsimonious, the profiles (∅, ∅) and ({drink,H2O,H2O,H2O}, {elec}) are

Nash equilibria in Gǫ′′

af and are the only ones.

Notice that, the redistribution ǫ′ would also effectively construct the profile, although at the price of a

more draconian redistribution. It would also eliminate (∅, ∅).
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a f ∅

∅ ∅

{drink} {drink}
...

...

{elec,H2O,H2O} {elec,H2O,H2O} : γf
...

...

{elec,H2O,H2O,H2O} {elec,H2O,H2O,H2O} : γf
...

...

{drink, elec,H2O,H2O} {drink, elec,H2O,H2O} : γf

{drink, elec,H2O,H2O,H2O} {drink, elec,H2O,H2O,H2O}� : γa, γf

Figure 7: The game Gǫ′

af .

6.2 Ann and Bernard get a divorce

We formalize Example 2. We will only consider parsimonious preferences. We also assume that LOG is

Affine MLL. We introduce the resources involved in the example.

• the lease agreement: shop

• the resource of flour for a year: flour

• the resource of one year worth of bread: bread

• the bread making equipment is the resource transformation process: flour ⊸ bread

Using these as basic resources, we formalize Example 2 as the game Gǫ
ab .

Game definition. Let Gǫ
ab = ({a, b}, γa, γb, ǫa, ǫb) be the individual resource game with two players,

Ann a and Bernard b. Ann wants enough bread for a year: γa = bread. Bernard wants the lease

agreement: γb = shop. In the game Gǫ
ab , Ann is endowed with the lease agreement: ǫa = {shop}.

Bernard is endowed with enough flour to make bread for two years, and with the bread making equipment:

ǫb = {flour, flour, flour ⊸ bread}.

The game Gǫ
ab and the realized objectives can be depicted as on Figure 9. All the formal proofs of

the realized objectives are trivial.

An undesirable equilibrium. One can see on Figure 9, that the profiles ({flour, flour ⊸ bread},
{shop}) and ({flour, flour, flour ⊸ bread}, {shop}) in chb × cha would satisfy both Ann and Bernard.

However, in both of them, Bernard has an incentive to provide less resources from his endowment, and

to deviate to ∅ ∈ chb. In turn, in (∅, {shop}) ∈ chb × cha, Ann is not satisfied, and so has an incentive

to retain her resources as well, deviating to her choice ∅ ∈ cha. The profiles ({flour, flour ⊸ bread}, ∅)
and ({flour, flour, flour ⊸ bread}, ∅}) in chb × cha satisfy Ann’s objective but do not satisfy Bernard’s.

Hence, Bernard has an incentive to deviate to ∅ ∈ chb.

The profile (∅, ∅) is the only Nash equilibrium of Gǫ
ab , but it satisfies neither Ann’s objective, nor

Bernard’s. On the other hand, the outcome of the profile ({flour, flour ⊸ bread}, {shop}) ∈ chb × cha
would satisfy them both.
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a f ∅ {elec}

∅ ∅� {elec}

{H2O} {H2O}� {H2O, elec}

{H2O,H2O} {H2O,H2O} {H2O,H2O, elec} : γf

{H2O,H2O,H2O} {H2O,H2O,H2O} {H2O,H2O,H2O, elec} : γf

{drink} {drink}� {drink, elec}

{drink,H2O} {drink,H2O}� {drink,H2O, elec}

{drink,H2O,H2O} {drink,H2O,H2O} {drink,H2O,H2O, elec} : γf

{drink,H2O,H2O,H2O} {drink,H2O,H2O,H2O} {drink,H2O,H2O,H2O, elec}� : γa, γf

Figure 8: The game Gǫ′′

af .

b a ∅ {shop}

∅ ∅� {shop} : γb

{flour} {flour} {flour, shop} : γb

{flour ⊸ bread} {flour ⊸ bread} {flour ⊸ bread, shop} : γb

{flour, flour} {flour, flour} {flour, flour, shop} : γb

{flour, flour ⊸ bread} {flour, flour ⊸ bread} : γa {flour, flour ⊸ bread, shop} : γb, γa

{flour, flour, flour ⊸ bread} {flour, flour, flour ⊸ bread} : γa {flour, flour, flour ⊸ bread, shop} : γb, γa

Figure 9: The game Gǫ
ab . Bernard plays rows, and Ann plays columns. The profile (∅, ∅) ∈ chb × cha is

the only Nash equilibrium in presence of parsimonious preferences.

