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Abstract

We introduce and develop a topological semantics of conservativity
logics and interpretability logics. We prove the topological compactness
theorem of consistent normal extensions of the conservativity logic CL by
extending Shehtman’s ultrabouquet construction method to our frame-
work. As a consequence, we prove that several extensions of CL such
as IL, ILM, ILP and ILW are strongly complete with respect to our
topological semantics.

1 Introduction

The present paper is devoted to solving a natural problem of whether the topo-
logical semantics of the propositional modal logic GL can be extended to that of
conservativity logics and interpretability logics, which are extensions of GL. We
newly introduce a topological semantics of these logics, and investigate several
basic properties of our semantics such as the topological strong completeness of
them.

The logic GL is known as the logic of provability (cf. Boolos [2]). Let
PrPA(x) be a natural provability predicate of Peano Arithmetic PA. Then,
the logic GL is precisely the set of all PA-verifiable modal formulas under
all arithmetical interpretations where the modal operator � is interpreted by
PrPA(x). This is called Solovay’s arithmetical completeness theorem [18]. In his
proof, the completeness theorem of GL with respect to Kripke semantics plays
an essential role. Actually, it is well-known that GL is complete with respect to
the class of all transitive and conversely well-founded finite Kripke frames. On
the other hand, it is also known that GL is not strongly complete with respect
to Kripke semantics, that is, there exists a set Γ of modal formulas such that Γ
is finitely satisfiable in a transitive and conversely well-founded Kripke model,
but Γ itself is not satisfiable (See also Boolos [2]).
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This obstacle can be avoided by dealing with topological semantics of modal
logics. Topological semantics of modal logic based on derived sets were initiated
by McKinsey and Tarski [13]. Also topological semantics of GL was founded
by Simmons [17] and Esakia [5], and has been developed by many authors (See
Beklemishev and Gabelaia [1]). One of important results in this research is
the fact that GL is determined by the class of all scattered topological spaces.
Moreover, as opposed to Kripke semantics, Shehtman [15] proved that GL is
strongly complete with respect to scattered spaces by using so-called the method
of ultrabouquet construction.

The language of interpretability logics has the additional binary modal oper-
ator B. The modal formula ϕBψ is intended to be read as “T+ψ is interpretable
in T +ϕ”, where T is a suitable theory of arithmetic, such as PA. The logic IL
is a basis for the modal logical investigations of the notion of interpretability be-
tween theories, and it has been proved that the extensions ILM and ILP of IL
are arithmetically complete. Also it is known that the notion of interpretability
is closely related to that of partial conservativity. Actually, the logic ILM is
exactly the logic of Π1-conservativity of theories of arithmetic (See Japaridze
and de Jongh [10] for a detailed extensive survey of these results). From this
point of view, Ignatiev [8] introduced the sublogic CL of IL as a basis for modal
logical study of capturing properties of the notion of partial conservativity.

A relational semantics of interpretability logics was introduced by de Jongh
and Veltman [3] that is called Veltman semantics. A Veltman frame is a Kripke
frame equipped with a family of binary relations. Then, de Jongh and Velt-
man [3] proved that the logics IL, ILM and ILP are complete with respect
to Veltman semantics. Several alternative relational semantics of interpretabil-
ity logics are also known, and one of important semantics was introduced by
Visser [20] that is called simplified Veltman semantics or Visser semantics. By
constructing bisimulations between corresponding Visser and Veltman frames,
Visser proved that IL, ILM and ILP are also complete with respect to Visser
semantics. Moreover, Ignatiev [8] proved that the logic CL is complete with
respect to both Veltman and Visser semantics. However, it can be shown that
CL and IL lack strong completeness in both Veltman and Visser semantics, as
in GL.

On the other hand, there is a possibility of finding out the strong complete-
ness of these logics with respect to another semantics. Particularly, one with
respect to topological semantics is strongly suggested by Shehtman’s strong
completeness theorem of GL. From this perspective, in the present paper, we
propose a topological semantics of CL and its extensions, and prove the strong
completeness theorem of some of these logics by extending Shehtman’s method
of ultrabouquet construction.

This paper is organized as follows. We briefly summarize Kripke and topo-
logical semantics of GL and Visser semantics of CL and its extensions in the
next section. In Section 3, we introduce a new topological semantics of nor-
mal extensions of CL, and investigate some basic properties of our semantics.
Our topological semantics is based on bitopological spaces with Visser seman-
tics in mind. In Section 4, we extend Shehtman’s ultrabouquet construction
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to our framework, and then we prove the topological compactness theorem of
consistent normal extensions of CL. As a consequence, the topological strong
completeness theorem of the logics CL, CLM, IL, ILM, ILP and ILW are
obtained. Finally, in Section 5, we discuss topological aspects of the logic IL.

2 Preliminaries

The language L(�) of propositional modal logic consists of countably many
propositional variables p0, p1, p2, . . ., logical constants >, ⊥, logical connectives
¬,∧,∨,→ and unary modal operators �,♦. A set L of L(�)-formulas is said to
be a normal modal logic if L contains all tautologies in the language L(�) and the

formula�(p→ q)→ (�p→ �q), and is closed under Modus Ponens
ϕ→ ψ ϕ

ψ
,

Necessitation
ϕ

�ϕ
and Substitution

ϕ(p0, . . . , pn)

ϕ(ψ0, . . . , ψn)
. For any normal modal logic

L, any set Γ of L(�)-formulas and any L(�)-formula ϕ, we write Γ `L ϕ to
indicate that there exists a finite subset Γ0 of Γ such that

∧
Γ0 → ϕ ∈ L.

The logic GL is defined as the smallest normal modal logic containing the
additional axiom �(�p→ p)→ �p.

This section consists of three subsections. In the first subsection, we intro-
duce Kripke semantics of GL. The second subsection is devoted to introducing
topological semantics of GL, and reviewing some basic results relating to our
study. In the last subsection, we introduce the conservativity logic CL and its
extensions, and also introduce their relational semantics, namely, Visser seman-
tics.

2.1 Kripke semantics of GL

Definition 2.1 (Kripke frames and models).

• A pair 〈W,R〉 is said to be a Kripke frame if W is a non-empty set and
R is a binary relation on W .

• A triple 〈W,R,〉 is said to be a Kripke model if 〈W,R〉 is a Kripke frame
and  is a binary relation between W and the set of all L(�)-formulas
satisfying the following conditions:

1. x 1 ⊥ and x  >;

2. x  ¬ϕ ⇐⇒ x 1 ϕ;

3. x  ϕ ∧ ψ ⇐⇒ x  ϕ and x  ψ;

4. x  ϕ ∨ ψ ⇐⇒ x  ϕ or x  ψ;

5. x  ϕ→ ψ ⇐⇒ x 1 ϕ or x  ψ;

6. x  �ϕ ⇐⇒ ∀y ∈W [xRy ⇒ y  ϕ];

7. x  ♦ϕ ⇐⇒ ∃y ∈W [xRy & y  ϕ].
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• An L(�)-formula ϕ is said to be valid in 〈W,R〉 if for any Kripke model
〈W,R,〉 and any x ∈W , x  ϕ.

• Let Log(W,R) denote the set of all L(�)-formulas valid in 〈W,R〉, and
this set is called the logic of 〈W,R〉.

Notice that every Log(W,R) is a normal modal logic. We say that a bi-
nary relation R on a set W is conversely well-founded if there is no infinite
R-increasing sequence of elements of W . Then, the validity of the logic GL in
a Kripke frame is characterized by a property of the relation R.

Fact 2.2 (See Boolos [2, Theorem 10 in Chapter 4]). For any Kripke frame
〈W,R〉, GL ⊆ Log(W,R) if and only if R is transitive and conversely well-
founded. q

We introduce the consequence relation |=K
L with respect to Kripke semantics

where K stands for “Kripke”.

Definition 2.3. Let L be a normal modal logic, Γ be a set of L(�)-formulas
and ϕ be an L(�)-formula.

• Γ |=K
L ϕ :⇐⇒ for any Kripke model 〈W,R,〉 satisfying L ⊆ Log(W,R)

and any x ∈W , if x  ψ for all ψ ∈ Γ, then x  ϕ.

Clearly, Γ `L ϕ implies Γ |=K
L ϕ. For GL, the converse implication also

holds in the case of Γ = ∅. This is the Kripke completeness theorem of GL.

Fact 2.4 (Kripke completeness of GL (Segerberg [14])). For any L(�)-formula
ϕ, ∅ `GL ϕ if and only if ∅ |=K

GL ϕ. q

On the other hand, GL is not strongly complete with respect to Kripke
semantics, that is, the equivalence of Γ `GL ϕ and Γ |=K

GL ϕ does not hold in
general.

Fact 2.5 (Fine and Rautenberg (see Boolos [2, pp. 102–103])). Let

∆ := {♦p0} ∪ {�(pn → ♦pn+1) | n ∈ N},

then ∆ |=K
GL ⊥ but ∆ 0GL ⊥. q

2.2 Topological semantics of GL

For a non-empty set X and a family τ of its subsets, we say that τ is a topology
on X if they enjoy the following conditions:

1. X,∅ ∈ τ ;

2. If U0, U1 ∈ τ , then U0 ∩ U1 ∈ τ ;

3. For any family {Ui}i∈I of sets of τ ,
⋃
i∈I Ui ∈ τ .
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Then, the pair 〈X, τ〉 is called a topological space. Every U ∈ τ containing x ∈ X
is called a τ -neighborhood of x.

Definition 2.6 (Derived sets and co-derived sets). Let 〈X, τ〉 be a topological
space and Y ⊆ X.

