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Abstract

We study the effects of campaigning, where the society is partitioned into voter
clusters and a diffusion process propagates opinions in a network connecting the
clusters. Our model is very powerful and can incorporate many campaigning ac-
tions, various partitions of the society into clusters, and very general diffusion pro-
cesses. Perhaps surprisingly, we show that computing the cheapest campaign for
rigging a given election can usually be done efficiently, even with arbitrarily-many
voters. Moreover, we report on certain computational simulations.

1 Introduction

The introduction of online social networks to modern politics has thoroughly changed
how political campaigns are run, as currently it is practical to influence selected indi-
viduals or groups of individuals on a scale not possible before. Political campaigns now
routinely use these networks to attempt to sway elections in their favor, for instance, by
targeting segments of voters with fake news [1} 25]], by organizing fund-raising activi-
ties, and by running vote suppression campaigns [[16]. Indeed, the use of social media
in election campaigns is so ubiquitous that there already are hundreds of studies regard-
ing their use (as a piece of evidence in this respect, we point the reader to Jungherr’s
overview of over a hundred Twitter-focused studies [30]). To be efficient, campaigners
would like to factor-in the nuances of how each voter behaves and how beliefs diffuse
in the underlying social graph. Yet, doing so is challenging for at least two reasons: On
the one hand, it is difficult—albeit not impossible—to obtain such a fine-grained un-
derstanding of the social-media users and to prepare the right content for them. On the
other hand, as shown by Wilder and Vorobeychik [53]] and by Bredereck and Elkind [7],
finding optimal strategies to affect the election results is computationally challenging
even for the most basic voting rules. To circumvent their intractability results, Wilder
and Vorobeychik [53]] designed appropriate approximation algorithms, whereas Bred-
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ereck and Elkind [7] considered very restricted types of social networks. Our goal also
is to address the computational difficulty of manipulating elections through targeting
particular groups of voters, but we take a very different approach. First, instead of
considering networks of individuals, we assume that the network is over clusters of
like-minded voters. Second, we provide fixed-parameter tractable (FPT) algorithms
parameterized by the number of candidates and the number of these clusters. As a
consequence, the running times of our algorithms scale smoothly with the precision to
which we model the social network.

Specifically, in our model, an external agent with limited funds observes an election
and wants to ensure that a certain candidate wins. To this end, he or she can alter
the preferences of some voters, e.g., by bribing them or by convincing them through
some sort of a targeted campaign (we assume the ordinal election model, where each
voter ranks the candidates from the most to the least appealing one, and we model
campaigning actions—at least in our basic model—as shift bribery [20, 18 124]]). Then,
voters’ opinions diffuse through a social network and, eventually, the election result is
established.

The crucial part of our model is that the social network is not over individual voters,
but over clusters of voters. Each cluster might correspond to a group of voters who
share the same preferences and, possibly, some other features. For example, for each
given preference order we may have three clusters, containing the voters who share
this preference order and are, respectively, young, middle-aged, or senior. The clusters
are connected in the network and only voters in connected clusters may influence each
other (the edges in our network correspond to the fact that voters from various clusters
interact with each other; e.g., like-minded voters of the same age may visit the same
blogs and read each other’s opinions there). We refer to the networks of our type as
society graphs (we follow the model of Knop et al. [37]]). We consider a diffusion
model where voters change their mind based on the most popular preferences of the
voters to which they are connected, as well as its various generalizations (indeed, our
FPT algorithms can work with a very broad family of diffusion models that can be
expressed via linear programs of a certain kind).

Our main contributions are as follows:

1. We provide the model of elections over society graphs, parametrized by both the
voting rule and the diffusion process. Throughout most of the paper we focus on
a simple variant of the our model, but we also discuss a very general notion of
ILP-expressible diffusion processes.

2. We provide an FPT algorithm for our problem parametrized by the number of
candidates. We present the algorithm for one of the simplest variants of our
model, with the basic diffusion process and voters clustered by their preference
order only, but we also argue how it can be extended in numerous ways (we
focus on the simplest setting mostly for the sake of clarity). In particular, as the
algorithm is based on expressing the problem via integer linear programming,
it works for all ILP-expressible voting rules and all ILP-expressible diffusion
processes. Our algorithm runs in exponential time with respect to the number of
candidates, but in logarithmic time with respect to the number of voters, so it is
particularly well-suited for the case of political elections.



