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Abstract. In the last decade, the Winograd Schema Challenge (WSC) has be-
come a central aspect of the research community as a novel litmus test. Con-
sequently, the WSC has spurred research interest because it can be seen as the
means to understand human behavior. In this regard, the development of new
techniques has made possible the usage of Winograd schemas in various fields,
such as the design of novel forms of CAPTCHAs.
Work from the literature that established a baseline for human adult performance
on the WSC has shown that not all schemas are the same, meaning that they could
potentially be categorized according to their perceived hardness for humans. In
this regard, this hardness-metric could be used in future challenges or in the WSC
CAPTCHA service to differentiate between Winograd schemas.
Recent work of ours has shown that this could be achieved via the design of an au-
tomated system that is able to output the hardness-indexes of Winograd schemas,
albeit with limitations regarding the number of schemas it could be applied on.
This paper adds to previous research by presenting a new system that is based
on Machine Learning (ML), able to output the hardness of any Winograd schema
faster and more accurately than any other previously used method. Our developed
system, which works within two different approaches, namely the random forest
and deep learning (LSTM-based), is ready to be used as an extension of any other
system that aims to differentiate between Winograd schemas, according to their
perceived hardness for humans. At the same time, along with our developed sys-
tem we extend previous work by presenting the results of a large-scale experiment
that shows how human performance varies across Winograd schemas.

Keywords: Winograd Schema Challenge · Schema Hardness · Machine Learn-
ing · Random Forest · Deep Learning.

1 Introduction

Since the late fifties, the AI community is concerned with endowing machines with
commonsense and reasoning [36,64]. To that end, a number of challenges have been
proposed to advance the field of AI, aiming to behoove AI researches build systems
able to help or replace humans in day-to-day life. One of these challenges is the WSC, a
carefully-crafted pronoun resolution task and a variant of the well known Recognizing-
Textual-Entailment challenge (RTE) [13,41] that is able to capture basic human abili-
ties.
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Given a Winograd schema, people can anticipate and reason about causes and ef-
fects [52], and tell you who did what to whom, when, where, and why [20]. For instance,
if someone tells us that, “The city councilmen refused the demonstrators a permit be-
cause they feared violence.” and asks us “who feared violence?”, we can easily infer that
the correct answer is the “city councilmen”. This example shows how humans, through
commonsense and reasoning, can answer such questions. On the other hand, we know
that current AI systems do not have that day to day commonsense and reasoning that
humans do [20,36].

In a recent work, Bender [2] established a human baseline for the WSC, where it
was shown that adults can tackle the challenge with a mean of 92%. Along with the re-
sults, the authors have shown the importance of having humans to evaluate the schemas
upon designing, as not all schemas have the same perceived hardness for humans [2,42].
Given that the WSC was developed to help humans design systems that mimic human
behavior, it seems that shedding light on the perceived human hardness for schemas
would be useful for the challenge itself. In this regard, this metric of hardness could be
used, i) to categorize schemas according to the strengths and weaknesses of a particu-
lar group of participants, and, ii) in the WSC CAPTCHA service that uses Winograd
schemas to identify humans from bots [26].

In a past work of ours, we approached this problem by reusing the Wikisense system
[24] for resolving Winograd schemas, and, roughly, by using the amount of training
data it requires to correctly answer a given schema as an indicator of its hardness. This
resulted in a system [25] that correlates well with the performance of humans, albeit
with limitations regarding the number of schemas it could be applied on and the time
needed for the whole process, which was found to be very time consuming. To do that,
we compared the Wikisense-approach results to humans’ performance on a dataset of
143 schemas [2].

In this work, we consider a new novel approach called WinoReg (from Winograd-
Regression) which, through machine-learning, can deliver faster and more accurate re-
sults than our previous work. To that end, we build a new system that works within two
different approaches, i) the Random-Forest approach, which directly relates with feature
engineering, and, ii) the LSTM-based approach, which requires access to the hardness
indexes of more Winograd schemas. In this regard, we extended Bender’s work with a
study that we designed and undertook, which involved 306 crowdsourced workers and
943 schemas.

Within both approaches WinoReg proceeds by first training the regression model,
and then using the learned model for faster computation during its deployment. Regard-
ing the feature engineering of the Random-Forest approach, these features come from a
number of works in the literature that have developed WSC-related systems, which we
have re-implemented as needed [9,24,44,48,54].

In the next sections, we start by presenting the challenge itself. We continue with
our motivation section followed by the human-adult performance section. A high-level
analysis of WinoReg’s architecture is outlined in the fifth section, whereas a more de-
tailed analysis of the Random Forest and the LSTM-based approach is given in the next
two sections. We present the experiments along with our results in section eight. Finally,
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in the next sections, we present some highlights of previous work along with potential
implications and recommendations for future research.

2 Challenge Basics

Broadly speaking, the WSC is about resolving ambiguities because the information
needed is not grammatically present in the examined schemas. Consequently, each
Winograd schema comprises two halves, with each half consisting of a sentence, a
definite pronoun or a question, two possible pronoun targets (answers), and the correct
pronoun target [35]. The following schema (a pair of halves) illustrates the key charac-
teristics of the challenge:
– – First-half: Sentence: The city councilmen refused the demonstrators a permit be-

cause they feared violence. Question: Who feared violence? Answers: The city
councilmen, The demonstrators. Correct Answer: The city councilmen.

– – Second-half: Sentence: The city councilmen refused the demonstrators a permit
because they advocated violence. Question: Who advocated violence? Answers:
The city councilmen, The demonstrators. Correct Answer: The demonstrators.
Given just one of the halves, the aim is to resolve the definite pronoun through the

question to one of its two co-referents. To avoid trivializing the task, the co-referents
are of the same gender, and both are either singular or plural. Moreover, the two halves
differ in a special word or phrase that critically determines the correct answer. Schemas
that do not strictly follow these rules are called “schemas in the broad sense”. It is
believed that the WSC can provide a more meaningful measure of machine intelligence
when compared to the Turing Test [36]. Its a challenge that has been proposed as the
means to understand human behaviour [36]. In this sense, statistical resolvers would not
be able to accumulate tricks or discover patterns of words to tackle it [36]. This might
happen because of the presumed necessity of reasoning with commonsense knowledge
to identify how the special word or phrase affects the definite pronoun’s resolution. The
challenge is already in full swing with other AI challenges that aim to tackle the goal
of endowing machines with human commonsense and reasoning. By extension, it is
believed that a system that contains the commonsense knowledge to resolve Winograd
schemas correctly should be capable of supporting a wide range of AI applications [35].

The WSC has been a topic of interest for several years. Among the steps taken
towards developing systems able to tackle the challenge has been the development
of relevant datasets. According to the literature, multiple well-known datasets exist,
like: 1) The original collection of Winograd schemas referred to as WSC273, WSC285,
WSC286, or WSC288 [35]; 2) The Definite Pronoun Resolution (DPR) dataset, a varia-
tion of the Winograd Schema Challenge developed by Rahman & Ng [48]; 3) The Pro-
noun Disambiguation Problem (PDP) dataset, which was collected from the literature
to be used as a testing set for the first Winograd Schema Challenge, which took place
in 2016 [42]; 4) The WinoGrande dataset [51], which is a large-scale dataset collected
via crowdsourcing on Amazon Mechanical Turk; 5) The WinoFlexi dataset, which is
similar to the original WSC dataset, collected via crowdsourcing on the MicroWorkers
platform [27]; 6) The Winograd Natural Language Inference dataset that is a part of the
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GLUE benchmark [65]; 7) Other datasets that were developed to measure gender bias
among Winograd schemas [50,69].

As stated by Kocijan et al. [32], three different approaches have been used to tackle
the challenge: i) feature-based approaches that basically try to tackle it by extracting se-
mantic information from several sources, ii) neural-based approaches that are trained on
unstructured or pre-trained data, and iii) language-model approaches that utilize large-
scale pre-trained language models and are sometimes fine-tuned on a specific WSC
dataset to maximize their performance. At the time of writing, we can say that the
challenge can be tackled with an average score of 70% although there are various ap-
proaches able to solve only a subset of schemas [32]. For instance, systems are able to
tackle the original dataset (WSC285) with an average score of 66 % (lowest 42% and
largest of 90%), the Definite Pronoun Resolution (DPR) dataset with an average of 78%
(lowest 63% and largest of 93%), and the PDP dataset can be tackled with an average
score of 77% (lowest 58% and largest of 90%). A more deep analysis about the datasets
and systems able to tackle the challenge can be found in [32].