• The derived set dτ (Y ) of Y (with respect to τ) is the subset of X defined
as follows:

dτ (Y ) := {x ∈ X | ∀U ∈ τ [x ∈ U ⇒ ∃y 6= x(y ∈ U ∩ Y )]};

• The co-derived set cdτ (Y ) of Y (with respect to τ) is the set dτ (Y ), where
Y is the complement of Y .

In topological semantics of modal logic, every topological space plays a role
of a frame, and L(�)-formulas are interpreted as subsets of the topological space
by valuations.

Definition 2.7 (Valuations on topological spaces). Let 〈X, τ〉 be a topological
space.

• A valuation on 〈X, τ〉 is a mapping v : L(�) → P(X) satisfying the
following conditions:

1. v(⊥) = ∅ and v(>) = X;

2. v(¬ϕ) = v(ϕ);

3. v(ϕ ∧ ψ) = v(ϕ) ∩ v(ψ);

4. v(ϕ ∨ ψ) = v(ϕ) ∪ v(ψ);

5. v(ϕ→ ψ) = v(ϕ) ∪ v(ψ);

6. v(�ϕ) = cdτ (v(ϕ));

7. v(♦ϕ) = dτ (v(ϕ)).

• We say that an L(�)-formula ϕ is valid in 〈X, τ〉 if v(ϕ) = X for all
valuations v on 〈X, τ〉.

• Let Log(X, τ) be the set of all L(�)-formulas valid in 〈X, τ〉, and we call
this set the logic of 〈X, τ〉.

It is known that every Log(X, τ) is a normal modal logic validating p∧�p→
��p (See Esakia [6] and van Benthem and Bezhanishvili [19]). As well as Fact
2.2, the validity of the logic GL in a topological space 〈X, τ〉 is characterized
by a property of τ .

Definition 2.8 (Scattered spaces). A topological space 〈X, τ〉 is said to be
scattered if for any Y ⊆ X, Y 6= ∅ implies Y \ dτ (Y ) 6= ∅.

Fact 2.9 (Simmons [17]; Esakia [5]). For any topological space 〈X, τ〉, GL ⊆
Log(X, τ) if and only if 〈X, τ〉 is scattered. q
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The following fact is a summary of basic properties of derived sets.

Fact 2.10. Let 〈X, τ〉 be a topological space and let Y,Z ⊆ X.

1. dτ (∅) = ∅;

2. If Y ⊆ Z, then dτ (Y ) ⊆ dτ (Z);

3. dτ (Y ∪ Z) = dτ (Y ) ∪ dτ (Z);

4. Y ∈ τ ⇐⇒ dτ (Y ) ∩ Y = ∅;

5. If 〈X, τ〉 is scattered, then dτ (dτ (Y )) ⊆ dτ (Y ) (cf. [1, Corollary 2.3]).

q

Each transitive and irreflexive Kripke frame can be considered as a topolog-
ical space having the same logic via the topology of R-upward closed subsets.

Definition 2.11. Let 〈W,R〉 be a Kripke frame.

• For each x ∈W , R(x) := {y ∈W | xRy};

• A subset Y ⊆W is said to be R-upward closed if for any x ∈ Y , R(x) ⊆ Y ;

• Define τR := {Y ⊆W | Y is R-upward closed }.

Definition 2.12 (Alexandroff spaces). A topological space 〈X, τ〉 is said to be
Alexandroff if for any family {Ui}i∈I of members of τ ,

⋂
i∈I Ui ∈ τ .

Fact 2.13 (cf. van Benthem and Bezhanishvili [19]). Let 〈W,R〉 be a Kripke
frame. Then,

1. 〈W, τR〉 is an Alexandroff topological space;

2. If R is transitive and irreflexive, then for any Y ⊆ W , dτR(Y ) = {x ∈
W | R(x) ∩ Y 6= ∅};

3. If R is transitive and irreflexive, then Log(W,R) = Log(W, τR).

q

Alexandroff spaces will be studied precisely in Sections 3 and 5.
As in the case of Kripke semantics, we introduce the consequence relation

|=T
L with respect to topological semantics where T stands for “Topology”.

Definition 2.14. Let L be a normal modal logic, Γ be a set of L(�)-formulas
and ϕ be an L(�)-formula.

• Γ |=T
L ϕ : ⇐⇒ for any topological space 〈X, τ〉 satisfying L ⊆ Log(X, τ),

any valuation v on X and any x ∈ X, if x ∈ v(ψ) for all ψ ∈ Γ, then
x ∈ v(ϕ).

From Facts 2.4 and 2.13, we obtain the topological completeness of GL.
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Fact 2.15 (Topological completeness of GL). For any L(�)-formula ϕ, ∅ `GL

ϕ if and only if ∅ |=T
GL ϕ. q

Moreover, as opposed to Fact 2.5, Shehtman proved that GL is strongly
complete with respect to topological semantics.1

Fact 2.16 (Topological strong completeness of GL (Shehtman [15, Theorem
3.3])). Let Γ be any set of L(�)-formulas and ϕ be any L(�)-formula. Then,
Γ `GL ϕ if and only if Γ |=T

GL ϕ. q

2.3 Conservativity and interpretability logics and their
Visser semantics

In this section, we introduce the conservativity logic CL and its extensions.
Also we introduce their relational semantics. The language L(�,B) is obtained
from L(�) by adding the binary modal operator B.

Definition 2.17 (The conservativity logic CL). The conservativity logic CL
is a logic in the language L(�,B) obtained from GL by adding the following
axioms:

J1 �(p→ q)→ (pB q);

J2 (pB q) ∧ (q B r)→ (pB r);

J3 (pB r) ∧ (q B r)→ ((p ∨ q)B r);

J4 (pB q)→ (♦p→ ♦q).

We say that a set L of L(�,B)-formulas is a normal extension of CL if
CL ⊆ L and L is closed under Modus Ponens, Necessitation and Substitution.
There are well-known normal extensions of CL having some of the following
additional axioms:

J5 ♦pB p;

M (pB q)→ ((p ∧�r)B (q ∧�r));

P (pB q)→ �(pB q);

W (pB q)→ (pB (q ∧�¬p)).

The smallest normal extension containing M is called CLM. In this case,
we write CLM = CL + M. The logics CL and CLM were introduced by
Ignatiev [8]. Also let IL = CL + J5, ILM = IL + M, ILP = IL + P and
ILW = IL + W. The logic IL is called the basic interpretability logic.

1Actually, Shehtman proved that GL is strongly complete with respect to neighborhood
semantics. Esakia [5] proved that for GL, neighborhood semantics and topological semantics
coincide, and so we can state Shehtman’s theorem as the topological strong completeness
theorem of GL.
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One of well-known relational semantics of CL and its extensions is Velt-
man semantics which was introduced by de Jongh and Veltman [3]. A triple
〈W,R, {Sw}w∈W 〉 is called a Veltman frame if 〈W,R〉 is a transitive and con-
versely well-founded Kripke frame and for each w ∈W , Sw is a binary relation
on R(w) satisfying some additional conditions. One of the purposes of the
present paper is to find an appropriate topological semantics of extensions of
CL. From the point of view of Fact 2.13, every binary relation P on a set W
is associated to the topology τP on W consisting of P -upward closed subsets.
However, each binary relation Sw of Veltman frames is not a binary relation on
full W , and so Veltman frames are not directly recognized as topological frames.

For this reason, we adopt the alternative relational semantics of extensions
of CL introduced by Visser [20].

Definition 2.18 (Visser frames and models).

• A triple 〈W,R, S〉 is said to be a Visser frame if 〈W,R〉 is a transitive and
conversely well-founded Kripke frame and S is a binary transitive and
reflexive relation on W ;

• A quadruple 〈W,R, S,〉 is said to be a Visser model if 〈W,R, S〉 is a Visser
frame and  is a binary relation as in Definition 2.1 with the following
additional clause:

– x  ϕBψ ⇐⇒ ∀y ∈W [xRy & y  ϕ⇒ ∃z ∈W (xRz & ySz & z 
ψ)].

• The validity of an L(�,B)-formula in Visser frames and models, and the
logic Log(W,R, S) of 〈W,R, S〉 are defined as in Definition 2.1.

Visser actually introduced the notion of Visser frames as a relational se-
mantics for extensions of IL, and Definition 2.18 is an adaptation of Visser’s
definition to our framework obtained by removing the condition R ⊆ S from his
original definition. Visser frames are also known as simplified Veltman frames.
Then, the following fact holds.

Fact 2.19 (See Ignatiev [8] and Visser [20]). Let 〈W,R, S〉 be any Visser frame.
Then,

1. Log(W,R, S) is a normal extension of CL;

2. If ∀x, y, z ∈W [xSyRz ⇒ xRz], then CLM ⊆ Log(W,R, S);

3. If R ⊆ S, then IL ⊆ Log(W,R, S);

4. If R ⊆ S and ∀x, y, z ∈W [xRySz ⇒ xRz], then ILP ⊆ Log(W,R, S);

5. If R ⊆ S and the composition R ◦ S is conversely well-founded, then
ILW ⊆ Log(W,R, S).

q
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In Section 5, we will investigate the condition R ⊆ S of Visser frames from
a topological viewpoint.

We also define the consequence relation |=V
L with respect to Visser semantics.

Definition 2.20. Let L be a normal extension of CL, Γ be a set of L(�,B)-
formulas and ϕ be an L(�,B)-formula.

• Γ |=V
L ϕ : ⇐⇒ for any Visser model 〈W,R, S,〉 satisfying

L ⊆ Log(W,R, S) and any x ∈W , if x  ψ for all ψ ∈ Γ, then x  ϕ.

Clearly, Γ `L ϕ implies Γ |=V
L ϕ. The completeness theorems of CL, CLM,

IL, ILP, ILM and ILW with respect to Visser semantics are proved by Ignatiev,
de Jongh and Veltman and Visser.

