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A NOTE ON THE ASYMPTOTIC EXPRESSIVENESS OF ZF AND ZFC

MACIEJ BENDKOWSKI

ABsTRACT. We investigate the asymptotic densities of theorems provable in Zermelo-Fraenkel
set theory zF and its extension zZFcC including the axiom of choice. Assuming a canonical
De Bruijn representation of formulae, we construct asymptotically large sets of sentences un-
provable within zr, yet provable in zrc. Furthermore, we link the asymptotic density of zrC
theorems with the provable consistency of zrc itself. Consequently, if ZFC is consistent, it is
not possible to refute the existence of the asymptotic density of ZFC theorems within zrc. Both
these results address a recent question by Zaionc regarding the asymptotic equivalence of zF
and ZFC.

1. INTRODUCTION

In the current paper we are interested in the asymptotic expressiveness of first-order set the-
ories ZF and zZFC. More specifically, we investigate the asymptotic density of sentences provable
within these theories among all sentences expressible in the first-order language £ consisting of
a single binary membership predicate (€) and no function symbols.

We start with the following problem posted recently by Zaionc.

Problem. Consider the theories zF and zrC. What is the asymptotic density of theorems
provable within zZrFC? Is it true that zZFC is asymptotically more expressive than zr?

To make the notion of asymptotic density of theorems sound, we have to assign to each
formula ¢ an integer size |¢| in such a way that there exists a finite number of formulae of any
given size. Having such a size notion, we then define the asymptotic expressiveness of a theory
T as the asymptotic density p(T) of its theorems among all possible sentences, i.e.

~ lim Ho: lol=n AT}
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In order to start addressing the above problem, we have to establish a formal framework
in which we fix certain technical, yet important details, such as the assumed size model of
formulae, or their specific combinatorial representation. In this paper we choose to represent
formulae using De Bruijn indices [4] instead of the usual notation involving named variables.
Within this setup our contributions are twofold.

Firstly, we show that zZF and zZFC cannot share the same asymptotic expressiveness. Specific-
ally, we construct an asymptotically large (i.e. having positive asymptotic density) fraction of
L-sentences which, though provable in ZFC, cannot be proven in the weaker system ZF without
the axiom of choice. Secondly, we show that it is not possible to refute the existence of u(zFc)
within zrC itself. For that purpose we link the provable existence of p(zrc) with the provable
consistency of zrC. In light of Gédel’s second incompleteness theorem, the existence of u(zFcC)
becomes unprovable within zFcC.

We base our analysis on a mixture of methods from analytic combinatorics and, more spe-
cifically, recent advances in its application in the quantitative analysis of A-terms [1,3,5].
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2. ANALYSIS

2.1. Formulae representation. Let V be an infinite, denumerable set of De Bruijn indices
0,1,2,..., and F be a finite, functionally complete set of proposition connectives, e.g. {A,V,—}.
Then, we define the set of L-formulae ® inductively as follows:

e If n,m € V are two indices, then (n € m) is a formula in ®;
o If v1,...,0, € P and o € F is an n-ary connective, then o(p1,...,p,) € @;
o If ¢ € @, then both (V) and (Jp) are formulas in ®.

Recall that in the De Bruijn notation, we replace named variables with indices denoting the
relative distance between the represented variable occurrence and its binding quantifier. For
instance, in the De Bruijn notation the empty set aziom 3z Yy (y & x) becomes IV (0 & 1).
The index 0 denotes a variable bound by the nearest quantifier, i.e. V. Likewise, 1 denotes a
variable bound by the second nearest quantifier, i.e. 3. In general, the index n represents a
variable occurrence which is bound by the (n + 1)st quantifier on the path between the index
and the top node of the corresponding expression tree. If no such quantifier exists, the index
occurs free.

Remark 1. De Bruijn introduced integer indices to facilitate the automatic manipulation of
A-terms [4]. From our point of view, adopting his notation to first-order formulae presents a
few important advantages. Most notably, each sentence admits one, canonical representative.
Consequently, we do not have to concern ourselves with counting formulae up to a-equivalence,
i.e. up to bound variable names. For instance, formulae 3z Vy (y ¢ z) and Jy Vz (z € y) admit
the same representation 3V (0 ¢ 1). Further advantages of the De Bruijn notation will become
clear once we start a more detailed quantitative analysis of formulae.

2.2. Size model. The set ¢ of formulae we consider can be neatly encapsulated in the following,
more symbolic specification:

(2) Do = VEV | Vb | Iy | U o(Poo).-
(0)eF

Here V denotes the class of De Bruijn indices whereas the boldface notation ®., denotes vectors
of lengths matching the arities of respective connectives. So, for instance, if 7 = {NAND} then
the final alternative in (2) becomes NAND(®so, Po).