3 Motivation

It is widely believed that well-constructed Winograd schemas are easy for humans and
hard for machines because they require the use of commonsense knowledge to correctly
resolve the definite pronoun [36]. According to Levesque, in every schema, you need to
have background knowledge that is not revealed in the words of the sentence to be able
to clarify what is going on [35].

Broadly speaking, due to schema discrepancies, not all Winograd schemas are equally
easy or hard for humans, and the task of being able to predict their hardness index is an
interesting question. Additionally, with every single schema any potentially developed
system should presumably be able to demonstrate how humans tackle it, meaning, that,
there are different kinds of schemas.

What we know about the perceived human hardness index on the WSC is largely
based on Bender’s work [2], who, through an experiment he undertook, identified that
human adults tackle the WSC with a mean of 92%. In a past work of ours [25], to-
wards answering the previous question, we started by considering the Wikisense sys-
tem [24], which is a commonsense and reasoning system able to resolve a number
of Winograd schemas. Basically, Wikisense parses each examined schema to identify
the necessary keywords to search for relevant Wikipedia sentences. Next, for every
Wikipedia sentence, it returns semantic scenes, which are triples based on nominal-
subjects and direct-objects returned by a dependency parser. These semantic scenes
are fed to a Learner that constructs the necessary knowledge, which can be searched
through a Reasoner for the tackle of the challenge.

Given that Wikisense gets its training data in real time from the English Wikipedia,
we developed a new system —Wikisense-based approach— whose performance im-
proves as it gets more training data while its trying to resolve a given schema. Specifi-
cally, we have found that the amount of training data needed for the resolving of a given
schema correlates positively with the perceived human hardness index of that specific
schema. However, the resulting model was able to offer the hardness index on only
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57% of our tested schema halves, which is in direct relation with the keyword imple-
mentation of Wikisense that is based on the semantic analysis of the given schemas; If
Wikisense cannot extract a keyword then the Wikisense-based approach cannot return
the hardness index of the examined schema. Additionally, because of its dependency on
training during query-answering, it was found that the Wikisense-based system needs,
on average, eight hours to output the hardness index of given schema half.

There are systems that are already in full-swing with the Wikisense-based approach,
meaning that they already use its mechanisms to differentiate schemas according to
their perceived hardness for humans. In this regard, WinoFlexi [27], which is a crowd-
sourced collaboration platform for the development of Winograd schemas from scratch,
leverages the Wikisense-based approach to provide feedback to workers regarding the
quality of their developed schemas. In this regard, we can say that the Wikisense-based
approach results are disproportional to the demand of new developed schemas. Addi-
tionally, in an earlier work of ours we have demonstrated how the WSC can form a
novel form of CAPTCHAs [26], with the ultimate goal of bringing more AI researchers
to work on the challenge. Like in every other CAPTCHA service, there is a high de-
mand of new Winograd schemas which could serve as the means to identify fraudulent
actions. In this regard, systems like the Wikisense-based approach could be used to
make sure that the CAPTCHA service would display harder schemas to solve in the
case of possible fraudulent actions. Furthermore, in the case of humans it could be used
to ensure that the generated instances are not overly demanding.

As stated in the literature [32], neural approaches, and specifically, language-model-
based approaches that were trained on a large corpus of text were able to tackle the
challenge with 90.1% accuracy on WSC273 [51], which is the highest performance
achieved on the original dataset by a large margin. On the other hand, this does not
mean that the challenge itself is tackled or that language models are able to show
commonsense-reasoning abilities like humans do. For instance, the model by Sakaguchi
et al. [51], might have performed well because, through training, it was able to exploit
a systemic bias within the dataset that helped it tackle the challenge with high accu-
racy. Specifically, this might have happened because language models or just neural
networks that just predict probabilities of the next or previous word in a sentence may
have their limits [8], meaning that more text does not always yield better results. In
general, heuristics or methods non-crucial to the WSC-idea, such as the choice of word
embeddings or language models can easily affect the results [32]. It seems that the prob-
lem that Levesque tried to avoid by introducing the challenge as an alternative to the
Turing test still remains: systems are able to discover tricks or systematic bias in words
to tackle the schemas without being able to show commonsense and reasoning abilities.
For instance, recent experiments have shown that state-of-the-art language models that
are currently being able to tackle challenges like the WSC struggle to tackle challenges
that directly relate to abductive-reasoning, meaning they lack reasoning abilities which
are trivial for humans [5].

Having systems able to tackle schemas close to human performance led researchers
to investigate how far they could push the difficulty level of Winograd schemas, propos-
ing at the same time various mechanisms to build challenging ones [12]. It was stressed
out by the creators of the challenge that clever tricks involving features or groups of
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words should be avoided or eliminated. Of course, recent language-model achievements
on the challenge itself indirectly show that there are still biases or hidden patterns that
are easily discoverable by these pattern-extracting solvers, meaning that the ability to
tackle a variety of schemas does not show commonsense and reasoning abilities like
humans do [12,32]. As stated by Cozman et. al. [12] the solution to this problem is the
development of harder schemas, where no word patterns or rooted social-norms can be
tracked and cracked by language learners without deep understanding. However, this
should be done with respect to the effort needed to solve a given schema by both hu-
mans and machines, although evaluating the degree of common sense possessed by a
machine remains difficult [62].

To the best of our knowledge, the Wikisense-based approach is the only system that
can differentiate between Winograd instances, albeit with various limitations that raise
questions regarding whether we should look for alternative solutions based on different
techniques. In this regard, to find a faster and more accurate way to output the hard-
ness index of Winograd schemas, we consider WinoReg, which is a system based on a
machine-learning approach. Through experience and prediction, WinoReg learns how
to compute the hardness of a given schema based on two different approaches, i) the
Random-Forest, and ii) the LSTM-based approach. Before proceeding with WinoReg’s
architecture, it is interesting to briefly review Bender’s work regarding human perceived
hardness on the Winograd schemas.

4 Human-adult Performance on the WSC

Bender [2], through an experiment he undertook, which involved the participation of
adult English speakers, identified that human adults tackle the WSC with a mean ac-
curacy of 92%. Furthermore, it was found that adults need, on average, 15 seconds to
answer a given schema.

To the best of our knowledge, this is the only set available to provide us with the nec-
essary training and testing data [25]. In his work, he used schemas developed by experts
—called as the original dataset [35,42]— which, at the time of writing, consisted of
143 schemas (286 schema halves). The experiment ran on Amazon’s Mechanical Turk
where 407 adult speakers, who speak English fluently, participated. Results showed that
adult speakers are, on average, able to correctly resolve 92% of the Winograd schemas,
which sets the bar very high, compared to what systems can achieve [31,39,44,48]. On
the other hand, in the experiments it was shown that there are schemas that are harder to
resolve than others; for instance there are schemas that humans scored a mean of 45%.
A detailed analysis of human performance on each individual WSC instance (accuracy)
is available from: https://github.com/benderdave/wsc-exp.git.

5 The High-Level Architecture of WinoReg

Here, we present the high-level architecture of WinoReg (see Figure 1). WinoReg works
in two operational modes, namely, the random-forest, and the LSTM-based mode (deep

https://github.com/benderdave/wsc-exp.git
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learning). In both modes, it outputs the hardness of any schema through regression anal-
ysis, where it examines the relationship between the schema halves and the perceived
human hardness indexes [2].