3. We test our algorithm experimentally. It turns out that for modern ILP solvers it is
still quite challenging (although usable for at least some realistic settings). Thus
we provide two heuristics algorithms that are much faster, but whose outputs are
not guaranteed to be optimal.

We note that our model and our society graphs in particular form a generalization
of the standard model, where each voter is a node in the social network. Indeed, we
can simply assume that each cluster contains a single individual. The advantage of our
approach is that we can seamlessly move between more and less fine-grained views of
the society and its interactions. As our model can capture many natural social behaviors
within the clusters, a plethora of bribery actions, and various diffusion processes, we
believe it to be quite powerful; indeed, we demonstrate its power by highlighting many
modeling possibilities within it.

Yet, our model—or, more specifically, our approach—has one drawback: Our dif-
fusion models are completely deterministic in that the effect of the diffusion is always
exectly the same for given initial conditions. If one prefers to have a model with some
sort of stochastic behavior, then there is a natural work-around for this issue. For
example, Wilder and Vorobeychik [S3] argue that by sampling several possible “dif-
fusion scenarios” (they use the Independent Cascade model, so in their case it means
sampling which edges of the network indeed propagate the influence) one can get a
very good approximation of the behavior of a stochastic diffusion process. Since the
same approach can be used in our case, we find it sufficient to consider determinis-
tic diffusion models (and, indeed, deterministic models are commonly studied in the
literature [44. 43,9} 2]]).

The paper is organized as follows. First, in Section [2] we discuss related work
regarding algorithmic results in the areas of social networks and election bribery. Then,
we describe our model in Section [3| and analyze the properties of our basic diffusion
process in Section[d In Section[5} we provide our main algorithmic results, while in
Section[6] we discuss possible extensions of the basic model and how our algorithm can
be adapted for them. We conclude by discussing experimental results in Section [/|and
by discussing possible future work in Section 8]

2 Related Work

We study the possibility of manipulating election outcomes under the assumption that
the voters’ views propagate (or, diffuse) throughout an underlying social network. Be-
low we present related work regarding social networks, bribery in elections, and a few
results related by technique.

2.1 Diffusion in Social Networks

The two papers most closely related to our work, one due to Wilder and Vorobey-
chik [53] and one due to Bredereck and Elkind [7]], study very similar issues, but differ
in several important modeling choices. Foremost, we consider the model of society
graphs, where the nodes of the social network represent clusters of voters, whereas both



Wilder and Vorobeychik and Bredereck and Elkind consider the more typical model
where each vertex represents a single individual. Furthermore, both Wilder and Vorob-
eychik and Bredereck and Elkind focus on the simple Plurality voting rule, whereas
we consider a wide spectrum of rules (indeed, all rules that are ILP-expressible, in
essence including all commonly studied rules). Regarding the diffusion process, Wilder
and Vorobeychik consider the Independent Cascade model (ICM), and Bredereck and
Elkind consider the Linear Threshold model (LTM).

It is worth exploring the differences between ICM, LTM, and our diffusion model.
In ICM and LTM, the underlying idea is that a message is spreading from multiple seed
nodes, and this message has a certain “directionality”’—its intent is to activate nodes
(which can be understood as, e.g., convincing them of some fact). So, these two models
can be seen as modeling an intentional act of campaigning or influencing. In contrast,
our diffusion model seeks to describe what happens as a result of mutual influence
(or peer pressure) between voters. Indeed, in our model the voters observe the other
ones—typically, those close to them in the network—and change their preferences ac-
cordingly. As a consequence, in our model a voter may change his preference order
arbitrarily, if faced with appropriate pressure. In contrast, classic variants of ICM and
LTM only capture binary influence—either a node is influenced or it is not (which is
why influence maximization can be viewed in terms of manipulating a Plurality elec-
tion over two candidates). Yet, we mention that recently Coro et al. [15] proposed a
variant of LTM, called Linear Threshold Ranking, LTR, where the level of influence is
quantified in a more fine-grained way (with stronger infuence, a designated candidate
may be shifted up by more positions; interestingly, this is quite related to shift bribery,
which we also consider).

