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Abstract

In this paper, we present a first-order and a propositional logic for reasoning about degrees of confirmation. We define the
appropriate formal languages and describe the corresponding classes of models. We provide infinitary axiomatizations for
both logics and we prove that the axiomatizations are sound and strongly complete. We also show that our propositional logic
is decidable. For some restrictions of the logics, we provide finitary axiomatic systems.
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1 Introduction

In the past several decades, different tools have been developed for representing and reasoning
with uncertain knowledge, including probability as a dominant representation of uncertainty. One
particular line of research concerns the formalization in terms of probabilistic logic. The modern
development in this field started with Keisler’s seminal work on probabilistic quantifiers [24]. After
Nilsson [27] rediscovered Boole’s procedure for probabilistic entailment which, given probabilities
of premises, calculates bounds on the probabilities of the conclusion, researchers from the areas of
logic, computer science and artificial intelligence started investigations about formal systems for
probabilistic reasoning and provided several languages, axiomatizations and decision procedures
for various probabilistic logics [2, 5, 11, 13, 14, 16, 1820, 22, 28, 29]. Those logics extend the
classical (propositional or first-order) calculus with expressions that speak about probability, while
formulas remain true or false. They allow one to formalize statements of the form ‘the probability
of « is at least a half.” The corresponding probability operators behave like modal operators and

I This paper is a revised and extended version of the conference paper [4] presented at the Third International Conference
on Logic and Argumentation, in which we introduced a propositional logic for reasoning about degrees of confirmation, where
nesting of the probabilistic and confirmation operators is not allowed. In this work, we develop an extension of the logic from
[4] by allowing iterations of the operators and we axiomatize the logic using a similar technique as in [4]. However, the proof
of decidability is completely different from the corresponding proof form [4]. In addition, in this work, we also present a
first-order variant of the logic and the variants of the logic with finite ranges of probabilities, for which we propose finitary
axiomatizations.
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2190 Logics for reasoning about degrees of confirmation

the corresponding semantics consists of special types of Kripke models, with accessibility relations
replaced with probability measures defined over the worlds.

This paper contributes to the field by proposing a logical formalization of the Bayesian measure
of confirmation (or evidential support). Although contemporary Bayesian confirmation theorists
investigated degrees of confirmation developing a variety of different probability-based measures,
that field attracted little attention from the logical side, probably because of the complexity of a
potential formal language that would be adequate to capture those measures. In Carnap’s [3] book,
one of the main tasks is ‘the explication of certain concepts which are connected with the scientific
procedure of confirming or disconfirming hypotheses with the help of observations and which we
therefore will briefly call concepts of confirmation’. Carnap distinguished three different semantical
concepts of confirmation: the classificatory concept (‘a hypothesis 4 is confirmed by an evidence
B’), the comparative concept (‘4 is confirmed by B at least as strongly as C is confirmed by D’) and
the quantitative concept of confirmation. The third one, one of the basic concepts of inductive logic,
is formalized by a numerical function ¢ which maps pairs of sentences to the reals, where c¢(4, B) is
the degree of confirmation of the hypothesis 4 on the basis of the evidence B.

Bayesian epistemology proposes various candidate functions for measuring the degree of confir-
mation c¢(4, B), defined in terms of subjective probability. They all agree in the following qualitative
way: c(4,B) > 0 iff the posterior probability of 4 on the evidence B is greater than the prior
probability of 4 (i.e. u(4|B) > p(4)), which correspond to the classificatory concept (‘4 is
confirmed by B’) [15]. Up to now, only the classificatory concept of confirmation is logically
formalized, in our previous work [7].

In this paper, we formalize the quantitative concept of confirmation, first within a propositional
logical framework LPP?Onf and then using its first-order extension LFOP?OHf. We focus on the most
standard” measure of degree of confirmation, called difference measure:

c(4,B) = n(4|B) — u(4).

Our formal languages extend classical (propositional/first-order) logic with the unary probabilistic
operators of the form P>, (Ps,« reads ‘the probability of « is at least 7’), where » ranges over the
set of rational numbers from the unit interval [28], and the binary operators c¢>, and c<,, which
we semantically interpret using the difference measure. The corresponding semantics consists of a
special type of Kripke models, with probability measures defined over the worlds.

Our main results are sound and strongly complete (every consistent set of formulas is satisfiable)
axiomatizations for the logics. We prove completeness using a modification of Henkin’s construc-
tion. Since the logics are not compact, in order to obtain the strong variant of completeness, we use
infinitary inference rules. From the technical point of view, we modify some of our earlier methods
presented in [8—10, 26, 30, 32, 34]. We point out that our formal languages are countable and all
formulas are finite, while only proofs are allowed to be infinite. However, for some restrictions of
the logics, we provide finitary axiomatic systems. We also prove that our propositional logic LPP?Onf
is decidable, combining the method of filtration [23] and a reduction to a system of inequalities.

Many measures of confirmation have been proposed over the years. We point out that it is
not our intention to pick sides among them. We simply chose the difference measure because of
its popularity. However, we discuss in Section 10 that our axiomatization technique can be easily
modified to incorporate other measures of confirmation.

2According to Eells and Fitelson [12].
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The structure of this paper is as follows. In Section 2, we recall some basic notions of probability.
In Section 3, we present the syntax and semantics of our propositional logic LPPT‘mf in detail. In
Section 4, we propose an axiomatization for LPP?"Ilf and we prove its soundness. In Section 5,
we prove that the axiomatization is strongly complete with respect to the proposed semantics. In
Section 6, we show that the satisfiability problem for LPP‘I’Onf is decidable. In Section 7, we present
the first-order extension LFOPT"“‘C of our logic LPP‘fO“f, but we do not go into the details. In
Section 8, we discuss the cases where the probabilities are restricted to a finite set and we propose
finitary strongly complete axiomatizations for those logics. We conclude in Section 9.

2 Preliminaries

Let us introduce some basic probabilistic notions that will be used in this paper.
For a non-empty set W # @, we say that H € 2" is an algebra of subsets of W, if the following
conditions hold:

1. WeH,
2. ifA € H,then W\ A € H; and
3. ifA,Be H,then4UB € H.

For a given algebra H of subsets of W, a function u : H — [0, 1] is a finitely additive probability
measure, if it satisfies the following properties:

LouW) =1,
2. w(AUB) = u(Ad) + n(B), whenever A N B = (.
For W, H and p described above, the triple (W, H, u) is called a finitely additive probability

space. The elements of H are called measurable sets.
For a probability measure u, the conditional probability is defined in the following way:

u(4nB) B 0
,u(A|B)= #(B)" M( )>
undefined, w(B) = 0.

As we mentioned in the introduction, several functions for measuring the degree of confirmation,
based on probabilities, are proposed in the literature (see, e.g. [33]). In this paper, we focus on the
difference measure. For a given probability measure p, the difference measure is defined in [12] as

c(4,B) = n(4|B) — ju(4),

where the value c(4, B) represents the degree of confirmation of the hypothesis A on the basis of
evidence B. Note that according to the definition of conditional probability c¢(4, B) is not defined
when p©(B) = 0.

It easy to see that if u(A4|B) > u(4), then c¢(4, B) > 0 and we say that B confirms A. If u(4|B) <
(A), then c(4, B) < 0 and we say that B disconfirms A. Finally, if u(4|B) = u(4), thenc(4,B) =0
and we say that 4 and B are independent.

In this paper, we always interpret the degree of confirmation as the value based on the difference
measure. However, in the conclusion, we discuss how our results can be adapted to other measures
of confirmation.
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EXAMPLE 2.1

Consider a family that usually spends Sundays in picnics, going on picnics 9 out of 10 Sundays,
but in the case of rain, they go once in 10 times. The probabilities are w(Picnic) = 0.9 and
W (Picnic|Rain) = 0.1. Then, we can calculate

c(Picnic, Rain) = u(Picnic|Rain) — u(Picnic) = —0.8.
In this case, we can see that the evidence Rain disconfirms the hypotheses Picnic with degree —0.8.

Note that a probability measure u does not assign a probability to all subsets of # but only to the
subsets that belong to H. One way of assigning a value to every set is by considering two functions
induced by u: the inner measure ., and the outer measure w*. They are defined as

pi(4) = sup{u(B) | BC 4, B € H}, n*(4) =inf{u(B) |4 C B, B € H},

where 4 is a subset of /¥ and inf and sup denote the infimum and supremum functions, respectively.
It is easy to see that p, and u* coincide on measurable sets, i.e. if 4 is a from H, then u(4) =
Wi (A) = pw*(4).

3 The logic LPP$*™: syntax and semantics

In this section, we introduce the set of formulas of the logic? LPP?Onf and the class of semantical
structures in which those formulas are evaluated.

3.1 Syntax

LetP = {p,q,r, ...} beadenumerable set of propositional letters. Let O denote the set of all rational
numbers. For given rational numbers a and b such that a < b, let [a, b]p denote the set [a,b] N O.
The language of the logic LPP?"nf is built up from

the elements of the set P;

the classical propositional connectives — and A;

the list of unary probability operators of the form P, for every r € [0, 1]p;

the list of binary probability operators of the form c,, for every r € [—1, 1]p; and
the list of binary probability operators of the form c,, for every € [—-1, 1]p.

