
ar
X

iv
:2

01
0.

00
79

1v
1

 [
cs

.L
O

]
 2

 O
ct

 2
02

0

A RECURSION THEORETIC FOUNDATION OF COMPUTATION

OVER REAL NUMBERS

KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Techno-
logical University, 21 Nanyang Link, Singapore 637371

Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran, P.O. Box: 15875-4413

Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge
Road, Singapore 119076
e-mail address: kmng@ntu.edu.sg
e-mail address: nrtavana@aut.ac.ir
e-mail address: matyangy@nus.edu.sg

Abstract. We define a class of computable functions over real numbers using functional
schemes similar to the class of primitive and partial recursive functions defined by Gödel [3,
4] and Kleene [9]. We show that this class of functions can also be characterized by master-
slave machines, which are Turing machine like devices. The proof of the characterization
gives a normal form theorem in the style of Kleene [9]. Furthermore, this characterization
is a natural combination of two most influential theories of computation over real numbers,
namely, the type-two theory of effectivity (TTE) (see, for example, Weihrauch [18]) and
the Blum-Shub-Smale [1] model of computation (BSS). Under this notion of computability,
the recursive (or computable) subsets of real numbers are exactly effective ∆0

2 sets.

1. Introduction

The original motivation of this paper was to understand the notion of algorithm in its
general form, i.e., not necessarily over domain N— the set of natural numbers1. By studying
algorithms over real numbers and making comparisons with their counterpart over N, we
came across a notion of computability over real numbers—actually two similar notions, one
over Baire Space 2 and the other over R identified as the set of equivalence classes of Cauchy
sequences. The most interesting feature of this notion is its resemblance to the classical
notion of “computability over natural numbers”. In fact, it can be viewed as a natural lift
of the classical notion from many different aspects (recursive definitions, machine model

The first author is partially supported by the MOE grant MOE-RG26/13. The last author is partially
supported by MOE grant MOE-2019-t2-2-121.

1In this paper, we use both N and ω to denote the set of natural numbers.
2In this paper, we use both N and ω

ω to denote the Baire space.

Preprint submitted to
Logical Methods in Computer Science

© Keng Meng Ng, Nazanin R. Tavana and Yue Yang
CC© Creative Commons

http://arxiv.org/abs/2010.00791v1
http://creativecommons.org/about/licenses

2 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

and definablility). Before we elaborate the details, let us make some short comments on
the study of algorithms and how it motivated us.

The concept of algorithm was formalized in 1930s. It is one of the greatest intellectual
achievements in history. In fact there are several equivalent formalizations based on different
insights on effectiveness. They all apply to the domain of natural numbers or objects which
can be coded by natural numbers. Furthermore, the formalizations themselves can be
formulated within first-order Peano arithmetic. All formulations captured the finite and
discrete nature of algorithms, and revealed the intrinsic link between computability and
natural numbers.

However, the informal concept of algorithms applies not only the natural numbers but
also to other domains. For example, Newton’s method of finding roots is an algorithm
over real numbers and real-valued functions. Algorithms are used in other areas of natural
sciences too, for example, laboratory procedures for experimental scientists. Most people
would agree that (at least for a fixed domain) there is a clear intuition about what algorithms
are. What we hope to formalize is “that clear intuition” over real numbers.

Among the informal descriptions of algorithm, the one below gives the best illustration
of our approach:

Definition 1.1 (Informal). An algorithm is a finite set of instructions such that

(1) each instruction is “effective” (that is, definite or clearly stated or sufficiently simple
etc);

(2) there is a clear organization of the instructions so that from input to output, we know
how to go from one instruction to another.

What we like about this description is the separation of the instruction part and the overall
organization part. The instructions in item (1) may depend on domains and one needs to
justify the effectiveness of them; whereas the organization part in item (2) is really the heart
of algorithms, and it should be “absolute” when we move from one domain to another.

When the domain is the set of real numbers, part (1) actually depend on the underlying
topology, that is why we consider both the Baire space ωω and the real numbers R. However,
part (2) is done in the same way as over N. Over each of the domains, we formalize the
notion of computability in two ways, namely, by functional schemes and by machines; and
show that the two formalizations actually give us the same class of functions. We will come
back to the discussion of algorithms in the concluding section.

2. Computability Theory over Baire Spaces

We choose Baire space N “ ωω as our first example, because it will shed light on computa-
tion over real numbers while avoiding the tacky issues like dealing with equivalence classes
of Cauchy sequences. It is the first step of formalizing computability on higher types, an
area closer to logicians than computational mathematicians.

As we observed earlier, computability and natural numbers are intrinsically linked to-
gether. Therefore, we always need to have natural numbers at our disposal. For this reason,
when we talk about computability over a fixed domain D, we consider the class of functions
F from mixed types to mixed types, more precisely, F consists of functions from Y Ñ Z

where Y P tNp ˆ Dq,Np,Dqu and Z P tN,Du, where p and q are positive integers. In par-
ticular functions from N to N and from D to D are included. As functions with codomain

A FOUNDATION OF REAL COMPUTATION 3

Np ˆ Dq can be viewed as juxtaposition of p ` q many functions in F , we will not study
them explicitly.

For notational simplicity, we sometimes discuss only functions with domain N ˆ D

instead of Np ˆ Dq. Note that for domains like Baire space, N can be naturally embedded
into them. However, working with mixed types is necessary in more general domains, for
example, computation on finite rings. In the remaining of this section, the domain D will
be the Baire space N , and F “ tf : f is a function from Np ˆ N q to either N or N u.

2.1. Formalizing computability using functional schemes. We begin with a concept
used by computable analysts, which can be traced back to the notion of relativised compu-
tation by Turing [16].

Definition 2.1. We say that a partial function F : N Ñ N is TTE-computable over N if
there is an oracle Turing machine M such that for all x in N , F pxq Ó“ y if and only if for
all i in N, Mxpiq Ó“ ypiq; and F pxq Ò if and only if for some i in N, Mxpiq Ò. (Here we
used the standard notation that Mx is the machine M with x as its oracle, and Ó means
“is defined” and Ò means “is undefined”.)

One can also define TTE-computable functions as induced by recursive functions f :
ωăω Ñ ωăω satisfying the usual monotonicity conditions. We use oracle Turing machines
because of their direct connection with master-slave machines which we define later. It is
well-known that universal oracle Turing machine exists (see for example, Soare [14] p.48).
Thus we have

Lemma 2.2. There is a universal TTE-computable function Ψpe;xq over N , i.e., for any
TTE-computable function F : N Ñ N , there is some e P N such that for all x P N ,
F pxq “ Ψpe;xq.

Here is our first main definition:

Definition 2.3. The class of partial recursive functions over N is the smallest subclass C
of F satisfying the following conditions:

(1) C contains the following basic functions:
(a) Zero function Z : N Ñ N, Zpnq “ 0N;
(b) successor function S : N Ñ N, Spnq “ n ` 1; and
(c) for natural numbers p, q and i with p ` q ě 1 and 1 ď i ď p ` q the projection

function

π
p`q
i pn1, . . . , np;x1, . . . , xqq “

"
ni, if i ď p;
xi´p, if i ą p.

(d) A universal TTE-computable function Ψpe;xq over N ; and
(e) the characteristic function χ : N Ñ N of t0N u where 0N is the constant zero

sequence in Baire space.
(2) C is closed under

(a) composition, provided the types are matched;
(b) primitive recursion with respect to N; and
(c) µ-operator with respect to N.

The class of primitive recursive functions over N is defined similarly with the following
changes: (i) Fix a recursive list of indices ei, i “ 0, 1 . . . such that the Turing machine Mei

4 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

computes the i-th classical primitive recursive function. Define the universal primitive TTE
function Θpi;xq as Θpi;xq :“ Ψpei;xq. Replace Ψ in item (1)(d) by Θ; (ii) Drop the clause
(2)(c). We say a predicate is primitive recursive over N if its characteristic function is a
primitive recursion function over N . Observe that all primitive recursive over N functions
are total.

We now give precise definition of the terminologies used in the closure properties (item
(2) in Definition 2.3). In the definitions below, ~n, ~m, ~x and ~y stand for the tuples pn1, . . . , npq,
pm1, . . . ,mrq, px1, . . . , xqq and py1, . . . , ysq respectively.

Definition 2.4. Given a function fpn1, . . . , np;x1, . . . , xqq and a finite sequence of functions
gip~m; ~yq and hjp~m; ~yq where 1 ď i ď p and 1 ď j ď q, we say that the types of f , gi and hj
are matched if the codomain of gi is N and the codomain of hj is N .

We say that a class of functions C is closed under composition, provided the types are
matched, if for functions fp~n; ~xq, gip~m; ~yq and hjp~m; ~yq with matched types (1 ď i ď p and
1 ď j ď q), f , gi and hj are in C implies the function

fpg1p~m; ~yq, . . . , gpp~m; ~yq;h1p~m; ~yq, . . . , hqp~m; ~yqq

is in C.

Definition 2.5. Let G : Np ˆ N q Ñ N and H : Np`2 ˆ N q ˆ N Ñ N be given. We say
that a function F : Np`1 ˆ N q Ñ N is obtained from G and H by primitive recursion with
respect to N, if

F p0, ~n; ~xq “ Gp~n; ~xq

F pk ` 1, ~n; ~xq “ Hpk, ~n; ~x, F pk, ~n; ~xqq.

Similarly for function F : Np`1 ˆ N q Ñ N (just change the codomains of G and H to N

and move the term F pk, ~n; ~xq before the semicolon in the second equation).

Definition 2.6. Let G : Np`1ˆN q Ñ N be given. We say that a function F : NpˆN q Ñ N

is obtained from G by µ-operator with respect to N, if

F p~n; ~xq “

$
’’&
’’%

the least k such that for any k1 ă k, if such k exists;
Gpk1, ~n, ~xq Ó‰ 0N and Gpk, ~n, ~xq “ 0N,

undefined, otherwise.

We write F p~n; ~xq as µk Gpk, ~n; ~xq “ 0.

Next we state a few lemmas which will be needed later. Only sketches of the proofs
are given, as they are almost entirely the same as the standard proofs. Note that every
classical recursive function on N has a natural pointwise lift on N . For example, the lift of
exponential function n ÞÑ 2n is: pn0, n1, . . . q ÞÑ p2n0 , 2n1 , . . . q. We understand that this lift
is not the usual exponential function on real numbers, that is why we need to go beyond
Baire space later.