Another difference between our diffusion model and ICM, LTM, and LTR is de-
terminism: our model is deterministic while the other models are stochastic. There
are a few reasonable ways to turn our model into a stochastic one, and we believe that
our algorithmic results may carry over using the trick of considering several “diffusion
scenarios” (in the fashion of Wilder and Vorobeychik), but such discussion is beyond
the scope of this paper. For a general, broad discussion of diffusion processes, we point
the reader to the book of Shakarian et al. [47]).

The main technical difference between our work and the papers of Wilder and
Vorobeychik, and Bredereck and Elkind, is in how we deal with computational in-
tractability: Wilder and Vorobeychik provide approximation algorithms (but also MILP
formulations), Bredereck and Elkind consider very restricted classes of social net-
works, and we design fixed-parameter tractable algorithms, parametrized by the num-
ber of candidates and the number of voter clusters. Our main algorithm proceeds by
forming and solving an ILP instance and, in this sense, it is similar to the MILP ap-
proach of Wilder and Vorobeychik. Our ILP, however is very different and, in particu-
lar, incorporates very different tricks.

Another paper that is very closely related to our work is that of Silva [49], where
the author studies a similar bribery model, but for cardinal preferences expressed as
numbers between 0 and 1 (e.g., corresponding to the level of support for the current
government). In his model, these values can be modified through bribery actions, after
which a certain dynamic process (i.e., a form of diffusion) propagates them over the
network. Silva focuses on a Twitter-like network, where edges are directed and influ-



ence can only go in one way, whereas we—as well as Wilder and Vorobeychik [53] and
Elkind and Bredereck [7]—consider more Facebook-like networks, where the interac-
tions are two-way. (Note that we nevertheless later show how to also handle directed
edges in our model; see Section [6.3]) Similarly to us, Silva uses integer linear pro-
gramming to compute the solutions to his problems.

More broadly, our work is closely related to the stream of papers on the interface
between social choice and social networks, which includes the problems of recovering
ground truth [12} |45], the problems of iterative voting [52} |50], various issues related
to liquid democracy [4], certain forms of multiwinner voting [S1], and many others
(for a more detailed discussion, see the overview of Grandi et al. [28]). In particular,
our work is quite closely related to that of Brill et al. [9], who study the diffusion of
ordinal preferences through a social network. In their network, each vertex (i.e., each
individual) swaps two candidates if the majority of its neighbors ranks them differently
than him. This is quite similar to our basic model, where connected clusters of voters
have identical preference orders, up to a single swap. The two main differences are that,
on the one hand, our network is more restrcited and, on the other hand, we allow for
the initial modification of some of the preference orders, whereas Brill et al. [9] focus
only on the diffusion. Similarly, our work is related to that of Botan et al. [5]], where the
authors consider a diffusion process of preferences expressed as Boolean propositions.
In a similar vein, Christoff and Grossi [[L1] study the convergence of binary opinions
over a network.

Our work is also naturally connected to the stream of work on influence maxi-
mization in social networks (see, e.g., the papers of Kempe et al. |34} 35]] and Chen et
al. [10] as well as many follow-up ones). In these works, the goal is to choose a set of
nodes in a social network so that if we pass some information to them and wait for the
diffusion process to converge, then as many nodes as possible will have received our
information (the work of Bredereck and Elkind [7]] can be understood in these terms as
well; alternatively, influence maximization can also be seen in terms of manipulating
Plurality voting).

2.2 Bribery in Elections

Stepping away from social networks, our work belongs to the broad stream of papers
on the complexity of manipulating elections. For a general overview of this topic,
we point the reader to the surveys of Conitzer and Walsh [13|] and Faliszewski and
Rothe [24]]; here we will discuss the few most related papers.