After the training it uses the learned model for faster computation during its deploy-
ment. Regarding the feature engineering of the Random-Forest approach, these features
come from a number of works in the literature that have developed WSC-related sys-
tems, which we have re-implemented as needed [9,24,44,48,54]. Specifically, within
the Random Forest mode, WinoReg analyzes each schema to output a required number
of features. Next, all of the features are given as an input to the learned model to output
the hardness of a schema half. On the other hand, within the LSTM-based approach,
WinoReg does not require to estimate the values of features, meaning that any given
schema can be given directly to the model to acquire its hardness index. In both cases,
WinoReg can load a schema from a schema-database to output its hardness index, which
is a value in the range of 0-1. Compared to the Wikisense-based approach, no schema
is discarded.

In the next sections, we will show how WinoReg works, based on the approaches above.
Specifically, in the first part, we will discuss how the engine estimates the values of
features to build the Random Forest model, and, in the second part, we will show how
deep learning comes into play.

Fig. 1: WinoReg’s Architecture to compute the hardness indexes of Winograd schemas. The
black-box shows that the system can work in two distinct modes.
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6 WinoReg: A Random Forest Approach

Within this approach, WinoReg is based on training a regression model with the use
of Decision Trees. We use, in particular, the Random Forest algorithm [19], which was
introduced in 2001 [7]. The Random Forest algorithm, which involves the construction
of an ensemble of Decision Trees, each trained on random subsets of the data, showed
significant improvements in accuracy of different kinds of problems [7]. A recent line
of research showed that it is one of the best algorithms that maintain high imputation
performance on linear regression across a range of performance metrics [61]. Like any
other Machine Learning algorithm, the focus of the Random Forest algorithm is to form
a rule with reasonable accuracy, which could be used as a prediction tool on future data
[46]. In this regard, we aim to train a model using the Random Forest algorithm able to
estimate the perceived human hardness index of Winograd schemas (see Figure 2).

Fig. 2: WinoReg’s Architecture based on Random Forest: Given a Winograd schema WinoReg
outputs the perceived human hardness index.
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6.1 Feature Preparation

Within ML, we need to transform our data to find the appropriate representations to
make it more manageable to the task at hand [17]. As we want to estimate the hard-
ness index of a schema half, which indirectly relates to the selection of the correct an-
swer, our Random-Forest approach expects features related to the schema half parts —
sentence, question, and the two pronoun targets (candidates). Compared to Wikisense-
based system, WinoReg does not make use of the correct answer of each schema.

To train our system we use 50 features from 12 components that we built from
scratch. The majority of these features are based on non open-source systems, from the
literature, that were previously used to tackle the challenge [9,25,44,48]. Most of these
features relate to semantic relations that are taken from each examined schema. In this
regard, our system uses the spaCy3 dependency parser to turn raw-text into semantic
relations; these are relations that show how the sentence words are related to each other.
According to the literature, the semantic relations are considered good if they can ex-
press the structure of the text and can differentiate, at the same time, between the events
and their participants [54]. In this regard, via spaCy, we can output relations that show
how the pronoun targets relate to the definite pronoun and the events in which they
participate [24,28].

For instance, consider the following schema half (referred to later as the catch ex-
ample): Sentence: The cat caught the mouse because it was clever. Question: Who is
clever? Answers: The cat, The mouse. Via spaCy, we can output three semantic rela-
tions, which tell us that “a cat caught a mouse”, and “something/someone is clever”:
– – [cat-noun, caught-verb, mouse-noun]
– – [it-pronoun, was-aux-verb, clever-adj]
– – [was-aux-verb, caught-verb]

A detailed analysis of the feature development process is given in the next para-
graphs.

6.2 Sentence-Pattern

In a recent work, we have shown that the structure of each schema-half’s sentence plays
an important role in its quality [27]. It seems that schemas that are developed using
a variety of sentence patterns/types —complex, compound-complex—, are preferable
than schemas that are based on simple types. In this regard, to design our first feature
we make use of a tool that is able to output the sentence-type of each examined schema
[27] (stored as ST). Given any English sentence, the tool is able to output its type which
can be either a simple, a compound, a complex, or a compound-complex sentence. At
the same time, it outputs its pattern/clause (e.g., “SV because SV”, “SV and SV because
SV.”, “Cause/Effect”), which directly relates to the connectors that each sentence uses
between its clauses (stored as SP). Hence, within this component we are able to engineer
two features, namely ST and SP.

3 https://spacy.io
spaCy’s statistical model: en core web sm

https://spacy.io
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6.3 Sentence-Negation

It is widely accepted that negation plays an important role in capturing the semantics
of text, as it is used to reverse the polarity of parts of a statement [6,24]. To encompass
these kind of rules, we analyze each schema half to estimate if the two candidates and
the definite pronoun are governed by negation; this is done via the sentence and question
triples of the schema half (see the catch example). In this regard, from the negation-
component we create two binary features, (STN for the two candidates, and QTN for
the definite pronoun) that contain the value of 1, if negation exists, and, otherwise, the
value of 0.

6.4 Schema’s Semantic-Relations

This component directly relates to the semantic relations of a given text. As stated
in the literature [48], via web queries we might phase precision and recall problems.
Specifically, when a pronoun target and a verb appears next to each other, it does not
mean that a subject-verb relation exists between them (a problem of precision). On the
other hand, these queries fail to obtain subject-verb relations where a pronoun target
and verb are not close to each other (a problem of recall). To eliminate these kinds
of problems, we search Wikisense’s Wikipedia-corpus to see how many times each
pronoun target appears as subject or as an object. If the definite pronoun appears as a
subject in a triple relation, we search to find which pronoun target appears as a subject
most of the times; Otherwise, if the pronoun appears as an object, we search to find
which pronoun target appears most of the times as an object. From the semantic-relation
component we create a single feature SEM, which equals 1 if the definite pronoun has
the same role as the first pronoun target, otherwise 2 if it has the same role with the
second pronoun target. If we cannot determine their roles then SEM equals -1.

6.5 Number-of-Words

It seems that the sentence length of each schema directly relates to the resolution of
the definite pronoun [28], where schemas with longer sentences tend to be harder to
answer. In accordance with our findings, we engineered a feature that directly relates,
in terms of words, to the length of each sentence (SL).

6.6 Word-Relations

Word-relations features relate to candidate-independent, and candidate-dependent rela-
tions, where, according to previous works [48], they seem to play an important in the
tackle of the WSC. The only catch is that they can only be applied in sentences that con-
tain a connective (Cn) word (e.g., because). In this regard, for the candidate-independent
features we create two features (WN, WP), where, WN refers to the number of words
in each sentence (except the two candidates and the Cn), and, WP refers to the number
of word pairs; these are pairs of words appearing before Cn with each word appearing
after Cn, excluding adjective-noun pairs, noun-adjective pairs, and the two candidates.
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For the candidate-dependent features we engineer three features, namely HN, VF,
and AF. Specifically, HN contains the number of the head words of the two candidates
that were returned by the dependency parser; if we cannot determine the two candidates
in the sentence then the HN feature is set to 0. Subsequently, the VF feature contains the
number of the verbs, and JF the number of the adjectives that modify the two candidates.

6.7 Search-Engine Queries

Recent work has shown that search-engine queries are able to provide us with world
knowledge, which is useful for the tackle of the challenge [44,48,54]. For instance, in
the catch example, we can acquire world knowledge to learn that someone who is clever
can easily catch other things, which leads us to resolve the definite pronoun to the cat. In
this regard, as other works have shown, we follow a similar approach to build features
that are based on search queries.

For every schema we build six queries, namely QR1: A1VQ, QR2: A2VQ, QR3:
A1VQW, QR4: A2VQW, QR5: JA1, QR6: JA2; A1 and A2 are the two candidates, VQ
the question verb that governs the definite pronoun, W the sequence of words following
VQ in the question, and J the question adjective that follows a verb-to-be. For instance,
for the catch example we generate and search the Google search-engine with the fol-
lowing queries: (QR1) “cat was”; (QR2) “mouse was”; (QR3) “cat was clever”; (QR4)
“mouse was clever”; (QR5) “clever cat”; and (QR6) “clever mouse”. Next, using the
number of hits that were returned by the search engine, we built eight binary features
—GL1i1, GL1i2, GL2i1, GL2i2, GL3i1, GL3i2, GL4i1, GL4i2—, as in Rahman & Ng
[48]. The first two features (GL1i1, GL1i2) are computed from QR1 and QR2, the next
two (GL2i1, GL2i2) from QR3 and QR4, and the third (GL3i1, GL3i2) from QR5 and
QR6 (The last two features are computed based on the results returned from all of the
queries). For instance, if the absolute value of —QR1, QR2—, is bigger than the thresh-
old of 20% (th) in favor of the first candidate, then, GL1i1 equals 1 and GL1i2 equals
0; if the opposite exists then GL1i1 is set to 0 and GL1i2 to 1. To estimate the other
features we follow a similar approach; more details about the procedure can be found
in the paper where it was originally introduced [48].