Note that we use conjunction and negation as primitive connectives. The other propositional
connectives, V, — and <>, are introduced as abbreviations, in the usual way.

DEFINITION 3.1 (LPPfO”f -Formula).

The set ForLPPm,;f of all formulas of the logic LP
1

. P C FOFLPPT{M/;
. ifa € ForLPP?m,f and r € [0, 1]p, then P,a € FOI"LPP?onf;

1
2
3. ifor and 8 are LPPionf-formulas and r € [—1, 1], then c>,(, B), c<,(at, B) € Fo
4

Pf‘mf is the smallest set such that

"Lppis

. ifa and B are LPPT()"f -formulas, then —a,a A 8 € ForL ppo -
1

3 As we will discuss later, our language extends the language of the logic LPP; [29], with adding confirmation operators
to the syntax. In LPPy, L stands for logic, P for propositional and the second P stands for probability. Following the notation
form [29], we used the index 1 to denote that the logic allows nesting of probability operators.
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We denote arbitrary formulas by «, 8, y, ..., possibly with subscripts.

Intuitively, P>,o means that the probability that « is true is greater or equal to », while ¢>,(«, B)
(c<(a, B)) means that the formula 8 confirms the formula o with the degree at least » (at most 7,
respectively). As we pointed out in the introduction, we focus on the most standard measure of degree
of confirmation, difference measure, so the interpretation of the formula c>,(c, 8) is ‘conditional
probability of « given B minus probability of «’. The operators P>, are the standard probability
operators [29] and the language of the logic LPP‘I’Omc can be seen as an extension of the language of
LPPq logic [29] with two types of binary confirmation operators, ¢, and c<,.

The other types of probabilistic operators are defined as follows: P, is —Ps,o, P<.a is
P>1_,—a, Psrois 7 P<.o and P—,« is P>, AP<,.a. We use the following abbreviations to introduce
other types of confirmation operators:

o C:r(aa IB) is ch(aa :3) A CSV(“; ﬁ)a
e - (a,B)is csr(a, B) A —c<r(e, B) and
o cor(a, B) is < (@, B) A —c=r(@, B).

Also, following the usual convention, we denote & A —« by L and o V —a by T.
One might think that c.,(«, 8) could be defined simply as —c>,(«, ), in an analogous way as
P_; is introduced. However, we will see later that this does not hold under our satisfiability relation.
The following example illustrates the meaning of a confirmation operator.

EXAMPLE 3.2 (Continued).
The situation when the evidence Rain disconfirms the hypotheses Picnic with the degree —0.8 might
be represented by the formula

c<—08(, 1),

where the propositional letter p stands for Picnic and r for Rain.

3.2 Semantics of LPP‘%Onf

Now, we introduce the semantics of our logic LPP?"nf. We start by recalling the standard probability
structure (Definition 3.3) for probabilistic logic [28]. Nevertheless, that is just a first step, since eval-
uation of the formulas from FOVLPP?onf imposes additional measurability constraints specific for this

logic. For that reason, we introduce the concept of LPPﬁonf-measurable structure (Definition 3.6).
In the following sections, we will prove strong completeness theorem with respect to the class of
LPPfonf-measurable structures.

DEFINITION 3.3 (LPP1-Structure [28]).
An LPP-structure is a tuple (W, Prob,v) where

1. W is a non-empty set of objects called worids;

2. v: W x P — {true, false} assigns to each world w € W a two-valued evaluation v(w, -) of
propositional letters;

3. Prob(w) = (W(w), H(w), u(w)) is a triple where

e W (w) is a non-empty subset of ¥,
e H(w) is an algebra of subsets of W (w),
e u(w): H(w) —> [0, 1] is a finitely additive measure.
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2194  Logics for reasoning about degrees of confirmation

Thus, this semantics of probability logic uses possible world structures, with a valuation assigned
to each world. In standard modal logic, the truth of a formula is determined relative to a world
w and its truth value may depend on what is true at other accessible worlds, which is formalized
by choosing an accessibility relation. In our semantics, an accessibility relation is replaced with
probability measures defined over the worlds. This modification allows us to measure, from each
world w, probabilities of sets of worlds that are considered possible in w (i.e. they are within W (w)).

EXAMPLE 3.4
Let us consider a finite set of propositional letters A = {p, ¢, r} and the following structure M =
(W, Prob,v) such that

- W= {W’ Z M},

= Prob(w) = (W(w),H(w), u(w))

e W(w) =W,

e H(w) is the power set P(W);

e 1 (w) is characterized by u(w)({w}) = u(w)({t}) = %, uw)y{u}) = % (other values can
be easily calculated using the properties of the measure u(w) (@) = 0, u(w)({w, t}) = %‘,
nw)({(w,u}) = uw)({t,u}) = 2 and u(W)(W) = 1).

— Prob(t) = (W), H (1), (1))

o W(t)=W;

e H(?) is the power set P(W);

o u(f) is characterized by (D) ({w)) = w(®) () = g, nOU) = 3.
— Prob(u) = (W(u), H(u), u(u))

o W(u) =W,
e H(u) is the power set P(W);
o u(u) is characterized by w(@)((w}) = 3.1 @ (1) = 3, L@ ({u) = §.
- viw,p) = viw,q) = v(w,—r) = true, v(t,p) = v(t,—q) = v(t,r) = true and v(u,p) =
v(u,q) = v(u,r) = true.

Next, we define what does it mean that a formula is satisfied in a world of an LPP;-structure.
Intuitively, if we assume that satisfaction of a formula « is already determined in every world, then
P>, should hold in the world w if the set S of all worlds from W (w) in which « holds is such that
uw)(S) = r.

The problem with a direct formalization of this idea is that the set S might not be in H(w), in
which case we cannot apply the measure p(w). For that reason, we follow the approach of Fagin and
Halpern [13] and first define the satisfiability relation |= using inner and outer measures. Then, we
restrict our attention to the measurable structures, in which we know that formulas correspond to the
measurable sets of worlds.

DEFINITION 3.5
Let M be an LPPq-structure, and let w be some world from M. The satisfiability relation }= is defined
recursively as follows:
1. ifa € Pthen M,w E « iff v(iw, @) = true;
2. M,w k= Praif e w)(fw € Ww) | M,w' = a}) > 7
3. Mow = s, B) if w0 (W € W(w) | MW = B)) > 0 and Bigifedon el —
wrmw € Ww) | M,w' = a}) >
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4. M,w k= c<r(a, B) if pow) (W € W (w) | M,w = B)) > 0 and LCOEETmn el —
mx W)W € W(w) | MW = a}) <r;

5. Myw = —a iff M, w [~ «;

6. MiwkEaABiff M,wEoand M,w = 8.

In order to relax the notation, we denote by [ot]ys,.» the set of all worlds from W (w) in which «
holds, i.e.

[l = (W € W) | M, W' = o).

We write [o] instead of [ac]ar,,» when M and w are clear from the context.

DEFINITION 3.6 (LPPﬁonf—Measurable structure).
An LPP;-structure M is LPP‘{"“f-measurable iff [a],, € H(w) for every world w from M and every

formulaa € FO”LPP(I:onf. We denote the set of all LPPfo“f-measurable LPP-structures with LPP?"I{}[ZaS.

REMARK 3.7

Restriction to the class of measurable structures is a standard approach in the field of probabilistic
logic [14, 29]. Note that logics with different languages have different classes of measurable
structures. For example, the set S = [c>.(B,y)] is a measurable set in every world w of
every structure M € LPP?"’I{‘AfeaS. However, S is not necessarily a measurable set in an arbitrary
measurable structure of the logic LPP;, simply because cx,(8,y) is not a formula of that

logic.

In this paper, we focus on LPP?"nf-measurable structures and we prove completeness and
decidability results for this class of structures. Note that for the class of LPP‘l’onf-measurable
structures, we do not need inner and outer measures in the definition of |=. Indeed, since u, u*
and u, coincide on measurable sets, in Definition 3.5, we can replace Conditions 2—4 with

2% M,wE Ps,aifuw)y({w € Ww) | M,w' = a)) > r;

3* M,w = e (@, B) if u(w)({w € W(w) | M,w' = B}) > 0and uw)({w' € W(w) | M, =
af | (W e Ww) | M,w = BY) —uw)({w € Ww) | M,w Ea}) >,

4 M,w = c(a, B) if uw)({w € W(w) | M, = B}) > 0and u(w)({w' € W(w) | M, =
a} [ (W e Ww) | M,w = BY) — uw)({w' e W(w) | M,w E=a}) <r.

EXAMPLE 3.8 (Continued).
Let us consider satisfiability of the formulas

c<—02(pAg,r)and c<_o2(p A q,P>0.27)

in the world w of the model M.

First formula: we know that M, w = c<_o2(p Aq,r) if u(w)([r]w) > 0and u(wW)([p Aqlwl[rlw) —
uw)([p A glw) < —0.2.

For the world w, we have [r],, = {t,u}, soitis u(w)([rlw) = uw)({t,u}) = % > 0. Similarly,
we have that uW)([p A g A rlw) = pOV)({u)) = L and wOn)([p A glw) = pOw){w,u)) = 2. 1n
that case, we have L(W)([p A glwl[Flyw) — kWP A qlyw) = + — 3 = =15 < —0.2. So we get
M,w = c<—02(p Ng,1).
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2196 Logics for reasoning about degrees of confirmation

Second formula: we know that M,w = c<_02(@ A q,P=02r) if p(W)([P>02r]w) > 0 and
u)([p A qlwl[P=0271w) — W) ([p A glw) < —0.2.