Fact 2.21 (Visser completeness of CL and CLM (Ignatiev [8])). Let L ∈
{CL,CLM}. For any L(�,B)-formula ϕ, ∅ `L ϕ if and only if ∅ |=V

L ϕ. q

Fact 2.22 (Visser completeness of IL, ILM, ILP and ILW (de Jongh and Velt-
man [3, 4] and Visser [20])). Let L ∈ {IL, ILM, ILP, ILW}. For any L(�,B)-
formula ϕ, ∅ `L ϕ if and only if ∅ |=V

L ϕ. q

However, every logic L ∈ {CL,CLM, IL, ILM, ILP, ILW} lacks strong
completeness with respect to Visser semantics as in the case of GL. That
is, ∆ |=V

L ⊥ but ∆ 0L ⊥ where ∆ is the set of formulas defined in Fact 2.5.

3 Topological semantics of normal extensions of
CL

In this section, we newly introduce a topological semantics of normal extensions
of CL. Our topological semantics is based on bitopological spaces.

Definition 3.1 (Bitopological spaces). Let X be a non-empty set and τ0, τ1

be families of subsets of X. A triple 〈X, τ0, τ1〉 is called a bitopological space if
both τ0 and τ1 are topologies on X.

The following definition is an essential part of our work.

Definition 3.2. Let 〈X, τ0, τ1〉 be a bitopological space. For subsets Y and Z
of X, we define a subset eτ0,τ1(Y,Z) of X as follows:

eτ0,τ1(Y,Z) := {x ∈ X | ∀U ∈ τ1[x ∈ dτ0(Y ∩ U)⇒ x ∈ dτ0(Z ∩ U)]}.

If there is no room for confusion, we simply write e(Y, Z) instead of
eτ0,τ1(Y,Z). Using our sets eτ0,τ1(Y,Z), we define valuations on bitopologi-
cal spaces.

Definition 3.3. Let 〈X, τ0, τ1〉 be a bitopological space. A valuation on
〈X, τ0, τ1〉 is a mapping v : L(�,B) → P(X) defined as in Definition 2.7 with
the following clauses:
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• v(�ϕ) = cdτ0(v(ϕ));

• v(♦ϕ) = dτ0(v(ϕ));

• v(ϕB ψ) = eτ0,τ1(v(ϕ), v(ψ)).

The validity of an L(�,B)-formula in a bitopological space and the logic
Log(X, τ0, τ1) of 〈X, τ0, τ1〉 are also defined as in Definition 2.7.

For a normal extension L of CL, we say that a bitopological space 〈X, τ0, τ1〉
is an L-space if L ⊆ Log(X, τ0, τ1). We prove that every τ0-scattered bitopo-
logical space is a CL-space.

Proposition 3.4. All axioms J1, J2, J3 and J4 in Definition 2.17 are valid
in any bitopological space 〈X, τ0, τ1〉.

Proof. (J1): It suffices to show that for any Y,Z ⊆ X, cdτ0(Y ∪ Z) ⊆ e(Y,Z).
Suppose x ∈ cdτ0(Y ∪ Z), that is, x 6∈ dτ0(Y ∩ Z). Then there exists a τ0-
neighborhood W of x such that Y ∩ Z ∩W ⊆ {x}.

Take U ∈ τ1 arbitrarily, and suppose x ∈ dτ0(Y ∩ U). We would like to
show x ∈ dτ0(Z ∩ U). Let V be any τ0-neighborhood of x. Then V ∩W is
also a τ0-neighborhood of x. Since x ∈ dτ0(Y ∩ U), there exists y 6= x such
that y ∈ Y ∩ U ∩ V ∩W , and hence y ∈ Y ∩W . On the other hand, since
Y ∩ Z ∩ W ⊆ {x}, we have y 6∈ Y ∩ Z ∩ W . Therefore y ∈ Z, and hence
y ∈ Z ∩ U ∩ V . This implies x ∈ dτ0(Z ∩ U). We have shown x ∈ e(Y, Z).

(J2): We show e(Y, Z)∩e(Z,W ) ⊆ e(Y,W ). Suppose x ∈ e(Y,Z)∩e(Z,W ).
Take U ∈ τ1 arbitrarily. If x ∈ dτ0(Y ∩U), then x ∈ dτ0(Z ∩U) by x ∈ e(Y, Z).
Moreover, x ∈ dτ0(W ∩ U) by x ∈ e(Z,W ). Thus x ∈ e(Y,W ).

(J3): We show e(Y,W ) ∩ e(Z,W ) ⊆ e(Y ∪ Z,W ). Suppose x ∈ e(Y,W ) ∩
e(Z,W ). Take U ∈ τ1 arbitrarily, and assume x ∈ dτ0((Y ∪ Z) ∩ U). By Fact
2.10, we have

dτ0((Y ∪ Z) ∩ U) = dτ0((Y ∩ U) ∪ (Z ∩ U)) = dτ0(Y ∩ U) ∪ dτ0(Z ∩ U).

Then x ∈ dτ0(Y ∩U) or x ∈ dτ0(Z∩U). In either case, we obtain x ∈ dτ0(W∩U)
by x ∈ e(Y,W ) ∩ e(Z,W ). Thus x ∈ e(Y ∪ Z,W ).

(J4): We show e(Y,Z) ∩ dτ0(Y ) ⊆ dτ0(Z). Suppose x ∈ e(Y,Z) ∩ dτ0(Y ).
Then x ∈ dτ0(Y ∩ X). Since X ∈ τ1, it follows from x ∈ e(Y, Z) that x ∈
dτ0(Z ∩X). Equivalently, x ∈ dτ0(Z). q

Since each inference rule of CL preserves validity in bitopological spaces, we
obtain the following corollary from Fact 2.9 and Proposition 3.4.

Corollary 3.5. For any bitopological space 〈X, τ0, τ1〉, it is a CL-space if and
only if 〈X, τ0〉 is scattered. q

As well as Kripke frames, Visser fames 〈W,R, S〉 can be considered as bitopo-
logical spaces by considering topologies τR and τS (see Definition 2.11). In truth,
our new operation eτ0,τ1 is defined with the intention of satisfying the following
proposition.
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Proposition 3.6. Let 〈W,R, S,〉 be a Visser model. Let v be a valuation on
〈W, τR, τS〉 satisfying v(p) = {x ∈ W | x  p} for any propositional variable p,
then v(ϕ) = {x ∈W | x  ϕ} for any L(�,B)-formula ϕ.

Proof. We prove by induction on the construction of ϕ. We provide proofs of
only two cases that ϕ is ♦ψ and ϕ is ψ B χ.

Case of ϕ ≡ ♦ψ:

x  ♦ψ ⇐⇒ ∃y ∈W (xRy & y  ψ),

⇐⇒ R(x) ∩ v(ψ) 6= ∅, (by induction hypothesis)

⇐⇒ x ∈ dτR(v(ψ)), (by Fact 2.13.2)

⇐⇒ x ∈ v(♦ψ).

Case of ϕ ≡ ψ B χ:

x  ψ B χ ⇐⇒ ∀y[xRy & y  ψ ⇒ ∃z(xRz & ySz & z  χ)],

⇐⇒ ∀y[y ∈ R(x) ∩ v(ψ)⇒ R(x) ∩ S(y) ∩ v(χ) 6= ∅],
(by induction hypothesis)

(∗)⇐⇒ ∀U ∈ τS [R(x) ∩ v(ψ) ∩ U 6= ∅⇒ R(x) ∩ U ∩ v(χ) 6= ∅],

⇐⇒ ∀U ∈ τS [x ∈ dτR(v(ψ) ∩ U)⇒ x ∈ dτR(U ∩ v(χ))],
(by Fact 2.13.2)

⇐⇒ x ∈ eτR,τS (v(ψ), v(χ)),

⇐⇒ x ∈ v(ψ B χ).

Here we give a proof of the equivalence marked by (∗).
(⇒): Let U be any element of τS with R(x) ∩ v(ψ) ∩ U 6= ∅. Let y ∈

R(x) ∩ v(ψ) ∩ U . Then, R(x) ∩ S(y) ∩ v(χ) is non-empty. Since U is S-upward
closed, S(y) ⊆ U . Thus R(x) ∩ U ∩ v(χ) is also non-empty.

(⇐): Let y be any element of R(x) ∩ v(ψ). Since S is reflexive, y ∈ S(y),
and hence y ∈ R(x)∩v(ψ)∩S(y). It follows from the transitivity of S that S(y)
is S-upward closed. Hence S(y) ∈ τS . Then, we obtain that R(x)∩ S(y)∩ v(χ)
is non-empty. q

From Proposition 3.6, we obtain the following corollary.

Corollary 3.7. For any Visser frame 〈W,R, S〉, Log(W,R, S) = Log(W, τR, τS).
q

Since every transitive and conversely well-founded Kripke frame can be ex-
tended to a Visser frame, Corollary 3.7 is an extension of Fact 2.13.3. Conversely,
we show that τ0-scattered Alexandroff bitopological spaces can be considered
as Visser frames.

Theorem 3.8. Let 〈X, τ0, τ1〉 be any bitopological space. Then, the following
are equivalent:

1. τ0 is scattered and both τ0 and τ1 are Alexandroff.
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2. There exists a Visser frame 〈X,R, S〉 such that τ0 = τR and τ1 = τS.

Proof. (⇒): We define binary relations R and S on X as follows:

• xRy :⇐⇒ x 6= y & ∀U ∈ τ0(x ∈ U ⇒ y ∈ U)
(⇐⇒ x ∈ dτ0({y}));

• xSy :⇐⇒ ∀U ∈ τ1(x ∈ U ⇒ y ∈ U).