We model campaigning actions via the shift bribery problem, which itself is a spe-
cial case of the swap bribery problem; both introduced by Elkind et al. [20}|18]]. Briefly
put, in the shift bribery problem we are given an election, where each voter ranks all
the candidates from the most to the least appealing one, and, upon paying a required
price, we can ask some of the voters to shift a certain candidate p higher. Our goal
is to ensure that p wins, but without exceeding a given budget. Swap bribery gener-
alizes shift bribery by allowing swaps of any adjacent candidates, and not just p, with
those who preceed him or her. Both shift bribery and swap bribery are NP-hard for
many natural voting rules (including, e.g., Borda, Copeland, Maximin, and various
elimination-based rules [41]]), but shift bribery is generally easier to deal with. For



example, Elkind et al. [20L[18] provided approximation algorithms for shift bribery un-
der several voting rules (recently strengthened by Faliszewski et al. [23]]), Bredereck et
al. [8] and Zhou and Guo [54] provided several FPT algorithms, and Elkind et al. [[19]
gave polynomial-time algorithms for several structured preference domains. For the
case of swap bribery, Dorn and Schlotter [17] provided a careful analysis for the case
of approval voting, whereas Knop et al. [36] gave a general FPT algorithm parameter-
ized by the number of candidates. Both problems were also studied in the destructive
setting, where the goal is to prevent a given candidate from being a winner [31} 48]].
Interestingly, in this case the problem is often efficiently solvable. Nonetheless, we
do not consider the destructive setting in our work (we do not expect the tractability
results to carry over to our model due to the computational complexity implied by the
diffusion process).

We stress that our choice of shift bribery as a model for campaigning bears only
limited significance regarding the complexity of our problem. Indeed, we could have
used full-fledged swap bribery or the classic bribery problem of Faliszewski at al. [21]]
or any other problem from the bribery family [24] and—as long as it were expressible
within an ILP program—the complexity of our algorithm would stay intact.

2.3  Other Related Work

Finally, we mention that the idea of using society graphs and clusters of voters of a
given type was heavily inspired by the work of Knop et al. [37]], who studied a very
general form of manipulating elections. In their work, an election is represented as a
society vector (sq,. .., Sy,), where each s; specifies how many voters of type i there
are (e.g., how many voters have the i-th possible preference order). The goal is to find
a minimum-cost transformation of a society vector to one satisfying a given condition,
provided a certain cost measure for transforming the society. Our work extends the
approach of Knop et al. [37] to include the social network in the election. The idea of
types was also considered, e.g., by Izsak et al. [29], but for the case of candidates.

3 Formal Model and Combinatorial Problem

In this section we present a very basic variant of our model, where voter types corre-
spond to preference orders, edges exist between two orders that can be obtained by a
single swap of adjacent candidates, the diffusion process is done in a simple, partic-
ular way, and the bribery actions are limited. Later, in Section [6} we discuss various
generalizations of our approach, by considering arbitrary voter types, arbitrary bribery
actions, and generalized diffusion processes. Yet, the basic model will allow us to
develop intuitions, prove strong hardness results, and present our tractability results
clearly. For n € N, by [n] we mean the set {1,...,n}.

3.1 Elections and Voting Rules

We consider ordinal elections held with n voters, expressing preferences over m can-
didates C' = {c1, ..., ¢ }, where the preference order of a voter is a linear order over



type 2; w(2) = 10 type 3; w(3) = 10

b>a>c b>=c>a
type 1; w(1) = 21 type 4; w(4) = 21
a>b>c c>b>a
type 6; w(6) = 42 type 5; w(5) = 42
a>c>b c>a>b

Figure 1: A society graph with three candidates and six types (corresponding to the six pos-
sible preference orders on those three candidates). In this graph there are, e.g., 42 voters
of type 6, each with preference order @ > c¢ > b; this graph corresponds to a society
w = [21,10, 10, 21, 42,42].

C. A voting rule R is a function taking an election as input and returning a set of tied
winners. A candidate winning under R for a given election is called an R-winner of
the election. As an example, under the Plurality rule the candidates ranked first most
frequently win, and under the Borda rule, for each position ¢ each voter gives m — ¢
points to the candidate ranked there; the candidates with the highest total number of
points win.