It easy to check that [P>o2r]w = {w,t,u}, ie. u(W)([Pso02rlw) = 1. We get u(w)([p A
qlwl[P=02rTw) — uW) ([P A gly) = 3 — 3 =0 > —0.2. So, M, w = c<—02(p A g, P>0.27).

Using the definition of satisfiability relation and properties of reals, it is easy to obtain
satisfiability conditions for the other types of operators. For example,

4 M,w i cop(a, B) iff nw)([B]) > 0 and u(w)([]I[BD — pw)([a]) < 7.

Now, it is obvious that the operator c < is not equivalent to the ‘negation of ¢>’,1.e. M, w [~ c>,(a, B)
does not imply M, w = c.,.(«, B), the reason is that c([«], [8]) might simply be undefined in M (if
pW)([Blmw) = 0).

At the end of this section, we define some basic semantical notions. We start with the concept of
a model.

DEFINITION 3.9 (Model).

For an M = (W, Prob,v) € LPPT"I{};%, w € W and a set of formulas 7, we say that M, w is a model

. . . . f
(or pointed model) of T and write M,w = T, iff M,w |= « for every « € T. The set T is LPPT?ﬁeaS—

satisfiable, if there is M € LPPﬁoﬁfeas and a world w from M such that M, w = T. Formula « is valid
if =« is not satisfiable.

In Sections 4— 6, we simply say that a set is satisfiable when we refer to LPP‘{‘)]{‘,Ifeas—satisﬂablity, if

it is clear from context.
Now, we define the notion of semantical entailment.

DEFINITION 3.10 (Entailment).
We say that a set of formulas 7 entails a formula o and write T |= «, if for every M = (W, Prob,v) €

LPPSf and every w € W if M, w |= T, then M, w = a.

4 Axiomatization of LPP?Onf

In this section, we present an axiomatization of our logic, which we denote by Ax(LPPfonf). The
axiom system Ax(LPP?"nf) contains 10 axiom schemes and 5 inference rules. We implicitly assume
that all formulas respect Definition 3.1. For example, we consider only those instances of A9 and
A10 for which s(r +¢) < 1.

Axiom schemes:

(A1) All instances of classical propositional tautologies.

(A2) Poa

(A3) Pgra — Py wheneverr < s

(A4) P_,a — Pgo

(AS) (P> AP>sB AP>1(—aV —=B)) = Pspps(a vV B)

(A6) (Pgra AP_sB) = Popys(a Vv B)

(A7) csp(a,B) = P=oB

(A8) c=r(a,B) — P-oB

(A9) (P AP>sB Acxp(a, B)) = Poserin (@ A B)
(A10) (P<ia A P<sB A c<p(a, B)) = P<sirrn(a A B)
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Inference rules:

(R1) From {«,0 — B} infer 8.

(R2) From « infer Psja.

(R3) From the set of premises {y — Pzr_%a | ke N k> %} infer y — P>,a.
(R4) From the set of premises

{y = P=oB}Uly = (P A P=sf) = Pz (@ A B))It,s € [0, 1o}

infer y — c>,(a, B).
(R5) From the set of premises

v = P>oB} ULy = (P<i A P<sB) = P<sryn(@ A B)) | 1,5 € [0, 1]o}

infer y — c<,(a, B).

Let us briefly comment on the axiomatization Ax(LPPﬁonf). The axioms A1-A6 and the inference
rules R1-R3 form the axiom system for the logic LPP; [29]. The rule R3 is the so-called
Archimedean rule. It ensures that the ranges of probability measures do not take non-standard
values (in the sense of non-standard analysis). Intuitively, it claims that if the probability of « is
approximately close to r, then it must be r. The axioms A7 and A9, together with the rule R4
properly capture the third condition of Definition 3.5. Similarly, A8, A10 and R5 correspond to
the fourth condition of Definition 3.5.

The rules R3—RS5 are infinitary inference rules. The necessity of employing such rules comes form
the non-compactness phenomena. Indeed, it is known that in a real-valued probabilistic logic, there
exist unsatisfiable, but finitely satisfiable, sets of formulas. As pointed out in [36], one consequence
of that fact is that any finitary axiomatization would not be strongly complete.

Let us now define some basic notions of proof theory.

DEFINITION 4.1 (Theorem, proof).

A formula « is a theorem, denoted by Ax(LPPEO) s if there is a sequence of formulas «g, a1, . .., o)
(A is finite or countable ordinal), such that oy = « and every «;, i < A is an axiom, or it is derived
from the preceding formulas by an inference rule.

A formula o is deducible from a set T C ForLPP?onf (T + Ax(LPPOM) a) if there is a sequence of
formulas «g, @1, . . ., a; (X is finite or countable ordinal), such that o) = « and every «; is an axiom
or a formula from 7, or it is derived from the preceding formulas by an inference rule, with the
exception that the rule R2 can be applied to the theorems only. The sequence «g, @1, . . ., « is a proof’
of o from T.

We write | instead of - Ax(LPPSOM) when it is clear from context.

Note that the length of a proof is any countable successor ordinal. Let us illustrate this with a
simple example in which we apply the inference rule R3. If T = {y — P_,_1a |k € Nk > 2},

_§7
then we can enumerate the elements of T: g = y — P>oot, a1 =y — P_1_10, ..., 0y =y —

=273
Poi_1oa,...

=

2 nt2
If we denote by o, (Where w denotes the smallest infinite ordinal) the formula y — P_ 1, then
the infinite sequence

0, O,y v ey Oy ey Qg

220z Aenigad 20 UO JosN Jydauin 3ooulolqIqsIBNSIoAIuN AQ ZG6Z0629/68 12/8/1E/P10IME/W0060]/W0d"dno-olWwapeoe)/:SARY Wol) PapEojumMoq



2198 Logics for reasoning about degrees of confirmation

isaproofof y — P_ 1o from T (obtained by the application of R3). We can observe that the length
of that proof is the successor ordinal w + 1.

Note that if we would remove «, from the sequence, we would obtain the sequence
QQ,®],...,0,, ... of the length w, which is a limit ordinal. That sequence does not have the
last element and it is not considered a proof by Definition 4.1.

DEFINITION 4.2 (Consistency).
A set of formulas T is inconsistent if T = L, otherwise it is consistent.

T is a maximal consistent set (mcs) of formulas if it is consistent and every proper superset of T
is inconsistent.

At the end of this section, we show that the axiom system Ax(LPP?‘mf) is sound.

THEOREM 4.3 (Soundness).
The axiomatization Ax(LPP‘i’O“f) is sound with respect to the class of structures LPP‘{OI{‘,f;aS.

PROOF. We can show that every instance of any axiom scheme holds in every structure and that the
inference rules preserve the validity. Let us consider the axioms A7 and A9 and the rule RS. For A7,
assume that M € LPPf?ﬁfeas and w is a world of the model M, such that M,w = ¢>,(c, B). Then,
ww)([B]) > 0,s0 M,w = P~oB. Now, let us consider A9. Suppose that M, w |= (P>, A P=¢8) A
c>r(e, B). Then, u(w)([e]) = £, uW)([BD = s, u(WI([B] = 0 and (W) ([a]I[B]) —(W)([e]) = T,
iLe. uw)([aAB]) = uw)([B]) (r+ur(w)(«])). This means that u(w)([a AB]) > s(r+1). Therefore,
M,w = Pssgyn(a A B).

Now, let us consider RS. In order to show that it preserves validity, we will prove that whenever
premises of the rule hold in a world, then the conclusion also holds in the same world. Assume
that M,w = {y — P-oB}U{y — (P« A P<sB) — P<spin(a A B)) | t,s € [0,1]p}. If
M,w =y, wehave M,w =y — c<,(«, ). Now, suppose that M, w = y. Then, M,w = P~op,
ie uw)([B]) > 0,and M,w |= (P<jx A P<sB) — P<ypqn(a A B)) for all t,s € [0, 1]p. If the
numbers 7, s € [0, 1]p are such that# > u(w)([a]) and s > w(w)([B]), then M, w |= P<ja AP<sf, so
M,w = P<sgyn(@nB),ie. p(w)([aAB]) < s(r+1). Using the fact that rational numbers are dense
inreals, we conclude u(w)([a AB]) < W) ([BD (r+upw)([a]) i.e. uW)([]I[BD —nW) ([a]) < r.
Assuming that u(w)([8]) > 0, we have that M, w |= c<,(«, B). Thus, M, w =y — c< (o, ). O

5 Axiomatization issues

We start with the observation that the logic LPP?Onf is not compact. Indeed, let T be the set
{e=o(p, )} U {C<%(l?, q) | n €N},

where p and g are propositional letters. For every finite subset 77 of T, we have the largest £ € N

such that ¢_1 (p,q) € T'. It is easy to see that there is an LPP‘{OI{‘,IfeaS—measurable structure Mp =
k >

(W', Prob’,v') and w € W’ such that u(W')([¢q]) > 0, u(W)(plllg]) — LW)([p]) = klﬁ and
Mg, w = T'. However, there is no LPP‘ff’fdl;as—measurable structure M = (W, Prob,v) and w € W
such that M,w = T, since for every m > 0 if u(w)([¢]) > 0 and u(w)([pli[g]) — n(W)([p]) = m,
there is a £k € N such that % < mand M,w & c<%(p, @). If uw)([q]) > 0 and LW)(plllg]) —

uw)[p]) = 0, then M,w = c=o(p,q). If u(w)([g]) = 0, then T is not satisfiable. Thus, every
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finitary subset 77 of T is LPPf"I{}[};aS-satisfiable, but the set 7 itself is not. Therefore, compactness

theorem does not holds for LPP‘l"mf.