Recent experiments with GPT3 language-model [8] have shown potential contam-
ination in their training set while tackling the WSC or other similar tasks. This relates
with text found in the WWW which contains WSC schemas or similar discussions that
might help relevant models or a specific search engines find cues they were not sup-
posed to find. Although this is a challenging task that needs to be examined further
when designing benchmarks and when training models [8], both the way the search
queries are constructed and the defined threshold of 20% help avoid problems that re-
late with potential contamination.

To avoid problems with proper-names (persons) where we cannot retrieve search
query hints we make use of Framenet [1]. As stated in other works [9,48], it is unlikely
that search engines will return meaningful counts for persons. In this regard, in a schema
where the candidates are proper names we search Framenet to find and substitute them
with their roles. Specifically, for every triple relation we search Framenet for NP.EXT
and NP.OBJ relations, where, NP.EXT shows the subjects and NP.OBJ the objects of
the corresponding event (for instance, in the catch, if instead of a cat and mouse we
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had persons then we would search Framenet for the event catch). In case of successful
search from Framenet we replace the persons with their Framenet roles. Consequently,
we form six queries and search the Google engine to generate eight features: GLF1i1,
GLF1i2, GLF2i1, GLF2i2, GLF3i1, GLF3i2, GLF4i1, GLF4i2.

6.8 ConceptNet-Relations

ConceptNet is a freely available semantic commonsense toolkit [38]. Its knowledge-
base is a semantic network, where nodes are the concepts and edges the relations among
them. It is like a parser that describes and expresses general human knowledge from sen-
tences that were automatically acquired from the Open-mind Common-Sense project
[38,55,58]. It contains concepts about common basic knowledge about various facts,
connected with other facts, using different kind of relations (e.g., relatedTo, AtLoca-
tion, IsA, PartOf ) [9]. Our system, makes use of ConceptNet to find possible relations
between the two candidates and the word —verb, adjective— that governs the definite
pronoun; this is done by a ConceptNet function that returns a value in the range of 0-1,
where, the higher the value the higher the relatedness is. In this regard, we engineer a
feature, (called CN) that equals 1 if the relatedness value of the first candidate is greater
then the value of the second candidate; if the opposite exists then then value of CN
equals 2, and, if we cannot find any difference, it equals -1. Additionally, like before,
we consider Framenet [1] for issues with proper names, and create the CNF feature,
where its values are being computed in the same way as the CN values.

6.9 Discourse-Connective Relations

As reported by Rahman & Ng [48], causal relations, which are signaled by discourse
connectives, show the world knowledge between events. For instance, in the sentence,
“The lion eat the zebra because it was hungry”, there is a causal relation, which is given
by the discourse connective “because”, between the events “eat” and “hungry”; this
causal relation help us resolve the definite pronoun “it” to the lion.

For each schema half, we search the Wikisense corpus for a triple of the form (V, Cn,
X), and count its frequencies of occurrence; Cn is a discourse connective, V is a verb
in the clause that governs the two candidates, and X is a stemmed verb or an adjective
that governs the definite pronoun. Each triple has to be validated through the following
procedure: i) we search the Wikipedia corpus to find its frequencies of occurrence; ii)
if the the number of occurrences is at least 100 then we proceed to the next step [48];
iii) if X is a verb, then it resolves the pronoun to the candidate that has the same role
as the definite pronoun; otherwise, if the sentence does not involve comparison and X
is an adjective, it resolves the pronoun to the candidate that serves as the subject of V.
To encode this heuristic decision we create a binary feature (CNT); CNT equals 1 if the
definite pronoun is resolved to the first candidate, and 2 if it is resolved to the second
candidate. Otherwise, in case we cannot resolve the definite pronoun, CNT equals -1.

6.10 Event-Chaining via Narrative Chains

Narrative-chains are sequences of events, in a story that shows the role of the pro-
tagonist/actor, which is denoted as -s: subject or -o: object [9,48]. To the best of our
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knowledge, one of the best available narrative-chain datasets is the Chambers and Juraf-
sky’s narrative chains [10]; these are ordered sets of 12 events (verbs) centered around
a common protagonist that show its role in the chain (subject or object).

For every schema half, we determine the events the two candidates and the definite
pronoun participate in along with their protagonist role (subject or object). For instance,
in the next schema half: Sentence: The city councilmen refused the demonstrators a per-
mit because they advocated violence. Question: Who advocated violence? Answers: The
city councilmen, The demonstrators., via Wikisense mechanisms we output two triples:
i) refused (x-subject, y-object), ii) advocate (they-subject, violence-object). Hence, in
this example, we want to determine the protagonist of the refuse-? event, that partic-
ipates in the advocate event as a subject (the definite pronoun —they— indicates the
subject position).

Next, from Chambers and Jurafsky’s, and for each such pair, we extract all the
chains that contain both elements (refuse and advocate). For instance, in our example,
Chambers and Jurafsky narrative chain contains refuse-o and advocate-s, meaning that
the protagonist in this chain is the object of a refuse event and the subject of an advocate
event (the demonstrators); If WinoReg cannot find narrative chains containing both ele-
ments, it runs again the same procedure but with a similarity mechanism enabled. In the
end, we create a feature (NCH) that equals 1 if the answer is the first candidate, and 2
if it is the second candidate. Otherwise, if we cannot output triples or find any narrative
chains, it equals -1.

6.11 Event-Polarity with Heuristic Rules

Word polarity, which has been widely studied in the NLP field [21], can help us to re-
solve the definite pronoun in specific schema halves [9,44,48]. This is a straightforward
procedure that can be summarized in three steps: i) find the polarity of the definite pro-
noun; ii) determine the polarity of the two candidates; iii) select the candidate that has
the same polarity as the definite pronoun. To find the polarity values we use the Wilson
et al. subjectivity lexicon [68], a lexicon that assigns to various events their polarity,
such as negative, positive, or neutral.

Let us use the following example to explain the procedure we follow to assign the
polarity values: Sentence: The city councilmen refused the demonstrators a permit be-
cause they advocated violence . Question: Who advocated violence?, Answers: The city
councilmen, The demonstrators. According to the schema half we know the following:
– – city-councilmen is the subject of the event refuse
– – demonstrators is the object of the event refuse
– – they is the subject of the event advocate.

From the Wilson et al. subjectivity lexicon [68], we acquire the polarity of the refuse
event, which is negative. In this regard, the polarity of the deep subject city councilmen
becomes negative and the polarity of the object demonstrators becomes positive. Addi-
tionally, we know that the polarity of the event advocate in the subjectivity lexicon is
positive, hence the polarity of the definite pronoun they, which participates in the sub-
ject of the event advocate, becomes positive. Consequently, we can conclude that the
polarity of both the definite pronoun and the demonstrators is the same, which lead us
to resolve the definite pronoun —they— to demonstrators.
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The event-polarity procedure lead us to the engineering of six binary features, namely,
RP1i1, RP1i2, RP2i1, RP2i2, RP3i1, RP3i2. Initially, all of these features are set to
zero. The first two features, RP1i1, RP1i2 refer to the correct pronoun target, where,
in our example are set to RP1i1=0 and RP1i2=1 (since the correct pronoun target —
demonstrators— is the second one). The two other features (RP2i1 and RP2i2) are the
concatenation of the polarity values, determined for both the definite pronoun and the
two candidates; in our example, RP2i1=negative-positive, and RP2i2=positive-positive.