3.2 Voter Types, Societies, and Society Graphs

For the time being, we let the preference order of a voter be her type. Thus, there
are 7 < m/! types present in a given election and we order them arbitrarily so that we
can speak of “the j-th type” for a given j € [r]. By the weight of voters with type
Jj, denoted either w; or w(j), as is more convenient, we mean the number of voters
of type j. Sometimes we represent an election as a vector w € N7, whose j-th entry
represents the weight of type j. We refer to such vectors as societies. (in this we follow
the model of Knop et al. [37]).

As we are interested in diffusion processes operating on the voter types, we asso-
ciate a given election with a vertex-weighted graph G = (V, w, E), termed the society
graph. The society graph contains 7 vertices, where 7 is the number of types in the
election (specifically, V' = {v1,...,v,}, where vertex v; corresponds to voter type j,
and its weight w; is equal to the number of voters of that type in the given election).
There is an edge between vertices v; and v; if the preference orders corresponding to
types j and j' differ by the ordering of a single pair of adjacent candidates (in other
words, if it is possible to transform one into the other with a single swap of two con-
secutive candidates). We show an example of a society graph in Figure

!Graphs of this form are quite popular in the study of permutations. Regarding their use in the context
of elections, we point out, e.g., to the work of Puppe and Slinko [46]. Recall that later we will also consider
other graphs.



3.3 Diffusion of Preferences

Given a society graph (which encodes a given election), we consider two variants of
the diffusion process, namely asynchronous and synchronous. In the asynchronous
variant, in each step of the process some vertex v of the society graph G is picked and,
then, the following occurs (we do not specify which vertex is selected and, as we will
see in Example [T] below, different orders of selecting the vertices may lead to different
outcomes of the process). We consider the closed neighborhood N[v] of v in G and
check whether there is a neighbor x of v for which wy, > 1/23°, ¢y, wu; that is,
a neighbor whose weight exceeds the sum of the weights of all other vertices in the
closed neighborhood of v. If such a neighbor x exists, then we add the current weight
w, of v to that of x and change the weight w, to be 0. Intuitively, the voters of type
represented at v look at all the voters with similar or identical preferences and if there
is a majority support among these voters for some preference order, then they switch
to it. In the synchronous variant we proceed in the same way, but simultanously for all
vertices. The diffusion process halts whenever it stabilizes.

Example 1. Consider the society graph depicted in Figure [I| and asynchronous dif-
fusion. Assume that we first choose type 3. As type 3 has as neighbors types 2 and
4, together there are 41 voters of these types, and 21 of them have preference order
c > b > a. So, the 10 voters with type 3 move to have type 4. If we then select type 4,
type 6, and then type 2, then the diffusion converges with 115 voters of type 5 (with
preference order ¢ = a > b) and 31 voters of type 1 (with preference order a = b > c);
thus, Plurality selects c. However, if we select first type 2, then 1, then 5, and then 3,
then we reach convergence with 115 voters of type 6 (with preference order a > ¢ > b)
and 31 voters of type 5 (with preference order ¢ = b = a); thus, Plurality selects
a. This shows that the asynchronous diffusion process can lead to different outcomes,
depending on the order in which vertices are considered.

Let us now consider the same society graph and synchronous diffusion. After the
first round, we have 10 voters of type 1 (voters of type 2 moved to have type 1, whereas
original type 1 voters moved to have type 6), no voters of types 2 and 3, 10 voters of
type 4, 63 voters of type 5, and 63 voters of type 6. After the next round there are
73 voters of type 5 and T3 voters of type 6. No further changes are possible and the
process converges; Plurality selects a and c as two tied winners.