Since the logic is not compact, there is no finitary axiomatization which is strongly complete. In
the following section, we will employ infirnitary rules to obtain strong completeness.

An obvious alternative to an infinitary axiomatization is to develop a finitary system which would
be weakly complete (‘a formula is a theorem iff it is valid’). However, in order to formalize the
degrees of confirmation, such a logic would need to allow reasoning about linear combinations
of conditional probabilities. That task turned out to be very hard to accomplish. Faginer al. [14]
faced problems when they tried to represent conditional probabilities via a logical language with
polynomial weight formulas that allow products of terms, e.g.

w1 Ap2) - (Wp1) +wp2) = wpr) - wp2).

Note that the above formula represents the sentence ‘the conditional probability of p, given p;
plus the conditional probability of p; given p, is at least 1°. The authors observed that even for
obtaining the weak completeness additional expressiveness is needed. Thus, they introduced a first-
order language such that variables can appear in formulas. For example, (Vx) (3y)[B+x)w(p)w(y¥)+
2w(p V) > z] is a well-formed formula of that language. The corresponding axiom system contains
the standard first-order axiomatization and axioms for real closed fields.

As an alternative, the researchers from the field of probability logic use the infinitary approaches
[6] and fuzzy approaches [25]. Marchioni and Godo [25]consider the probability of a conditional
event of the form ‘o given B’ as the truth-value of the fuzzy proposition P(c«e|8) which is read as
‘P(x|p) is probable.’

In the case of first-order probability logics, the situation is even worse, since the set of valid
formulas of the considered logics is not recursively enumerable [1, 20]. As a consequence, no finitary
axiomatization, which would be even weakly complete, is possible.

6 Completeness of Ax(LPPﬁonf)

In this section, we show that the axiomatization Ax(LPP‘l"mf) is strongly complete for the logic
LPP‘{"nf, i.e. we prove that every consistent set of formulas has a model. Completeness is proved
in several steps, along the lines of Henkin construction. First, we prove that the deduction theorem
holds for Ax(LPPf"nf), using the implicative form of the infinitary rules. Then, we use the
deduction theorem to show that we can extend an arbitrary consistent set of formulas 7 to an
mcs (Lindenbaum’s theorem). The standard technique needs to be adapted in presence of infinitary
inference rules. Third, we use mcs to construct the canonical model. Finally, we show that the
canonical model is indeed a model of 7.

6.1 Lindenbaum's theorem

We start by showing that the Deduction theorem holds.

THEOREM 6.1 (Deduction theorem).
Let @ and 8 be formulas and T a set of formulas. Then,

TU{a}F BiffTHa — B.

PROOF. Here, we will consider the nontrivial direction—from left to right, i.e. 7 U {«} - 8 implies
T+ a — B.So, let us assume that 7 U {o} - B. We proceed by the length of the inference. Here,
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we only focus on the case when 8 is obtained either by R2 or by R4, while the cases of applications
of other infinitary rules can be handled in a similar way. Let us consider the case where 8 = P51’
is obtained from T U {«} by the rule R2. In that case, we have

TU{a} =B

TU{a} - P>18.
Since R2 can be applied to theorems only, we know that 8’ is a theorem. Therefore, P>1 8’ is a
theorem as well, so we have

F P>y pf

P21 = (@ = P2if)

Fa— P>

ThHoa— Ps1f.

Now, we consider the case when § is derived by R4. Suppose that 8 is the formula y —
csr(a, B)), obtained from the set of premises {y — P-oB8'} U{y — (P>’ A P>B8') —
P40 (@’ A B)) | 1,5 € [0, 1]p}. By the induction hypothesis,

THa— (y — PsoB),and
Thoa— (y = (P2 ANP>sf') = Pssiin (@’ A B)), for every 1,5 € [0, 1]p.
Then, by propositional reasoning, we have
TH(axAy)— PooB,and
TE(aAy)— (P APssB) = Psspin (@' A B)) forevery t,s € [0, 1]p.
Applying R4, we obtain
TH@Ay) = ez, ).
Using Al and R1, we obtain
Thoa— (y = (@, B))
THoa— B. O

Next, we prove some statements which are crucial for the proof of the completeness theorem.

THEOREM 6.2 (Lindenbaum’s theorem).
Every consistent set of formulas can be extended to an mcs.

PROOF. Let T be an arbitrary consistent set of formulas. Assume that {y; | i = 0,1,2,...} is an
enumeration of all formulas from FOVLPP(I:onf. We construct the set 7 recursively, in the following
way.
1. To=T.
2. If the formula y; is consistent with 7;, then Tj1 = T; U {y;}.
3. Ifthe formula y; is not consistent with 7}, then there are four cases:
(@) ify; =y’ — Ps,a,then

Tiv1 =T; U {]// — P<r7%c{},

where £ is a positive integer such that » — % > 0 and Tj4 is consistent;

(b) ifyi=y"— cxr(a, B), then T = T; U {y;} where

J = Yy — P—oB, T;U{y' - P_oB} i/ L
l Yy = (P> AP>sB ANP_sginy(et, B)), TiU{y — P—oB}F L
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and ¢ and s are two rational numbers from the unit interval such that 7 is consistent;
(¢) ify; =y' = c<(a, B), then Tiyy = T; U {y;} where

y = y' — P=oB, T;U{y' — P-oB) i/ L
Y lY > P<a AP<BAPosipn(@,B), TiU{y' — P—oB}F L

and ¢ and s are two rational numbers from the unit interval such that 7 is consistent;
(d) otherwise, Ti+1 = T;.

4. T = U2 T

First, using Theorem 6.1, one can prove that the set 7* is correctly defined, i.e. there exist k, ¢
and s from Steps 3(a)-3(c) of the construction. Here, we will consider Step 3(c), while the other two
steps can be shown in a similar way.

Let us assume that 7 U {y’ — c<,(a,B)} is inconsistent. Then, the set T U {c<,(c, B)} is
inconsistent as well. From Theorem 6.1, we obtain 7 + —c<.(«, 8). Now, suppose that the set
T U{y" — P—op} is inconsistent and that the set 7 U {y’ — (P<;@ A P<; A P=sp40)(ct, B))} is
inconsistent for every ¢ and s. By Theorem 6.1, we obtain that 7 - P-of and T F —~(P<,0 AP<sB A
P~ s+ (c, B)), for every ¢ and s. Consequently,

THT — P-oB
and
TET = (P<i@ AP<sB) = P<sirin(a, B)),
for all # and s, so from R5, we derive
THET— c<p(a, B).

Note that this contradicts our assumption that 7 U {c<,(c, §)} is an inconsistent set. Thus, there are
rational numbers 7 and s such that the set

Ty {V/ — (P<ia AP<sBAPogiyp(a,B))}

is consistent.

Next, we prove that 7 is an mcs. Note that every 7; is consistent by the construction. This still
does not imply consistency of T* = ( J77, T, because of the presence of the infinitary rules. In order
to prove the consistency of 7, we first show that 7* is deductively closed. If the formula y is an
instance of some axiom, then y € T* by the construction of 7*. Next, we prove that 7* is closed
under the inference rules. Here, we show that 7* is closed under the rule R5; the other cases are
similar.

First, we show that for every y’ € FOrLPP(l:onf either ' € T* or =y’ € T* holds. Let i and j

be the nonnegative integers such that y; = y" and y; = —y’. Then, either y’ or =y’ is consistent
with Tax(ijy- If Tmaxiijy is not consistent with y” and —y’, then by Theorem 6.1, Tyax(i ) Will bi-
inconsistent. Then, either y” € T; 1 or =y’ € Tj11, so either y’ € T* or -y € T*.

Let us show that 7™ is closed under the inference rule R5. Assume that

v’ = PooB.y' = (P<i AP<B) — Py (@, B)) € T

forall r,s € [0, 1]p. We need to show that y" — c<,(«, ) € T*. Assume that y’ — c<, (o, 8) & T™.
Then, by maximality of 7%, =(y’ — c<,(«, B)) € T*. Thus, y’ € T*, so there is i such that ' € T;.
Let j be a nonnegative integer such that y; = y’ — c<,(«, B). By Step 3(c) of the construction of T*,
y' — P_oB € Tjy1, orthere are ', 5" € [0, 1]p such that y' — (P<ya AP<yB A Poy(r4s) (@, B)) €
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Tiy1. Suppose that y* — P_of € Tjy1, and let k be the nonnegative integer such that y; = ' —
P-oB. Then,

Tmax{i,k+l} = P.oB.
Note that we also have Tiax(ij+1) = P=oB. Consequently, Timax{ij+1,4+1) — L, a contradiction.
Now, suppose that ' — (P<ya A P<yB A Poyiry(a, B)) € Tjp1, where ¢,s5" € [0,1]p. Let
k' be the nonnegative integer such that yy = y’ — ((P<ya A P<y¢f) — P<y@+r)(t, B)). Then,
Tmax{ij+1; = (P<ya A P<yB) = P<y(4r)(a, B). On the other hand,

Tmax{i,j+1} = PSt’a /\Pgs’,B /\P>s’(r+t/)(aa B).