Clearly, R is irreflexive and S is transitive and reflexive. We show that R
is transitive. Let xRy and yRz. Then x ∈ dτ0({y}) and y ∈ dτ0({z}). By
Fact 2.10.2, dτ0({y}) ⊆ dτ0(dτ0({z})). Since τ0 is scattered, dτ0(dτ0({z})) ⊆
dτ0({z}) by Fact 2.10.5. Thus dτ0({y}) ⊆ dτ0({z}). Then, x ∈ dτ0({z}) and
hence xRz.

We prove τ0 = τR, and the proof of τ1 = τS is similar.
(⊆): Let U ∈ τ0. If x ∈ U and xRy, then y ∈ U by the definition of R. This

means that U is R-upward closed. Thus U ∈ τR.
(⊇): Let U ∈ τR and x be an arbitrary element of U . Define V ′ :=

⋂
{V ∈

τ0 | x ∈ V }. Since τ0 is Alexandroff, V ′ is a τ0-neighborhood of x. Since V ′ is
a subset of every τ0-neighborhood of x, for any y ∈ V ′, either x = y or xRy.
Since U is R-upward closed, U contains such y. Thus V ′ ⊆ U . We have shown
that an arbitrary element of U has a τ0-neighborhood inside of U . Thus U ∈ τ0.

Since 〈X, τ0〉 is scattered, by Fact 2.9, GL ⊆ Log(X, τ0). By Fact 2.13.3,
Log(X,R) = Log(X, τR) = Log(X, τ0). Then GL ⊆ Log(X,R), and thus R is
conversely well-founded by Fact 2.2. Therefore 〈W,R, S〉 is a Visser frame.

(⇐): By Fact 2.13.1, both τ0 = τR and τ1 = τS are Alexandroff. Since R is
transitive and conversely well-founded, GL ⊆ Log(W,R) = Log(W, τR) by Facts
2.2 and 2.13.3. Then it follows from Fact 2.9 that τ0 = τR is scattered. q

To summarize the previous investigations, Visser semantics is exactly a topo-
logical semantics restricted to τ0-scattered Alexandroff bitopological spaces.
Some extensions of CL such as IL are complete but not strongly complete
with respect to this restricted version of topological semantics.

As in the previous section, we introduce the consequence relation |=T
L with

respect to our topological semantics.

Definition 3.9. Let L be a normal extension of CL, Γ be a set of L(�,B)-
formulas, and ϕ be an L(�,B)-formula.

• Γ |=T
L ϕ :⇐⇒ for any L-space 〈X, τ0, τ1〉, any valuation v on 〈X, τ0, τ1〉

and any x ∈ X, if x ∈ v(ψ) for all ψ ∈ Γ, then x ∈ v(ϕ);

• We say that L is topologically complete if for any L(�,B)-formula ϕ, ∅ |=T
L

ϕ implies ∅ `L ϕ;

• We say that L is topologically strongly complete if for any L(�,B)-formula
ϕ and set Γ of L(�,B)-formulas, Γ |=T

L ϕ implies Γ `L ϕ.

From Facts 2.21 and 2.22, and the above discussions, we obtain the following
topological completeness of CL and its some extensions.

12



Theorem 3.10 (Topological completeness of some extensions of CL). The
logics CL, CLM, IL, ILM, ILP and ILW are topologically complete. q

The main purpose of the present paper is to strengthen Theorem 3.10, that
is, we prove that these logics are topologically strongly complete.

4 Topological compactness and topological strong
completeness

In this section, we prove the topological strong completeness theorem of some
extensions of CL. This directly follows from the the topological compactness
theorem (Theorem 4.13) and the topological completeness theorem (Theorem
3.10). Thus the main purpose of this section is to prove the topological compact-
ness theorem. We prove this theorem by extending the method of Shehtman’s
ultrabouquet construction for topological spaces (cf. Shehtman [15, 16]) to our
framework.

4.1 The ultrabouquet construction for bitopological spaces

We introduce the notion of the ultrabouquet of a countable family
{〈Xn, τ

0
n, τ

1
n〉}n∈N of bitopological spaces, and investigate properties of ultra-

bouquets used in our proof of the topological compactness theorem. Before
introducing it, we recall the following fact.

Fact 4.1 (cf. Shehtman [16, Lemma 61]). Let 〈X, τ〉 be a scattered space. Then
for any x ∈ X, there exists Y ⊆ X such that Y is a τ -neighborhood of x and
Y \ {x} ∈ τ .

In this subsection, we fix a countable family {〈Xn, τ
0
n, τ

1
n〉}n∈N of bitopolog-

ical spaces satisfying the following conditions:

• All topological spaces 〈Xn, τ
0
n〉 are scattered;

• The family {Xn}n∈N is pairwise disjoint.

We also fix a family {xn}n∈N of elements such that xn ∈ Xn for every n ∈ N.
Then by Fact 4.1, for each n ∈ N, there exists Yn ⊆ Xn such that Yn is τ0n-
neighborhood of xn and Yn \ {xn} ∈ τ0n. Let U be a non-principal ultrafilter on
N. Let x∗ be a new element not contained in

⋃
n∈NXn.

Definition 4.2. We define an ultrabouquet X := 〈X, τ0, τ1〉 based on the fami-
lies {〈Xn, τ

0
n, τ

1
n〉}n∈N and {xn}n∈N as follows:

• X :=
⋃
n∈N(Xn \ {xn}) ∪ {x∗}.

For each V ⊆ X and n ∈ N, we sometimes restrict V to Xn or Yn. In these
situations, we would like to identify x∗ with xn. From this perspective,
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we let:

V � Xn :=

{
V ∩Xn if x∗ 6∈ V ;

((V \ {x∗}) ∪ {xn}) ∩Xn if x∗ ∈ V.

Also V � Yn is defined in a similar way.

• U ∈ τ0 :⇐⇒

(i) For each n ∈ N, U ∩ (Yn \ {xn}) ∈ τ0n; and

(ii) If x∗ ∈ U , then {n ∈ N | U � Yn ∈ τ0n} ∈ U .

• U ∈ τ1 :⇐⇒ for each n ∈ N, U � Xn ∈ τ1n.

Lemma 4.3. The ultrabouquet X is a bitopological space.

Proof. We only prove that τ0 is a topology on X. A proof for τ1 is similar.

• ∅ ∈ τ0: (i) ∅ ∩ (Yn \ {xn}) = ∅ ∈ τ0n; and (ii) x∗ /∈ ∅.

• X ∈ τ0: (i) X ∩ (Yn \ {xn}) = Yn \ {xn} ∈ τ0n; and (ii) Since X � Yn =
Yn ∈ τ0n, {n ∈ N | X � Yn ∈ τ0n} = N ∈ U because U is a non-trivial filter.

• Let U0, U1 ∈ τ0. We show U0 ∩ U1 ∈ τ0. (i): By condition (i) for U0 and
U1, the sets U0∩(Yn \{xn}) and U1∩(Yn \{xn}) are elements of τ0n. Then

(U0 ∩U1)∩ (Yn \ {xn}) = (U0 ∩ (Yn \ {xn}))∩ (U1 ∩ (Yn \ {xn})) ∈ τ0n.

(ii): If x∗ ∈ U0 ∩ U1, then x∗ is in both U0 and U1. By condition (ii) for
U0 and U1, the sets Z0 = {n ∈ N | U0 � Yn ∈ τ0n} and Z1 = {n ∈ N | U1 �
Yn ∈ τ0n} are in U . Then,

Z0 ∩ Z1 ⊆ {n ∈ N | (U0 ∩ U1) � Yn ∈ τ0n} ∈ U

because U is a filter.

• {Ui}i∈I be any family of elements of τ0. We show
⋃
i∈I Ui ∈ τ0. (i): Since

Ui ∩ (Yn \ {xn}) ∈ τ0n for all i ∈ I,(⋃
i∈U

Ui

)
∩ (Yn \ {xn}) =

⋃
i∈U

(Ui ∩ (Yn \ {xn})) ∈ τ0n.

(ii): If x∗ ∈
⋃
i∈I Ui, then x∗ ∈ Uj for some j ∈ I. By condition (ii) for

Uj , {n ∈ N | Uj � Yn ∈ τ0n} ∈ U .

Claim 1. For n ∈ N, if Uj � Yn ∈ τ0n, then (
⋃
i∈I Ui) � Yn ∈ τ0n.
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Proof of Claim 1. Let x be an arbitrary element of (
⋃
i∈I Ui) � Yn. We

show that there exists a τ0n-neighborhood V of x satisfying V ⊆ (
⋃
i∈I Ui) �

Yn. We distinguish the following two cases:

If x = xn, then Uj � Yn is a required τ0n-neighborhood of x.

If x 6= xn, then x ∈ Uk ∩ (Yn \ {xn}) for some k ∈ I. By condition (i) for
Uk, this set is a required τ0n-neighborhood of x.

Therefore (
⋃
i∈I Ui) � Yn ∈ τ0n. q

From Claim 1, we have

{n ∈ N | Uj � Yn ∈ τ0n} ⊆ {n ∈ N | (
⋃
i∈I

Ui) � Yn ∈ τ0n} ∈ U .

q

For each n ∈ N, let vn be a valuation on 〈Xn, τ
0
n, τ

1
n〉. We define a valuation

v on X as follows:

Definition 4.4.

• For x ∈ Xn \ {xn}, x ∈ v(p) :⇐⇒ x ∈ vn(p);

• x∗ ∈ v(p) :⇐⇒ {n ∈ N | xn ∈ vn(p)} ∈ U .

Let Y denote the set
⋃
n∈N(Yn \ {xn})∪ {x∗}. We investigate the images of

the valuation v by dividing X into three parts, namely, Y \ {x∗}, X \ Y and
{x∗}.