Lemma 2.7. All partial recursive functions over natural numbers in the standard sense
are partial recursive over N . In particular, Gödel numbering of finite sequences of natural
numbers and the corresponding decoding functions are primitive recursive over N .

Proof. By definition, it is clear that the generalized recursive function over N contains the
standard partial recursive functions as a subclass.

A FOUNDATION OF REAL COMPUTATION 5

Lemma 2.8. The equality predicate “x “ y” over N is primitive recursive over N .

Proof. By Lemma 2.7, the cutoff subtraction x´y and the absolute value function |x´y| “
px ´ yq ` py ´ xq are TTE-computable functions over N . Therefore x “ y if and only if
χp|x ´ y|q “ 1. The result follows.

Lemma 2.8 explains the purpose of having the characteristic function χ of t0N u: to
make equality computable.

Lemma 2.9. If f : N ˆ N Ñ N is primitive recursive over N , then so are
řn

i“0 fpi, xq
and

śn
i“0 fpi, xq. Consequently the class of primitive recursive over N predicates is closed

under bounded (numerical) quantifiers.

Proof. The proof is exactly the same as the one in classical recursion theory.

Lemma 2.7 and 2.9 also explains why we must include N in the formalizations of com-
putability, because we need the coding of finite sequences3.

Lemma 2.10 (definition by cases). If f1pxq and f2pxq are primitive recursive functions
over N , and P pxq and Qpxq are mutual exclusive primitive recursive predicates over N ,
then the function

fpxq “

"
f1pxq, if P pxq holds;
f2pxq, if Qpxq holds.

is also primitive recursive over N .

2.2. Formalizing Computability by Master-Slave Machines. We now adopt the master-
slave machines (abbreviated as MS-machines) used in Yang [19] to formalize the computabil-
ity over N . For the sake of simplicity, we will fully employ Church’s Thesis of computation
over natural numbers.

Let us quickly recall the basic features of a master-slave machine (see Figure 2.2). Its
physical device consists of the following three parts: Master part (above the dashed line in
Figure 2.2) which only handles natural numbers; slave part (below the dashed line) which
handles computations over Baire space; and their interactions (on the dashed line) where
the information flows from the master to slaves and vice versa.

The master part is simply a standard Turing machine M . As it is the control part of
the machine, the same letter M is also used for the whole MS-machine. If a computation
involves natural number inputs, they will be sent to the master M as well.

Although one can view the slave part as a big black box, the description below gives
more intuition to the computation, and its effectiveness. We have an infinite sequence
xSi : i P ωy of universal (standard) oracle Turing machines, called slaves. Each slave
Si has its own label i, indicating its relative position to other slaves. For an element
x “ pm0,m1,m2, . . . q in Baire space, we put x on tape as bpm0qlbpm1qlbpm2ql . . . , where
bpmq stands for m written in binary and l stands for empty cell. All slaves share the
following four kinds of tapes: (1) An oracle tape on which the input x is written, we
sometimes refer to it as the input tape for slaves; (2) one or more working tapes for slaves
(besides their own working tapes for natural numbers); (3) a write-only output tape for
Baire space output, the slaves will write sequentially, in particular, any slave cannot modify

3This approach is similar to the prime computability introduced by Moschovakis [10]. We thank Alexandra
Soskova for informing us the literatures in this area.

6 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

M

S0 S1 S2

kBillboard

tape for master

input from Baire space

zero test

working and output tapes

¨ ¨ ¨ ¨ ¨ ¨

Figure 1: A Master-Slave machine

the writings of other slaves; (4) a special tape, called zero-test tape, for any sequence written
on this tape, there is a special module which is able to detect if it is the zero sequence and
to return a Boolean bit k “ 0 or 1 to the master.

The interaction between the master and the slaves is done as follows. The master writes
a natural number p on the billboard tape. Each slave Si will take this p as its program input
and its index i as numerical input. Since the slaves are universal oracle Turing machines Φ,
what Si does is to simulate the TTE-computation Φxpp, iq. Here and below, we use Φxppq
for Ψpp;xq to emphasize that x is an oracle; and Φxpp, iq is the i-th component of Φxppq if
it is defined.) The feedback from the slaves to master is done via zero-test module, and the
result is stored in the Boolean bit k which M can use.

A FOUNDATION OF REAL COMPUTATION 7

The program (or software part) of a master-slave machine can be identified with the
Turing program of the master M . We can ignore the slaves, because all slaves use the
same fixed universal program. Fix a finite set of states Q “ Q0 Y tS,Eu where Q0 is the
set of states for a standard Turing machine and S and E are two new symbols for slave
calling and zero-testing respectively. We also single out two states qs and qh in Q0 for
starting and halting, respectively. Also fix a set of alphabet Σ, usually binary and with
some auxiliary symbols for convenience. The transition functions of a master-slave machine
can be represented by a finite set of finite tuples, the dimension of the tuples depends on the
number of tapes. For example, the machine in Figure 2.2 has three tapes (and three heads),
namely, input tape, billboard and the Boolean bit. However, in the discussion below, we will
ignore the multi-tape issues for simplicity. We will use only one tape, hence the transition
function is described by quadruples. Since any multi-tape standard Turing machine can be
simulated by one with a single tape, we do not loss any generality here. The quadruples
are of the following three kinds: Standard, slave-calling and zero-testing.

(1) The standard commands are of the form qaa1q1 or qaLq1 or qaRq1, where q P Q0, q
1 P Q,

a, a1 P Σ and L,R are for directions. Their executions are exactly the same as in classical
case.

(2) The slave calling commands are of the form Saaq, where q P Q and a P Σ (the symbol
a is just to make it a quadruple). When executing this command, the slave Si will
perform Φxpp, iq as described in the interaction part above. When every slave machine
halts, the state of the master becomes q. If some slave does not halt, the computation
on input x of the MS-machine is undefined.

(3) The zero-test commands are of the form Eaaq where q P Q and the symbol a again is
to make it a quadruple. The execution is also described in the interaction part above.

The definition of an MS-computation is analogues to the classical one. For simplicity
again, we assume that we only have one tape for master and one tape for slaves. An MS-
configuration C is a pair pn; yq where n is a natural number coding the configuration (in
the standard sense) of the master together with the billboard and Boolean bit; and y is an
element in N currently written on the tape handled by slaves.

Given a master-slave machine M and a configuration C “ pn; yq, we decode from n in
C to get the current state parameter q and the symbols a reading by the master; then check
which quadruple in M starts with qa (in the case when q is S or E, we do not check the
second component a) for some non-halting state q and act according to the command, the
resulting configuration D will be the one yielded from C by M .

A configuration pn; yq is called terminal, if its state component coded in n is the halting
state qh. A terminal configuration does not yield any configurations.

For any input pk;xq of mixed type, the initial MS-configuration for input pk;xq is the
one that the Master is in its starting state qs and k is put on the input tape of the master
and the Baire space input x is written on the oracle tape shared by all slaves.

A master-slave computation of M on input pk;xq is a sequence of MS configurations
xCiy such that C0 is the initial configuration for pk;xq, and either (1) the sequence is infinite
and for all i, Ci yields Ci`1; or the sequence is of finite length i0`1 for some natural number
i0, for all i ă i0, Ci yields Ci`1, and either (2.1) Ci0 is a terminal MS-configuration, in which
case, the output is the number on the output tape of the master or slaves depending on the
codomain; or (2.2) the state component of Ci0 is S and Φypp, jq Ò for some j P ω, where p

and y are the billboard and Baire space component of Ci0 respectively.

8 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

Definition 2.11. We say that a partial function f : Np ˆ N q Ñ Y where Y P tN,N u is
MS-computable over N if there is a master-slave machine M such that

fp~n; ~xq “

$
’’&
’’%

y, if M on input p~n; ~xq halts and the output is y;
(note that y can be in N or in N depending on f .)

Ò, if (1) or (2.2) happens in the MS-computation of M
on input p~n; ~xq.

Lemma 2.12. Every partial recursive function over N is MS-computable over N .

Proof. By Definition 2.3, it suffices to check that the basic functions are MS-computable
over N ; and the class of MS-computable functions over N are closed under composition,
primitive recursion with respect to N and µ-operator with respect to N.

The basic functions in item 1(a) to 1(c) in Definition 2.3 are clearly MS-computable.
The universal TTE-computable function is MS-computable: Given input pe;xq P NˆN , the
master just copies e on billboard and calls the slaves. The MS-computation of χ is simply
done by the zero-test command.

The proof of the closure properties is similar to the ones in classical recursion theory,
hence skipped.

2.3. A Normal Form Theorem for computation over N . Our definition of MS-
computation has several quantifiers over N ˆ N , it is not obvious how effective it is. In
this subsection, we analyze MS-computations carefully and define an analog of Kleene’s
T -predicate over N . Consequently we get both the following Normal Form Theorem and
the main characterization of MS-computable functions.

Theorem 2.13 (Normal Form Theorem). There are primitive recursive over N predicate
T pe, x, zq and a (partial) TTE-computable function Upz;xq where e, z P N and x P N , such
that for any MS-computable function F over N , there is some e, for all x P N

F pxq “ UpµzT pe, x, zq;xq.

Theorem 2.14. The class of MS-computable functions over N coincides with the class of
partial recursive functions over N .

We now proceed to prove Theorem 2.13. Let F P F be MS-computable, say computed
by an MS-machine M . For notational simplicity, we assume that F is from N ˆ N to N ,
the cases of Np ˆ N q to N or to N are similar. And we will ignore the multi-tape issue
again. Since there is an effective way to list all MS-programs, this M has an index, say e.
This e will be carried along as a fixed parameter in the rest of the proof.

As in classical recursion theory, we need to “arithmetize” everything. The first impor-
tant feature is that this arithmetization is done almost entirely using natural numbers, with
minimal reference to the input x in Baire space. All transitions of configurations will be
recorded by natural numbers only. To do that, we introduce a new natural number param-
eter c, called the TTE component of a configuration, such that for input x, the sequence
xΦxpc, iq : i P ωy is the current tape content written on the slave’s tape (here we used the
single tape convention). In other words, we code a configuration pn; yq as pn, c;xq where
ypiq “ Φxpc, iq for all i P ω. In particular, the initial configuration is coded as pn0, c0;xq
where c0 is an index of the identity TTE function, namely, Φxpc0, iq “ xpiq for all i P ω;

A FOUNDATION OF REAL COMPUTATION 9

and n0 codes the starting state qs and the natural number input k, etc. This idea is possi-
ble because the only change on the Baire space component is initiated by the slave calling
command. When we execute that command we get the content of billboard tape p from
n. By s-m-n theorem, there is a (standard) primitive recursive function gpp, cq such that

Φxpgpp, cqq “ ΦΦxpcqppq. In other words, all Baire space components that we ever see during
the computation are TTE-images of the input x.