A desirable redistribution. So the arbitrator redistributes the resources that are available. He assigns

the bread making equipment and half the flour to Ann. He assigns the lease agreement and half the flour

to Bernard. That is, ǫ′a = {flour, flour ⊸ bread} and ǫ′b = {flour, shop}. This redistribution yields

the game Gǫ′

ab . It can be depicted as on Figure 10. In Gǫ′

ab , the profile (∅, ∅) is not a Nash equilibrium,

and so has been eliminated from Gǫ
ab . Indeed, it does not satisfy Bernard, and he has an incentive to

deviate to the profile ({shop}, ∅) ∈ chb × cha in which his objective is satisfied. But ({shop}, ∅) is not a

Nash equilibrium either. Indeed, it does not satisfy Ann, and she has an incentive to deviate to the profile

({shop}, {flour, flour ⊸ bread}) ∈ chb × cha. From here, nobody has an incentive to deviate, and it is a

Nash equilibrium. It is in fact the only Nash equilibrium in Gǫ′

ab .

One can readily see that the profile ({flour, shop}, {flour, flour ⊸ bread}) ∈ chb × cha, even though

it satisfies both Ann and Bernard, is not a Nash equilibrium. Bernard has an incentive to provide less

resources. The same can be said about the profile ({flour, shop}, {flour ⊸ bread}) ∈ chb × cha.

27



b a ∅ {flour} {flour ⊸ bread} {flour, flour ⊸ bread}

∅ ∅ {flour} {flour ⊸ bread} {flour, flour ⊸ bread} : γa

{flour} {flour} {flour, flour} {flour, flour ⊸ bread} : γa {flour, flour, flour ⊸ bread} : γa

{shop} {shop} : γb {flour, shop} : γb {flour ⊸ bread, shop} : γb {flour, flour ⊸ bread, shop}� : γb, γa

{flour, shop} {flour, shop} : γb {flour, flour, shop} : γb {flour, flour ⊸ bread, shop} : γb, γa {flour, flour, flour ⊸ bread, shop} : γb, γa

Figure 10: The game Gǫ′

ab . The profile ({shop}, {flour, flour ⊸ bread}) ∈ chb × cha is the only Nash

equilibrium in presence of parsimonious preferences.

6.3 An interconnected economy

We present a three-player variant of Example 1. The setting, which we remind briefly, is analogous. In

a local telecom industry, three companies must by regulation accept traffic from each other’s customers.

Moreover, Activating a network at some capacity has a cost, and companies can privately activate and

deactivate networks on the fly.

Company A manages a 3G network of comprised capacity 3 (bundled as capacities 1, and 2). Com-

pany B manages a 4G network of capacity 3 (bundled as capacities 1, and 2). Company A need to offer

their customers 3G at capacity 2 and 4G at capacity 1. Company B need to offer their customers 3G at

capacity 2 and 4G at capacity 2.

A new company, Company C is entering in this interconnected economy. It has some capital, say, two

token of an arbitrary unit; one token being fair price for a mobile network antenna. However, Company C
does not manage any network. Company C needs to offer their customers 3G at capacity 1 and 4G at

capacity 1.

Again, we will only consider parsimonious preferences and assume that LOG is MULT. Since we

are using this modest fragment, we trust that formal proofs would be more than superfluous and will be

omitted.

We introduce the resources involved in the scenario:

• the resource of one capacity of 3G network: 3G

• the resource of one capacity of 4G network: 4G

• the resource of one token of capital: cap

Game definition. Let Gǫ
ie = ({a, b, c}, γa, γb, γc, ǫa, ǫb, ǫc) be the individual resource game with three

players, Company A, B, and C being represented by a, b, and c, respectively .