3.4 Bribery in Society Graphs

Besides issues related to the diffusion of preferences, we are mainly interested in un-
derstanding the possibility of manipulating election outcomes. Thus we assume that
there is an external briber who has some budget and, using this budget, can affect the
original preference orders of some voters (i.e., the preference orders they have prior to
the diffusion). Specifically, in a single bribery action the briber chooses a single voter
and, at unit cost, shifts the briber’s preferred candidate p up by one position in this
voter’s preference order (in effect, changing this voter’s type; see the work of Elkind
et al. [20, (18] and Bredereck et al. [6] for a detailed discussion of shift bribery and its
various cost models). The briber performs as many bribery actions as he wants, up to
the budget limit, and then the diffusion process takes place. The goal of the briber is to



have his preferred candidate p win the resulting election (under a given, predetermined
voting rule). Formally, we are interested in the following general problem.

R-BRIBERY IN SOCIETY GRAPHS (R-BSG)

Input: A society graph G (given directly as a graph), a preferred candidate
p, and a budget b.

Question: Are there at most b (unit-cost, shift-) bribery actions, such that
after performing them on G and then running the diffusion process, p is an
‘R-winner of the resulting election?

Corresponding to the synchronous and asynchronous diffusion processes, we con-
sider both sync-R-BSG and async-R-BSG problems. For the asynchronous diffusion,
we further consider the optimistic and pessimistic variants of the problem. In the for-
mer, we ask whether the briber’s preferred candidate wins for some order of the diffu-
sion steps. In the latter, we require that p wins for every order of diffusion steps that
leads to convergence.

Remark 1. The input to R-BSG is a labeled graph with weighted vertices, a preferred
candidate p, and a budget b. Thus the size of the input encoding is linear in the number
of voter types and only logarithmic in the number of voters.

4 Convergence and Diffusion Order

Before we tackle the R-BSG problem, we first show that our diffusion processes al-
ways converge, but the complexity of deciding if a particular candidate may become a
winner due to the diffusion may be NP-hard.

For the synchronous case, convergence follows by arguing that in each diffusion
step at least one vertex loses its weight completely, and a vertex of weight zero never
increases its weight. In consequence, we have that the number of synchronous diffu-
sion steps is bounded by the number of voter types. The asynchronous case is even
simpler, but requires appropriate terminology: If a diffusion step does not change the
society graph (e.g., due to the choice of the vertex) then we call it redundant. We say
that a sequence of non-redundant diffusion steps is irredundant. A maximal irredun-
dant sequence is an irredundant sequence after executing which all remaining steps are
redundant.

Proposition 1. For each society graph G, the synchronous diffusion process converges
in at most T steps. The asynchronous diffusion process converges if the sequence of
diffusion steps contains a maximal irredundant sequence as a subsequence. The length
of a maximal irredundant sequence is bounded by T.

Proof. We consider the asynchronous case first. Consider some diffusion step. At this
point either no vertex changes any further, or at least one vertex, if chosen for the next
diffusion step, would have its weight reduced to zero. Since no weight-zero vertex can
ever increase its weight (by the definition of the diffusion step), it follows that every
irredundant sequence consists of at most 7 steps. By definition, if a sequence contains
a maximal irredundant subsequence, it produces the same graph as this subsequence.



For the synchronous case, it suffices to show that after every diffusion step (prior
to convergence), the number of vertices with non-zero weight decreases. Consider a
diffusion step before convergence. There is some vertex v, which is to be assimilated
into one of its neighbors, u. If no other neighbor of v is to be assimilated by v in this
step, then we are done: The number of vertices with non-zero weight will decrease
by at least one after this diffusion step. Perhaps, however, there is some neighbor v’
of v that is to be assimilated by v in the current step. It must be that v’ # u, as we
require a strict majority for a vertex to be assimilated by one of its neighbors. If no
neighbor of v’ is assimilated by v’, then we are done (by the same token as before,
we see that the number of weight-zero vertices will increase). Otherwise, there is some
neighbor v of v" which is to be assimilated by v'. By following this logic exhaustively,
either we reach a vertex whose weight is to decrease to zero, or some vertex repeats.
However, the latter is impossible as, by definition of the diffusion process, the weights
of the vertices that we encounter form a decreasing sequence. Thus the number of
weight-zero vertices increases after each diffusion step and the claim follows. O

For synchronous diffusion, the final society graph is defined uniquely and so is the
outcome of the election (for a given voting rule). This is not the case for asynchronous
diffusion. Indeed, in Example [I| we have seen that two different diffusion orders may
lead to two different society graphs. In the next theorem we show a stronger statement,
namely that the problem of deciding whether a given candidate may be a Plurality
winner after asynchronous diffusion is NP-hardE]

Theorem 1. Given a society graph G and a preferred candidate p, deciding whether
there is an order of asynchronous diffusion steps that results in p being a Plurality
winner in the converged election is NP-hard.