Introducing the TTE component is not enough because the master may call some partial
TTE functions, whereas we want to make the Kleene T -predicate primitive recursive, in
particular T must be total. The idea is to make full use the infinitely many slaves and delay
the detection of the Π0

2 question of totality until the last step.
We have our second important (though a bit artificial) feature. We add restrictions to

the slave activities as follows. Add to the slave alphabet a new symbol, say #, and restrict
the running time of the i-th slave Si to 2i, in fact, the exact time bound is not important,
as long as the i-th slave can finish reading relevant part of the tape and computing for i

steps. If the computation task of Si does not finish by step i, it writes a # and stop. The
unfinished task is left to the next slave. Thus slave Si`1 would start from checking the
computations of S0, . . . , Si, if it finds some unfinished computations, say Sj is the first slave
whose task is unfinished, Si`1 will continue the task of Sj . If within its time restriction
i ` 1, Si`1 completed the task of Sj, it writes the result on tape and declare that Sj’s task
is finished; otherwise, it writes # and stop.

Let N# “ pω Y t#uqω . For any element x “ pxp0q, xp1q, . . . q P N , we say that y P N#

is a #-extension of x, if either

y “ p#n0 , xp0q,#n1 , xp1q,#n2 , xp2q, . . . q

for some pniq P N ; or there is some i P ω such that

y “ p#n0 , xp0q,#n1 , xp1q, . . . ,#ni , xpiq,#,#, . . . q.

In the latter case, we say that y is a divergent #-extension with initial part pxp0q, . . . , xpiqq.
We also let Φx

#peq to denote the “restricted” universal oracle Turing machine. Observe that

λx.Φx
#peq : N# Ñ N# is total for every e P N.

It should be noted that by changing alphabet, we can easily embed N# into N ef-
fectively, thus continuously. Thus we could discuss everything within N completely, the
purpose of introducing N# is purely for intuitive clarity.

During the computation, the master will “live” in N , whereas the restricted slaves
work in N# (except the last step of converting output). For instance, suppose that the
current configuration is pn, c;xq and the master wants the slaves to computing Φyppq where
y is the current tape content Φxpcq. However, the slaves now are working inside N#, they

typically see a #-extension y# of y as input. The slaves then compute Φy#

pp#q where the

program p# will produce some #-extension of z, if Φyppq Ó“ z. Furthermore, we can get
p# effectively by s-m-n Theorem. We summarized these facts in the lemma below:

Lemma 2.15. There is a primitive recursive function g# such that for any x P N , p, c P ω,
we have

(a) if Φxpcq Ó“ y, Φyppq Ó“ z, then Φx
#pg#pp, cqq is a nondivergent #-extension of z;

(b) if Φxpcq Ò or (Φxpcq Ó“ y but Φyppq Ò), then Φx
#pg#pp, cqq is a divergent #-extension

(with initial part being whatever ΦΦxpcqppq produces).

10 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

On the other hand, when the master asks for a zero-test of y, the slaves will execute
some “extended zero-test” on some #-extension of y, which treats the #-symbols as zero.
Thus if the original zero-test gives answer k, the extended test will also give the same
answer.

Lemma 2.16. There is a function χ# : N# Ñ t0, 1u, which is a composition of the zero-

test function χ in N and some TTE over N# function, such that, for each y# P N# which
is a #-extension of some y P N , χ#py#q gives the same answer as χpyq, more precisely,

χ#py#q “

"
1, if y “ 0N or y# is divergent with initial part all zero;
0, if y ‰ 0N or y# is divergent with non-zero initial part.

With these two features in mind, the rest of the proof is parallel to the classical proof of
Kleene’s Normal Form Theorem. Define the function tppn, c;xq, eq “ ppm,d;xq, eq reflecting
the fact “C yields D by M” via their codes as follows:

First we decode from n to get the current state q and the current symbol read by the
master, say a; then check which command or quadruple in M (which is coded by e) starts
with qa (in the case when q is S or E, we do not check the second component a). Depending
on the command, we obtain the code of the resulting configuration D as follows.

(1) If the quadruple is qaa1q1 or qaLq1 or qaRq1, then the transition only affects the master
part, say it changes n to m. Then in this case, tppn, c;xq, eq “ ppm, c;xq, eq. Note that
n ÞÑ m is primitive recursive over N by Lemma 2.7.

(2) If the quadruple is Saaq, where S is the slave calling state, then we can get the content
of billboard tape p from n. Let g#pp, cq be the function defined in Lemma 2.15. Set
tppn, c;xq, eq “ ppm, g#pp, cq;xq, eq and m is the resulting code of the configuration of
the master part to record the change of state to q. Note that pn, cq ÞÑ pm, g#pp, cqq is
again primitive recursive over N

(3) If the quadruple is Eaaq where E is the special zero-test state, then the state of master
changed from E to q and the boolean bit becomes χ#pΦx

#pcqq, where χ# are the function
defined in Lemma 2.16. Let m be the new code of the master configuration. we have
tppn, c;xq, eq “ ppm, c;xq, eq. Note that n ÞÑ m is again primitive recursive over N . Also
note that it is this step that the input x is used.

Apply the definition by cases (Lemma 2.10) and by discussions above, the transition function
t is primitive recursive over N .

Clearly to determine whether a code pn, c;xq of is one of a terminal configuration is
primitive recursive: Just check if the state component q in n is the halting state qh of M .

Define the Kleene T-predicate T pe, x, zq by “z is a (natural number) code of finite
sequences xpni, ciq : i ď |z|y such that pn0, c0;xq is the initial configuration and for all
i ă |z|, tppni, ci;xq, eq “ ppni`1, ci`1;xq, eq and pn|z|, c|z|;xq is terminal”. Note: Although z

is a natural number, we did not put z in front of x because we want to keep it the same
form as in classical recursion theory.

Lemma 2.17. T pe, x, zq is primitive recursive over N .

Proof. It follows from that coding input, transition t and deciding terminal configuration are
all primitive recursive over N ; and primitive recursive predicates are closed under bounded
quantification (Lemma 2.9).

Finally, by applying µ-operator, we can find the least z such that T pe, x, zq, if exists.
(If the function has codomain N, then the output reading function u : N ˆ N ˆ N Ñ N is

A FOUNDATION OF REAL COMPUTATION 11

exactly as in classical case.) We define the output reading functions U : N ˆ N Ñ N as
follows: Given a code of a finite sequence of configurations z and the Baire space input x,
we first get from z the set of all slave calling commands that M ever used, say the indices
are p1, . . . , pr, From i “ 0, we read through from j “ 1 to r, the i-th non-#-component
of Φx

#ppjq. If any of the #-extension is divergent, then Upz;xq is undefined, otherwise, we

write the i-th non-#-component of Φx
#pprq sequentially, that is the value of Upz;xq. Clearly,

U is a partial TTE-computable function.
That finishes the proof of the Kleene Normal Form Theorem, consequently, we have

the characterization theorem (Theorem 2.14).

2.4. Characterizing the computable/recursive sets. Recall that the basic open set in

Baire space is of the form JσK “ tf P N : σ ă fu where σ P ωăω. We use JσK to denote the
closed set N zJσK.

Definition 2.18. A subset O Ď N is said to be effectively open or Σ0
1 over N if there is

a (classically) recursive sequence xσiyiPω such that O “
Ť

i JσiK. We say that C Ď N is
effectively closed or Π0

1 over N if N zC is effectively open.
A subset A Ď N is said to be an effectively Gδ set or Π0

2, if there is a recursive sequence
xσi,jy such that A “

Ş
i

Ť
j Jσi,jK. A is an effectively Fσ set or Σ0

2 if its complement is

effectively Gδ . A is ∆0
2 over N if it is both effectively Gδ and effectively Fσ.

Definition 2.19. We say that a subset A Ď N is recursive over Baire space if its charac-
teristic function χ

A
is partial recursive over N .

Clearly, from its definition, recursive over N sets are closed under complementation.

Lemma 2.20. Every effectively open subset O of N is recursive over N , so is every effec-
tively closed set.

Proof. Let O “
Ť

i JσiK where xσiyiPω is a recursive sequence. We design an MS-machine M
to compute O as follows: Given input x P N , the master of M writes the code of computing
xσiy on the billboard; and asks the i-th slave Si to check if σi ă x, i.e., x P JσiK; if so, Si

writes a 1 on the i-th cell of the zero-test tape; it writes a 0 otherwise. Next we use zero-test
to get the boolean bit k. If x is in O then some slave will write a 1 on the zero-test tape,
so the sequence being tested is non-zero, so k “ 0; if x is not in O, then all slaves write
0 on the zero-test tape, so k “ 1. In other words x P O if and only if k “ 0. Note that
M actually decides the membership of O in two master steps, one slave calling and one
zero-test.

For example, the Cantor space 2ω is recursive over N as a subset of the Baire space.

Lemma 2.21. If a subset A of Baire space is ∆0
2 over N , then A is recursive over N .

Proof. Since A is ∆0
2, both A and its complement are Σ0

2. Let A “
Ť

i

Ş
j Jσi,jK and N zA “Ť

i

Ş
jpJτi,jKq, where xσi,jy and xτi,jy are recursive sequences in the classical sense. Suppose

x P N is the input for the MS-machine M which we are designing. Using the algorithm
described in the proof of Lemma 2.20, M can decide if x is in the closed set

Ş
jpJσ0,jKq using

two master steps. If x is in such a closed set, then M outputs 1 indicating that “x is in A”.
Otherwise, M will try to decide if x P

Ş
jpJτ0,jKq, if yes, output 0 indicating that “x is in

N zA”. Otherwise, try
Ş

jpJσ1,jKq, then try
Ş

jpJτ1,jKq, etc. Since x is either in A or in N zA.
This algorithm always halts and will give correct answer.

12 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

The converse of Lemma 2.21 is also true. The proof depends on another analysis of
how MS-machine works, on top of the one given in the proof of the Normal Form Theorem.