First, we investigate in Y \ {x∗}. If x ∈ Y \ {x∗}, then x is in Yn \ {xn} for
some n ∈ N. In the set Yn \ {xn}, the first clause of Definition 4.4 is extended
to all L(�,B)-formulas as follows.

Lemma 4.5. For any L(�,B)-formula ϕ, n ∈ N and x ∈ Yn \ {xn},

x ∈ v(ϕ) ⇐⇒ x ∈ vn(ϕ).

Proof. We prove by induction on the construction of ϕ. We only give a proof
of the case ϕ ≡ ψ B χ.

(⇒): Suppose x ∈ v(ψ B χ). Then

∀U ∈ τ1 [x ∈ dτ0 (v(ψ) ∩ U)⇒ x ∈ dτ0 (v(χ) ∩ U)] . (1)

In order to prove x ∈ vn(ψBχ), let U be an arbitrary element of τ1n and assume
x ∈ dτ0

n
(vn(ψ) ∩ U). We would like to show x ∈ dτ0

n
(vn(χ) ∩ U). Let

U ′ :=

{
U if xn /∈ U ;

((U \ {xn}) ∪
⋃
m 6=nXm \ {xm}) ∪ {x∗} if xn ∈ U.

Then, it is easily shown that U ′ ∈ τ1 and U ′ � Xn = U .
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Claim 2. x ∈ dτ0 (v(ψ) ∩ U ′).

Proof of Claim 2. Let V be any τ0-neighborhood of x. By Definition 4.2, V ∩
(Yn \ {xn}) ∈ τ0n, and hence the set V ∩ (Yn \ {xn}) is a τ0n-neighborhood of x.
Since x ∈ dτ0

n
(vn(ψ) ∩ U), there exists y 6= x such that y ∈ vn(ψ) ∩ U ∩ V ∩

(Yn \{xn}). By the induction hypothesis, y ∈ v(ψ)∩U ∩V ∩ (Yn \{xn}). Hence
y ∈ v(ψ) ∩ U ′ ∩ V . This implies x ∈ dτ0 (v(ψ) ∩ U ′). q

From (1) and Claim 2, we have x ∈ dτ0(v(χ) ∩ U ′).

Claim 3. x ∈ dτ0
n
(vn(χ) ∩ U).

Proof of Claim 3. Let V be any τ0n-neighborhood of x. Then, V ∩ (Yn \{xn}) ∈
τ0n and x ∈ V ∩ (Yn \ {xn}). Together with x∗ 6∈ V ∩ (Yn \ {xn}), it is shown
that the set V ∩ (Yn \{xn}) is a τ0-neighborhood of x. Since x ∈ dτ0(v(χ)∩U ′),
there exists y 6= x such that y ∈ v(χ) ∩ U ′ ∩ V ∩ (Yn \ {xn}). By the induction
hypothesis, y ∈ vn(χ) ∩ U ′ ∩ V ∩ (Yn \ {xn}). Since U ′ � Xn = U , we conclude
y ∈ vn(χ) ∩ U ∩ V . q

We have shown x ∈ eτ0
n,τ

1
n
(vn(ψ), vn(χ)) = vn(ψ B χ).

(⇐): Suppose x ∈ vn(ψ B χ). Then

∀U ∈ τ1n
[
x ∈ dτ0

n
(vn(ψ) ∩ U)⇒ x ∈ dτ0

n
(vn(χ) ∩ U)

]
. (2)

Let U be an arbitrary element of τ1 and assume x ∈ dτ0(v(ψ) ∩ U). We would
like to show x ∈ dτ0(v(χ) ∩ U). Let U ′ := U � Xn, then U ′ ∈ τ1n.

Claim 4. x ∈ dτ0
n
(vn(ψ) ∩ U ′).

Proof of Claim 4. Let V be any τ0n-neighborhood of x. Then V ∩(Yn\{xn}) ∈ τ0n
and x ∈ V ∩ (Yn \ {xn}). Together with x∗ /∈ V ∩ (Yn \ {xn}), it is shown that
the set V ∩ (Yn \ {xn}) is a τ0-neighborhood of x. Since x ∈ dτ0(v(ψ) ∩ U),
there exists y 6= x such that y ∈ v(ψ) ∩ U ∩ V ∩ (Yn \ {xn}). By the induction
hypothesis, y ∈ vn(ψ)∩U ∩V ∩ (Yn\{xn}), and hence y ∈ vn(ψ)∩U ′∩V . Thus
we conclude x ∈ dτ0

n
(vn(ψ) ∩ U ′). q

From (2) and Claim 4, x ∈ dτ0
n
(vn(χ) ∩ U ′).

Claim 5. x ∈ dτ0(v(χ) ∩ U).

Proof of Claim 5. Let V be any τ0-neighborhood of x. By Definition 4.2, V ∩
(Yn \ {xn}) ∈ τ0n and hence V ∩ (Yn \ {xn}) is a τ0n-neighborhood of x. Since
x ∈ dτ0

n
(vn(χ)∩U ′), there exists y 6= x such that y ∈ vn(χ)∩U ′∩V ∩(Yn\{xn}).

By the induction hypothesis, y ∈ v(χ) ∩ U ′ ∩ V ∩ (Yn \ {xn}), and hence y ∈
v(χ) ∩ U ∩ V . Thus we conclude x ∈ dτ0(v(χ) ∩ U). q

We have proved x ∈ eτ0,τ1(v(ψ), v(χ)) = v(ψBχ). This completes our proof
of Lemma 4.5. q

Secondly, we investigate the behavior of valuations on X in X \ Y .
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Lemma 4.6. For any subset U of X \ Y , U ∈ τ0.

Proof. We show that each U ⊆ X\Y satisfies conditions (i) and (ii) in Definition
4.2. Clearly U ∩ (Yn \ {xn}) = ∅ for any n ∈ N, and hence (i) holds. Moreover,
(ii) vacuously holds since U does not contain x∗. q

The following lemma shows that every element of X \ Y behaves as a dead
end of Kripke frames.

Lemma 4.7. For any x ∈ X \ Y and any Z ⊆ X, x ∈ cdτ0(Z).

Proof. Let x ∈ X \ Y . Then, by Lemma 4.6, {x} ∈ τ0. Since Z ∩ {x} ⊆ {x},
we have x /∈ dτ0(Z). That is, x ∈ cdτ0(Z). q

For x ∈ Xn \ Yn, even if x ∈ vn(♦ϕ), by Lemma 4.7, x /∈ v(♦ϕ). So the
equivalence of Lemma 4.5 cannot be extended to elements of Xn \ {xn}.

Thirdly, the following lemma is a generalization of the second clause of Def-
inition 4.4. In particular, it plays a key role in our proof of the topological
compactness theorem.

Lemma 4.8. For any L(�,B)-formula ϕ,

x∗ ∈ v(ϕ) ⇐⇒ {n ∈ N | xn ∈ vn(ϕ)} ∈ U .

Proof. We prove by induction on the construction of ϕ. We only give a proof
of the case ϕ ≡ ψ B χ.

(⇒): We prove the contrapositive. Assume {n ∈ N | xn ∈ vn(ψ B χ)} 6∈ U .
Since U is an ultrafilter on N, Z0 := {n ∈ N | xn 6∈ vn(ψ B χ)} ∈ U . For each
n ∈ Z0, there exists Un ∈ τ1n such that

xn ∈ dτ0
n
(vn(ψ) ∩ Un) & xn 6∈ dτ0

n
(vn(χ) ∩ Un). (3)

Let Z00 := {n ∈ Z0 | xn /∈ Un} and Z01 := {n ∈ Z0 | xn ∈ Un}. Then,
Z0 = Z00∪Z01. Since U is an ultrafilter, we get an i ∈ {0, 1} such that Z0i ∈ U .
Let

U :=

{⋃
n∈Z0i

Un if i = 0;(⋃
n∈Z0i

Un \ {xn}
)
∪
(⋃

n/∈Z0i
Xn \ {xn}

)
∪ {x∗} if i = 1.

Then, it is shown that U is an element of τ1 satisfying U � Xn = Un for all
n ∈ Z0i.

First, we prove x∗ ∈ dτ0(v(ψ)∩U). Let V be any τ0-neighborhood of x∗. By
Definition 4.2, Z1 := {n ∈ N | V � Yn ∈ τ0n} ∈ U . Since Z0i ∩Z1 ∈ U , Z0i ∩Z1 is
non-empty, and fix some n ∈ Z0i∩Z1. Since the set V � Yn is a τ0n-neighborhood
of xn, by (3), there exists y ∈ Xn\{xn} such that y ∈ vn(ψ)∩Un∩V ∩(Yn\{xn}).
Applying Lemma 4.5, y ∈ v(ψ) ∩ Un ∩ V ∩ (Yn \ {xn}). Since Un = U � Xn, we
obtain y ∈ v(ψ) ∩ U ∩ V and y 6= x∗. Thus x∗ ∈ dτ0(v(ψ) ∩ U).
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Secondly, we prove x∗ 6∈ dτ0(v(χ) ∩ U). By (3), for each n ∈ Z0i, there
exists a τ0n-neighborhood Wn of xn such that vn(χ) ∩ Un ∩Wn ⊆ {xn}. Let
W :=

⋃
n∈Z0i

(Wn ∩ (Yn \ {xn}) ∪ {x∗}. We show W ∈ τ0. (i) For each n ∈ N,

W ∩ (Yn \ {xn}) =

{
Wn ∩ (Yn \ {xn}) if n ∈ Z0i;

∅ otherwise.

Then, W ∩ (Yn \ {xn}) ∈ τ0n. (ii) If n ∈ Z0i, then W � Yn = Wn ∩ Yn ∈ τ0n.
Hence Z0i ⊆ {n ∈ N | W � Yn ∈ τ0n} ∈ U because U is a filter. Thus W is a
τ0-neighborhood of x∗.