Thus, Tiax(ij+1,4+1) F L, a contradiction. Consequently, the set 7* is deductively closed.
From the fact that 7% is deductively closed, we can prove that 7* is consistent. Indeed, if 7*
is inconsistent, there is a formula y’ € FOVLPPTonf such that 7* + y’ A —y’. But then, there is a

nonnegative integer i such that ' A =y’ € T}, a contradiction. O

6.2 Canonical model

Now, we are ready to prove our main result: the axiomatization Ax(LPP?"nf) is strongly complete
for the class of LPP‘{?I{‘,[feas-structures. We use mcs to build a special measurable structure, so-called
canonical model. For a given consistent set 7, we show that there is a world in the canonical model
in which all the formulas of its maximal consistent extension 7* hold. Recall that the existence of
such extension is guaranteed by Theorem 6.2.

DEFINITION 6.3 (Canonical model).
The canonical model M is the tuple (W, Prob, v) where

— W is the set of all mcs;
— for every world w and every propositional letter p € P, v(w,p) = true iffp € w;
—  Prob(w) = (W(w), H(w), ;t(w)) such that
o« W(w) =W,
[ H(W) = {{W/ ew | o€ W/} | (OS] FO”'LPP(I:onf},
e u(w) : Hw) — [0, 1] such that u(w)({w' € W |« € w'}) = sup{r € [0,1]g |P>,x €
w}.
We use the following notation to refer to the elements of H(w) from the canonical model:
[al=W e W |a ew}.
Next, we want to show that M¢ € LPP‘I"’I{}[feaS. We start by proving that M¢ is an LPP‘fonf—structure.

LEMMA 6.4
The canonical model M¢ is a LPP?O“f—structure.
PROOF. To prove the statement we will show that

(1) H(w)is an algebra of subsets of 7. It easy to see that W = [[& V-« ]|, so from the definition of
H(w) we have that W € H(w). Also, if [o]], [8] € H(w) then [—«] € H(w) and [[a Vv B]] =
[T U] € H(w). Thus, H(w) is algebra of subsets of V.

Next, we show that p(w) is correctly defined.
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(2) If [all = [A] then sup{r € [0,1]p |P>,a € w} = sup{r € [0,1]p [P>B € w} (in other

words, u(w)([e]) = ww)([A1))
We proved that if o] < [[B], then u(w)([el) < uW)[IB]). From [[a]] € [B], we get
F —(ax A—p)and - P> (¢ — B). Now, we must show that if P>,a € w, then P>,8 € w, i.e.
pW) ([o]) < pw)([B])- It is sufficient to show that - P> (¢ — B) = (P>,a — P>.f).
We know that = —« Vv —_L, so by the inference rule R2 it is - P>1(—«a Vv —.1). From the
axioms A2 and A5, we have

FPso—L,

F (Ps>ra APsog—mL APs1(—a Vv —Ll)) > Psp(a Vv L)
By the rule R1, we get

F Psra — P>p(a Vv L).
Instances of the axioms A6 and Al are

F (P<i—r(ma A=L) AP——a) > Pog((Ca A —L) vV ——a),

F(—aA—l)V-——a.
By the inference rule R2, we have

FPs1((ma A—Ll) VvV —=a),ie =P 1((—a A—=l)V—o—a).
Therefore,

F (P<i—r(ma A= L)AP =) = (P ((ma A= L) V ==a) AP o (e A— L)V ——a),
ie.
F(P<1—r(—ax A—-L) AP——a) —> L.

From the axiom A1, we actually have - P<;_,(maA—1l) - —P_.——a,i.e.F P>,(aVvl) —
P>,——a. So, we get - P>, — P>,——a. Now, from axiom A6, we have

= (Pgl—r_‘a AP_B) — Poi(—a Vv B),

ie. - Po1——a V P=.f vV P_1(—a V B). By propositional reasoning, we have - P_,.« V
P,V —P=1(e¢ — p). Using the definition of probability operator P, and axiom Al, we
obtain

FPsi(a = B) = (P>ra = P>.p).

Therefore, u(w)([ae]) < W) ([B1)-

Next, we show that (w) is a finitely additive probability measure.

(3) uw)([el) = 0. Since P>gw is an axiom, it belongs 7* and p(w)([a]) > 0.

@) pW (el VIBD = uw)([el) + uw)([[B1) for all disjoint [[e]] and [B]). First, we show
that p(w)([a]) = 1 — uW)([—alD). Let r = pu([al) = sup{s € [0,1]p | P>sa € w}.
Suppose that » = 1 so P>ja € w (R3). Thus, =P-¢—a € w. If for some r > 0, P~,—a € w,
it must be P~o—« € w and it is a contradiction. It follows that p(w)([—«]) = 0. Suppose
now that » < 1. Then, for every rational number v € (r, 1lg, =P>ra = P_a € w. By
Axiom A4, we get P.ya € w and P>_y(—a) € w. Also, if there is a rational number
r" € [0,7)p such that P~ ,»(—a) € wthen =P, ,»a € w, a contradiction. Hence, sup{r €
[0,1]p [P>r(—a) € w} = 1—sup{r € [0,1]g |P>ra € w},ie. u(W)([o]) = 1—pw)([—alD.
Now, let [al N [B]] = @, u(w)([el) = r and u(w)([BT) = s. Since [B] S [—«], by the
above steps, we have r +s5 < r+ (1 —r) = 1. Suppose that » > 0 and s > 0, then for every
¥ € [0,7]p and every 5" € [0,s]p, we have P>, a and P>y f are in w. It follows by A5 that
P>pyg(aVv B) € w Hence, r +s < fo = sup{t € [0, 1]p | P>/(a V B) € w}.
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If r + s = 1, then the statement trivially holds. Suppose that  + s < 1. If r + 5 < ¢y, then for
every t' € (r+s,1)0, we have P>, (a vV ) € w. We can choose rational numbers 7" > r and
s" > s such that =P> o, P_jva € w, = P> B, P € wand r"+s" = ¢ < 1. Using A4, we
have P<,na0 € w. By A6, we get P,y g (V) € w, =Px,ny (V) € wand =Psy(aV p) €
w, a contradiction. Hence, r+s = ¢ty and u(w) ([oJUI BT = uw)([ee]D+1 W) ([B]). Finally,
suppose that 7 = 0 or s = 0, then we can do the same as above with the only exception that
r'=0ors =0. 0

LEMMA 6.5 (Truth lemma).
Let M¢ be the canonical model and y € FOVLPP(I:an. Then, for every world w from M,

y ewiff Mc,w = y.

PROOF. We use induction on the complexity of the formula y. If y is a propositional letter, the
statement follows from the construction of M. The cases when y is a conjunction or a negation are
straightforward.

Let y be Px,o. If P>,a € w, then sup{s € [0, 1]p | P>sa € w} = u(w)([«]) = rand Mc,w =
P> a. Suppose now that Mc,w = Ps,a. It follows that sup{s € [0,1]p | P>sa € w} > r, ie.
pW([a]) = r. If w(w)([a]) > 7, then by the definition of the canonical model, P>, € w. If it is
mW)([a]) = r, then by R3 and the fact that w is deductively closed, we have that Ps,a € w.

Let y be of the form c>,(«, B).

(=) Assume that c>.(a,8) € w. Let {t, | n € N} and {s, | » € N} be two strictly
increasing sequences of numbers from [0, 1]p, such that lim, , o #, = pw(w)([«]]) and lim, 5, =
wW)(IBD). Let n be any number from N. Then, w = Px; o A P> f. Using the assumption
csr(a, B) € w, the axioms A7 and A9 and propositional reasoning, we obtain w + P-¢B and
w b P=g, (+1,) (@ A B). Finally, by Definition 6.3, we have uw(w)([8]) > 0 and pw(w)([o A B]) >
limy s coSn(r + 1) = uW([BD ¢ + ww)([al)), ie.

pw)([BD >0

and

p W) ([DITBD — nw)([ed) = r.

(<) Now, assume that (w)([A]) > 0 and u(wW)([«IIAD) — uW)([al) = r, ie. u(w)([a A
BD = n[IBD ¢ + uw)([al)). We will show that

whk PooB
and
W (P>t A P>f) = Pssirp(a A B) forallz,s € [0,1]p.

Suppose that w I/ P-ofB. By maximality of w = P_o8, i.e. w(w)([B]) = 0, a contradiction. So
we have that w = P~ ¢f.

Ift > pw)([a]) or s > u(wW)([B1), then w I P> A P>¢f. By maximality of w, w = = (P>, A
P>sB) and consequently w F (Ps;a A P>sf) — Psspqn(a A B). If t < pu(w)([a]) and s <
nwW)([BD), then s(r + ) < u(w)([ae A B]) by assumption, so w = Pxgi+n(a A B) by Definition
6.3. Now, the result follows from the fact that w is deductively closed.