Let M be an MS-machine. Firstly we make all slaves in M restricted as described in
subsection 2.3, thus push the partialness issue to the very end. We associate to M a binary
tree Γ :“ ΓpMq , called the computation tree for M , as follows.

Roughly speaking, Γ simply lists all possibleM -computations in tree form. Each node σ
in Γ is associated with two kinds of parameters: One is a (code of a) configuration as defined
in the Normal Form Theorem; the other is a triple of indices pi, j, kq “ pipσq, jpσq, kpσqq,
where i and j are indices for some effective Σ0

1 and Π0
1 sets Oi and Cj respectively; and

k is index for the TTE function λx.Φx
#pkq. It intuitively means that at σ, we restrict our

attention only to the set Oi X Cj which is determined by zero-tests, and Φx
#pkq is applied

to x P Oi X Cj which has produced the contents on the tape(s) for slaves.
The root of Γ is associated with the initial configuration with empty input, and is

labelled pi0, j0, k0q where i0 and j0 are indices of the whole space N#, and k0 “ c0 which is
the index of identity function defined in the proof of Normal Form Theorem. Suppose that
we have defined the associated configuration and the indices at σ. We can decode from the
configuration to get the state component q. Depending on q we have the following possible
cases:

Case 1. q is the halting state. Then declare σ is a terminal node on Γ.
Case 2. q is the slave calling state S. Then σ has a unique successor σˆ0. We associate

the ‘yielded’ configuration to σˆ0. If the number written on the billboard for slave to
execute is p, kpσˆ0q “ g#pp, kpσqq, where g# is defined in Lemma 2.15. Set ipσˆ0q “ ipσq,
and jpσˆ0q “ jpσq.

Case 3. q is the zero-test state E. Then σ has two successors σˆ0 and σˆ1. At node
σˆ0 (which indicates the test result is ‘No’, i.e., the sequence being tested has symbols other
than zero and #), we associate the ‘yielded’ configuration (whose boolean bit is 0 now) to
σˆ0. If the content of the zero-test is prepared via TTE-function Φ#pzq, we can effectively

find the index i˚ for the Σ0
1-set Φ#pzq´1rN#zt0,#uωs, and index i˚˚ for Oipσq X Oi˚ . Set

ipσˆ0q “ i˚˚. Set jpσˆ0q “ jpσq and kpσˆ0q “ kpσq. Do the similar things at σˆ1 (just
replace O, i by C, j respectively).

Case 4. q is one of the standard states. Then σ has a unique successor σˆ0. Read
from the configuration associated at σ the current command qaa1q1 and the current scanned
symbol b. At node σˆ0 we associate the corresponding ‘yielded’ configuration to σˆ0. Leave
all indices unchanged.

This finishes the construction of the computation tree Γ. Clearly Γ is a recursive tree
with σ ÞÑ pipσq, jpσq, kpσqq recursive.

From this computation tree, we can get several consequences.

Theorem 2.22. A partial function F : N Ñ N is MS-computable if and only if there are
a (classical) recursive set R Ď ω and a recursive function α : R Ñ ω3 mapping σ ÞÑ pi, j, k1q
satisfying the following conditions:

(a) The sets Oipσq X Cjpσq are mutually disjoint for σ P R.

(b) If F pxq is defined, then there is a σ P R such that x P Oipσq X Cjpσq and F pxq “ Φxpk1q.
(c) If F pxq is undefined, then either x R

Ť
σPRpOipσq X Cjpσqq or x P Oipσq X Cjpσq for some

σ P R but Φxpk1q is undefined.

Proof. Suppose that F is computed by the MS-machine M , let Γ be its computation tree
described above. Define R “ tσ P Γ : the state component of the configuration associated

A FOUNDATION OF REAL COMPUTATION 13

with σ is haltingu. (Here we identify the node σ on Γ with its Gödel number.) Since Γ is
recursive, so is R. Let α map σ to pi, j, k1q, where pi, j, kq is the label of σ in Γ and k1 is
the index of the TTE computable function U ˝ λx.Φx

#pkq, where U is the output reading

function defined in the Normal Form Theorem. To see that (a) is satisfied, any branching
at Γ can only be caused by Case 3 in the definition of Γ. The split is caused by zero-test
and the resulting sets are certainly disjoint.

For (b) if F pxq is defined, we will hit a halting node σ on Γ, so σ P R and all slave calls
along the computation path up to σ are not partial, so Φxpkq would produce the correct
result F pxq. Similarly (c) holds.

Conversely, suppose that we have recursive R and α, we design an MS-machine M as
follows. For any input x, M checks through every element σ P R to see if x P Oipσq X Cjpσq.
For each fixed σ, this can be done with finitely many master steps as in the proof of Lemma
2.20. If no such σ is found, then Mpxq Ò, however by (b), F pxq also diverges. If such σ is
found, then M just call the TTE functional Φxpk1q, by (b) and (c), Mpxq “ F pxq.

Corollary 2.23. The domain W of an MS-computable function is of the form
Ť

nrpOin X
Cjnq X Yns, where Yn is Π0

2 subset tx : Φxpknq P domain of Uu, and n ÞÑ pin, jn, knq is
primitive recursive.

Theorem 2.24. If a subset A of Baire space is recursive over N , then A is ∆0
2 over N .

Proof. Let M be an MS-machine computing the characteristic function χ
A
and R be the

recursive set defined in Theorem 2.22. Since M is total, for every σ P R, the domain of
λx.Φxpk1q has to be a superset of Oipσq X Cjpσq, where k

1 is also as defined in Theorem 2.22.
Thus we have x P A if and only if for some σ P R with x P Oipσq X Cjpσq and the natural

number output read from the configuration associated with σ is 1. Consequently, A is Σ0
2.

Similarly the complement of A is also Σ0
2. So A is ∆0

2 over N .

This result shows that recursive sets are closer to the intuitively computable sets. For
instance, they do not include all Borel sets, in fact, not all arithmetical sets.

For subsets of natural numbers, we have a similar characterization.

Theorem 2.25. A subset A of natural numbers is MS-computable if and only if A ďT H1,
i.e., it is a ∆0

2-subset of natural numbers.

Proof. Observe that the natural number input is directly sent to the master, whereas the
input tape for slaves are empty at the beginning of the computation.

Suppose that A is MS-computable, say by the MS-machine M . For any input n, we
trace the computation tree Γ associated with M . At each branching point σ cause by the
zero-test, since the content prepared for the zero test is by ΦHpkpσqq where k is defined
in Theorem 2.22. Furthermore, since χ

A
is total, ΦHpkpσqq is total. Hence whether the

sequence is the zero-sequence is a Π0
1 question:

@n@spΦHpkpσq, nq Ó rss Ñ Φpkpσq, nq “ 0q.

So H1 can produce the answer. Consequently, H1 can trace Γ until the terminal node and
read off the answer of Apnq. So A ďT H1.

On the other hand, if A ďT H1 say via the oracle Turing machine ΦH1
peq. The master

can mimic Φpeq until it reaches a query step asking if some number n is in H1. At that
moment, the master employs the slaves to figure it out and read the answer from the boolean
bit. Thus, A is MS-computable.

14 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

2.5. Relation with BSS models. In [1], L. Blum, Shub and Smale introduced a highly
influential model (BSS machines) of computation over real numbers, in fact, over arbitrary
rings. BSS machines treat a real number or an element in Baire space as a single mathemat-
ical entity, and only focus on functions which are mostly common in scientific computing,
such as polynomials or rational functions. To compare our model with BSS machines, we
have to make some reasonable modifications to both models. First of all, BSS machines can
use arbitrary real numbers as parameters, in particular, there are uncountably many BSS
machines. We have to restrict BSS model so that it does not use real parameters.

Now let us discuss computability on (ordered) rings with three basic ring operations `,
´ and ˆ. We modify MS-machines as follows:

(1) We assume that we have only three slaves to compute the basic ring operations respec-
tively. Thus by calling them finitely many times, we can compute any polynomial in
Zr~xs.

(2) We assume the zero-test module can tell whether a nonzero element is positive or
negative too.

With these modification, we have

Theorem 2.26. Over a ring R, the modified MS-machines compute exactly the same class
of functions as the (parameter free) BSS-machines.

Proof. (Sketch) Define the class of partial recursive functions over an ordered ring R as the
smallest class C of functions on Np ˆ Rq satisfying the following conditions:

(1) C contains the following basic functions:
(a) Zero function Z : N Ñ N with Zpnq “ 0;
(b) successor function S : N Ñ N with Spnq “ n ` 1; and
(c) for natural numbers p, q and i with p ` q ě 1 and 1 ď i ď p ` q the projection

function

π
p`q
i pn1, . . . , np;x1, . . . , xqq “

"
ni, if i ď p;
xi´p, if i ą p.

(d) The primitive functions in ring R, namely `R, ´R and ˆR; and
(e) The sign function sgn : R Ñ N defined by

sgnpxq “

$
&
%

1, if x ą 0R;
0, if x “ 0R;
2, if x ă 0R.

(2) C is closed under
(a) composition, provided the types are matched;
(b) primitive recursion with respect to N; and
(c) µ-operator with respect to N.

By mimic the proof of the Normal Form Theorem, one can show that the modified
MS-machines compute exactly the partial recursive functions over R. On the other hand,
by Theorem on page 33 in [1] section 7, BSS machines compute exactly the same class.

On the other hand, let us look at computability on the Baire space. First of all, we
delete from BSS model the function of taking additive inverse, as we focus on functions onN ,
instead of on rings. Since BSS machines as defined originally does include functions beyond

A FOUNDATION OF REAL COMPUTATION 15

polynomials, for example, certain sets4 involving exponential function is not computable
in BSS sense. It is necessary to add functions that we are interested in, for instance,
exponential function. Obviously, we do not want to add them “in the hardware” i.e., merely
allow those functions to appear in the computing nodes of BSS machines, otherwise, we
merely move up one level of primitive recursive hierarchy and we will miss, say, tower of
exponential functions. Instead, we should add them through universal functions, so that the
machine can call them dynamically. Thus, we add the universal TTE-computable function
Φpe;xq in the BSS model, so that it can call any TTE-computable function.

Theorem 2.27. Over the Baire space N , the modified BSS-machines compute exactly the
same class of functions as the MS-machines.