Given such a general combinatorial specification of formulae, we assume a unary representa-
tion of indices. In other words, we represent the index n as an n-fold successor of zero, i.e. S(™0.
In doing so, the class V' admits a simple, recursive definition:

(3) Vi=0]SV.

Note that combined, (2) and (3) constitute a simple algebraic specification of formulae. To
complete the above size model, we assume a so-called natural size model, cf. |2], which adheres
with the previously mentioned finiteness condition. In this model, each constructor, i.e. successor
S, zero 0, membership predicate (€), quantifiers V, 3, and connectives (o), is assigned weight
one. The size of a formula becomes then the total weight of all constructors it is built from.
So, for instance, 3V (0 ¢ 1) has size 7 as it consists of seven constructors. Note that & is a
shorthand for two constructors (€) and (=), and that 1 =S 0 consists of two constructors.

Remark 2. We choose the natural size notion for technical simplicity. Let us mention that our
analysis extends onto more sophisticated weighing systems, though it is specific to the unary
representation of indices and does not immediately apply to other representations, e.g. involving
a more compact binary encoding of indices, or counting formulae with named variables up to
a-equivalence.

2.3. Counting formulae. Given the algebraic specification (2) of formulae, we can easily lift it
onto the level of generating functions using so-called symbolic methods, see [5, Part A. Symbolic
Methods|. Let ®o(2) = >,>0anz" be the generating function in which the nth coefficient
an = [2"]®uo(z) denotes the number of formulae of size n.
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Then, based on (2) ®(z) satisfies the relation

P 2
(4) Doo(z) = z<1 = Z) +2:Poo(2) + D 2Poo(2).
(o)eF

Here ar(-) denotes the the arity of the respective symbol.

Proposition 3. The generating function ®,(z) admits a Puiseux expansion in form of

(5) @Oo(z):a—bHJrO(\l—%\)

where 0 < p < 1, and a,b > 0.

Proof. We apply the Drmota—Lalley~Woods theorem, see e.g. [5, Theorem VII.6|.

Recall that the set F of connectives is functionally complete and so by Post’s theorem it
must contain a connective (o) of arity n > 2, ¢f. [7]. It means that (4) is non-linear in ®..(2).
By construction, it is also algebraic positive and algebraic irreducible. Algebraic properness,
sometimes referred to as well-foundedness, follows for instance from Joyal and Labelle’s implicit
species theorem, cf. [8]. Indeed, consider the Jacobian H(z, @) associated with ®..:

(6) H(z, Poo) = 22 + Z 2 ar(0)®u (2)™ )7L,
(0)eF

Note that 7(0,0) = 0 and so, as a 1 x 1 matrix, it is trivially nilpotent. Algebraic aperiodicity
is a consequence of the fact that for all sufficiently large n there exists a formula of size n (for
instance the sole index n-1). Hence [2"]®(2) # 0.

The generating function ®,(z) meets therefore all necessary requirements. We can apply the
Drmota-Lalley-Woods theorem and conclude that (4) has a unique dominant singularity p and
a suitable Puiseux expansion of declared form. O

Remark 4. Given the Puiseux expansion of ®,,(z) we can readily use transfer theorems [5,
Section VI.3] to obtain an asymptotic estimate for [2"]® . (z) standing for the number of formulae
of size n:

(7) (2" ®oo(2) ~ C - p"n 32,

2.4. Counting sentences. Since we are interested in the asymptotic density of theorems, we
need to establish asymptotic estimates for the number of sentences, i.e. formulae without free
indices. We follow a method similar to [1,3| developed for the purpose of counting closed A-terms
in the De Bruijn representation.

Let us start with introducing m-open formulae. Analogously to m-open A-terms, we call a
formula ¢ m-open if prepending ¢ with m head quantifiers, be it universal or existential, turns ¢
into a sentence. For instance, the formula (V 0 — (3 0 A 2)) is 1-open as 2 occurs free, however
becomes bound once we introduce a single head quantifier. Note that by such a definition,
m-open formulae are at the same time (m + 1)-open. In particular, sentences are just 0-open
(closed) formulae.
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By symbolic methods, the definition of m-open formulae gives rise to an infinite specification
involving all the classes of m-open formulae (®,,),,~¢:

Do =Dy | 301 | | J o(®0)

(0)eF

Oy =YDy | 3Py | | J o(®1) | Ver € Vy
(0)eF

(8) By := VP3| D3 | (EJ o(®3) | Vg € Vg
o)eF

D, =P | 3P,41 | U O(q)m) | Vem € Vam
(0)eF

In words, a formula ¢ is m-open if it is in form of (V7) or (37) where 7 is (m + 1)-open, or in
form of ¢ = o(7,...,7,) where 7q,..., 7, are again m-open, or finally, if ¢ is in form of (n € k)
where both n and k are two of the m initial indices V., = {0,...,m-1}.