In the game Gǫ
ie , we have ǫa = {3G, 3G ⊗ 3G}. ǫb = {4G, 4G ⊗ 4G}, and ǫc = {cap, cap} for

endowments. The objectives are as follows: γa = 3G ⊗ 3G ⊗ 4G, γb = 3G ⊗ 3G ⊗ 4G ⊗ 4G, and

γc = 3G⊗ 4G.

Two equilibria. The game Gǫ
ie and the realized objectives can be depicted as on Figure 11. Com-

pany B, Player b, plays rows, Company A, Player a, plays column. For simplicity we do not represent all

Company C’s choices because they do not bear on the players’ objectives. We only represent Player c’s
choice ∅. With other choices different from ∅, the realized objectives are exactly the same. Assuming

parsimonious preferences, no profile where CompanyC’s action is different from ∅ is a Nash equilibrium.

There are two Nash equilibria in the IRG Gǫ
ie , namely, (∅, ∅, ∅) and ({3G⊗ 3G}, {4G⊗ 4G}, ∅). In

the latter, all agents realize their objective. In the former, none of them do.

Eliminating the bad equilibrium. In the IRG Gǫ
ie , the profile (∅, ∅, ∅) is an arguably undesirable equi-

librium. An arbitrator could however advise the three companies to redistribute their endowments to
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c ∅

b a ∅ {3G} {3G⊗ 3G} {3G, 3G⊗ 3G}

∅ ∅� {3G} {3G⊗ 3G} {3G, 3G⊗ 3G}

{4G} {4G} {4G, 3G} : γc {4G, 3G⊗ 3G} : γa, γc {4G, 3G, 3G⊗ 3G} : γa, γc

{4G⊗ 4G} {4G⊗ 4G} {4G⊗ 4G, 3G} : γc {4G⊗ 4G, 3G⊗ 3G} : γa, γb, γc� {4G⊗ 4G, 3G, 3G⊗ 3G} : γa, γb, γc

{4G, 4G⊗ 4G} {4G, 4G⊗ 4G} {4G, 4G⊗ 4G, 3G} : γc {4G, 4G⊗ 4G, 3G⊗ 3G} : γa, γb, γc {4G, 4G⊗ 4G, 3G, 3G⊗ 3G} : γa, γb, γc

Figure 11: Partial representation of the game Gǫ
ie .

eliminate (∅, ∅, ∅). The arbitrator could propose the redistribution ǫ′ of ǫ, where ǫ′a = {3G ⊗ 3G, cap},

ǫ′b = {4G⊗ 4G, cap}, and ǫ′c = {3G, 4G}.

The game Gǫ′

ie and the realized objectives can be depicted as on Figure 12, when Player c’s choice is

∅. The choices containing the resource cap are not represented. The resource cap has no bearing on the

player’s objectives, and no profile containing it is a Nash equilibrium.

c ∅

b a ∅ {3G⊗ 3G} · · ·

∅ ∅ {3G⊗ 3G} · · ·

{4G⊗ 4G} {4G⊗ 4G} {4G⊗ 4G, 3G⊗ 3G} : γa, γb, γc� · · ·
... · · · · · ·

. . .

Figure 12: Partial representation of the game Gǫ′

ie .

After the redistribution, Company C manages a 3G and a 4G network, both at capacity 1. Activating

both of them would be enough to satisfy Company C’s objective. In Gǫ′

ie , Player c thus has an incentive

to deviate from (∅, ∅, ∅). Hence, the arbitrator’s advice permits the elimination of the bad equilibrium:

(∅, ∅, ∅) is not a Nash equilibrium in Gǫ′

ie .

In the profile (∅, ∅, {3G, 4G}), Player 1 has an incentive to deviate and play {3G ⊗ 3G}, in order to

realize its objective.

In turn, in the profile ({3G⊗ 3G}, ∅, {3G, 4G}), Player 2 has an incentive to deviate and play {4G⊗
4G} to realize its objective. (Player 3, by parsimony, has also an incentive to withdraw the resource 3G.)

In the profile ({3G⊗ 3G}, {4G⊗ 4G}, {3G, 4G}), by parsimony, Player 3 has an incentive to deviate

to the choice ∅.