Proof. (Sketch) By slightly modifying the proof of Theorem on page 33 in [1] section 7, mod-
ified BSS-machines can compute all partial recursive functions over N . On the other hand,
Turing machines can mimic all computations defined by flow-charts, thus MS-machines can
compute all functions that modified BSS-machine can compute. The theorem then follows
from Theorem 2.14.

Theorem 2.27 tells us (informally) that over N , MS-computation model is the small-
est one that includes both BSS and TTE computation. The reasons are: MS-machine is
certainly more powerful than BSS and TTE. On the other hand, if a computation model in-
cludes both BSS and TTE, then it would be more powerful than the modified BSS machine.
By Theorem 2.27, it is more powerful than MS-machine.

3. Computability Theory on Real Numbers

3.1. Formalize Computability over Real Numbers. We now discuss the computabil-
ity over real numbers R. Although Baire space is often viewed as a representation of R,
computationally and topologically, N is quite different from “the real numbers” that “work-
ing mathematicians”, like numerical analysts, have been working on. We will make our
meaning precise in the discussion below.

First of all, by well-known effective codings, we can identify the sets of integers Z and
rational numbers Q with the set of natural numbers N, respectively. In particular, we
will not study negative numbers explicitly. Again by effective coding, we can identify the
arithmetical operations of the field Q, the ordering on Q and functions like absolute value
function, as primitive recursive functions over N. Through this coding, infinite rational
sequences will be identified with infinite sequences of natural numbers. We use Qω to
denote the set of all infinite rational sequences. It is worth noting that the coding is not a
homeomorphism between the Baire space and Qω equipped with the topology induced by
the usual metric on Q. Therefore, we will use Qω instead of N .

We fix the following presentation of real numbers:

Definition 3.1. (1) A fast converging Cauchy sequence is a sequence of rational numbers
xri : i P ωy such that for all m ă n |rm ´ rn| ă 2´m´1. Remark: In the remaining of
the paper, since we will focus only on fast converging Cauchy sequences, whenever we
say Cauchy sequences we mean fast converging ones.

4There are examples over real numbers (see Brattka [2]); but can be adapted over Baire spaces.

16 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

(2) Define a relation „ between Cauchy sequences by xriy „ xsiy if for any n there is some
m ą n such that |rm ´ sm| ă 2´n (hence limi ri “ limi si).

(3) Observe that „ defined in (2) is an equivalence relation. We identify the „-equivalence
classes as real numbers. The set of real numbers is denoted by R.

In this section we use i, j, k to denote natural numbers, α, β to denote infinite Cauchy
sequences, and x, y to denote real numbers.

A (finite) rational sequence σ “ xq0, . . . , qn´1y P Qăω is said to be Cauchy if for every
i ă j ă n we have |qi ´ qj| ă 2´i´1. Given σ “ xq0, . . . , qn´1y, τ “ xr0, . . . , rm´1y P Qăω, we
say that σ and τ are Cauchy compatible or simply C-compatible if |qn´1´rm´1| ă 2´n`2´m.
The point of C-compatibles strings is that they can be extended to „-equivalent infinite
Cauchy sequences; whereas the non C-compatible ones cannot. In other words, if α Ą σ and
β Ą τ and α, β P Qω and σ and τ are not C-compatible, then limα ‰ limβ; equivalently, if
limα “ lim β then for every i, j we have that α æ i and β æ j are C-compatible.

We say that a function F : Qω Ñ Qω is Cauchy preserving5 if F is only defined on
Cauchy sequences and if two Cauchy sequences α and β are „-equivalent and F pαq Ó then
F pαq is a Cauchy sequence, F pβq Ó is also a Cauchy sequence and F pαq „ F pβq. Clearly,

each Cauchy preserving function F : Qω Ñ Qω naturally induces a function F̃ from R to R.

Definition 3.2. We say that a function F̃ : R Ñ R is TTE-computable over R, if there
exists a TTE-computable function F : Qω Ñ Qω which is Cauchy preserving and F̃ is
induced by F .

This definition suggests the two-step approach towards computability on R, the first is
to have an algorithm working on a representative α, and the second is to check that this
algorithm is Cauchy preserving. The second step is the difference between computability
over N and over R. This is more pertinent when we talk about machines. Over N , the input
of the TTE-computable functions and the object written on the input tape of a machine are
the same; whereas over R, the input of the functions are equivalence classes which cannot
be written on the input tape. A typical oracle Turing machine is sensitive to the digits on
the oracle tape, hence will not be Cauchy preserving at all. The main issue is to “fine-tune”
the machine so that its operations are independent of the representation of the equivalence
class. Once the fine-tuning is done, the rest is similar to Section 2.

We say that an oracle Turing machine xM is fine-tuned if it satisfies the following two

conditions: (1) If α P Qω is not Cauchy, then xMα is undefined; (2) if α and β are „-

equivalent Cauchy sequences, then xMα is defined if and only if xMβ is defined and the

outputs xMα and xMβ are also „-equivalent Cauchy sequences.
We describe an effective procedure which transfers an oracle Turing machine M into

a fine-tuned one. By this transfer, the universal oracle Turing machine will become a fine-
tuned universal oracle Turing machine, which naturally induces a universal TTE-function
over R.

The plan is to associate a “canonical” object to a real number x, which is invariant
under its representations. One candidate for the canonical object is “the” binary expansion
of x. Unfortunately, it is not effective to extract a unique binary expansion for x, for

5This and other notions in this section are studied extensively by the school of computable analysis, see
Chapter 3 in [18]. That is why we use the phrase “TTE-computable”. However, since we only study the
computability on R, we did not introduce the general naming systems, admissibility etc. Our approach and
theirs are essentially similar, but may be different in some details.

A FOUNDATION OF REAL COMPUTATION 17

example, when x is a dyadic rational, there are two such expansions. Recall that a dyadic
rational is a rational number whose denominator is a power of 2. To overcome this problem,
for a given Cauchy sequence α, we effectively produce a binary tree Tα whose infinite paths
are exactly the binary expansion(s) of x “ limα; namely, if x is not a dyadic rational, then
Tα has a unique infinite path which is the binary expansion of x; if x is dyadic then Tα

has exactly two paths which are the two binary expansions of x. If α and β are Cauchy
equivalent, then Tα and Tβ may not be the same, but they will have the same set of infinite
paths.

The algorithm that transfer a Cauchy sequence α to Tα goes as follows. For each
natural number n, let Dn denote the dyadic rational number with denominator 2n, i.e.
Dn “ t m

2n
: m P Zu and D “

Ť
nPNDn be the set of all dyadic rational numbers. For natural

number n and integer m, let

Jm
n “

„
m

2n
,
m ` 1

2n

which is a closed interval of length 1
2n
. Given a Cauchy sequence α, let

Inpαq “

„
αpn ` 4q ´

1

2n`2
, αpn ` 4q `

1

2n`2

,

so that Inpαq has the following properties:

(1) Inpαq is a closed interval of length 1
2n`1 .

(2) Since α is Cauchy, x “ limα is in Inpαq.
(3) In`1pαq Ď Inpαq.

We now define the binary tree Tα in terms of In :“ Inpαq and Jm
n . Let H be the root of

Tα. The recursive construction of Tα and the labelling process are as follows. Since I0 is of
length 1

2
, it can intersect at most two intervals of the form Jm

0 for some m. If I0 intersects

two such intervals, say Jm0

0 and Jm0`1
0 for some m0 P Z, then the root has two children

labelled from left to right as d0L “ m0

20
and d0R “ m0`1

20
respectively; if I0 intersects only one

such interval, say Jm0

0 for some m0 P Z, then the root has only one child labelled d0 “ m0

20
.

Suppose that we have defined the tree Tα up to level ď ℓ. First check if the finite
sequence α æ pℓ`4q is Cauchy, if it is not, then stop the construction; otherwise, proceed as
follows. If Tα has a single node of length ℓ, then proceed as the base case, except replacing
0 by ℓ ` 1. If Tα has two nodes of length ℓ, say ρL and ρR, labelled by dyadic rationals
dℓL, d

ℓ
R P Dℓ respectively, where dℓR “ dℓL ` 1

2ℓ
. Find the interval Iℓ`1. Since it has length

1
2ℓ`2 , it can intersect at most two intervals of the form Jm

ℓ`1 for some m.
Case 1. Iℓ`1 intersects two such J-intervals. Since the Iℓ`1 Ď Iℓ, the J-intervals have

to be rdℓL ` 1
2ℓ`1 , d

ℓ
Rs and rdℓR, d

ℓ
R ` 1

2ℓ`1 s. We extend ρL to a single node labelled dℓL ` 1
2ℓ`1

and ρR to a single node labelled dℓR.
Case 2. Iℓ`1 intersects only one such J-interval. Again since the I-intervals are nested,

the J-interval has to be either rdℓL ` 1
2ℓ`1 , d

ℓ
Rs or rdℓR, d

ℓ
R ` 1

2ℓ`1 s. If it is former, extend ρL

to a single node labelled by dℓL ` 1
2ℓ`1 and declare ρR a dead end; if it is latter, extend ρR

to a single node labelled by dℓR and declare ρL a dead end. That finished the construction
of the tree Tα.

By construction, Tα has the following properties:

(1) Tα is an infinite binary tree if and only if α is Cauchy.

18 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

(2) Assuming that α is Cauchy and x “ limα R D, then Tα has a unique path δ “ δpTαq
such that for each ℓ, δpℓq is the largest dyadic in Dℓ which is less than x.

(3) Assuming that α is Cauchy and x “ limα P Dn for the least such n, then for all ℓ ě n,
δRpTαqpℓq “ x and δLpTαqpℓq “ x ´ 1

2ℓ
.

(4) The function from α æ pℓ ` 4q ÞÑ Tα æ ℓ is recursive.

It follows from (2) and (3) that if two Cauchy sequences α and β are equivalent then Tα

and Tβ have the same paths.
With the help of Tα, we can describe an effective procedure which transfers an oracle

Turing machine M into a fine-tuned xM . The basic idea is that we monitor the (at most

two) infinite paths δL and δR of Tα, xM simulates M δL and M δR and we accept the value
only when the results are C-compatible. The details are as follows:

Given M , n and α, the fine-tuned machine xM first generates the tree Tα (by property
(4) above, this can be done), and simulates M δLpnq and M δRpnq, where δL and δR are the
paths through Tα (they might be equal) until one of the following happens:

(a) There is a natural number s, for all i ď n, M δLæspiq Ó“ ri and xri : i ď ny is a finite
Cauchy sequence and δL æ s is the only node of length s that still have extensions on
Tα. Set the output to be rn.