Suppose, towards a contradiction, that x∗ ∈ dτ0(v(χ) ∩ U). Then there
exists y 6= x∗ such that y ∈ v(χ) ∩ U ∩W . Since y ∈ W , for some n ∈ Z0i,
y ∈ v(χ) ∩ U ∩Wn ∩ (Yn \ {xn}). Applying Lemma 4.5, y ∈ vn(χ) ∩ U ∩Wn ∩
(Yn \ {xn}). Since U � Xn = Un, y ∈ vn(χ) ∩ Un ∩ Wn. This contradicts
vn(χ) ∩ Un ∩Wn ⊆ {xn}. Therefore x∗ /∈ dτ0(v(χ) ∩ U).

We conclude x∗ 6∈ eτ0,τ1(v(ψ), v(χ)), and hence x∗ 6∈ v(ψ B χ).

(⇐): Suppose Z0 := {n ∈ N | xn ∈ vn(ψ B χ)} ∈ U . In order to prove
x∗ ∈ v(ψ B χ), suppose that U ∈ τ1 and x∗ ∈ dτ0(v(ψ) ∩ U). We would like to
show x∗ ∈ dτ0(v(χ) ∩ U). Let V be any τ0-neighborhood of x∗. By Definition
4.2, Z1 := {n ∈ N | V � Yn ∈ τ0n} ∈ U . For each n ∈ N, let Un := U � Xn. Then
Un ∈ τ1n.

Claim 6. There exists n ∈ Z0 ∩ Z1 such that xn ∈ dτ0
n
(vn(ψ) ∩ Un).

Proof of Claim 6. Suppose, towards a contradiction, that for all n ∈ Z0 ∩ Z1,
xn 6∈ dτ0

n
(vn(ψ) ∩ Un). Then for each n ∈ Z0 ∩ Z1, there exists Wn ∈ τ0n such

that xn ∈ Wn and vn(ψ) ∩ Un ∩Wn ⊆ {xn}. Let W :=
⋃
n∈Z0∩Z1

(Wn ∩ (Yn \
{xn}) ∪ {x∗}.

We show W ∈ τ0. (i) For each n ∈ N,

W ∩ (Yn \ {xn}) =

{
Wn ∩ (Yn \ {xn}) if n ∈ Z0 ∩ Z1;

∅ otherwise,

and this set is in τ0n. (ii) If n ∈ Z0 ∩ Z1, then W � Yn = Wn ∩ Yn ∈ τ0n. Thus
Z0 ∩ Z1 ⊆ {n ∈ N |W � Yn ∈ τ0n} ∈ U because U is a filter. Therefore W ∈ τ0.

Since x∗ ∈ dτ0(v(ψ) ∩ U), there exists y 6= x∗ such that y ∈ v(ψ) ∩ U ∩W .
Since y ∈ W , there exists m ∈ Z0 ∩ Z1 such that y ∈ v(ψ) ∩ Um ∩Wm ∩ (Ym \
{xm}). Applying Lemma 4.5, y ∈ vm(ψ) ∩ Um ∩ Wm ∩ (Ym \ {xm}). Then
y 6= xm and y ∈ vm(ψ)∩Um∩Wm. This contradicts vm(ψ)∩Um∩Wm ⊆ {xm}.
Our proof of Claim 6 is completed. q

We continue the proof of x∗ ∈ dτ0(v(χ)∩U). From Claim 6, there exists n ∈
Z0 ∩Z1 such that xn ∈ dτ0

n
(vn(ψ)∩Un). Since n ∈ Z0, we have xn ∈ vn(ψBχ).

Therefore xn ∈ dτ0
n
(vn(χ) ∩ Un). Moreover, since n ∈ Z1, we have V � Yn ∈ τ0n.

This set is a τ0n-neighborhood of xn, and thus there exists y 6= xn such that
y ∈ vn(χ)∩Un∩(V � Yn). Since y 6= xn, we obtain y ∈ v(χ)∩Un∩V ∩(Yn\{xn})
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by Lemma 4.5. In particular, y 6= x∗ and y ∈ v(χ) ∩ U ∩ V . This implies
x∗ ∈ dτ0(v(χ) ∩ U). We conclude x∗ ∈ v(ψ B χ). q

The following lemma is an adaptation of Shehtman’s result on the preserva-
tion of validity in ultrabouquets to our framework (See Shehtman [15, Lemma
5.6]).

Lemma 4.9. If an L(�,B)-formula ϕ is valid in all 〈Xn, τ
0
n, τ

1
n〉, then for all

valuations v′ on X and all x ∈ Y , x ∈ v′(ϕ).

Proof. We prove the contrapositive. Suppose that there exist a valuation v′ on
X and x ∈ Y such that x /∈ v′(ϕ). For each n ∈ N, we define a valuation v′n on
〈Xn, τ

0
n, τ

1
n〉 as follows:

• For x ∈ Xn \ {xn}, x ∈ v′n(p) :⇐⇒ x ∈ v′(p);

• xn ∈ v′n(p) :⇐⇒ x∗ ∈ v′(p).

Then the valuation on X defined from {v′n}n∈N in Definition 4.4 coincides with
v′ because ∅ /∈ U and N ∈ U . We distinguish the following two cases.

If x ∈ Yn \ {xn}, then by Lemma 4.5, we obtain x /∈ v′n(ϕ).
If x = x∗, then by Lemma 4.8, {n ∈ N | xn ∈ v′n(ϕ)} /∈ U . Since N ∈ U , for

some n ∈ N, xn /∈ v′n(ϕ).
Thus in either case, ϕ is not valid in 〈Xn, τ

0
n, τ

1
n〉 for some n ∈ N. q

From the viewpoint of Lemma 4.7, the set Y in the statement of Lemma 4.9
does not seem to be replaceable by X in general. However, we prove that this is
actually the case. First, we prove that the validity of the axiom �(�p→ p)→
�p of GL is preserved.

Lemma 4.10. The topological space 〈X, τ0〉 is scattered. That is, the ultrabou-
quet X is a CL-space.

Proof. Since each space 〈Xn, τ
0
n, τ

1
n〉 is scattered, ϕ :≡ �(�p → p) → �p is

valid in 〈Xn, τ
0
n, τ

1
n〉 by Fact 2.9. Let v′ be any valuation on X. By Lemma

4.9, for all y ∈ Y , y ∈ v′(ϕ). Moreover, by Lemma 4.7, for all x ∈ X \ Y ,
x ∈ cdτ0(v′(p)), that is, x ∈ v′(�p). Hence x ∈ v′(ϕ). Thus ϕ is valid in X, and
hence GL ⊆ Log(X). We conclude that 〈X, τ0〉 is scattered. q

The following lemma is a version of a part of Makinson’s theorem (See Makin-
son [12]). Our proof is a modification of that in Hughes and Cresswell [7, Lemma
3.2]).

Lemma 4.11. Let L be any consistent normal extension of CL and ϕ be any
L(�,B)-formula. If ϕ ∈ L, then �⊥ → ϕ ∈ CL.

Proof. Let L be a normal extension of CL and suppose that there exists an
L(�,B)-formula ϕ such that ϕ ∈ L but �⊥ → ϕ /∈ CL. We would like to show
that L is inconsistent. From axioms J1 and J4, we have that for any L(�,B)-
formula ψ, �ψ is equivalent to (¬ψ)B⊥ in CL. So we may assume that neither
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� nor ♦ occurs in ϕ. Also we assume that ϕ is in a conjunctive normal form
ϕ0 ∧ ϕ1 ∧ · · · ∧ ϕk where each ϕi is a disjunction of formulas, and each disjunct
of ϕi is either a formula without B, or a formula of the form ψBχ, or a formula
of the form ¬(ψ B χ).

By the choice of ϕ, for some i ≤ k, ϕi ∈ L and �⊥ → ϕi /∈ CL. From J1,
we have that �⊥ → ψ B χ ∈ CL. Then ϕi does not contain a formula of the
form ψ B χ as a disjunct because �⊥ → ϕi /∈ CL. Thus, we may assume that
ϕi is of the form

γ ∨
m∨
j=0

¬(ψj B χj)

where γ is a classical propositional formula. Since �⊥ → ϕi /∈ CL, γ is not a
tautology of the classical propositional logic. Then, there exists a substitution
instance γ′ of γ such that ¬γ′ is a tautology (cf. [7, p. 47]). So ¬γ′ ∈ L.

Suppose m = 0. Then L contains both γ′ and ¬γ′, and hence is inconsistent.
Suppose m > 0. Since each ¬(ψjBχj) implies ♦> in CL, L contains γ∨♦>.

Then γ′ ∨ ♦> ∈ L, and thus ♦> ∈ L. Since L is normal, �♦> ∈ L. Therefore
�⊥ ∈ L because L is an extension of CL. We conclude that L is inconsistent.
q

Theorem 4.12. If an L(�,B)-formula ϕ is valid in all 〈Xn, τ
0
n, τ

1
n〉, then ϕ is

also valid in X.

Proof. Since 〈X0, τ
0
0 〉 is scattered, Log(X0, τ

0
0 , τ

1
0 ) is a consistent normal exten-

sion of CL by Corollary 3.5. Since ϕ ∈ Log(X0, τ
0
0 , τ

1
0 ), we obtain �⊥ → ϕ ∈

CL by Lemma 4.11.
Let v′ be any valuation on X, then for all y ∈ Y , y ∈ v′(ϕ) by Lemma 4.9.

Also, for all x ∈ X \ Y , x ∈ v′(�⊥) by Lemma 4.7. Since X is a CL-space by
Lemma 4.10, it follows from �⊥ → ϕ ∈ CL that x ∈ v′(ϕ). Therefore ϕ is valid
in X. q

4.2 Proofs of the theorems

We are ready to prove the topological compactness theorem.