The case when y is c<,(«, B) can be proved in a similar way. [l
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Hence, we have shown that for every formula o € FOVLPPionf and every world w from M¢

the equality [a]y.,w = [o] holds. Consequently, every [o]as.,w belongs to algebra H(w) of the
canonical model. Combining that fact with Lemma 6.4, we obtain the following corollary.

COROLLARY 6.6
The canonical model M is an LPP?O“f—measurable structure which is a model for every consistent
set 7.

Now, we formulate the completeness theorem for our logic.

THEOREM 6.7 (Strong completeness of LPP?OHf).

A set of formulas 7 is consistent iff 7 is LPPioﬁfeas-satisfiable.

PROOF. Note that the direction form right to left follows from Theorem 4.3. For the other direction,
suppose that 7 is a consistent set of formulas. By Theorem 6.2, there is a maximal consistent superset
T* of T. From the previous corollary, we have that M¢ € LPP‘{?I{}lfeas, so we only need to show that
Mc is a model of 7*. By Lemma 6.5, if T is consistent set we know that 7* is a world in M¢, so we

obtain M, T* =T. O

Finally, let us recall that the usual formulation of strong completeness is
THa iff T =a.

It is well known that this standard formulation is equivalent to the formulation of Theorem 6.7.

7 Decidability of LPPS"f

In this section, we prove that the logic LPP?Onf is decidable. In the proof, we use the method of

filtration and reduction to finite systems of inequalities. First, we show that an LPP‘fOHf—formula is
satisfiable iff it is satisfiable in a model with a finite number of worlds.

THEOREM 7.1
If an LPPionf-formula o is satisfiable in a model M € LPP‘I"’I{}IfeaS, then it is satisfied in a model

M* e LPP?O]{}[feaS with a finite number of worlds.

PROOF. Let w be a world from M such that M, w = «. Let Subf () be the set of all subformulas of «
and k = |Subf (@)|. By ~, we denote the equivalence relation over W x W, where w ~ w' iff for every
B € Subf(a), w = B iff w' = B. The quotient set W, is finite and [W,~| < 215ubf ()] Now, for
every class C;, we choose an element and denote it w;. We consider the model M* = (W™, Prob*,v*),
where
- Wr={wi|Ce Wi}
—  Prob*(w;) = (W*(w;), H*(w;), u* (w;)) such that
o W*(w) ={wje W"|(Jue Cywu € W(w)l},
e H*(w;) is the power set of W*(w;),
o w*w)({wh) = u(wi)(Cy)) and forany D € H*(wi), * (W) (D) = 2., ep ™ wi) ({w;});
- V*(wi,p) = v(wi,p).
It can be shown that M* € LPP??I{}IfeaS. Now, we want to prove that for any 8 € Subf(«), M,w = B
iff M*,w; = B where w; represents C, in M*. The proof is by induction on the complexity of the

220z Aenigad 20 UO JosN Jydauin 3ooulolqIqsIBNSIoAIuN AQ ZG6Z0629/68 12/8/1E/P10IME/W0060]/W0d"dno-olWwapeoe)/:SARY Wol) PapEojumMoq



2206 Logics for reasoning about degrees of confirmation

formulas. Let us briefly consider the case when 8 = ¢5,(¢’, B’), while the proofs for the other cases
are similar.

M,wE B

iff M, w; = B

iff 1w ([B']) > 0 and pw(wi)([a” A B']) = n(w) ([B'D( + w(w) ([e]))
iff Z ww)(Cy) > 0 and

CuMul=p'

> @z (X @) (r+ D rn©G)
Cy:Mu=a' N’ Cy:Mu=p Cy:Mu=ao’
iff Z wwj)({u}) > 0 and

Cou:M* u=p'

> wew@hz( > wen)(r+ X )
Cy:M* ul=a’' A’ Cy:M* u=p’ C:M* u=a’

iff * (W) ([B']) > 0 and

wrw) ([ A B'D = w*w)([BD+ w* w)([]))
i M*, w; = B -

Note that there are infinitely many finite models from LPP?OI\‘}IfeaS with at most 2154/ @1 worlds

because there are infinitely many possibilities for real-valued probabilities. Thus, the previous
theorem does not directly imply decidability. In order to show decidability, we will translate the
problem of satisfiability of a formula to the problem of satisfiability of finite sets of equations and
inequalities.

THEOREM 7.2
Satisfiability problem for LPP‘{Onf is decidable.

PROOF. Let us describe the procedure which checks satisfiability of a formula «. We use the notions
introduced in the proof of Theorem 7.1. First, we transform the formula « to a disjunction of the

A g here

Br € Subf (o) U{=B | B € Subf ()},

and each subformula of & appears exactly once (with or without the leading negation and assuming

that =—p is the same as B). In each world w € W*, exactly one formula of the form /\Lsull’f @ Bk

holds. Denote that formula by «,,. In order to shorten the notation, we write

formulas of the form

B €ay
to denote that 8 is a conjunct in «,,. For every
] < ZSubf (0‘),
we will consider / formulas of the above form such that the following two conditions hold:

e the chosen formulas are not necessarily different, but each «,, does not contain both § and —f
in the top conjunction;
e at least one «y, then must contain the formula « in the top conjunction.
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For every world w;, i < [, we consider specific equations and inequalities that we describe below.
We chose the variables of the form y,, ., which represent the values p(w;) ({w;}).

The inequality (1) below assures that all the probability measures are nonnegative, and the equality
(2) states that the probability of the set of all possible worlds has to be equal to 1. Furthermore, each
of (3)—(8) refers to a specific conjunct in «,,. It is easy to see that (3), (5) and (6) correspond to
the second, the third and the fourth conditions of the satisfiability relation from Definition 3.5,
respectively. Similarly, (4), (7) and (8) deal with negative literals and correspond to the combination
of the fifth condition with the second, the third and the fourth conditions (respectively) from
Definition 3.5.

Now, we state the equations and inequalities (recall that we write 8 € «,, to denote that 8 is a
conjunct in oyy):

(1) yww; = 0, for every world wy;

@ D ww =1L

wieW (wy)

3) Z Ywiwy =1, for every P~,B € ay;;

wj:ﬁeawj
4 Z Ywiw; < T, for every —Px,f € ay,;

WjZﬁEOle
() D Y > 0and

WjCﬂEOtwj

PIETETE (R DR | (R SR |
Wj:]//\ﬂeawj wj-:ﬁeawj Wiy €ty

for every c>,(y, B) € ay,;
(6) D Y > 0and

Wj:ﬁeawj
PRI G SR | CE R SEICH ) B
Wj:yAﬁeawj Wj:ﬂeawj Wiy €ty

for every c<,(v, B) € ay,;

(D D Ywy =0o0r

Wj:ﬁeawj
2 / Ywiwy < ( § yWi,Wj) (r+ E yWiawj)’
Wj:y/\ﬂeawj Wj:ﬁeawj W)y €ty

for every —cx,(v, B) € ay,;

®) D Ywy =0or

leﬁeawj
E Ywi,w; = ( E yWth) (r+ 2 yWth)’
w]-:yAﬂeaWj leﬂEO{wj le)/Eoluy-

for every —c<, (v, B) € ay,.
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The equations and inequalities (1)—(8) form not one, but a number of finite systems of linear
equations and inequalities. Note that adding either (7) or (8) to any system Sys of equations and
inequalities results with a disjunction of two different extensions of Sys. For the purpose of this
proof, the fact that we always have finitely many systems is sufficient and it is enough if one of the
systems is solvable. Note that all those systems are in the language of real closed fields, and it is well
known that the theory of real closed fields is decidable. Since we have finitely many possibilities for
the choice of /, and (for each /) finitely many possibilities to chose / formulas o, our logic LPP?Onf
is decidable as well. O

8 The first-order logic LFOP?Onf

In this section, we present the logic LFOP?"nf, the first-order extension of LPP?"“f. Due to similarities
in syntax and semantics, we avoid repetition of some technical details that were already presented in
detail in the propositional case.

The language of the logic LFOP‘{Onf consists of

a denumerable set of variables Var = {x,y,z,...};

universal quantifier V, and classical propositional connectives;

for every integer £ > 0, denumerably many function symbols F (’)‘ ,F ]f ,... of arity k;
for every integer £ > 1, denumerably many relation symbols P’é, Pll‘, ... of arity k;
a list of unary probability operators P, for every r € [0, 1]p; and

a list of binary probability operators c>,,c<, for every r € [—1, 1]p.

The function symbols of arity 0 are called constant symbols. Terms and formulas are defined as
usual, as well as the notion of a term that is free for a variable. Sentences are formulas without free
variables.

EXAMPLE 8.1
Consider the following sentence:

‘The chance that all your colleagues know your secret would increase (for r) if at least one of
them is aware of it.’