(b) There is a natural number s, for all i ď n, M δLæspiq Ó“ ri, M
δRæspiq Ó“ ti and xri : i ď

ny, xti : i ď ny are finite Cauchy sequences, |ri ´ ti| ď 1
2i

and both δL æ s and δR æ s

still have extensions on Tα. Set the output to be rn`tn
2

.

In case no such s exists, the procedure produces no output for this set of input M,n, α.

Observe that if xMαpnq Ó“ an for every n, then xan : n P Ny is a Cauchy sequence.
When Mα “ β is a Cauchy sequence with y “ limβ, |an ´ βpnq| ă 1

2n
. Let bn “ an`2 we

will have

|bn ´ y| “ |an`2 ´ y| ď |an`2 ´ βpn ` 2q| ` |βpn ` 2q ´ y| ď
1

2n`2
`

1

2n`2
ă

1

2n
.

Consequently, xMα and Mα are Cauchy equivalent. Finally the procedure of getting xM from
M is effective.

We summarize the discussion as follows:

Lemma 3.3. Let xλα.Φαpeq : e P ωy be an effective list of all TTE computable functions
over Qω. Then there is a total recursive function g : N Ñ N such that λα.Φαpgpeqq is
Cauchy preserving. Furthermore, if λα.Φαpeq is Cauchy preserving itself, then λα.Φαpgpeqq
and λα.Φαpeq induce that same function from R to R.

We verify the expected fact6 for TTE-computable functions with respect to the usual
topology:

Lemma 3.4. Any TTE-computable function f over R is continuous. To be more precise,
suppose that f : R Ñ R is computed by the fine-tuned MS-machine M , and fpx0q Ó“ y0, then
for any n ą 0, there is an m ą 0 such that for any Cauchy sequences α with limα “ x0 and
for any Cauchy sequence β with limβ “ x, if Mβ Ó and |x0 ´ x| ă 1

m , then |Mβ ´ y0| ă 1
n .

6Various versions of Lemmas 3.4 and 3.12 are well-known for computable analysts. For example, Lemma
3.4 may follow from Theorem 4.3.1 in Weihrauch [18] and passing through effective quotient topology. For
the sake of completeness and correctness under our setting, we include outlines of the proofs.

A FOUNDATION OF REAL COMPUTATION 19

Proof. Given 1
n ą 0, choose i such that 1

2i
ă 1

2n . Since fpx0q Ó, for any α with limit x0, M
α Ó.

Choose j such that Mαæjpiq Ó, by definition, |Mαæjpiq ´ y0| ă 1
2i
. Now, by the fine-tuning,

M will first produce Tα. At the stage s when Mαæjpiqrss Ó, there are two possible cases.
Case 1. Tα has a unique node of length j that is still having extensions on Tα at stage s. By
fine-tuning, the closed interval Ijpαq “ ra, bs is a proper subinterval of some dyadic interval

Jm0

j “ rc, ds, thus c ă a ă b ă d. Let m be such that 1
m ă minta´c

2
, d´b

2
u. Case 2. Tα has a

two nodes of length j that are still having extensions on Tα at stage s. By fine-tuning, the
the closed interval Ijpαq “ ra, bs intersects two consecutive dyadic intervals Jm0

j “ rc, c1s

and Jm0`1
j “ rc1, ds, thus c ă a ď c1 ď b ă d. Let m be such that 1

m ă minta´c
2
, d´b

2
u. In

both cases, if a Cauchy sequence β satisfying |x0 ´ lim β| ă 1
m , the node(s) of length j that

is still having extensions on Tβ are also on Tα. Thus Mβæjpiq “ Mαæjpiq. If Mβ Ó, then it
is a Cauchy sequence, and

|Mβ ´ y0| ă |Mβ ´ Mβæjpiq| ` |Mβæjpiq ´ y0| ă
1

2i
` |Mαæjpiq ´ y0| ă

1

n
.

Theorem 3.5 (Enumeration Theorem for TTE-computable functions). There is a universal
function Ψpe;xq : N ˆ R Ñ R for TTE-computable over R, i.e., for any TTE-computable

function F̃ : R Ñ R, there is some e P N such that for all x P R, F̃ pxq “ Ψpe;xq.

Definition 3.6. The class of partial recursive functions over R is the smallest subclass C

of F satisfying the following conditions:

(1) C contains the following basic functions:
(a) Zero function Z : N Ñ N, Zpnq “ 0N;
(b) successor function S : N Ñ N, Spnq “ n ` 1; and
(c) for natural numbers p, q and i with p ` q ě 1 and 1 ď i ď p ` q the projection

function

π
p`q
i pn1, . . . , np;x1, . . . , xqq “

"
ni, if i ď p;
xi´p, if i ą p.

(d) A universal TTE-computable functions Ψpe;xq over R; and
(e) the characteristic function χ : R Ñ N of t0Ru where 0R is the real number zero.

(2) C is closed under
(a) composition, provided the types are matched;
(b) primitive recursion with respect to N; and
(c) µ-operator with respect to N.

We say that an MS-machine is fine-tuned, if it only writes index gpeq on its billboard
where g is the function defined in Lemma 3.3.

20 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

Definition 3.7. We say that a partial function f : Np ˆ Rq Ñ R is MS-computable over R
or simply MS-computable if there is a fine-tuned master-slave machine M such that

fp~n; ~xq “

$
’’’’’’’’&
’’’’’’’’%

y, if for any representation p~n; ~αq of input,
M ~αp~nq Ó“ β and β is a representation of y;

if for any representation p~n; ~αq of input,
undefined, M ~αp~nq never halts; or

some slave calls are partial during
the compuatation.

We define f : Np ˆ Rq Ñ N being MS-computable similarly.

Lemma 3.8. The characteristic function of t0Ru is MS-computable over R.

Proof. This is because all Cauchy sequences are fast converging. Given α which is any
presentation of x, we may ask the slaves Si to check if

@j ă ip|αpjq| ă
1

2j´1
q

and write a zero if the answer is yes, write αpiq
2

otherwise. Observe that this preparation
function is TTE and Cauchy preserving. Then the usual zero-test would determine if
x “ 0R.

3.2. Properties of Computable Sets and Functions over R. We will establish some
basic results on computability over R, many of which have corresponding ones over the Baire
space N . Although the statements look similar, we actually cannot directly transform the
results from N to R, because of the step 2 mentioned in the remarks after Definition 3.2.
For example, the maps

ppxp0q, xp1q, . . . , q, pyp0q, yp1q, . . . q ÞÑ pxp0q, yp0q, xp1q, yp1q, . . . q

is continuous from N to N , but the corresponding map from Qω ˆQω Ñ Qω is not Cauchy
preserving.

Also note that since BSS machines completely ignore the issue of representations, we
will not compare with BSS models over R.

3.2.1. Normal Form Theorem. As in section 2, we have the following Normal Form Theorem
and characterization theorem over R.

Theorem 3.9 (Normal Form Theorem for R). There are TTE computable over R func-
tion Upz;xq and a primitive recursive predicate T pe, x, zq over R such that for any partial
recursive function F over R, there is some e, for all x P R

F pxq “ UpµzT pe, x, zq, xq.

Theorem 3.10. The class of MS-computable functions over R coincides with the class of
partial recursive functions over R.

A FOUNDATION OF REAL COMPUTATION 21

As the proofs are similar to the one in Baire space, we only check the issues related to
Cauchy preserving step. When executing the slave calling command, the function g#pp, cq
does not depend on the real input x. When executing the zero-test command, the prepara-
tion step, i.e., writing the sequence being tested on zero-test tape, is done by “fine-tuned”
slaves, hence is Cauchy preserving (see the proof of Lemma 3.8). For the issue of working
in N#, one can do the same for the space Qω with the extra symbol#. For instance, one
can define a sequence (finite or infinite) with # symbols #-Cauchy if it is Cauchy after
removing the # symbols, and fine-tune the machines to make them “#-Cauchy preserving”,
instead of “Cauchy preserving”. The same proof will go through.

3.2.2. Characterizing the computable sets over R. Recall that the basic open set in R is of
the form Bpc; rq “ tx P R : |x ´ c| ă ru where c, r P Q and r ą 0.

Definition 3.11. A subset A Ď R is said to be effectively open or Σ0
1 over R if there is a

(classical) computable sequence xeiyiPω such that A “
Ť

iBpci, riq where ei is the code of
the pair pci, riq. We say that B Ď R is effectively closed or Π0

1 over R if RzB is effectively
open.

Effectively Gδ set or Π0
2, effectively Fσ set or Σ0

2 and ∆0
2 over R sets can be defined in

a similar fashion as in Definition 2.18.

By Lemma 3.4, any TTE-computable function F is continuous, hence the pre-images
F´1rtx P R : x ‰ 0Rus and F´1rt0Rus are open and closed respectively. We verify that their
indices can be effectively found7. Let ϕepiq denote the standard universal partial recursive
function.

Lemma 3.12. There is a recursive function g : N Ñ N such that for any TTE-computable
over R function λx.Φxpeq, the set

tx P R : Φxpeq ‰ 0u “
ď

iPN

Bpcϕgpeqpiq, rϕgpeqpiqq,

hence is open.

Proof. Let Me be the MS-machine that computes λx.Φxpeq. The following uniform effective
procedure gives us the open set from the index e, whose code will be gpeq:

Step 1. For each n P Z, define a recursive tree Rn as follows: The root of Rn is n.
Suppose that σ P Rn is defined and is of length s, then let σˆpσpsqq and σˆpσpsq ` 1

2s`1 q be
the successors of σ on Rn. Clearly, each Rn satisfies the following properties: (1) For each
σ P Rn, σ is a finite nondecreasing dyadic Cauchy sequences with σpjq P rn, n ` 1s X Dj

for every j ă |σ|; (2) for any x P rn, n ` 1s there is an infinite path δ of Rn such that
lim δ “ x. By simultaneously enumerate pRn : n P Zq, we are in fact enumerating the trees
that contain all paths on Tα for all Cauchy α P Qω, where Tα is the tree produced by the
fine-tuning procedure.

Step 2. For each σ P Rn, let s “ |σ|. Mimic the computation Mσ
e for s steps. If for

some j ă s, Mσ
e pjq Ó rss and is not C-compatible with 0s, then enumerate the interval

pσpsq, σpsq ` 1
2s

q into O. (The first two steps take care of nondyadic x.)