Every player is satisfied in ({3G⊗3G}, {4G⊗4G}, ∅), and none of them have an incentive to withdraw

any resources. Hence, the good equilibrium of Gǫ
ie , ({3G⊗3G}, {4G⊗4G}, ∅), is still a Nash equilibrium

in Gǫ′

ie . In addition, this is the unique Nash equilibrium in Gǫ′

ie .

7 Conclusions

We presented a class of games of resources that exploits the formalisms and reasoning methods for

resource-sensitive logics. The language of Linear Logic allows us to represent in an harmonious way

simultaneous resources, deterministic and non-deterministic choice, and resource-transforming capaci-

ties.
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linear affine

d
ic

h
o
to

m
o
u
s NE

NP-hard (Prop. 11) NP-hard (Prop. 11)

in Π
p
2 (Prop. 12) in PNP|| (Prop. 15)

RE
coNP-hard (Prop. 20) coNP-hard (Prop. 20)

in Σ
p
2 (Prop. 18) in PNP|| (Prop. 19)

RC
NP-hard (Prop. 21) NP-hard (Prop. 21)

in Σ
p
3 (Prop. 22) in Σ

p
2 (Prop. 23)

p
a
rs

im
o
n
io

u
s NE

coNP-hard (Prop. 28) coNP-hard (Prop. 28)

in Π
p
2 (Prop. 29) in PNP|| (Prop. 31)

RE
coNP-hard (Prop. 34) coNP-hard (Prop. 34)

in Σ
p
2 (Prop. 32) in PNP|| (Prop 33)

RC
coNP-hard (Prop. 35) coNP-hard (Prop. 35)

in Σ
p
3 (Prop. 36) in Σ

p
2 (Prop. 37)

Table 4: Complexity results when the problem of provability in LOG is in NP.

In individual resource games, each player of a game is endowed with a multiset of resources and has

an objective represented by a resource. In this context, we studied three decision problems, the first of

which is to decide whether a profile is a Nash equilibrium. Some profiles that are not equilibria can have

desirable outcomes from the point of view of an external authority. Some equilibria can have outcomes

that are undesirable. We thus studied redistribution schemes which can be used by a central authority

to enforce some behavior, either by disincentivizing a behavior or incentivizing a behavior. This yielded

two related decision problems: rational elimination and rational construction of profiles. We illustrated

the models and the decision problems with two examples.

We considered dichotomous or parsimonious preferences, and showed striking algorithmic differ-

ences when the logic employed admits or not the weakening rule.

Summary of the complexity results. For all decision problems, for both types of preferences, we have

studied six cases where LOG can have the following properties along two dimensions: (1) affine vs.

linear, and (2) in PTIME vs. in NP vs. in PSPACE.

When LOG is NP-complete, we sum up precisely the results in Table 4. For instance, one can quickly

gather that when LOG is Affine MLL (whose sequent provability is NP-complete) and we consider par-

simonious preferences, RATIONAL ELIMINATION is in PNP||. We proved the same problem to be in Σ
p
2

when LOG is Linear MLL. When LOG is in PTIME, we sum up precisely the results in Table 5. We thus

obtained some positive results when the resources are expressed in the fragment MULT, which is suitable

to represent and reason about multisets of resources.

Theorem 38. When LOG is Affine MULT, with dichotomous or parsimonious preferences, the problems

NASH EQUILIBRIUM and RATIONAL ELIMINATION can be solved in polynomial time.
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linear affine

d
ic

h
o
to

m
o
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s

NE in coNP (Prop. 12) in PTIME (Prop. 15)

RE in NP (Prop. 18) in PTIME (Prop. 19)

RC in Σ
p
2 (Prop. 22) in NP (Prop. 23)

p
a
rs

im
o
n
io

u
s

NE in coNP (Prop. 29) in PTIME (Prop. 31)

RE in NP (Prop. 32) in PTIME (Prop 33)

RC in Σ
p
2 (Prop. 36) in NP (Prop. 37)

Table 5: Complexity results when the problem of provability in LOG is in PTIME.

It is interesting to note that, although weakening usually does not change the complexity of the prob-

lem of sequent provability of the logics we considered,7 we have always been able to capitalize on its

presence to simplify our solutions to the problems we studied here.

Putting the results of this paper together, it is also easy to see that we have this theorem.