Theorem 4.13 (Topological compactness theorem). Let L be a consistent nor-
mal extension of CL, Γ be a set of L(�,B)-formulas and ϕ be an L(�,B)-
formula. If Γ |=T

L ϕ, then Γ0 |=T
L ϕ for some finite subset Γ0 of Γ.

Proof. Suppose that for all finite subsets Γ0 of Γ, Γ0 6|=T
L ϕ. Let {ψn}n∈N be

an enumeration of elements of Γ, and let χn :=
∧n
i=0 ψn. Then, for each n ∈ N,

{χn} 6|=T
L ϕ. Hence there exist an L-space 〈Xn, τ

0
n, τ

1
n〉, a valuation vn on the

space and xn ∈ Xn such that xn ∈ vn(χn) and xn 6∈ vn(ϕ). By Corollary 3.5,
〈Xn, τ

0
n〉 is scattered. Also we may assume that the family {Xn}n∈N is pairwise

disjoint. Let X be an ultrabouquet based on the families {〈Xn, τ
0
n, τ

1
n〉}n∈N and

{xn}n∈N. Since every ϕ ∈ L is valid in all 〈Xn, τ
0
n, τ

1
n〉, by Lemma 4.12, ϕ is

also valid in X. Therefore X is also an L-space.
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Let v be the valuation on X defined from {vn}n∈N in Definition 4.4. We
claim that for every ψi ∈ Γ, x∗ ∈ v(ψi). Indeed, for any n ≥ i, xn ∈ vn(ψi).
Then the set {n ∈ N | xn ∈ vn(ψi)} is cofinite, and hence in U because U is a
non-principal ultrafilter. By Lemma 4.8, x∗ ∈ v(ψi).

On the other hand, {n ∈ N | xn ∈ vn(ϕ)} = ∅ 6∈ U . Again by Lemma 4.8,
x∗ 6∈ v(ϕ). Thus we conclude Γ 6|=T

L ϕ. q

Theorem 4.14. For any normal extension L of CL, L is topologically complete
if and only if L is topologically strongly complete.

Proof. It suffices to prove the implication (⇒). Suppose Γ |=T
L ϕ. By the

topological compactness theorem, Γ0 |=T
L ϕ for some finite subset Γ0 of Γ, and we

have ∅ |=T
L

∧
Γ0 → ϕ. By the topological completeness of L, ∅ `L

∧
Γ0 → ϕ.

Thus Γ `L ϕ. q

From Theorems 3.10 and 4.14, we obtain the following topological strong
completeness theorem.

Theorem 4.15 (Topological strong completeness theorem of some extensions of
CL). The logics CL, CLM, IL, ILM, ILP and ILW are topologically strongly
complete. q

5 Topological investigations of IL

In this section, we investigate topological aspects of IL. First, we investigate
necessary and sufficient conditions for a CL-space to be an IL-space. Secondly,
we explore Alexandroff IL-spaces.

Theorem 5.1. Let 〈X, τ0, τ1〉 be a CL-space. Then the following are equivalent:

1. 〈X, τ0, τ1〉 is an IL-space.

2. For any U ∈ τ1 and Y ⊆ X, dτ0(dτ0(Y ) ∩ U) ⊆ dτ0(Y ∩ U).

3. For any U ∈ τ1, dτ0(dτ0(U) ∩ U) = ∅.

4. For any U ∈ τ1, there exists V ∈ τ0 such that V ⊆ U and dτ0(U \V ) = ∅.

Proof. (1⇔ 2): Notice that a CL-space 〈X, τ0, τ1〉 is an IL-space if and only if
♦pB p is valid in 〈X, τ0, τ1〉. The latter condition is equivalent to the condition
that for all Y ⊆ X, eτ0,τ1(dτ0(Y ), Y ) = X. Then it follows from Definition 3.2
that this is equivalent to Clause 2.

(2 ⇒ 3): Let U ∈ τ1. From Clause 2 for Y = U , we have dτ0(dτ0(U) ∩
U) ⊆ dτ0(U ∩ U) = dτ0(∅). Since dτ0(∅) = ∅ by Fact 2.10.1, we obtain
dτ0(dτ0(U) ∩ U) = ∅.

(3 ⇒ 2): Let U ∈ τ1 and Y ⊆ X. Since Y \ U ⊆ U , by Fact 2.10.2,
dτ0(Y \U)∩U ⊆ dτ0(U)∩U . Then dτ0(dτ0(Y \U)∩U) ⊆ dτ0(dτ0(U)∩U) = ∅.
We get dτ0(dτ0(Y \ U) ∩ U) = ∅.
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Since Y = (Y ∩ U) ∪ (Y \ U), by Fact 2.10,

dτ0(dτ0(Y ) ∩ U) = dτ0(dτ0(Y ∩ U) ∩ U) ∪ dτ0(dτ0(Y \ U) ∩ U),

= dτ0(dτ0(Y ∩ U) ∩ U),

⊆ dτ0(dτ0(Y ∩ U)),

⊆ dτ0(Y ∩ U).

(3 ⇒ 4): Let U ∈ τ1. Let V denote the set U \ dτ0(U). Then V ⊆ U and
dτ0(U \ V ) = dτ0(dτ0(U) ∩ U) = ∅. So it suffices to show that V is an element
of τ0. Let x be an arbitrary element of V . Since x /∈ dτ0(dτ0(U) ∩ U), there
exists a τ0-neighborhood W0 of x such that W0 ∩ dτ0(U) ∩ U ⊆ {x}. Since
x /∈ dτ0(U), W0 ∩ dτ0(U) ∩ U = ∅. Furthermore, from x /∈ dτ0(U), there exists
a τ0-neighborhood W1 of x such that W1 ∩ U ⊆ {x}. Since x /∈ U , we also
have W1 ∩ U = ∅. Equivalently, W1 ⊆ U . Then, we have W0 ∩ W1 ∈ τ0,
x ∈ W0 ∩W1 and W0 ∩W1 ⊆ V . We have shown that an arbitrary element of
V has a τ0-neighborhood which is included in V . Therefore V ∈ τ0.

(4 ⇒ 3): Let U ∈ τ1, then for some V ∈ τ0, V ⊆ U and dτ0(U \ V ) = ∅.
Since U ⊆ V and V ∈ τ0, by Fact 2.10, dτ0(U) ∩ V ⊆ dτ0(V ) ∩ V = ∅. Then
dτ0(U) ∩ V = ∅ and so dτ0(dτ0(U) ∩ V ) = ∅.

Since U = V ∪ (U \ V ), we obtain

dτ0(dτ0(U) ∩ U) = dτ0(dτ0(U) ∩ V ) ∪ dτ0(dτ0(U) ∩ (U \ V )),

= dτ0(dτ0(U) ∩ (U \ V )),

⊆ dτ0(U \ V ).

Therefore we conclude dτ0(dτ0(U) ∩ U) = ∅. q

Corollary 5.2. For any CL-space 〈X, τ0, τ1〉, if τ1 ⊆ τ0, then 〈X, τ0, τ1〉 is
an IL-space.

Proof. Let U ∈ τ1, then U ∈ τ0. By Fact 2.10, dτ0(U) ∩ U = ∅, and hence
dτ0(dτ0(U) ∩ U) = ∅. By Theorem 5.1, 〈X, τ0, τ1〉 is an IL-space. q

We have already stated that IL is complete with respect to Visser semantics
(Fact 2.22). Actually, Visser proved the following stronger result saying that IL
is sound and complete with respect to a smaller class of Visser frames than the
class of all Visser frames validating IL (See also Fact 2.19.3).

Fact 5.3 (Visser [20]). For any L(�,B)-formula ϕ, the following are equivalent:

1. ∅ `IL ϕ.

2. ϕ is valid in all Visser frames 〈W,R, S〉 with R ⊆ S.

q

We explain how Fact 5.3 follows from Fact 2.22 in our framework. For this
purpose, we prepare the following lemmas.
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Lemma 5.4. For any topological space 〈X, τ〉, the following are equivalent:

1. 〈X, τ〉 is Alexandroff.

2. For any family {Yi}i∈I of subsets of X, dτ (
⋃
i∈I Yi) ⊆

⋃
i∈I dτ (Yi).

Proof. (1⇒ 2): Let {Yi}i∈I be any family of subsets of X. Let x /∈
⋃
i∈I dτ (Yi).

Then, for all i ∈ I, there exists a τ -neighborhood Ui of x such that Yi∩Ui ⊆ {x}.
Let U :=

⋂
i∈I Ui, then U is also a τ -neighborhood of x because τ is Alexandroff.

Suppose, towards a contradiction, x ∈ dτ (
⋃
i∈I Yi). Then there exists y 6= x such

that y ∈
(⋃

i∈I Yi
)
∩ U . For some j ∈ I, y ∈ Yj ∩ U ⊆ Yj ∩ Uj , and this is a

contradiction. Therefore x /∈ dτ (
⋃
i∈I Yi).

(2 ⇒ 1): Let {Ui}i∈I be any family of sets of τ . Then for each i ∈ I,
dτ (Ui) ∩ Ui = ∅ by Fact 2.10.4.

dτ (
⋂
i∈I

Ui) ∩
⋂
i∈I

Ui = dτ (
⋃
i∈I

Ui) ∩
⋂
i∈I

Ui,

⊆
⋃
i∈I

dτ (Ui) ∩
⋂
i∈I

Ui, (by Clause 1)

⊆
⋃
i∈I

(dτ (Ui) ∩ Ui) = ∅.

Therefore
⋂
i∈I Ui is a member of τ . q

Notice that the converse inclusion
⋃
i∈I dτ (Yi) ⊆ dτ (

⋃
i∈I Yi) in Lemma 5.4.2

is easily obtained from Fact 2.10.2.