Step 3. For each dyadic rational number d, let δdL “ pd ´ 1
k : k P Nq and δdR be the

constant squence pd, d, . . . q. We can enumerate all finite initial segments of δdL and δdR for

7Similar results are done by computable analysts, see footnote 6.

22 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

all possible d. For each d, let δL :“ δdL and δR :“ δdR. Mimic the computation M
δLæs
e and

M
δRæs
e for s steps. If for some j ă s, M δLæs

e pjq Ó rss, M δRæs
e pjq Ó rss and both are Cauchy

and their average is not C-compatible with 0j , then enumerate the interval pd ´ 1
2s
, d ` 1

2s
q

into O. That finishes the algorithm.
We now verify that this algorithm works. If x gets enumerated, say in the second step

via witness σ. Suppose fpxq Ó and α is a Cauchy representative for x, then Mα
e Ó. By the

fine-tune procedure, σ is an initial segment of an infinite path on the tree Tα, thus M
α
e ‰ 0,

because its first j bits are incompatible with 0j . Similarly for those x enumerated in the
third step.

On the other hand, suppose fpxq ‰ 0. We consider the following two cases: Case 1.
x is nondyadic. Then we know there is a unique dyadic sequence δ such that δpiq is the
biggest dyadic in Di that is less than x. So M δ

e must be incompatible with 0. By the stage
that we discover the fact, x is enumerated into O. Case 2. x is a dyadic, say d. Then x is
enumerated into O in step 3 by a similar argument.

Definition 3.13. We say that a subset A Ď R is recursive over R if its characteristic
function χ

A
is partial recursive over R.

As in Baire space, recursive over R sets are closed under complementation.

Lemma 3.14. Every effectively open subset A of R is recursive over R. So is every effec-
tively closed set.

Unlike in N , where the membership of a basic open set JσK can be decided by a single
slave, in R, it needs the collective effort of all slaves and a zero-test to determine the
membership of Bpc, rq (see Claim 2 below). That is why the proof is much more complicated
than the proof of Lemma 2.20, which is its counterpart over N .

Proof. For a rational interval I “ pp, qq, we say that L is a linear function on I if the domain
of L is rp, qs and Lpxq “ s´r

q´ppx ´ pq ` r for some rationals s and t, in other words, it is a

line connecting pp, rq and pq, sq on the plane. We say that f is a piecewise linear function, if
there are finitely many consecutive rational intervals rp0, p1s, . . . , rpn´2, pn´1s (n ě 2) such
that færpk, pk`1s is a linear function Lk and Lkppk`1q “ Lk`1ppk`1q.

Claim 1. Any piecewise linear function f is TTE computable.
Proof Sketch of Claim 1. Given any input α representing x P R, let yn “ fpαpnqq.

Since the endpoints of the intervals are rational, it is recursive to decide αpnq belongs to
which interval(s), so that we know which linear function to apply. And the continuity of f
ensures that if α „ β then pfpαpnqq „ fpβpnqq.

By Claim 1, we can show that
Claim 2. Any single rational interval I “ pp, qq is MS-computable.
Proof Sketch of Claim 2. Consider the following “zero-test preparing function” for

I

fpxq “

$
&
%

0, if x ď p or x ě q;
1

q´ppx ´ pq, if p ď x ď p`q
2
.

´ 1
q´ppx ´ p`q

2
q ` 1

2
, if p`q

2
ď x ď q

which is TTE-computable by Claim 1. So we let the slaves to compute fpxq and write the
result on the zero-test tape. Since x P I if and only if fpxq ‰ 0, by invoking the zero-test,
we know if x P I.

A FOUNDATION OF REAL COMPUTATION 23

Note that the preparing function for a single open interval can be chosen to be the
distance function dC , where C is the closed set RzI. But for open sets in general, the
distance function will not work. But luckily we do not require to find the distance if we
just want to determine the membership of the open set.

Claim 3. Any effectively open subset U of R is MS-computable.
Proof of Claim 3. Now let U “

Ť
n In be an effective open set and fix a recursive

enumeration pInq. Without loss of generality, we assume that each In is bounded and we
allow repetitions, so that we can assume that In is enumerated at stage n. Since we cannot
afford to have infinitely many zero-tests, we need is a preparing function f which works for
the whole U . In other words, we need a function f satisfying (1) f is TTE computable; (2)
x P U if and only if fpxq ‰ 0; (3) the algorithm for computing fpxq does not depend on the
presentation α of x.

We will define a sequence pfnq of piecewise linear functions and f will be the pointwise
limit of fn.

Let f0 be the zero-test preparing function for I0 as described in the proof of Claim 2.
Suppose that fn have been defined and Un “ tx : fnpxq ‰ 0u which is a finite union of
rational intervals. Look at In`1.

Case 1. In`1 Ď Un, then let fn`1 “ fn.
Case 2. In`1 X Un “ H, then let

fn`1pxq “

"
fn, if x R In`1;
1
2n
gnpxq, if x P In`1

where gnpxq is the zero-test preparing function for In`1 defined as in the proof of Claim 2.
The factor ε “ 1

2n
is needed, because otherwise we may have some non-Cauchy sequence

y P Qω with ys “ 0 and ys`1 ą 1
2s

as the outcome.
Case 3. Neither Case 1 nor Case 2. Then define

fn`1pxq “

"
fn, if x R In`1;
hnpxq, if x P In`1

where hn can be viewed as a “ 1
2n

lifting of fn within In`1”. To be more precise, let f be a
piecewise linear function, I “ pp, qq be a rational interval and ε ą 0 is a rational number,
we say that h : rp, qs Ñ R is an ε-lifting of f within I, if h is obtained from f as follows:
Let p ď q0 ă ¨ ¨ ¨ ă qk ď q such that pqi, qi`1q are the domains of all linear pieces of f
between p and q. Let r “ maxt0, fppqu, si “ fpqi`1q ` ε and s “ maxt0, fpqqu. Then h is
the piecewise linear function connecting pp, rq, pq1, s1q, . . . , pqk, skq, pq, sq on R2.

Since |fn`1pxq ´ fnpxq| ď 1
2n

for all x P R, the sequence pfnq converges to f uniformly.
Consequently f is continuous. The definition above induces a TTE-procedure to compute
f : Each slave Si just compute fipαpiqq. Since the definition of f does not depend on α and
f is continuous, this procedure is well-defined and Cauchy preserving. Finally, x P U iff
x P Ui for some i iff fpxq ‰ 0.

In summary, U can be computed using two master steps: Step 1: make the preparing
function f and write fpαq on the zero-test tape; Step 2: execute zero-test and read off the
answer.

Theorem 3.15. A subset A of R is recursive over R if and only if it is ∆0
2 over R.

Proof. “(ð)” By the proof of Lemma 3.14, it takes only two master steps to determine if x
is in a basic open set. So the whole proof of Lemma 2.21 can go through in the context of
R.

24 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

“(ñ)” By Lemma 3.12, we can uniformly find the indices of tx P R : Φxpeq ‰ 0u. So
the whole proof of Theorem 2.24 can go through in the context of R.

4. Properties of MS-computable functions and sets

4.1. The decomposibility of MS-computable functions. Analyzing the proofs of Lemma
2.21 and Theorem 2.24, we see that the same analysis holds for any total MS-computable
function (rather than the characteristic function of a set) over N or R. In fact, one can
derive the following:

Corollary 4.1. Let F : R Ñ R. Then F is (total) MS-computable if and only if there is an
effective partition tXiu of R into ∆0

2 sets and an effective sequence of continuous functions
tHiu such that for every i, F æ Xi “ Hi æ Xi.

Furthermore, each Xi can be taken to be the intersection of an effectively open set and
an effectively closed set.

Our investigation is related to a well-known result in descriptive set theory, the Jayne-
Rogers theorem. We can state the version for R as the following:

Theorem 4.2 (Jayne, Rogers [7]). Let f : R Ñ R. Then f´1pOq is ∆0
2 for every open set

O if and only if there is a partition of R into ∆0
2 sets tXiu such that f æ Xi is continuous

for each i.

Effective versions of the Jayne-Rogers theorem were also studied and discussed in Pauly,
de Brecht [12]. Pauly and de Brecht showed that a certain effective version of the Jayne-
Rogers theorem was true for computable metric spaces:

Theorem 4.3 (Pauly, de Brecht [12]). A function f : R Ñ R is effectively ∆0
2-measurable

if and only if it is piecewise computable.

We note that the notion of being piecewise computable is the same as the existence of
the decomposition in Corollary 4.1. Thus, we obtain:

Corollary 4.4. A function f : R Ñ R is MS-computable if and only if it is effectively
∆0

2-measurable if and only if it is piecewise computable.

4.2. Comparing TTE and MS-computability over N . We now give some examples
of nonrecursive sets over N and R.

Proposition 4.5. The set A “ tx P N : x has infinitely many zerosu is not MS-computable
over N .

Proof. We reduce the Π0
2-complete set of natural numbers Inf“ te : We is infiniteu to the

set A.
Suppose that A is computed by the MS-machine M . We convert M to get another

machine MI to compute Inf as follows: For any input e P N, first ask each slave Si to
check if We,i has more elements than We,i´1. If the answer is yes, then write a zero on the
zero-test tape, otherwise write a one. Now apply M to get an answer, which will be the
outcome of MI . Clearly, We is infinite if and only if the zero-test tape has infinitely many
zeros. So MI correctly computes Inf, contradict Proposition 2.25.

A FOUNDATION OF REAL COMPUTATION 25

Proposition 4.6. The set Q is not MS-computable over R.

Proof. Because Q is not a Gδ set, the result follows from Theorem 3.15.

Proposition 4.7. If x P N and Mpxq Ó“ y, then there is a TTE-computable function f

such that fpxq “ y, i.e., there is a Turing functional λx.Φx such that Φx Ó“ y. In particular,
if x is a total recursive function over N and Mpxq “ y, then y is a total recursive function
over N. However the map from the index of x to the index of y is H1-recursive.

Proof. (sketch) During the computation of Mpxq “ y, M only uses finitely many zero-test
steps. We may code the answers of the zero test results as a single parameter, then the
computation becomes TTE.

However, there are some subtleties.

Proposition 4.8. (a) The singleton set tχH1 u is not recursive over N (as a subset of N),
even though H1 is recursive over N (as a subset of ω).