Theorem 39. When LOG is MALL, linear or affine, with dichotomous or with parsimonious preferences,

all three decision problems are PSPACE-complete.

First-Order MLL is one of these logics whose complexity of sequent provability is in NP. On the

other hand, sequent provability for First-Order MALL is NEXPTIME-complete. It is routine to adapt our

proofs to show this theorem.

Theorem 40. When LOG is First-Order MALL, linear or affine, with dichotomous or with parsimonious

preferences, all three decision problems are NEXPTIME-complete.

Comparison with the related literature. The research in artificial intelligence, multiagent systems,

and computer science has shown some interest in the formal and computational aspects of resource-

conscious agents (e.g., [17, 47, 33, 10, 18, 44, 35, 1, 43]).

Boolean games [19, 4] are games based on classical logic. Each player controls a set of Boolean

variables and produces truth values which can be used without restriction towards the Boolean goals,

expressed as classical propositional formula. Somehow, also in Boolean games do the players produce

and consume ‘resources’. But there are no immediate natural correspondences between IRGs and Boolean

games. As in Boolean games, we could force the endowments to be non-overlapping (for exclusive

control over a resource). Moreover, we could allow the players in our games to have preferences about

the absence of a resource. Under these conditions, and using classical propositional logic as LOG, a

connection would then exist.

Electric Boolean games [18] are an extension of Boolean games where playing a certain action has

a numeric cost, and agents are endowed with a certain amount of ‘energy’. Deciding whether a profile

is a Nash equilibrium in a Boolean game is coNP-complete [4]. In electric Boolean games, deciding

7We did not consider full propositional Linear Logic, which also contains so-called ‘exponentials’. Weakening does make a

difference: sequent provability in full propositional Linear Logic is undecidable [26], while sequent provability in full propositional

Affine Logic is decidable [22].
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whether a profile is rationally eliminable is NP-complete, while deciding whether a profile is rationally

constructible is coNP-hard and in ∆
p
2.

In Boolean games, goals of players are expressed as classical propositional formulas. Moreover, game

outcomes or profiles are in fact models of classical propositional logic, i.e., valuations. Checking whether

the goal of a player is satisfied in a game profile is thus an easy problem in Boolean games. This is also

true in electric Boolean games. In contrast in resource games, checking whether the goal of a player is

satisfied in a game profile is as hard as provability in LOG.

Unsurprisingly, when working with the fragments MLL or MALL, the trend is that the complexity of

decision problems in individual resource games is higher than for their counterparts in electric Boolean

games. An obvious exception is the problem to decide whether an individual resource game admits a

Nash equilibrium when LOG is affine and we consider dichotomous preferences. The problem is trivial

by Proposition 14 (there is always a Nash equilibrium), while it is Σ
p
2-complete in Boolean games [4].

Moreover, in individual resource games, there is no one-to-one correspondence between profiles and

outcomes. This is another difference with electric Boolean game. As a consequence, the notions of

elimination and construction in individual resource games add a bit of complexity by having to consider

a set of profiles with the same outcomes.

On the other hand, the fragment MULT is one instance of LOG in which it is easy to check whether

a goal of a player is satisfied in a game profile (Proposition 7). In this context, and as shown on Table 5

and compared to the realm of Boolean games, reasoning about IRGs remains a relatively easy task. It can

even be tractable if one considers Affine MULT. Affine logic should be used when we can assume that a

player satisfied with an outcome would be satisfied with a more sizeable outcome, which is often a very

acceptable assumption.

Congestion games (CGs) [39] (see also Potential Games [27]; exact potential games correspond to

CGs up to an isomorphism) are a celebrated class of games where the players interact in resource-sensitive

environments. Despite some apparent similarities between IRGs and CGs, they are rather superficial.

Players in CGs do not have endowments per se. Players’ actions in CGs consist in choosing a subset of

an already available common pool of resources to use. In CGs, the players are only consumers. In IRGs,

players are consumers but also producers of resources; their actions consist in making resources available

in the common pool. In CGs, these resources are exclusively atomic resources while in IRGs they can be

any logical formula in LOG.

With the decision problems of rational elimination and rational construction, there is a dimension of

social choice theory and mechanism design. Formal frameworks concerned with redistribution schemes

and economic policies can be found for instance in [18] again, or [11, 25, 28].