Lemma 5.5. Let 〈X, τ〉 be a topological space and V,U ⊆ X. If V ⊆ U and
dτ (U \ V ) = ∅, then dτ (Y ∩ U) = dτ (Y ∩ V ) for all subsets Y of X.

Proof. Notice that dτ0(Y ∩ (U \V )) is also empty because Y ∩ (U \V ) ⊆ U \V .
Since U = (U \ V ) ∪ V , by Fact 2.10.3,

dτ (Y ∩ U) = dτ (Y ∩ (U \ V )) ∪ dτ (Y ∩ V ) = dτ (Y ∩ V ).

q

Theorem 5.6. Let 〈X, τ0, τ1〉 be a bitopological space with both τ0 and τ1 are
Alexandroff. Then, the following are equivalent:

1. 〈X, τ0, τ1〉 is an IL-space.

2. τ0 is scattered and there exists an Alexandroff topology τ2 on X such that
τ0 ∩ τ1 ⊆ τ2 ⊆ τ0 and Log(X, τ0, τ1) = Log(X, τ0, τ2).

3. There exists a Visser frame 〈X,R, S〉 such that R ⊆ S and Log(X, τ0, τ1) =
Log(X,R, S).
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Proof. (1 ⇒ 2): Since 〈X, τ0, τ1〉 is a CL-space, τ0 is scattered by Corollary
3.5. Define

τ2 := {V ∈ τ0 | ∃U ∈ τ1[V ⊆ U & dτ0(U \ V ) = ∅]}.

Then, obviously τ2 ⊆ τ0. Let V ∈ τ0 ∩ τ1. Since V ⊆ V and dτ0(V \ V ) =
dτ0(∅) = ∅ by Fact 2.10.1, we have V ∈ τ2. Thus τ0 ∩ τ1 ⊆ τ2.

First, we prove that τ2 is a topology on X.

• Since X and ∅ are in τ0 ∩ τ1, they are also in τ2.

• Let V0, V1 ∈ τ2. Then there exist elements U0 and U1 of τ1 such that
Vi ⊆ Ui for i ∈ {0, 1} and dτ0(U0 \ V0) = dτ0(U1 \ V1) = ∅. We have
V0 ∩ V1 ⊆ U0 ∩ U1 ∈ τ1 and

dτ0((U0 ∩ U1) \ (V0 ∩ V1)) = dτ0(((U0 ∩ U1) \ V0) ∪ ((U0 ∩ U1) \ V1)),

⊆ dτ0((U0 \ V0) ∪ (U1 \ V1)),
(by Fact 2.10.2)

= dτ0(U0 \ V0) ∪ dτ0(U1 \ V1) = ∅.
(by Fact 2.10.3)

Hence V0 ∩ V1 ∈ τ2.

• Let {Vi}i∈I be any family of elements of τ2. Then for each i ∈ I, there
exists Ui ∈ τ1 such that Vi ⊆ Ui and dτ0(Ui \ Vi) = ∅. We get

⋃
i∈I Vi ⊆⋃

i∈I Ui ∈ τ1 and

dτ0((
⋃
i∈I

Ui) \ (
⋃
i∈I

Vi)) ⊆ dτ0(
⋃
i∈I

(Ui \ Vi)), (by Fact 2.10.2)

⊆
⋃
i∈I

dτ0(Ui \ Vi) = ∅. (by Lemma 5.4)

Therefore
⋃
i∈I Vi is an element of τ2.

Secondly, we prove τ2 is Alexandroff. Let {Vi}i∈I be any family of elements
of τ2. Then for each i ∈ I, there exists Ui ∈ τ1 such that dτ0(Ui \ Vi) = ∅.
Since τ1 is Alexandroff,

⋂
i∈I Vi ⊆

⋂
i∈I Ui ∈ τ1. Since τ0 is also Alexandroff,

dτ0((
⋂
i∈I

Ui) \ (
⋂
i∈I

Vi)) ⊆ dτ0(
⋃
i∈I

(Ui \ Vi)), (by Fact 2.10.2)

=
⋃
i∈I

dτ0(Ui \ Vi) = ∅. (by Lemma 5.4)

Therefore
⋂
i∈I Vi ∈ τ2.

Finally, we prove Log(X, τ0, τ1) = Log(X, τ0, τ2). It suffices to prove that
for all subsets Y, Z of X, eτ0,τ1(Y, Z) = eτ0,τ2(Y,Z).

(⊆): Let x ∈ eτ0,τ1(Y, Z), V ∈ τ2 and x ∈ dτ0(Y ∩V ). We would like to show
x ∈ dτ0(Z∩V ). Then, there exists U ∈ τ1 such that V ⊆ U and dτ0(U \V ) = ∅.
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By Lemma 5.5, dτ0(Y ∩ U) = dτ0(Y ∩ V ) and so x ∈ dτ0(Y ∩ U). Since
x ∈ eτ0,τ1(Y,Z), x ∈ dτ0(Z∩U). By Lemma 5.5 again, dτ0(Z∩U) = dτ0(Z∩V )
and thus x ∈ dτ0(Z ∩ V ).

(⊇): Let x ∈ eτ0,τ2(Y,Z), U ∈ τ1 and x ∈ dτ0(Y ∩ U). We would like to
show x ∈ dτ0(Z ∩ U). Since 〈X, τ0, τ1〉 is an IL-space, by Theorem 5.1, there
exists V ∈ τ0 such that V ⊆ U and dτ0(U \ V ) = ∅. Then, V ∈ τ2. As
above, by Lemma 5.5, x ∈ dτ0(Y ∩ U) = dτ0(Y ∩ V ). Since x ∈ eτ0,τ2(Y,Z),
x ∈ dτ0(Z ∩ V ). Also by Lemma 5.5 again, x ∈ dτ0(Z ∩ V ) = dτ0(Z ∩ U).

(2⇒ 3): Let R and S be binary relations on X defined as follows:

• xRy :⇐⇒ x 6= y & ∀U ∈ τ0(x ∈ U ⇒ y ∈ U);

• xSy :⇐⇒ ∀U ∈ τ2(x ∈ U ⇒ y ∈ U).

As proved in the proof of Theorem 3.8, 〈X,R, S〉 is a Visser frame, τ0 = τR and
τ2 = τS . By Corollary 3.7, Log(X,R, S) = Log(X, τR, τS) = Log(X, τ0, τ2) =
Log(X, τ0, τ1). Also R ⊆ S follows from the definitions of R and S and τ2 ⊆ τ0.

(3⇒ 1): This is a direct consequence of Fact 2.19.3. q

Corollary 5.7. For any Visser frame 〈W,R, S〉, the following are equivalent:

1. IL ⊆ Log(W,R, S).

2. There exists a Visser frame 〈W,R, S′〉 such that R ⊆ S′ and Log(W,R, S) =
Log(W,R, S′).

Proof. (1 ⇒ 2): By Fact 2.13, both τR and τS are Alexandroff. By Corollary
3.7, Log(W,R, S) = Log(W, τR, τS), and hence 〈W, τR, τS〉 is an IL-space. By
Theorem 5.6, there exists a Visser frame 〈W,R′, S′〉 such that R′ ⊆ S′ and
Log(W,R′, S′) = Log(W, τR, τS). Then Log(W,R, S) = Log(W,R′, S′). Fur-
thermore, since R is irreflexive and transitive, it is easily shown that for any
x, y ∈W ,

xRy ⇐⇒ x 6= y & ∀U ∈ τR(x ∈ U ⇒ y ∈ U).

Notice that the right-to-left direction of this equivalence is proved by letting
U = {x} ∪R(x). From our proof of Theorem 5.6, R′ = R.

(2⇒ 1): Immediate from Fact 2.19.3. q

6 Concluding remarks

In this paper, we newly introduced a topological semantics of CL and its ex-
tensions, and proved the topological compactness theorem. As a consequence,
we proved that the logics CL, CLM, IL, ILM, ILP and ILW are strongly
complete with respect to our topological semantics. These results are just the
starting point for research in this direction. Obviously, investigating the topo-
logical completeness of other logics which are not listed above is an important
further task.
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As we have described in Section 3, we introduced our new topological se-
mantics with Visser semantics in mind. Actually, we proved that every Visser
frame can be considered as a topological frame (Corollary 3.7). Also, each Visser
frame can be considered as a Veltman frame, but it is not known whether each
Veltman frame can be considered as a topological frame. In this regard, we
propose the following problem.

Problem 6.1. Is there a normal extension L of CL such that L is complete with
respect to Veltman semantics but not with respect to our topological semantics?

While CL and some of its extensions are strongly complete with respect to
our semantics, they are not with respect to Veltman and Visser semantics. This
seems to be an evidence that our semantics can provide more models than these
relational semantics. Then, we expect an affirmative answer to the following
problem.

Problem 6.2. Is there a normal extension L of CL such that L is complete
with respect to our semantics but not with respect to Veltman semantics?

Visser [20] proved that the logics ILP and ILW have finite model property
with respect to Visser semantics. That is, each of these logics is determined by
a class of corresponding finite Visser frames. Therefore, these logics also have
finite model property with respect to our topological semantics. On the other
hand, Visser also proved that IL and ILM do not have finite model property
with respect to Visser semantics (See also Visser [21]). Regarding this point,
we propose the following problem.

Problem 6.3. Do the logics CL, CLM, IL and ILM have finite model property
with respect to our topological semantics?

In order to understand the properties of axioms of CL and IL in more
detail, the authors recently introduced several sublogics of them, and studied
their basic characters such as completeness with respect to relational semantics
and interpolation property ([9, 11]). We ask the following question about these
sublogics.

Problem 6.4. Can we develop a topological semantics for these sublogics of
CL and IL?
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