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LOCALLY CONSTANT CONSTRUCTIVE FUNCTIONS

AND CONNECTEDNESS OF INTERVALS

VIKTOR CHERNOV

Abstract. We prove that every locally constant constructive func-
tion on an interval is in fact a constant function. This answers a
question formulated by Andrej Bauer. As a related result we show
that an interval consisting of constructive real numbers is in fact
connected, but can be decomposed into the disjoint union of two
sequentially closed nonempy sets.

1. Introduction

Constructive Topology and Constructive Analysis deal with the study
of objects that can be computed by some algorithm, for example by a
Turing machine.

A constructive real number is a Cauchy sequence of rational numbers
{rn}

∞

n=1 equipped with an algorithm that describes the convergence, i.e.
given ε > 0 it constructs M ∈ N such that for all m,n > M we have
|rn − rm| < ε. A constructive function is an algorithm that transforms
constructive numbers to constructive numbers. All the functions and
numbers in this paper are assumed to be constructive.

A complete separable constructive metric space can be given by spec-
ifying an algorithmically enumerable set P and a constructive met-
ric function on this set. Points of the space are algorithmically given
Cauchy sequences, whose members are elements of P . The metric is
naturally extended to the points of this space.

The subject of constructive mathematics was developed by Markov [6,
7] and Shanin [9] and their mathematical school, see Kushner [5] for
a nice exposition. A different but to some extend similar approach
to constructive mathematics was developed by E. Bishop [2] and his
followers.

In our proofs we use the so called Markov’s principle saying that: if
the assumption that a decidable subset of the set of natural numbers is
empty yields a contradiction, then one can produce an element of this
set. This assumption is broader than the constructivism assumptions
of Bishop.
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The constructive counterparts of many classical results fail. For ex-
ample the constructive versions of the Intermediate value theorem [4]
and the Brower fixed point theorem [8] are false.

On the other hand many surprising facts that are clearly false in the
traditional versions of the subjects are true in the constructive world.
For example, every constructive function defined on real numbers is
continuous [3].

2. Main Results

Theorem 1. Let f be a constructive locally constant real-valued func-

tion on an interval [a, b] whose points are constructive real numbers,

then f is a constant function.

The proof requires the following Lemma.

Lemma 1. Let f be a constructive fucntion on a complete separable

metric space X which is not a constant function, then you can algo-

rithmically find two points p, q with f(p) 6= f(q).

Proof. We will generate points of an enumerable everywhere dense set
and compute the values of f at them with better and better precision
until we find two points p, q with f(p) 6= f(q). If we do not succeed
finding two such points, then f is a constant function by the Ceitin [3]
continuity theorem. �

Now we use the Lemma to prove Theorem 1.

Proof. We argue by contradiction and assume that f is not a constant
function. Then by the Lemma 1 we find two points p, q with f(p) 6=
f(q). Without the loss of generality we assume that p < q. Take r =
p+q

2
and compute f(r) with a precision that guarantees that one of

the facts f(r) 6= f(p) and f(r) 6= f(q) is true. Take one of the two
halves [p, r] and [r, q] of the intveral for which the values at its ends are
different and continue the constuction in a similar fashion. We will get
a decreasing sequence of nested intervals [pn, qn] of length (q − p)/2n

such that f(pn) 6= f(qn).
The sequences {pn}

∞

n=1 and {qn}
∞

n=1 define the same computable
number d. Since f was locally constant, there is an open neighbor-
hood of d on which f is a constant function and this neighborhood has
to contain some pair pk, qk. Thus f(pk) = f(qk) for some k and we got
the contradiction. �

Remark 1. The statement of the Theorem 1 and its proof hold for
computable maps of complete separable path connected constructive
metic spaces.

Definition 1. A subset of a constructive separable metric space is open
if it can be realized by an enumerable set of open balls of rational radii
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with centers in the points of an enumerable everywhere dense set. A
susbet is closed if it is a complement of an open subset.

We say that a susbet S of a constructive separable metric space X
is connected if it is impossible to represent S as a disjoint union of two
nonempty open sets.

Theorem 2. An interval I = [a, b] consisting of computable real points

is connected.

Proof. We argue by contradiction and assume that A,B are disjoint
nonempty open sets with A∪B = I. So every point of I is either in A
or in B. We will generate the set of all rational numbers and for each
of the numbers we will decide if it is in A or in B. We get two sets of
numbers A0 and B0. If either of A0 = ∅ or B0 = ∅ then, since the sets
A and B are open, we will either get that A = ∅ or that B = ∅. This
contradicts our assumptions.

So both sets A0 and B0 are nonempty. Take an interval with one
end point in A0 and the other end point in B0. Separate the interval
into two subintervals of equal length and choose the subinterval for
which the two ends belong to the two different sets A0, B0. Iterating
this construction we get a sequence of nested intervals [pn, qn]

∞

n=1 such
that qn − pn = q1−p1

2n−1 and such that for each n we have pn ∈ A and
qn ∈ B. The limit point s defined by these two sequences {pn}

∞

n=1 and
{qn}

∞

n=1 has to be either in A or in B. However since both A and B are
open sets, the whole tail of both sequences belongs to that open set.
So we have a contradiciton. �

Definition 2. A set S is sequentially closed if given a converging se-
quence {sn}

∞

n=1 of points in S the limit point also is in S.

Theorem 3. An interval I = [0, 1] can be subdivided into the union of

two nonempty disjoint sequentially closed subsets.

Proof. Consider a Specker sequence {sn}
∞

n=1 i.e. a strictly increasing
sequence of rational numbers in the interval [0, 1]. This sequence does
not have a constructive limit [10].

Consider two sequences of sets {An}
∞

n=1, {Bn}
∞

n=1 where An = [0, sn)
and Bn = [sn, 1]. Put A = ∪nAn and B = ∩nBn. The set B is closed
and hence sequentially closed.

The set A is open but still is sequentially closed. Indeed consider
any seqence of points {an}

∞

n=1, an ∈ A and let a = limn→∞ an.
We note that for every n there is m such that sm > an.
Since the sequence sn is strictly increasing for every n we have that

sn < a or a < sn+1. If sn < a for all n, then we would have that the
sequence sn converges to a. This contradcits the fact that the Specker
sequence does not have a constructive limit.

Thus there is m such that a < sm and then we have a ∈ Am ⊂ A.
So the set A is sequentially closed. �
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