(b) Let f P N be such that fpnq “ 0 if n R H1, and fpnq “ s if n P H1 and s is the least
stage of n entering H1. Then tfu is recursive over N . (This tfu is a Π0

1 singleton
coding H1 in N .)

Proof. (a) Suppose that tχH1u is recursive over N . Then by Theorem 2.24, tχH1u is a Σ0
2-

singleton, hence it is a Π0
1-singleton (by taking the Σ0

2-witness as a parameter) in the Baire
space. In other words, there is a recursive tree S, with χH1 as its unique infinite branch.
However, χH1 is 0-1 valued, so by restricting S to the Cantor space, we get a recursive
binary tree T with χH1 as its unique infinite branch, which is obviously impossible.

(b) Let M be the following MS-machine: For any input x, let the i-th slave check the
correctness of the first i bits of x up to step i. To be more precise, for each j ă i, if xpjq “ 0
then check whether j R Wj,i; if xpjq “ s ‰ 0, then check if s is the least stage that j P We,s.
If the i-slave found an error, then writes a one on the zero-test tape, otherwise, writes a
zero. Clearly x “ f if and only if the sequence written on the zero-test tape is the zero
sequence. By applying zero-test, the master knows if x “ f .

Proposition 4.8 tells us: (1) A set A Ď ω being a recursive set is different from its
characteristic function χ

A
being a MS-computable singleton in N . (2) It is possible to have

two elements x and y in the Baire space, which are TTE-equivalent, i.e., there are Turing
functionals Φ and Ψ with Φx “ y and Ψy “ x, but txu is MS-computable, whereas tyu is
not.

4.3. Comparing MS-computability over N and over R. Despite the computable sets
in N and in R being ∆0

2-definable within the structure, their differences are striking. One
of the reasons is that N is not locally compact whereas R is.

The following folklore is well-known:

Fact 4.9. For each recursive ordinal α, there is some f P N such that f ”T Hpαq and f is
a Π0

1-singleton.

Proof. By Sacks [13, Theorem II.4.2], for each computable ordinal α, Hpαq is a Π0
2-singleton.

By Jockusch and McLaughlin, [8, Theorem 3.1], we can replace each Π0
2-singleton with a

Turing equivalent Π0
1-singleton.

26 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

We compare the singletons that are MS-computable inN and in R. Each MS-computable
singleton in R must be a recursive real, and by Fact 4.9, the MS-computable singletons in
N are far from being recursive:

Lemma 4.10.(i) tfu Ď N is MS-computable if and only if f is a Π0
1-singleton.

(ii) txu Ď R is MS-computable if and only if x is a recursive real.

Proof. (i): Each Π0
1-class in N is MS-computable by Lemma 2.21. On the other hand, if

tfu is MS-computable then it is a ∆0
2 class by Theorem 2.24, and each Σ0

2-singleton is also
Π0

1.
(ii): The right-to-left direction is obvious. Now suppose that txu is MS-computable,

hence it is effectively ∆0
2, and hence effectively closed. However, each effectively closed

singleton in R is clearly both left-r.e. and right-r.e.

A set X Ď Y is said to determine a class of functions with domain Y , if for any two
functions F and G from this class, F æ X “ G æ Y implies that F “ G. For instance, the
class of TTE-computable functions is determined by the class of dyadic rationals.

Next, we compare MS-computability onN and on R by comparing the least complicated
set that determines MS-computability. Again, we see that MS-computable functions on R

can be represented much more simply than MS-computable functions on N :

Proposition 4.11.(i) The class of MS-computable functions on N is determined by the
class of all f P N with f ďT O (the Kleene’s O). Furthermore, for any recursive ordinal
α, the class ∆0

α does not determine the class of MS-computable functions on N .
(ii) The class of MS-computable functions on R is determined by the class of all ∆0

2 reals (in
fact, low reals), but not by the class of all computable reals.

Proof. (i): If F and G are MS-computable, then F pαq ďT α1, and thus F pαq ‰ Gpαq is an
arithmetical predicate. By Kleene’s Basis Theorem (see [13, Theorem 1.3 on Chapter 3]),
this is witnessed by some α ďT O. On the other hand, by Fact 4.9 and Lemma 4.10, for
any recursive ordinal α, there are MS-machines Md and Me computing the sets tF u and

tGu for some F ”T Hpα`1q and some G ”T Hpα`2q. So they differ only at the points F

and G and in particular, they are equal on all inputs recursive in Hpαq.
(ii): By Corollary 4.1, if F and F̂ are MS-computable and F pxq ‰ F̂ pxq for some real x,

then for some ∆0
2 sets X, X̂ , and some effectively continuous H and Ĥ, we have x P X X X̂,

F pxq “ Hpxq and F̂ pxq “ Ĥpxq. Since Hpxq ‰ Ĥpxq, let I be a small enough rational

interval containing x such that pH æ Iq X
´
Ĥ æ I

¯
“ H. Now consider X X X̂ X I; this is

a non-empty ∆0
2-class in R, and therefore must contain some low member, say x̂. But this

means that F px̂q “ Hpx̂q ‰ Ĥpx̂q “ F̂ px̂q. On the other hand, there is an effectively closed
set C which has no recursive member, any MS-machine which computes C will agree with
constant zero function on all recursive real.

5. Concluding Remarks

There is an interesting debate about whether algorithms should be defined in terms of
abstract machines (Gurevich [5] [6]) or in terms of “recursor” (Moschovakis [11]). Vardi
made some inspiring remarks in his short article [17]. He mentioned the de Broglie’s wave
particle duality in physics and claimed

A FOUNDATION OF REAL COMPUTATION 27

An algorithm is both an abstract state machine and a recursor, and neither
view by itself fully describes what an algorithm is. This algorithmic duality
seems to be a fundamental principle of computer science.

This duality occurred in the classical definition of algorithms over natural numbers, and it
occurred again in our analysis of computability over real numbers. Our analysis seemed
to suggest that the classical correspondence between the recursion schemes and Turing
machines can be applied to other domains. Both the recursion scheme and the Turing
machine can be viewed as control units above some domain-dependent primitive functions
or operations.

However, our work heavily depends on the underlying algebraic and topological struc-
ture of real numbers, and the machine part also relies on representing a real number as an
ω-sequence. Comparing to the natural and elegant formalizations of computability over nat-
ural numbers, in particular the works by Gödel [4] and Turing [15], more insights are needed.
The ultimate question remains to be: Is there a natural, elegant and general definition of
algorithms over all domains? If so, what is it?

References

[1] Blum, L., Shub, M. and Smale, S. On a theory of computation over the real numbers: NP completeness,
recursive functions and universal machines. Bull. Amer. Math. Soc. (N.S.) 21, no. 1, 1–46, 1989.

[2] Brattka, V., The emperor’s new recursiveness: the epigraph of the exponential function in two models
of computability, in Words, languages & combinatorics, III (Kyoto, 2000), 63–72, World Sci. Publ.,
River Edge, NJ, 2003.

[3] Gödel, Kurt. Über formal unentscheidbare Sätze der Principia mathematics und verwandter Systeme I.
Monatshefte für Mathematik und Physik, 38, 173–198, 1931.

[4] Gödel, Kurt. On undecidable propositions of formal mathematical systems (mimeographed lecture notes,
taken by Stephen C. Kleene and J. Barkley Rosser) 1934; reprinted with revisions in The undecidable:
basic papers on undecidable propositions, unsolvable problems, and computable functions M. Davis (ed.)
39 – 74, Raven Press, NY, 1965.

[5] Gurevich, Yuri. Sequential Abstract State Machines capture Sequential Algorithms. ACM Transactions
on Computational Logic Volume 1, Number 1, 77-111, 2000.

[6] Gurevich, Yuri. “What is an algorithm?” in SOFSEM: Theory and Practice of Computer Science (eds.
M. Bielikova et al.), Springer LNCS 7147, 31–42, 2012.

[7] Jayne, J. E., and Rogers, C. A. First level Borel functions and isomorphisms. J. Math. Pures Appl., (9)
61 no. 2, 177–205,1982.

[8] Jockusch, C. G., Jr. and McLaughlin, T. G. Countable retracing functions and Π0
2 predicates Pacific J.

Math., 30, 67–93, 1969.
[9] Kleene, Stephen C. General recursive functions of natural numbers. Mathematische Annalen 112, 727

– 742, 1936.
[10] Moschovakis, Yiannis N. Abstract first order computability I, Trans. Amer. Math. Soc. 138, 427–464,

1969.
[11] Moschovakis, Yiannis N. “What is an algorithm?”, in Mathematics Unlimited—2001 and beyond (eds.

B. Engquist and W. Schmid), Springer, 919–936, 2001.
[12] Pauly, Arno, and de Brecht, Matthew. Non-deterministic computation and the Jayne-Rogers Theorem.

Electronic Proceedings in Theoretical Computer Science. 143, 87 – 96..
[13] Gerald E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin,

1990.
[14] Robert I. Soare. Recursively Enumerable Sets and Degrees. Springer–Verlag, Heidelberg, 1987.
[15] Turing, A. M. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc.

London Math. Soc., S2-42 (1): 230–265, 1936.
[16] Turing, A.M. Systems of logic based on ordinals, Proc. London Math. Soc., 45 Part 3: 161—228, 1939.
[17] Vardi, Moshe Y. What is an algorithm? Communications of the ACM, 55 No. 3: p.5, 2012.

28 KENG MENG NG, NAZANIN R. TAVANA AND YUE YANG

[18] Weihrauch, Klaus. Computable Analysis, an introduction. Springer-Verlag, Berlin, 2000.
[19] Yang, Y. A Turing machine like model for computation on real numbers. To appear in the Lecture

Notes Series. Institute for Mathematical Sciences. National University of Singapore. World Scientific
Publishing.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Computability Theory over Baire Spaces
	2.1. Formalizing computability using functional schemes
	2.2. Formalizing Computability by Master-Slave Machines
	2.3. A Normal Form Theorem for computation over N
	2.4. Characterizing the computable/recursive sets
	2.5. Relation with BSS models

	3. Computability Theory on Real Numbers
	3.1. Formalize Computability over Real Numbers
	3.2. Properties of Computable Sets and Functions over R

	4. Properties of MS-computable functions and sets
	4.1. The decomposibility of MS-computable functions
	4.2. Comparing TTE and MS-computability over N
	4.3. Comparing MS-computability over N and over R

	5. Concluding Remarks
	References