To estimate RP3i1 and RP3i2, we simply take the previous features of RP2i1 and
RP1i2 and append, if exists, the polarity reversing connective, such as although, which
is a connective that flips the polarity [48]. Specifically, If a polarity reversing connec-
tive exists we simply take RP2i1 and RP2I2 and append the connective. For instance,
RP3i1 = RP2i1 + connective, RP3i2 = RP2i2 + connective. Furthermore, we enhance
the polarity features by creating an additional feature (RPTL) that shows the best pro-
noun target.To that end, we simply take the first two binary features (RP1i1, RP1i2), and
generate a new one (RPTL). If RP1i1 > RP1i2 then the value of RPTL equals 1, and,
otherwise, if the opposite exists, the value of RPTL equals 2. If we cannot determine
RP1i1 and RP1i2 then RPTL is set to -1.

6.12 Event-Polarity with OpinionFinder

This is a machine-based polarity that uses a sentiment-analyzer to resolve the definite
pronoun of a schema-half. As stated in other works [44,48], instead of using a heuristic
approach to estimate the polarity values, we use OpinionFinder [67], which is a machine
driven approach able to perform subjectivity analysis. With tools like OpinionFinder
we can easily annotate phrases with their contextual polarity values. To that end, we
compute the OpinionFinder polarity features in the same way we did with the rule-
based polarity features, and create seven features (OP1i1, OP1i2, OP2i1, OP2i2, OP3i1,
OP3i2, OPTL).

6.13 Event-Polarity with TextBlob

Given that our previous polarity features are based on similar approaches, namely, Wil-
son et al. subjectivity lexicon [68] and Wilson et al. OpinionFinder [67], here, we use
another, simpler polarity mechanism —called TextBlob-Polarity4. This is an NLP li-
brary that can process textual data and output, among others, the events’ polarity val-
ues. Specifically, with the TextBlob’s sentiment analysis we return the polarity of the
verb that governs the two candidates, and the polarity of the verb that governs the def-
inite pronoun. Finally, we create two features (TBSPOL, TBQPOL) that can be either
neutral, positive, or negative.

7 WinoReg: A Deep-Learning Approach

Within this approach we train WinoReg using deep learning (see Figure 3), which is an-
other increasingly popular method inspired by the biological brain [4,17,34]. As stated

4 https://textblob.readthedocs.io/en/dev/

https://textblob.readthedocs.io/en/dev/
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in the literature, deep learning can be seen as an extension of shallow Neural Network
models which have been around for many decades [53], albeit the term deep learning
with the current resurgence started in 2006 [4,56].

Techniques that incorporate deep learning have been steadily gaining in popularity
[4]. In this line of research, deep learning have won numerous contests, in pattern and
image recognition, and achieved promising results on different NLP tasks [17,53]. With
deep learning algorithms, machines could learn good representations of data to help
NLP tasks enormously. Specifically, deep learning seems to help in building constitu-
tionality into Machine Learning models, just like human languages do to give meaning
to complex ideas [56]. We can say that humans develop representations to enable learn-
ing and reasoning to achieve multiple tasks at hand like tackling the WSC, which indi-
rectly relates with the schema hardness. In this regard, here, we train WinoReg within a
Deep-Learning approach that is able to estimate the perceived human hardness indexes
of Winograd schemas (see Figure 3).

Fig. 3: WinoReg’s Architecture based on Deep-Learning: Given a Winograd schema WinoReg
outputs the perceived human hardness index.

7.1 Data Enhancement via Crowdsourcing

Although it is debatable [20], it is widely accepted that deep learning killed feature en-
gineering, which is time-consuming and brittle [56]. As stated in the literature, most of
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the time conventional ML techniques require considerable domain expertise for feature
engineering [34]. On the other hand with deep learning, the amount of skill required for
feature engineering reduces as the amount of training data increases [4].

According to the literature, most approaches today that incorporate deep learning,
succeed because we can provide them with the necessary resources, as it is widely
accepted that to generalize better you have to do training on more data [4]. Additionally,
if we can provide deep learning with sufficient amount of data [34], it will also reduce
the generalization error / over-fitting [4].

In our case, the availability of training data is limited since we only have access on
143 schemas. In this regard, to increase Bender’s training data we run an experiment on
the MicroWorkers (MW) platform5, which offers a reliable solution for various fields
and research purposes [43]; Amazon Turk, which was used in Bender’s experiments,
was not available in our region. Below, we will explain how we designed and ran our
experiment along with our results.

7.1.1 Dataset: According to the literature, multiple well-known datasets exist [27,35,42,48,51,65].
Given that the original WSC286 dataset was used in Benders experiment, we designed
our experiment based on the Rahman & Ng’s dataset (DPR). The main difference be-
tween the two datasets is the absence of questions in Rahman & Ng’s schemas —it only
contains the definite pronoun. To match Bender’s experiment we manually developed
and added the necessary questions in all of the schemas. For the sake of simplicity, in
our questionnaire, we use only the first half of each schema.

7.1.2 Materials: For the design of the questionnaire we used LimeSurvey software
from our lab server 6. All materials used in the experiment, including the schema halves
used, are available online7.

7.1.3 Participants: The questionnaire started in April 2020 and ran for two months.
According to our results, a total of 306 participants from English speaking countries
attempted and finished the task. Out of 429 participants who initially attempted the
task, 115 did not finish —the participants selected at least one answer but left before
they completed the task. Furthermore, eight participants did not pass the testing phase
(see 7.1.4). The total cost of our campaign was $322. In the end, every schema half was
answered by at least 30 participants.

7.1.4 Design: We built the questionnaire and posted the link on the Microworkers
platform. A total of 943 schema halves were included, where, each half was displayed
on a single screen. Each schema-half’s sentence was displayed at the top, followed by
the question, and the two possible answers that were displayed alongside (see Figure
4). Additionally, their was a comment section for participants to offer any comments

5 https://www.microworkers.com
6 http://limesurvey.org
7 https://github.com/NicosCg/wsc-experiment

https://www.microworkers.com
http://limesurvey.org
https://github.com/NicosCg/wsc-experiment
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Fig. 4: Screenshot of experiment window.

they might have. All of the participants were informed that once the survey started, they
could not change a submitted answer. Compared to Bender, our workers were not given
an immediate feedback (correct or incorrect) after each trial, nor, by extension access
on their updated score.

Our questionnaire consisted of 10 sections that ran independently. Each section
included 100 unique schema-halves except for the tenth, which included the last 43
schemas of the dataset. Each participant was allocated only one position, meaning that
they were allowed to participate in only one section.

Before taking the survey, each participant had to read a consent form to agree to
participate. Next, they had to select their age, their English language literacy level, and
pass a training phase to get familiarized with the task; in the training phase immediate
feedback (correct/incorrect) was given to the participants. Ostensibly, instructions were
given as a warning not to sacrifice accuracy for speed.

To avoid problems related to cheating we also included a number of test questions
that were randomly displayed among the other schemas. As dealing with cheating in
crowdsourcing platforms is a major challenge [27], test questions were used to verify
if a given worker indeed holds a particular skill [11,22]. Via an adaptive interjection of
test questions at any time in any given place we aimed on the selection of the answers
of really motivated participants. In this regard, in the end we selected only the answers
of participants who scored at least 70% on the test questions. Note that all participants
were a priori informed about the test question mechanism.

The testing phase consisted of 10 schema halves that were designed specifically
to select, in the end, the answers of the best participants. According to Bender, a lot
of schemas suffer from ambiguity, meaning that it is difficult even from humans to
answer them [2]; this is related to the fact that the design of schemas is too difficult
and troublesome [42]. In this regard, the testing questions were designed in a way to
directly show the correct pronoun antecedent (correct answer), without ambiguities.
For instance, Sentence: Jane sings better than Susan because she is a professional.
Question: Who is a professional? Answers: Jane, Susan. Correct Answer: Jane.
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Fig. 5: Questionnaire results: Distribution of scores.