Our games bear some resemblance with combinatorial exchanges [23] and with mixed multi-unit

combinatorial auctions (MMUCAs) [8, 15], where the agents can be both sellers and buyers. Interestingly,

in MMUCAs, sets of goods can be transformed into different sets of goods. Resource-transforming

capacities are central, as the agents are allowed to bid on transformation services. Determining the

sequences of bids to be accepted by an auctioneer is generally intractable in MMUCAs; [13] identifies

tractable classes for the winner determination problem.

Finally, we focused on individual games and looked at Nash equilibria. Nonetheless, the setting

allows one to easily build classes of coalition games, reminiscent of Coalitional Resource Games [47, 10]

and of Coalition Skill Games [3]. In [43], we have started the study of what we called Rich Coalitional

Resource Games (RCRGs). Individual Resource Games are essentially one-goal RCRGs.

Perspectives. We have obtained tight complexity results when LOG is PSPACE-complete. However,

this is lacking when LOG is in NP and in PTIME. We suspect that the complexity of the diverse decision

problems generally lie above the lower bounds we have obtained. It is more likely that some proposed

upper bounds are tight. One perspective will thus be to investigate whether some decision problems could
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be proven hard for some complexity class in the polynomial or Boolean hierarchy, for instance using the

techniques from [45] of raising NP lower bounds to lower bounds for classes above NP.

Resource games based on resource-sensitive logics become all the more significant when the resources

are subject to transforming activities. We can exploit the existing research on these resource-sensitive

logics about their proof theory. In particular, through the Curry-Howard correspondence between proofs

and programs (see, e.g., [14]), an exciting perspective is the possibility to interpret the logical proofs as

rigorous programs to be executed by the players. We can expect to obtain some results for the automated

generation of plans, where the resources can be subjected to a series of transforming activities by the

agents. Similar ideas have already been defended in multiagent systems (see, e.g., [24]).

Our models are agnostic about how the contributed resources are distributed. Instead of having prefer-

ences about a raw profile P , the player’s preferences could be raised over the result of the (fair, envy-free,

efficient, etc) allocation of the resources [5] contributed in out(P ). These are interesting extensions that

are just a step away to get the models more fit for application, although at the expense of mathematical

simplicity.

We are interested in using resource games in problems of gamification. Gamification refers to the

broad application of game-design techniques in contexts that do not otherwise present game-like features

[9, 36]. Gamification aims at incentivizing an intended behavior by introducing rewards for specific tasks.

Rewards often present themselves as virtual resources such as achievement badges. Formally, they might

be nothing more than distinguished tokens of resources. In Example 1, we saw that the profile where

all companies refrain from providing any resources, (∅, ∅), is a Nash equilibrium. This is an undesirable

behaviour that policy makers might be able to anticipate by using the analytical tools defined in this paper,

and to avoid by using advanced gamification methods.
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A Sequent rules of Affine MALL

We present the sequent rules for Affine MALL. In what follows, A, B, A0, and A1 are formulas. Γ, Γ′,

∆, and ∆′ are sequences of zero or more formulas. A sequent rule has an upper and a lower part. The

upper part is composed of zero, one, or two sequents. The lower part is composed of one sequent. If there

is a proof of all the sequents of the upper part, then the rule can be used to obtain a proof of the sequent

of the lower part.