If the predicate symbol S denotes ‘knows the secret’, then the sentence can be formalized as follows:
= (V)8 (), @A)S(X)).
An LFOP?"“f—structure isatuple M = (W, D, I, Prob) where

— W is a non-empty set of worlds;
— D is non-empty domain for every w € W;
— [ assigns an interpretation /(w) to every w € W such that for all i and %,

o I(w) (Flk) is a function from DF to D;
o forevery w € W, I(w)(FF) = I1(w)(FF);
o /(w) (Pf‘) is a relation over D to
— Prob(w) = (W(w), H(w), u(w)) is a triple where
e W (w) is non-empty subset of W,

e H(w) is an algebra of subsets of W (w),
e u(w): H(w) — [0, 1] is a finitely additive measure.
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Note that we made two assumptions which are somewhat standard for first-order modal logics.
The first one is that the domain is fixed in a model (in other words, the domain is the same in all the
worlds of a considered model). Intuitively, this means that there is no uncertainty regarding which
objects exist. The second assumption is that the terms are rigid, i.e. for every model their meanings
are the same in all the worlds of a considered model.

Let M = (W, D, I, Prob) be an LFOP‘I"’“f-structure. A variable valuation v assigns some element
of the corresponding domain to every variable x, i.e. viw)(x) € D.If w € W,d € Dand vis a
valuation, then v[d/x] is a valuation same as v except that v[d/x](w)(x) = d.

The value of a term ¢, denoted by 7(w)(¢),, is

e if ¢ is a variable x, then /(w)(x), = v(w)(x); and
o ift= F,‘m(tla <o tm), then I(w) (1), = ](W)(Fim)([(w)(tl)w s TW) (t)v).

Next, we introduce the concept of a truth-value.

DEFINITION 8.2
The truth-value of a formula @ in a world w € W of a LFOP?"nf-structure M = (W,D,I, Prob),
under a valuation v (denoted by /(w)(«),) is as follows.

o Ifa = PI(ty,...,ty), then I(w) (@), = true; if (W)(t1)y, ..., I (W) (tn)y) € I(W)(P]"), otherwise
I(w) (), = false.

o Ifa = P5,B, then I(w)(a), = true; if u(w)({u € W(w) | I(u)(B), = true}) > r, otherwise
I(w)(a), = false.

o If o = c,(B,y), then Iw)(a), = true; if p(w)({u € Ww) | Iw)(y), = true}) > 0
and puwW)({u € Ww) | Iw)(B)y = truetf{u € Ww) | I(w)(y)y = true}) — p(w)({u €
W(w) | I(u)(B), = true}) > r, otherwise I (w)(«), = false.

o If @« = c<(B,y), then Iw)(a), = true; if uw)({u € Ww) | Iw)(y)y, = true}) > 0
and uwW)({u € Ww) | Iw)(B)y = truetf{u € Ww) | I(w)(y)y = true}) — pw)({u €
W(w) | I(u)(B)y = true}) < r, otherwise I(w)(a), = false.

o Ifa = =g, then I(w)(a), = true; if [(w)(B), = false, otherwise [ (w)(«), = false.

o Ifa = B Ay, then Iw)(a), = true; if Iw)(B), = true and I(w)(y), = true, otherwise
I(w) (), = false.

o If o = (Vx)8, then I(w)(a), = true; if for every d € D, I(W)(B)va/x) = true, otherwise
I(w) (), = false.

A formula holds in a world w from an LFOPionf—structure M = (W,D,I,Prob) (denoted by
(M,w) = «) if for every valuation v, I(w)(«), = ftrue. If d € D, we will use (M,w) E a(d)
to denote that 7(w)(cr(x))y[a/x] = true, for every valuation v. A formula is valid in an LFOP‘fOnf-
structure M = (W, D, 1, Prob) (denoted by M = «), if it is satisfied in every world w from W. A
formula « is valid if for every LFOPT"nf-structure M, M = «. A sentence « is satisfiable if there is
a world w in an LFOP?"“f-structure M such that (M, w) = «a. A set T of sentences is satisfiable if
there is a world w in an LFOP?O“f-structure M such that (M, w) = « foreverya € T.

Like in the propositional case, we will consider only LFOP?"nf-measurable structures: an
LFOPﬁonf-structure M is measurable if for every sentence «, every valuation v and every world
w from M, the set

[aTis e = {u € Ww) | 1) (e)y = true}
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belongs to H(w). If « is a sentence, we omit the superscript v in [a]},,,. We denote the set of all

measurable LFOP‘{"“f-structure with LFOP‘{f’l{}[feas. The definition of a model is the same as in the
propositional case.

Our axiomatic system for the logic LFOP?"“f contains all the axioms and inference rules from
Section 4 and, in addition, the following axiom schemes:

(Al1l) (Vx)(a¢ — B) — (a — (Vx)B) where x is not free in «;
(A12) (Vx)(x(x) — a(t/x), where x(¢/x) is obtained by substituting all free occurrences of x in
a(x) by the term ¢ which is free for x in o (x);

and the inference rule
(R6) from « infer (Vx)o.

Recall that we use fixed domain LFOP??]{‘,[feas—measurable models with rigid terms, which is similar
to the objectual interpretation for first order modal logics [17]. If we reject the assumption that the
terms are rigid, then the standard first order axiom A12 is not sound.

The notions of theorems and deducibility are defined as in Section 4.

THEOREM 8.3 (Soundness).

The axiomatization Ax(LFOP?"nf) is sound with respect to the class of LFOP??]{}[feas-structures.
PROOF. Here, we will consider only the axiom All. Let M = (W, D, I, Prob) be an LFOP‘I’f’l\‘}lfeas
model. Suppose that for some w € W, M, w = (Vx)(¢ — B) — (¢ — (Vx)B). It means that for
some valuation v, I(w)((¥x)(a@ — B)), = true, I(w)(a), = true and I(w)((¥x)B), = false. So,
for some valuation v, for every d € D, I(w)(a — B)vja/x] = true, I(w)(a), = true and for some
d'" € D, Iw)(B)va/x] = false. For d’, we also have that I(w)(e),[a'/x] = true, which implies that
I(w)(a — B)[a/x] = false, a contradiction. O

In the completeness proof, we follow the ideas from the propositional case. We omit the proof of
deduction theorem, which is a straightforward adaptation of the proof of Theorem 6.1.
In the construction of the canonical model, we will use a special kind of mcs called saturated sets.

DEFINITION 8.4
An mcs T is saturated if it satisfies

if =(Vx)a € T, then for some term ¢, —a(¢) € T.

Now, we show that we can extend any consistent set of sentences to a saturated set. For that, we
need to extend the language of LFOPﬁonf with a countably infinite set of novel constant symbols C
(i.e. the elements of C do not belong to the considered first-order language).

THEOREM 8.5 (Lindenbaum’s theorem).
Every consistent set of sentences can be extended to a saturated set of sentences of the language
extended with a countably infinite set of novel constant symbols C.

PROOF. Consider a consistent set 7, and let «g, «1,... be an enumeration of all sentences from
FOVLFOPcIonf. Let 7™ denote the set of sentences obtained by Steps (1)—(4) from the proof of Theorem

6.2 with one additional requirement in Step (3):

e if the set 7;1 is obtained by adding a formula of the form —(Vx)8(x) to the set 7}, then for
some ¢ € C, =f(c) is also added to Tj1, so that T;1 is consistent.
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Let us consider the only new step. Suppose that for some i > 0, a formula of the form —(Vx)8(x)
is consistently added to 7;. If there is a constant symbol ¢ € C such that =8(c) € T;, then T; U
{=(¥x)B(x), —B(c)} is consistent. Suppose that there is no such c. Since T;U{—(Vx)B(x)} is obtained
by adding only finitely many formulas to 7, and 7 does not contain constants from C, there is at least
one constant ¢ € C which does not appear in 7; U {—=(Vx)B(x)}. If T; U {—=(¥x)B(x),—B(c)} F+ L,
then by deduction theorem, we obtain that 7; U {—(Vx)B(x)} = B(c), and since ¢ does not appear in
T; U {—=(¥x)B(x)}, we obtain T; U {—(Vx)B(x)} - (Vx)B(x). Thus, T; - (Vx)B(x). It follows that the
set T; is not consistent, a contradiction.

Finally, in order to prove that 7* is consistent, we need to show that 7* is deductively closed (i.e.
T* F o implies « € T%), while the construction guarantees that 7* is both maximal and saturated.
The only case that does not appear in the proof of Theorem 6.2 is when 7*  (Vx)B(x) is obtained
from 7* = B(x) by the inference rule R6. Since B(x) has one free variable, and 7; and T* are sets
of sentences, B(x) does not belong to 7*. By classical first-order reasoning, we have that 7* - 8(c)
holds for every constant ¢ € C, and from the induction hypothesis (c) € T*. If (Vx)B(x) & T*, the
construction of the set 7* guarantees that there are some i > 0 and ¢ € C such that 8(c), ~8(c) € T;
for some ¢ € C, a contradiction. O

A canonical model M¢c = (W, D, I, Prob) is a tuple such that

— W is the set of all saturated sets of formulas;
— D s the set of all variable-free terms;
— forevery w € W, I(w) is an interpretation such that

o for every function symbol F7", I(w)(F}") : D™ — D such that for all variable-free terms
tl) [AAA] tn’la I(W)(Flm) : (tla R tm) - Flm(tl) R tm))a and
o for every relation symbol P, Iw)(P?") = {{t1,....tm) | PI'(t1,....,tw) € w}, for all
variable-free terms f1, ..., t;;
— forevery w € W, Prob(w) = (W (w), H(w), u(w) such that

o Ww) =W,
o H(w) is the class of sets [a]] = {wW' € W | a € w'}, for every sentence «; and
o for every set [a]] € H(w), u(w)([e])) = sup{s € [0,1]p | P>sax € w}.