7.1.5 Results: Based on the results, participants scored a mean accuracy of 91%
(σ = 0.14), taking an average of 17.9 (σ = 1.09) seconds to answer every schema-half
(see Figure 5). Our experimental results are in line with Bender’s results [2], meaning
that the human adults can tackle the WSC with a mean of 91-92%. The evidence we
found supports Bender’s results, meaning that this could serve as a baseline for human
adult performance on the WSC. Furthermore, our results show that the two datasets do
not differ significantly. Specifically, in Bender’s work it was noted that the majority of
Rahman and Ng’s seems to be easy Winograd schemas. On the other hand, our results
do not seem to confirm their observation. In fact, it seems that the hardness indexes of
the two datasets are similar, meaning that human adults make the same effort to solve
them, although the majority of the resend work in the literature believed that the DPR
dataset is easier than the original dataset [32]; This is in line with a recent work were
it was shown that humans almost need the same effort to tackle schemas from the two
challenges (96.5% for the original WSC dataset and 95.2% for the DPR dataset) [51]
8. On the other hand, this does not seem to be the case the machines, as it seems that
they can tackle the DPR dataset with bigger success with a mean of 85% compared
to the WSC267 dataset where they score a mean of 71% [51]; maybe this is due the
fact that the DPR challenge instead of questions includes only the definite pronouns
which makes the resolution to the machines easier to resolve, whilst on the other hand,
the WSC dataset is more closely to a question answering challenge that might require
bigger effort for machines to tackle it.

8 See Table 6 on the relevant paper.
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7.2 Fine-tuned dataset

To get more data for our Deep-Learning approach we took the 943 schema halves of
the Rahman & Ng’s dataset and added them to Bender’s dataset along with their hard-
ness indexes. To avoid having unbalanced data between the two datasets —943 schema
halves of the Rahman & Ng’s dataset over 286 schema halves of the original WSC
dataset—, through oversampling, we increased the number of observations of the origi-
nal dataset; these were copies of the existing schema halves, excluding the 100 schemas
used for testing purposes. The whole process resulted in 1872 schema halves, which
were used for training and testing purposes.

7.3 WinoReg’s Deep-Learning Architecture

WinoReg’s deep-learning architecture is based on LSTM networks (see Figure 3), an
updated version of RNNs that are capable of learning long-term dependencies [23];
Specifically, LSTM networks may be also interpreted as something similar to a com-
puter memory [60]. As stated in the literature, LSTM neural networks perform really
well in the field of language modeling (LM) [60] which can be used to solve various
NLP tasks [31]. A language model is an essential model that captures how meaningful
sentences can be constructed from individual words, which, in our case, seems to relate
to the hardness of schemas. In the absence of features, with LSTM networks WinoReg
can learn the joint probability function of sequences of words in a given sentence [3],
and at the same time, take into account all of the predecessor words [59,60] to output
the perceived human hardness index of any given schema.

Within this approach, WinoReg splits each examined schema-half to select the sen-
tence, as this is the only input-value that is needed for our LSTM-based approach (see
Figure 3). Next, it parses the examined sentence via spaCy dependency parser to re-
move the stop-words, since they often occur in abundance. Then, for every word in the
sentence it returns its lemmatization as a way to determine possible relations between
common-words. The final step is to feed the parsed sentence into the model to retrieve
its hardness index.

8 Experimental Evaluation

In this section, we present our results by applying the methodology described in this
paper. In this regard, we undertook several experiments to investigate if WinoReg can be
used to automatically differentiate between Winograd schemas based on their perceived
hardness for humans. We start by presenting WinoReg results based on the Random-
Forest approach and continue with the LSTM-based approach. Both experiments ran
on a laptop-computer (MacBook Pro 2018) with 2.2 GHz 6-Core Intel Core i7 CPU,
16GB’s RAM, Radeon Pro 555X GPU with 4GB of GDDR5.

8.1 Random-Forest Approach

Here, by using the data from Bender’s study [2], we examine whether the performance
of the Random-Forest approach can be predictive of the hardness of the WSC instances
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for humans. The results are reported on the testing set, which comprises 30% of the
original WSC dataset (286 schema halves), expressed in terms of accuracy and correla-
tion coefficient. For comparison purposes, the testing set is identical to the one that was
used in our first work [25]. According to Bender’s results, the human adult bar on the
testing set (100 schemas halves) is 91%.

System Correlation Coefficient Accuracy

Fixed Baseline -1 90.87
Wikisense-based 0.22 77

WinoReg-RF 0.33 91.64
Table 1: Results of the Fixed Baseline, the Wikisense-based hardness, and WinoReg, which was
trained based on the Random-Forest approach.
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Fig. 6: Variability of WinoReg and Wikisense-based hardness-index across the 57 WSC instances
on which the Wikisense-based approach originally was computed (in relation to the variability of
the human hardness-index).

8.1.1 Results and Discussion

The fixed baseline: For comparison purposes, we trained our Random Forest algo-
rithm with only one feature, which is the human adult bar of 91% and, like in our first
work we tested it on the first 100 schema halves. Not surprisingly, our results show an
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Fig. 7: Variability of the WinoReg hardness-index and the perceived human hardness-index across
our testing set (100 schema halves). WinoReg is trained based on the Random-Forest approach.

achievement of 90.87%, but with a Correlation Coefficient with the adults results, of -1
(see Table 1).

Wikisense-based Hardness: Recall that the Wikisense-based hardness is able to return
results only for 57% of the examined schemas with a correlation coefficient of 38%
[25]. It seems that Wikisense, the engine behind the system, was unable to output the
necessary keywords to search the Wikipedia corpus. Given that the human adult bar on
our testing set is 91% (for the unresolved schemas), we can assume that Wikisense-
based achieves an accuracy of 77% on all of the remain schemas, with a correlation
coefficient of 22% (see Fig. 6).

WinoReg: The general picture emerging from the analysis is that WinoReg can achieve
an accuracy of 91.64%, significantly outperforming the Wikisense-based approach by
14.64% in accuracy and by 11% in correlation coefficient (see Fig. 7). To make a better
comparison between WinoReg and Wikisense-based approach, we compared the two
methods only on the 57 schema halves the Wikisense-based system was able to resolve.
In this regard, the correlation coefficient of WinoReg and humans rises to 47%, which
is 9 percentage points bigger than what the Wikisense-based system was able to achieve
(38%).

Taken altogether, the data presented here provide evidence that the performance of
WinoReg, which is based on the random forest algorithm, varies across WSC instances
in a manner that resembles the variability of the human performance more closely than
what previous systems could achieve. This can be seen in both Fig. 6 and Fig. 7 that
depict how the computed hardness index and the human hardness index vary across
WSC instances, suggesting that indeed, certain WSC instances that are easier or harder
for humans are accordingly labeled as such by WinoReg.
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8.1.2 Speed Analysis
Given that the hardness index plays an important role in the quality of the developed
schemas and that there are crowdsourcing and machine driven approaches that already
leverage the Wikisense-based hardness mechanism [27], it is crucial to have access to
the hardness index without delays. In this regard, we performed a speed analysis to
show how fast WinoReg can provide us with the hardness index of Winograd schema-
halves. Compared to the Wikisense-based approach, which requires on average 8 hours
for every schema half, it was found that WinoReg can return the hardness index of a
schema half, on average, in 1.6 minutes; this is the time needed for the estimation of
the required features that are fed to the Random-Forest model. The results ultimately
show that WinoReg can deliver the hardness index of schemas 300 times faster than the
Wikisense-based approach.

8.1.3 Feature Analysis

Fig. 8: Results of feature decrement experiments. We can see the performance of the model
trained on all types of features except for the one shown in that row.

Here, we present the results that were obtained from an analysis of the features
used to train our Random Forest model. Consequently, as shown in Fig. 8, where each
element on the Y axis presents the performance of WinoReg trained on all types of fea-
tures except for the one shown, the correlation coefficient drops significantly whichever
feature is removed. In this regard, the results provide evidence of the importance of all
feature types.

The results show that the Number-of-Words, the Discourse-Connective-Relations,
the Sentence-Pattern, the TextBlob-Polarity, and the Word-Relations are the most im-
portant features. This is in line with previous studies, where it was shown that features
like the sentence length, sentence pattern and word relations play an important role on
both the quality of the schemas and the tackle of the challenge [27,28,48].