Identities

ax
A ⊢ A

Γ, A ⊢ ∆ Γ′ ⊢ A,∆′

cut
Γ,Γ′ ⊢ ∆,∆′

Structural Rules

Γ, A,B,Γ′ ⊢ ∆
E

Γ, B,A,Γ′ ⊢ ∆

Γ ⊢ ∆, A,B,∆′

E
Γ ⊢ ∆, B,A,∆′

Γ ⊢ ∆
W

Γ, A ⊢ ∆
Γ ⊢ ∆

W
Γ ⊢ ∆, A

Negation

Γ ⊢ A,∆
L∼

Γ,∼A ⊢ ∆

Γ, A ⊢ ∆
R∼

Γ ⊢ ∼A,∆

Multiplicatives

Γ ⊢ A,∆ Γ′ ⊢ B,∆′

⊗R
Γ,Γ′ ⊢ A⊗B,∆,∆′

Γ, A,B ⊢ ∆
⊗L

Γ, A⊗B ⊢ ∆

Γ, A ⊢ ∆ Γ′, B ⊢ ∆′

`L
Γ,Γ′, A`B ⊢ ∆,∆′

Γ ⊢ A,B,∆
`R

Γ ⊢ A` B,∆

Γ ⊢ A,∆ Γ′, B ⊢ ∆′

⊸L
Γ,Γ′, A ⊸ B,∆ ⊢ ∆′

Γ, A ⊢ B,∆
⊸R

Γ ⊢ A ⊸ B,∆

Γ ⊢ ∆
1L

Γ,1 ⊢ ∆
1R

⊢ 1
⊥L

⊥ ⊢
Γ ⊢ ∆

⊥R
Γ ⊢ ∆,⊥

Additives (In ⊕R, and &L, i stands for either 0 or 1.)

Γ ⊢ A,∆ Γ ⊢ B,∆
&R

Γ ⊢ A&B,∆

Γ, Ai ⊢ ∆
&L

Γ, A0 &A1 ⊢ ∆

Γ, A ⊢ ∆ Γ, B ⊢ ∆
⊕L

Γ, A⊕B ⊢ ∆

Γ ⊢ Ai,∆
⊕R

Γ ⊢ A0 ⊕A1,∆

⊤R
Γ ⊢ ⊤,∆

0L
Γ,0 ⊢ ∆
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B Elements of computational complexity

We need to assume some familiarity with computational complexity. This appendix only introduces some

elements of terminology and some definitions about complexity theory. The reader familiar with these

notions can use this section for quick reference. Another reader can use it as a starting point and move to

a more complete introduction. A classic introduction to computational complexity is [31]. All elementary

complexity classes used in this paper are presented in [40].

A decision problem (or problem for short) is a problem that is posed as ‘yes’/‘no’ question of the

values of the input.

The class PTIME, also noted P, is the class of decision problems that can be solved in deterministic

polynomial time (wrt. the size of the input). The class NP is the class of problems that can be solved

in non-deterministic polynomial time. The class PSPACE is the class of problems that can be solved

using a polynomial amount of space. The complement of a decision problem is the decision problem

resulting from reversing the ‘yes’ and ‘no’ answers. For every class of complexity C, we denote coC the

class populated with the complements of the problems in C. Given two classes of complexity C1 and C2,

the class CC2

1 is the class of problems that are in C1 if we assume the availability of an oracle to solve

the problems in C2. An oracle for C2 is a black box capable to solve every problem in C2 in a single

operation. Queries to an oracle can be adaptive (also called serial), or non-adaptive (also called parallel).

A query is adaptive when it depends on the answer of a previous query. Non-adaptive queries on the other

hand, can be chosen in advance and computed from the start and are asked in parallel.

For every class of complexity C, we denote PC (resp. NPC) the class of problems solvable on a

deterministic (resp. non-deterministic) polynomial-time bounded oracle Turing machine using an oracle

set C. We denote PC[k] and NPC[k] when at most k adaptive queries to C can be used. We denote PC||[k]

and NPC||[k] when at most k non-adaptive queries to C can be used.

We denotePC|| (resp.NPC||) the class of problems solvable on a deterministic (resp. non-deterministic)

polynomial-time bounded oracle Turing machine with non-adaptive queries to C. The class PNP|| is also

referred to as Θ
p
2.

The polynomial hierarchy. The polynomial hierarchy contains a family of complexity classes that are

smaller than PSPACE. The class P lies at the bottom of the polynomial hierarchy. Then, for every positive

integer i, we can define ∆
p
i , Σ

p
i , and Π

p
i recursively as follows:

• ∆
p
0 = Σ

p
0 = Π

p
0 = P;

• ∆
p
i+1 = PΣ

p

i ;

• Σ
p
i+1 = NPΣ

p

i ;

• Π
p
i = coΣ

p
i .