Note that &g C &1 C --- C &, € --- C §,. Consecutive classes subsume and extend all the
previous ones so ®,, resembles more and more ®,, as m — oco. Let us formalise this intuition
and show that the infinite (®,,),,~( is a forward recursive system in the sense of the following

definition, cf. [1, Definition 5.5]".
Definition 5 (Forward recursive systems). Let z be a formal variable. Consider the infinite
sequences (L<m>)m>0 and (K<m>)m>0 of formal power series L™ (z) and K™ (¢4, £y, z). Assume

that (L<m>)m>0 and (IC<m>)m>0 sagisfy

9) 1m) — jlm) < Ll pim+1) z) .

Then, we say that the system (9) is forward recursive.
Furthermore, consider a limiting system in form of

(10) 1,(00) — fo(oo) ( L) o), z)

where L{(z) and K(°) (¢, 05, 2) are formal power series, and moreover K{*) is analytic at
(£1,02,z) = (0,0,0). In this setting, we say that the system (9):
a) is infinitely nested if K™ (1,05, 2) < K{%°) (1, £o, z) meaning that for all n > 0

(2K (01,09, 2) < [ (04, 09, 2);

b) tends to an irreducible context-free schema if it is infinitely nested and its corresponding
limiting system (10) satisfies the premises of the Drmota—Lalley—~Woods theorem [5, The-
orem VII.6|, i.e. is a polynomial, non-linear functional equation which is algebraic positive,
proper, irreducible and aperiodic;

c) is exponentially converging if there exists a formal power series A(z) and B(z) such that

(11) KRN (Lfoo) L80) 2y — ktm(L8o0) L) ) < A(z) - B(2)™,

and both A(z) and B(z) are analytic in the disk |z| < p+ & for some € > 0 where p is the
dominant singularity of the limit system (10). Moreover, we have |B(p)| < 1.

Proposition 6. The infinite system (®,,),,~, is an infinitely nested, forward recursive system
which tends to the irreducible context-free schema ®, at an exponential convergence rate.

IThe current definition is a simplified version of [1, Definition 5.5]. The original one involves systems of
functional equations and permits additional vectors of so-called marking variables which can be used, for instance,
to track the behaviour of certain interesting sub-patterns of random structures.
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Proof. Let us unpack the all the definitions one at a time. First, since ®,, involves ®,,,1 in its
specification (8), note that the infinite system (®,,),,~ fits the definition of a forward recursive
system assuming @, as its limiting system. -

Next, let us consider @, and the limiting system ®.,. Note that each m-open formula is
accounted for in [2"]®,,(2) and in [2"]®(2). Hence ®,,(2) = ®oo(2) and (Pyy,),,~( is indeed
infinitely nested. By the arguments presented in the proof of Proposition 3 it is at the same
time tending to the irreducible context-free schema ® ..

Finally, note that by (8) ®,,(z) satisfies the equation

ma 2
(12) Prn(2) =2 (z(%?) +22®p,11(2) + Z z@m(z)ar(o).

Therefore

Do (B, Do, 2) — By (B, Do, 2) = z<1 z >2_Z (M)z

3 3
2
(1—2) (1—2)

In this form, it is clear that (®,,(2)),,> is exponentially converging. O

(13)

Having established the behaviour of (q)m)mzo we are ready to apply the following general
result [1, Theorem 5.9] tailored here so to fit our specific application.

Theorem 7. Let S be an infinitely nested, forward recursive system which tends to an irre-
ducible context-free schema at an exponential convergence rate. Then, the respective solutions
L<m>(z) of § admit for each m > 0 an asymptotic expansion of their coefficients as n — oo in
form of

L\ k2
(14) L (2) ~ [ el (1 B ‘>

k>0 P

where p is the dominant singularity of the corresponding limiting system (10).

As for general formulae, a direct application of transfer theorems gives us the following asymp-
totic estimate for the number of m-open formulae.

Proposition 8. The number [z"]®,,(z) of m-open formulae of size n satisfies the following
asymptotic estimate:

(15) [2"]®m(2) ~ Cyy - " 3/2.