Regarding the TextBlob-Polarity, our results show that it is better in capturing the
polarity context than the other polarity features, which was unexpected as it is not com-
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monly used in the literature. Regarding the OpinionFinder previous works have stated,
that this might happen because it was trained on a completely different training set [48].

Contrary to our expectations, and unlike what other studies have mentioned [48],
Search-Engine-based features are not among the most useful features. We believe that
this might have happened because of changes in the Google search algorithm, which
might have led to different results. Additionally, contrary to other works [9], it seems
that ConceptNet-Relations is not among the most useful features. Maybe its similarity
factor cannot easily capture the semantics of each sentence. Lastly, it seems that the
Negation-Feature is among the features that offer the least, which might be attributed
to the fact that our dependency parser was able to determine if negation exists in only
41% of the schema halves.

8.2 LSTM-based Approach

In this section, we present our results by applying the LSTM-based approach described
in the previous sections. Within our experiments, we examine whether this a priori ap-
propriateness of the LSTM-based approach can be predictive of the hardness of the
WSC instances for humans. The results are expressed in terms of accuracy and correla-
tion coefficient. For comparison purposes, the testing set is identical to the one used in
both the Random Forest and the Wikisense-based approach.

The optimal values for hyper-parameters used, which are vital to enhancing the
training result of a neural network model [33], were determined through trial-and-error.
To build and train our model, we used the Keras functional API [18]. Our model was
compiled with the “Adamax” optimizer and the “mean absolute error” loss function to
compute the mean of the absolute difference between labels and predictions. In this
regard, the regression loss function represents the measure of success for the task at
hand to predict the hardness-index of any schema half.

We started with the Sequential model API, where model layers were created and
added to it. Initially, we added an embedding layer to associate vectors with words. In
this regard, we considered all the words in our dataset (input dim= 3648), with a maxi-
mum of each half’s sentence of 50 words (output dim=50). Next, we added our LSTM
layer, consisting of eighty-seven units (neurons), and, to prevent overfitting, we used
a dropout layer (0.2) to ignore randomly selected neurons during the training process.
Additionally, we used a recurrent dropout of 0.2 to mask the connections between the
recurrent units. Finally, we added a single unit layer to reduce our LSTM network’s
shape to match our desire output (hardness score prediction).

We have also examined transfer-learning to train our model with better general-
ization properties. As stated in the literature, several transfer-learning methods signifi-
cantly improved a wide range of NLP tasks [49]. To improve the accuracy of our model,
we have tested two well-known datasets, Glove (glove.6B.50d to glove.6B.300d) [45],
and fastText (cc.en.300.vec) [29], albeit without any success. As stated in the literature,
this is something that might happen in natural language analysis tasks, maybe because
these kinds of pre-rained embeddings suffer from a paucity of data [47].

Finally, for our training and testing purposes, we split the dataset into a training and
a validation set (validation split=0.3; train on 1310 samples, validate on 562 samples)
and tested the resulting model on the testing dataset (100 samples).
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8.2.1 Results and Discussion

System MAE Correlation Coefficient Accuracy

Wikisense-based 23 0.22 77
WinoReg-RF 8.36 0.33 91.64

WinoReg-DL (LSTM-based) 0.673 0.39 93.27
Table 2: Results of the Fixed Baseline, the Wikisense-based hardness, and WinoReg based on
both the Random-Forest and the LSTM-based Approach.
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Fig. 9: Variability of the WinoReg hardness-index and the perceived human hardness-index across
our testing set (100 schema halves). WinoReg is trained based on the LSTM-based approach.

Our tests show that there is a positive correlation between WinoReg results and
the perceived human hardness-indexes, across the Winograd schemas (see Table 2).
Specifically, within the LSTM-based approach, WinoReg can achieve an accuracy of
93.27% with a correlation coefficient of 39%.

Compared to Wikisense-based approach, WinoReg, within the LSTM-based ap-
proach can achieve a higher correlation coefficient of 17%. Additionally, if we compare
the two systems on the 57% of the schemas the Wikisense-based approach was able to
solve, the correlation-coefficient difference rises to 10%, in favor of WinoReg (38% vs
48%).

As shown in Table 2, the LSTM-based approach has an advantage over the Random-
Forest approach. Our results highlighted that WinoReg results correlate better to human
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Fig. 10: Variability of WinoReg approaches, in relation to the perceived human hardness-index
across our testing set (100 schema halves).

adult results in the case of LSTM-based than the Random-Forest approach. Specifically,
the former outperforms the latter by 2% in accuracy and 6% in correlation coefficient.
Additionally, the fact that the LSTM-based approach does not require feature engineer-
ing, offers it a compelling advantage over the Random-Forest approach.

The general picture emerging from the analysis is that the performance of WinoReg,
when trained based on the LSTM-based approach, varies across Winograd schemas
in a way that resembles the variability of the human performance more closely than
what other approaches could achieve (see Fig. 9). In this regard, certain WSC instances
that are easier or harder for humans are respectively identified as such by WinoReg.
Broadly speaking, both approaches have a compelling advantage over the Wikisense-
based approach. Specifically, further analysis we undertook showed that both WinoReg
approaches correlate positively with a correlation coefficient of 22%, suggesting that
schemas that are easier or harder for the Random-Forest approach are accordingly la-
beled as such by the LSTM-based approach (see Figure 10).

Speed Analysis: Recall that having access to schema hardness indexes is crucial for
both the quality of the schemas and the CAPTCHA service. In this regard, we per-
formed a speed analysis to identify how fast the Deep-Learning approach can provide
us with results. Our analysis revealed that within the LSTM-based approach WinoReg
can return results, on average, in 1.6 msec for any given schema, which means 60 thou-
sand times faster the Random Forest and 18 million times faster the Wikisense-based
approach. This means that WinoReg, within the LSTM-based approach, is able to return
results in real-time with no further delays.



26 N. Isaak and L. Michael

9 Related Work

The work presented here is not unrelated to a recent work, where we have demon-
strated the possibility of using crowdsourced workers for the development of Winograd
schemas [27]. WinoFlexi is an online collaboration platform where workers collaborate
with the help of various tools that enhance the schema development process. One of this
tools is the Wikisense-based approach, which indirectly helps workers develop schemas
of various hardness indexes, albeit with big delays. For instance, if the majority of the
developed schemas of a crowdworker are considered easy, WinoFlexi prompts them to
develop schemas that are harder to solve. Recall that this might lead to high develop-
ment costs because the WinoFlexi’s notification mechanism depends on the Wikisense-
based approach, which is time-consuming. In this regard, if we replace the Wikisense-
based approach with WinoReg, it will further reduce the schema development costs.
With WinoReg (DL), WinoFlexi will be able to access the hardness-indexes of schemas
in real-time.

In another work, which is relevant to the previous one [28], we have designed a sys-
tem that offers a full pipeline for automated or semi-automated design of schemas. At
the same time, it considerably helps humans in the schema development task. Evidence
from that study has shown that the developed system is able to automatically design
large amounts of schemas, albeit of lower quality to that developed by humans [27]. On
the other hand, it was shown that the system is able to considerably motivate and inspire
humans for the development of high-quality schemas. In this regard, WinoReg could be
used to help humans develop schemas of various hardness-indexes.

The first and only Winograd schema challenge was organized back in 2016, along
with the IJCAI 2016 conference. According to the organizers, the design of schemas
was found to be too troublesome and difficult to be handled at regular intervals for short
periods of time [42]. Through an experiment the organizers evaluated the hardness of
each examined schema (consisted of 89 problems with 9 subjects) which helped in the
organization of the challenge. Their results have shown a 91% of achievement which
is in line with ours and Bender’s results. They categorized their schemas according
to the number of the correct answers given by participants, which resembles the way
WinoReg works. In this regard, instead of using human participants, they could use
WinoReg mechanisms which could save them time and money —Although participants
were paid for their participation, the authors did not mention the amount payed.