The Boolean hierarchy over NP. The Boolean hierarchy has been studied in [46, 21, 45]. The Boolean

hierarchy over NP contains a family of complexity classes that are smaller than ∆
p
2. The class NP lies

at the bottom of the Boolean hierarchy over NP. Here, we are better off looking at complexity classes

not as classes of decision problems, but as classes of languages. A language is the formal realization of

a decision problem. Let p be a decision problem with k inputs. A language of p is the language Lp =
{(a1, . . . , ak) | p answers ‘yes’ of the input (a1, . . . , ak)}. Given a class of complexity C, we say that

Lp ∈ C iff p ∈ C. Then, given two classes of complexity C1 and C2, each representing a set of languages

and the decision problems they formalize, we define C1 ∧ C2 = {L1 ∩ L2 | L1 ∈ C1 and L2 ∈ C2} and

C1 ∨ C2 = {L1 ∪L2 | L1 ∈ C1 and L2 ∈ C2}. In this context, the class NP is the class of languages that

can be recognised in non-deterministic polynomial time. Then, for every positive integer i, we can define

BHi recursively as follows:
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• BH0 = NP;

• BH2k = coNP ∧ BH2k−1;

• BH2k+1 = NP ∨ BH2k.

The class BH2 = NP ∧ coNP is the “difference class” DP presented in [32].

Useful properties. Besides the definitions, the following properties are useful:

• CcoC2

1 = CC2

1 (for all two classes C1 and C2);

• NPΣ
p

i = Σ
p
i+1;

• coΣ
p
i = Π

p
i ;

• NP∆
p
i = Σ

p
i ;

• P∆
p

i = ∆
p
i ;

• Σ
p
i ⊆ PSPACE;

• PSPACE = coPSPACE = PPSPACE = NPPSPACE;

• BHi ⊆ ∆
p
2;

• PNP||[k] ⊆ BHk+1 ⊆ PNP||[k+1].

C Proofs of the realized objectives in the Example of Section 6.1

The proof of H2O,H2O, elec ⊢ γf will be instrumental for the subsequent proofs. We label it Proof ⋆ for

reuse.

ax
H2O ⊢ H2O

ax
H2O ⊢ H2O

⊗R
H2O,H2O ⊢ H2O⊗ H2O

ax
O2 ⊢ O2

W
O2,H2 ⊗ H2 ⊢ O2

E
H2 ⊗ H2,O2 ⊢ O2

⊗L
H2 ⊗ H2 ⊗ O2 ⊢ O2

⊸L
H2O,H2O,H2O⊗ H2O ⊸ H2 ⊗ H2 ⊗ O2 ⊢ O2

definition
H2O,H2O, elec ⊢ γf

Proof ⋆
The other realized objectives of the fish are immediate using Proof ⋆ and the weakening rule. We prove

that H2O,H2O,H2O, elec ⊢ γf , drink,H2O,H2O, elec ⊢ γf , and drink,H2O,H2O,H2O, elec ⊢ γf .

...
Proof ⋆

H2O,H2O, elec ⊢ γf
W

H2O,H2O, elec,H2O ⊢ γf
E

H2O,H2O,H2O, elec ⊢ γf

...
Proof ⋆

H2O,H2O, elec ⊢ γf
W

H2O,H2O, elec, drink ⊢ γf
E*

drink,H2O,H2O, elec ⊢ γf

...
Proof ⋆

H2O,H2O, elec ⊢ γf
W

H2O,H2O, elec, drink ⊢ γf
E*

drink,H2O,H2O, elec ⊢ γf
W

drink,H2O,H2O, elec,H2O ⊢ γf
E*

drink,H2O,H2O,H2O, elec ⊢ γf

Finally, we prove drink, elec,H2O,H2O,H2O ⊢ γa. The proof also uses Proof ⋆.

...
Proof ⋆

H2O,H2O, elec ⊢ γf

ax
H2O ⊢ H2O

ax
∼ thirst ⊢ ∼ thirst

⊸L
H2O ⊸ ∼ thirst,H2O ⊢ ∼ thirst

⊗R
H2O,H2O, elec,H2O ⊸ ∼ thirst,H2O ⊢ γf ⊗∼ thirst

definition
H2O,H2O, elec, drink,H2O ⊢ γa

E*
drink,H2O,H2O,H2O, elec ⊢ γa
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