Note that estimates (15) share the same exponential p™ and sub-exponential n /2 factors.
These are also the same for the number of all formulae, ¢f. (7). What differentiates them are
the respective multiplicative constants C,, and C.

3. APPLICATIONS

Given the asymptotic estimate for the number of m-open formulae, we continue our investig-
ations into the asymptotic expressiveness of ZF and zZFC. Let us introduce the following useful
concept of formulae templates.

Definition 9 (Formulae templates). A template C is a formula with a single hole [-] instead of
some sub-formula in form of (n € m). To denote the result of substituting a formula ¢ for [-] in
C we write C[p]. Note that the outcome of such a substitution is always a valid formula.

We call a template m-permissive if for each m-open formula ¢ the resulting C[p] is a sentence,
i.e. is 0-open. By analogy to formulae, the size of a template is the total weight of its building
constructors, assuming that [-] weights zero.

For instance, consider the template C = 3V [-] of size two. The result of substituting (0 ¢ 1)
into C is the formula C[(0 ¢ 1)] = 3V (0 € 1). The hole [-] is proceeded by two quantifiers in
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C so C is 2-permissive. Note that, in general, if C is m-permissive, then it is also 0-permissive,
1-permissive, etc.

Lemma 10. Let C be an m-permissive template and £(C) = {C[y]: ¢ is m-open}. Then, the
set L£(C) has positive asymptotic density in the set of all sentences.

Proof. Assume that the template C has size d. It means that the sentence C[y] is of size d+ |¢|.
Let us estimate the number of formulae of this form. By Proposition 8 the number of sentences
® € L(C) of size n satisfies the asymptotic estimate C,, - p"~%(n — d)_?’/ 2 Likewise, the number
of all sentences of size n is estimated by Cj - p"n~3/2. Hence, the asymptotic density of L(C) in
the set of all sentences admits the following estimate:

Cy, - p"_d(n — d)73/2 Cmn
(16) HEC) Cy - prn=3/2 Cy - p

> 0.

O

The above lemma allows us to construct asymptotically large (i.e. having positive asymptotic
density) sets of sentences whose structure fits the imposed template pattern. We are going to
exploit this construction in the following sections.

3.1. Consistency, extensions, and asymptotic expressiveness. To investigate the asymp-
totic expressiveness of both zZF and ZFC we start with several propositions regarding general,
abstract axiomatic set theories and their properties. For convenience, we use u~ (7) and p™ (7))
to denote liminf and lim sup of He: lpl =n AT F o}
Proposition 11. Let T be a consistent axiomatic system. Then, the set of T-theorems cannot
have a trivial asymptotic density, i.e. 0 < p=(7) and p™(7) < 1.

, respectively.

Proof. Let T be an arbitrary tautology. Consider the following templates:
(17) C=(]vrT) and C=([]n—T).

_ Note that £(C) = {C[¢]: ¢ € ®o} consists of tautologies (in particular, T-theorems). Likewise,
L(C) =A{C[y]: ¢ € Py} consists of anti-tautologies. By Lemma 10 both have positive asymptotic
density in the set of all sentences. Therefore, 0 < p~ (7) and p™(7) < 1. O

In other words, consistent theories cannot have a trivial asymptotic expressiveness. In partic-
ular, this remark applies to ZF and zZFC (assuming, of course, their consistency). The following
slight refinement gives an if and only if condition linking inconsistent theories and trivial asymp-
totic expressiveness.

Proposition 12. An axiomatic system 7 is inconsistent if and only if u(7) = 1.

Proof. Assume that 7 is inconsistent. It means that we can derive a contradiction within 7.
Since ez falso quodilibet, any sentence ¢ is a theorem of 7. Trivially, it means that u(7) exists
and is equal to one. Now, let us assume that 7 is consistent. Note that 7 cannot have an
asymptotic expressiveness one as for consistent theories we can construct asymptotically large
sets of anti-tautologies witnessing u*(7) < 1, ¢f. Proposition 11. O

Template formulae allow us to derive also the following result.

Proposition 13. Let T be a consistent axiomatic system and ¢ be an sentence independent of
T,i.e. TH¢nor Tt/ —¢. Then, there exists a set of theorems of the extended T + ¢ which has
positive asymptotic density.