Similarly as in the propositional case, it can be proved that the canonical model is indeed a
measurable structure and that the following result holds.

THEOREM 8.6 (Strong completeness of LFOP‘fonf).

A set of sentences T is consistent iff T is LFOP?OI{‘AfeaS—satisfiable.

9 The Logic LPP]Fr(n)’Conf

The goal of this section is to present some restrictions of the previously developed logics LPP‘I’Onf
and LFOP?Onf by assuming that probability measures in their semantics have specific finite ranges
and to show that finitary axiomatizations can be obtained under those restrictions. For each n € N,

we consider the probability measures whose range is the set

1 n—1)
Range(mn) = {0, —,...,
n n

1,
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so there are actually denumerably many different logics that we denote by LPP"™ conf and
LFOPFr(n) conf The process of obtaining the semantics and axiomatization of LPPFr(n) Conf from the
Fr(n), conf

ones of LPP""nf is exactly the same as the process of moving from LFOPC(’nf to LFOP,
Regarding the axiomatization, the process consists of replacing the three 1nf1n1tary rules R3-R5,
with three novel axioms. Because of the similarities between the propositional and the first-order
case, in the rest of this section, we focus on the propositional case and present the logic LPPFr(“) conf,

The syntax of LPP} ™" {
we consider the subclass of LPP“’nf—structures where probability measures have the range Range(n),
i.e. for every world of an LPP?Onf

is the same as the syntax of LPPS°, In the semantics of LPPFr(n) Conf

-structure
uw) : Hw) — Range(n).

We define the class of LPPf r]‘(,;ga’lionf -models in the same way as in Section 3.2.
We consider three additional axiom schemes for the logic
(F1) /\k OP ke — P_ k1O
(F2) ((P=0B) A Njyco((Pset AP1B) = Pott) (@ A B)) = exr(@, B)
(F3) ((PooB) A Nfyco(Posa AP_1B) = P_i i) (@ A B)) = cxl@. B).
We assume that formulas respect Definition 3.1. For example, we consider only those instances of
the axioms F2 and F3 satisfying 0 < L(r + k) <1
Note that the axiomatization Ax(LPPFr(n) confy

LPP?A(Z aionf . This follows directly from Theorem 4.3. Next, we show that the new axioms are sound

as well.

is obviously sound for the class of structures

THEOREM 9.1 (Soundness).
Axioms F1-F3 are sound with respect to the class of structures LPPfrA(,;'e);onf

PROOF. Let us consider the axiom F2. Let M € LPP" r]‘(/['z;ionf and let w be a world in a model M
such that M,w = (P=ofB) A /\kl 0((P ke AP 1/3) — P_ (,+k)(01 A B)). Then, we have that
M,w = P-oBand M,w = (P ka/\P 1,3) — P 1( +7)(01/\/3) forall k,/ =0,...,n. So we have
that !

nw)([BD > 0. (1

Lett = p(w)([ee]) and s = uw)([B]). Since u(w) : H(w) — Range(n), there are k and / such
that 1 = 1—‘ and s = ril Hence, M,w = (szoz A PZL,B), by soundness of R1, we obtain M,w =

P Ly k )(a A B). Then, we also have

/ k
p (o ABD z =+ ) = nABD -+ nw)([al)), 2

so from (1) and (2), we get M, w = c>,(«, B).
The case when we consider F3 is similar to the one presented above. The case of the axiom F1 can
be found in [29]. O
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Now, we introduce the finitary axiomatic system Ax(LPPfr(n)’conf). It contains

o the axiom schemes A1-A10 and F1-F3 and
o the inference rules R1 and R2.

Next, we prove that this axiomatization is strongly complete with respect to the class of models

r(n),conf
LP PII:,MeaS :

THEOREM 9.2 (Strong completeness).
A set of formulas 7 is consistent with respect to the axiomatization Ax(LPPTr(n)’wnf)

T is LPP}" "< _satisfiable.

if and only if

PrROOF. Completeness is proved in two steps. In the first step, we show that the axiom system
obtained by adding the inference rules R3—R5 to Ax(LPPfr(n)’Conf) is complete. In the second part,
we show that we can remove the rules R3—R5 from the axiomatization as they are derivable from the
rest of the axiomatization. This results with the complete axiomatic system Ax(LPPTr(n)’conf).

The first part is almost identical to the proof of completeness of LPPTOnf logic. The difference is
in the construction of the canonical model. Since Range is a finite set, the measures in the canonical

model are defined by
pW)([ee]) = max{r | r € Range, P>,a € w}.

Using the axiom F'1, one can show that the constructed canonical model indeed belongs to the class

r(n),conf
Lp PIIF,Meas .

Now, we want to show that we can exclude the infinitary rules from the axiomatization. First, it is
shown in [29] that R3 can be excluded in presence of the axiom F1.

Next, we show that the axiom F2 can replace the rule R4. The idea is to show that R4 is derivable
from F2 and the propositional reasoning (A1l and R1). In other words, for given «, B and y and fixed
r € [0, 1]p, we assume the set of premises

P={y — P.oB}U{y = (P21 A P>s8) = P51 (a A B))t,s € [0,1]p}
of the rule R4, and we infer its conclusion

y = (@, B)
using F2. Consider the finite set S = {y — P-oB}U{y — (P.xa AP_1B) — P

B) | k1€ [0, 11, L+ &) € [0,1]}. Obviously S € P.

Since (¢ — ) = [(y = ¢) = (v > W]and [y — (@ AY)] < [(y > @) A(y — )] are
propositional tautologies, we obtain

> L) @A

NS= 1y = @By A N\ (Pora APL1B) = Por it (@A),
k, /=0

by propositional reasoning. From this formula, using F2 (and Al and R1, similarly as above), we
obtain

NS — v = exp(@, ).

Thus, since S C P, we proved y — c=,(«, B) using F2, Al and R1.
In a similar way, one can show that F3 can replace the rule RS. ]
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As a consequence, since the above finitary system is strongly complete, we have that the logic

LPPllcr(n)’COnf is compact.

10 Conclusion

In this paper, we presented the propositional probabilistic logic LPP?onf for reasoning about degrees
of confirmation and its first-order extension LFOP‘I:"“f. The languages of LPPﬁonf and LF OP?Onf
extend the languages of LPP; and LFOP; (respectively) from [28] with the binary operators
that model the measure of confirmation. We proposed axiomatizations for LPP‘{Onf and LFOP‘{Onf
and prove strong completeness. Since the logics are not compact, the axiomatizations contain
infinitary rules of inference. Then, we simplified the semantics and we achieved compactness
using probabilistic functions with finite ranges. For those simplified logics, we provide finitary
axiomatizations.

We also proved that the problem of checking whether a probabilistic formula of the logic LPP‘I:Onf
is satisfiable is decidable. We combined the method of filtration [23] and a reduction to a system of
polynomial inequalities.

There exist several complete logical formalisms for qualitative and quantitative reasoning about
evidence [21, 31, 35]. However, to the best of our knowledge, the only logic in which Bayesian
confirmation notions were formalized is [7], where the classificatory concept of confirmation is
modelled through the binary operators 1 (‘confirms’) and |, (‘disconfirms’). Since our logic LPP?"nf
has a richer language in which we can express degrees of confirmation, those operators can be
modelled in LPPﬁonf: at Bascso(a,B)and o | B as co(a, B).

It is worth mentioning that our confirmation operators can be modelled in the logical language
with polynomial weight formulas from [14] that we described in Section 5. However, for obtaining
the weak completeness of that logic, additional expressiveness was needed and the language was
extended to a first-order language such that variables can appear in formulas.

Finally, let us propose an avenue for further research. Recall that in this paper, we modelled
the difference measure. We chose this measure simply because it is the most standard measure of
confirmation. However, we can adapt the technique developed here to capture the other popular
measures from the literature (see, e.g. [33]). For example, Carnap’s relevance measure

(AN B) — pn(A)u(B)

can be axiomatized by replacing A7-A10 and R4 and RS with the following axiom schemes and
inference rules:

(A7) (Pxia A PxsB A csp(a, B)) = Pxrys(a A B);
(A8”) (P<ta A P<sB A c<r(@, B)) = P<pys(a A B);
(R4’) from the set of premises

{y = (P> AP>3B) = Poryg(a A B)) | 1,5 € [0,1]p}

infer y — c=,(a, B);
(R5’) from the set of premises

{y = (P<ta A P<sB) = P<pys(a A B)) | 1,5 € [0,1]p}

infer y — c<,(«, B).
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For axiomatizing Carnap’s relevance measure, we need only eight axiom schemes. Note that we can
also apply the similar technique for axiomatizing log—ratio measure

P(a|p)

,B) =1lo ,
el p) =log[ 7]
but the decidability results are not clear. In that case, we cannot translate a formula to an existential
sentence in the first-order language of fields, as we did in Section 7, so we cannot apply the
procedure from [14].
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