In an earlier work we have demonstrated how Winograd schemas can form a novel
form of CAPTCHAs [26]. Specifically, by providing motivation for a detailed form of
WSC-based CAPTCHAs we have shown that this kind of CAPTCHAs are equally en-
tertaining and useful like the other form of CAPTCHAs. The WSC-based CAPTCHAs
are generated as the means to identify humans from bots, and at the same time to pre-
vent automated processes from performing illicit actions. WinoReg can contribute by
organizing schemas according to their perceived hardness for humans to be displayed
accordingly by the CAPTCHA service.

A plethora of works in the literature focused on the development of systems for
tackling the WSC. In this regard, Emami et al. [15] developed a rule-based system
that, by focusing on knowledge-hunting on the Web, was able to achieve better than
57% accuracy on the original WSC problem (WSC273). According to Kocijan et al.
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[32], this was the first approach to achieve better than chance accuracy. Based on well-
formed search engine queries, they search the WWW to extract knowledge that helps
them to identify the correct pronoun target of each schema half.

In a follow-up work, Emami et al. [16] introduced the KNOWREF Coreference
Task, which provides 8,724 difficult pronoun disambiguation problems extracted from
various sources (English Wikipedia, OpenSubtitles, and Reddit). According to the au-
thors, their dataset is more challenging to resolve than other similar datasets. This is
done by using various techniques to construct a human-labeled corpus of Winograd-
like text that targets systems’ ability to reason about a situation described in the context.
The authors show that training coreference models on KNOWREF improve their ability
to do better representations of the context, linked to reducing gender bias. In support
of their claim, experiments showed that state-or-the-art models rely on the gender or
number of candidate antecedents to make a decision.

Kocijan et al. [30] introduced a new dataset called WIKICREM, developed by
masking repeated occurrences of personal names. According to the authors, language
models, which are very promising for tackling the pronoun resolution challenge, when
pre-trained on an extensive collection of raw-text, can be easily fine-tuned on a spe-
cific task using much less training data. By introducing WIKICREM, which consists of
2.4 million quickly extended examples, Kocijan et al. address the lack of large training
sets, which could be used with language models. Basically, by finding passages of text
where a personal name appears at least twice, they mask one of its non-first occurrences.
Experiments show that fine-tuning the BERT [14] language model with WIKICREM
consistently improves the model (84.8 % accuracy on DPR and 71.8 on WSC273).

Trinh et al., [63], via an ensemble of LSTM language models, pre-trained on a large
corpus of text (LM-1-Billion, CommonCrawl6, SQuAD, and Gutenberg Books) tackled
the original WSC (WSC273) with an accuracy of 63.7%. Their approach, which was
one of the first to use a pre-trained language model [32], selected the best pronoun
target, which was the target that formed the best English sentence. In this regard, in
each schema half’s sentence, they substitute the pronoun with the candidates and then
use Language Model to estimate the two sentences’ probability.

Sakaguchi et al., [51] tested if recent advances in neural Language Models, which
reportedly reached around 90% accuracy in WSC-like instances, have acquired com-
monsense capabilities or they rely on spurious biases found in the training datasets. In
this regard, they developed a sizeable WSC-like dataset (WinoGrande), which consists
of 44 thousand examples, collected via crowdsourcing on Amazon Mechanical Turk. To
help workers develop non-identical schemas, they primed them with a randomly cho-
sen topic from a WikiHow article [32]. They also filtered-out a smaller de-biased dataset
(called WinoGrande-debiased), which consists of 12,282 instances. In this regard, based
on a fine-tuned RoBERTa (Robustly Optimized BERT-Pretraining Approach) language
model [40], they gained contextualized embeddings for each instance. Next, they used
those embeddings to discard the top instances that were correctly resolved by more than
75% of the classifiers trained on the embeddings. According to their results, when train-
ing on the WinoGrande dataset, RoBERTa, which is trained initially on a vast dataset of
over 160GB of uncompressed text, achieves new state-of-the-art results on the original
WSC (90.1%). WinoGrande has its lowest-achieved rate of 85% on the KNOWREF
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dataset. Although this shows the strength of the WinoGrande dataset when used as a
resource for transfer-learning, it also raises the concern that they are likely to be over-
estimating the true capabilities of machine commonsense [51]. According to Lin et al.
[37] despite careful controls, the WinoGrande challenge might contain incidental biases
that these more sophisticated models can exploit.

Regarding biases in corpora, Webster et al. [66] argued that existing corpora do
not capture ambiguous pronouns meaning that they are mostly based on gender bias
to tackle coreference resolution problems. For instance, in experiments, they found out
that gender bias in existing corpora favors masculine entities. According to the authors,
Winograd schemas are closely related to their work as they contain ambiguous pro-
nouns. To address issues related to gender bias, they developed a corpus (GAP) that
consists of about 8,908 ambiguous pronoun–name pairs derived from Wikipedia (de-
velopment and testing set of 4,000 examples, and 908 examples for parameter tuning).
Coreference resolvers trained and tested on GAP were found to struggle, showing that
ambiguous pronoun resolution remains a challenge.

According to Brown et al. [8] few-shot learning is an advantageous technique in
machine learning when there is a very small amount of data available. In this regard,
in recent research, which incorporates GPT-3, a vast language model with over 175
billion parameters, they test if it is possible to tackle various NLP challenges like the
WSC. Specifically, they examine three kinds of training: i) zero-shot, which means that
GPT-3 is given only the description of the challenge with zero examples of the task; ii)
one-shot, which means that along with the description of the task at hand, the model
is given only one example of the challenge; iii) few-shot, which means that the model
sees few examples of the challenge. Regarding the WSC, GPT-3 is tested on the original
set (WSC 273), where it achieves 88.3%, 89.7%, and 88.6% in the zero-shot, one-shot,
and few-shot settings; On the WinoGrande dataset, the model achieves 70.2%, 73.2 %,
and 77.7% in the zero-shot, one-shot, and few-shot settings. On the other hand, further
analysis they performed showed that 45% of the Winograd schemas were presented in
the data used for the training of GPT-3 (Common Crawl + several curated high-quality
datasets), which led to a 2.6% decrease in performance on the clean subset.

Lin et al.[37], via a T5 encoder-decoder model, which is trained based on the
Common-Crawl-based data, tackled the WinoGrande dataset with an accuracy of 77%.
According to the authors, encoder-decoder models can tackle, among others, compre-
hension and text generation tasks. For fine-tuning purposes, each example is split in
half to end-up with a two-statement problem (called the source). Each statement con-
tains the hypothesis and the premise, referring to either the first or the second candidate.
Finally, the correct statement is labeled with the entailment label while the other with
contradiction. At inference (test) time, each schema is decomposed the same as in the
fine-tuning phase.

10 Conclusion and Future Work

This paper has investigated the possibility of building a system that can output the
perceived human hardness-index of any Winograd schema in the shortest time possible.
Our results have shown that this is possible via the training of a system that is based on
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two different approaches, namely, the Random-Forest and the Deep-Learning (LSTM-
based) approach. We have provided evidence of that by comparing WinoReg results
with two studies, one from the literature [2] and one that we designed and undertook.
Results have shown that WinoReg results correlate positively with human results. In
particular, results have shown that with the Random-Forest approach we can achieve
91.64% of accuracy with 33% correlation coefficient, whereas with the Deep-Learning
approach 93.27% of accuracy with 39% correlation coefficient. Even though the results
of the two approaches seem close, the strong benefit of the Deep-Learning approach lies
in the response time of the model, which is 60 thousand times faster than the Random-
Forest model.

WinoReg can be used by researchers or challenge organizers to group schemas in
terms of their perceived human hardness indexes. Specifically, WinoReg can be used by
CAPTCHA organizers to ensure that the generated schemas are not overly demanding
for human users. Additionally, WinoReg can be used in systems that pursue the devel-
opment of Winograd schemas from scratch, like in [27,28], to ensure that a variety of
schemas would be developed. We suggest that future studies should examine the im-
pact of systems like WinoReg in other AI fields. For instance, in the field of machine
translation, systems like WinoReg could be used to identify sentences that are harder to
translate, in order to acquire better feedback from people. In this regard, WinoReg can
help with the problem many translation services face, of where to focus their attention
to make end-users aware of the quality [57].
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