Proof. Let T be an arbitrary tautology. Consider the context C = (7 V [-]) — ¢ and the set

L(C) = {Clp]: ¢ € Py} it generates. Note that by Lemma 10 the set £(C) is asymptotically

large. Let us choose an arbitrary sentence £ € £(C). Note that 7 4+ ¢ F £ as we can simply

assume ¢’s premise and discharge the axiom ¢. Moreover, note that 7 F/ €. Indeed, suppose to

the contrary that 7 F £. Since £’s premise is a tautology it has a proof in 7. By modus ponens

we conclude that 7 F ¢ which contradicts the fact that ¢ is independent of T . O
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Remark 14. The axiom of choice is a prominent example of a sentence independent of Zermelo-
Fraenkel’s set theory zF, cf. |[6]. Consequently, it is possible to construct asymptotically large
sets of ZFC-theorems which cannot be proven in the weaker system ZF.

Note that our argument holds for any consistent axiomatic set theory and independent sen-
tences. Moreover, for sufficiently rich theories Godel’s first incompleteness theorem, see [9],
guarantees that such an argumentation can be carried out ad infinitum.

3.2. Unprovable existence of asymptotic expressiveness. Having discussed the properties
of general axiomatic theories, let us now concentrate on zZFC. The following result is a simple
consequence of Godel’s second incompleteness theorem, cf. [9].

Proposition 15. Let i be a predicate definable in zrcC such that zrcC F p(g) if and only if p4(zZFC)
exists and is equal to g, and CONSISTENT be the canonical predicate encoding the consistency
of zFC. Assume that zZFC is consistent. If

(18) ZFC | CONSISTENT «— —u(1),
then zrC I =3 g: u(g).

Proof. Suppose that =3 g: u(g) can be proven in zrC, i.e. ZFC F —3 g: u(g). Equivalently,
ZFC F YV g: —p(g). In particular ZzFC = —p(1). By (18) it holds zZFC = CONSISTENT. Godel’s
second incompleteness theorem, as instantiated for Zrc, provides the required contradiction. [

Remark 16. Note that the assumption (18) states that Proposition 12 can be formalised in
zFC. We can safely assume that this laborious task can be accomplished. It is unclear, however,
if the same results hold for the weaker theory zF. In the proof of Proposition 12 we use quite
deep results from analytic combinatorics whose use of the axiom of choice is, as far as we know,
undetermined.

4. CONCLUSIONS

We investigated the asymptotic expressiveness of ZF and ZFC developing a general argument
that within zZFC it is possible to prove an asymptotically large set of theorems unprovable in
ZF alone. By linking provable consistency of ZFC and its asymptotic expressiveness, we argued
that within zZFC it is not possible to disprove the existence of ZFC’s asymptotic expressiveness.
Moreover, by the same argument, it is not possible to prove the existence of a non-trivial
asymptotic expressiveness of ZFC within itself.

Let us note that ZFC I/ CONSISTENT along with the assumption that ZFC is consistent imply
that zZFC has a model M such that M E p(1). This model witnesses the fact that zrc I/
—3 g: pu(g). Nevertheless, it is not clear whether zrC I/ 3 g: p(g) holds, i.e. if there exists a
model of ZFC in which theorems of ZFC do not have an asymptotic density. We speculate that
establishing a model M such that M ¥ 3 u(g) would require a clever mixture of forcing, and
analytic methods.

REFERENCES

[1] Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Statistical properties of lambda terms. The Electronic
Journal of Combinatorics, 26:1 — 70, 2019.

[2] Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc. Combinatorics of lambda-terms:
a natural approach. Journal of Logic and Computation, 27(8):2611-2630, 06 2017.

[3] Olivier Bodini, Bernhard Gittenberger, and Zbigniew Golebiewski. Enumerating lambda terms by weighted
length of their de bruijn representation. Discrete Applied Mathematics, 239:45 — 61, 2018.

[4] N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation,
with application to the church-rosser theorem. Indagationes Mathematicae (Proceedings), 75(5):381 — 392,
1972.

[5] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

[6] Kenneth Kunen. Set Theory. London: College Publications, 34 edition, 2011.

[7] Francis Jeffry Pelletier and Norman M. Martin. Post’s functional completeness theorem. Notre Dame J.
Formal Logic, 31(3):462-475, 06 1990.

7



[8] Carine Pivoteau, Bruno Salvy, and Michéle Soria. Algorithms for combinatorial structures: Well-founded
systems and newton iterations. Journal of Combinatorial Theory, Series A, 119(8):1711 — 1773, 2012.
[9] Peter Smith. An Introduction to Gddel’s Theorems. Cambridge Introductions to Philosophy. Cambridge Uni-

versity Press, 2 edition, 2013.
Email address: maciej.bendkowski@gmail.com



	1. Introduction
	2. Analysis
	3. Applications
	4. Conclusions
	References