Proof. We provide a reduction from the NP-complete problem CUBIC VERTEX COVER [27].
In this problem we are given a graph GG, where each vertex has degree at most three,
and an integer k (sometimes authors assume that the degree of the vertices in the graph
is exactly three, but it is not needed in our case). We ask whether it is possible to select
at most k vertices so that each edge touches at least one of the selected vertices.
Consider an instance of CUBIC VERTEX COVER that consists of a graph G and
an integer k. We write V(G) = {v1,...,v,} to denote the set of G’s vertices and
E(G) = {e1,...,em} to denote the set of its edges. We build the following election
(and the associated society graph). We let the candidate setbe C' = {¢,d, e,p} UAUB,
where A = {ay,...,a,} and B = {b1,...,b,}. The role of the candidates in sets A
and B is to encode subsets of V(G). We sometimes use the following convention to
describe the nodes of the society graph: Given three candidates z,y,z € {d,e,p},
some subset S of V(G), and an integer w, by w/xyzS we mean a node of the society

2The proof of Theorempresented below is different than the one included in the conference version of
this paper. The latter had a technical flaw due to which the society graph used in the construction was not
implementable. The proof presented below is based on a different construction and fixes this issue. As an
added benefit, it uses weights whose values are polynomially bounded with respect to the size of the input
instance (i.e., it shows that the problem is strongly NP-hard, whereas the previous proof was showing weak
NP-hardness).
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graph with weight w and preference order obtained from:
T-y=z=a >=by=ag>=ba = >=a, b, >c

by swapping for each v; € S candidate a; with candidate b; (intuitively, candidates
from the set A U B create a signature that puts our preference order at sufficient swap
distance from other votes that rank candidates x, y, z in the same way).

To form the society graph, let T' be some large positive integer (to be specified
later), let X = 10, let Y = 100, and let Z = 1000. The society graph consists of two
parts. The first part contains three isolated vertices:

1. A vertex with candidate c ranked first and with weight T'.
2. A vertex with candidate p ranked first and with weight T — (2X + 9)|E(G)|.
3. A vertex with candidate d ranked first and with weight T— (Y + 2)|V(G)| -k X.

By analyzing the second part of the society graph, it will become clear that it is easy
to make sure that these vertices are indeed isolated (for the first one, it suffices to rank
c on the first place and to rank all the other candidates arbitrarily; for the latter two it
suffices to rank the requested candidate on top, followed first by c and then all the other
candidates arbitrarily).

The second part of the society graph encodes the graph G. We build it as follows:

CORINC) 3)

1. For each vertex v; € V(G), we form three nodes, v;’, v;”’, and v;™, specified
as follows (recall our convention for describing the nodes):
Ufg): Z/dpe{v;}, vl@): Y/dep{v;}, vgl): X/edp{v;}.

Note that these vertices form a path vgs)—vf)—vgl) and that there are no edges

between society-graph nodes associated with different vertices v;, v; € V(G).

2. For each edge e, = {v;,v,;} € E(G) we form three nodes:
e(l)'l/ed o @. x o (3). o
¢ p{vi,vi}, et X+ 3/epd{vi, v}, e s X + 5/ped{vi,v;}.
These vertices form a path ei”—eﬁ”—ef) and there are no edges between society-
graph nodes associated with different edges from E(G). However, there is an
edge between egl) and v,l(l), and between egl) and vj(l).
The society graph does not contain any edges aside from those explicitly mentioned in
the construction above. We set T to be the square of the sum of the weights of the nodes
from the second part of the society graph (intuitively, T is simply a large number). This
completes the construction. See Figure [2|for an example with a small input graph.
Prior to the diffusion, the candidates from sets A and B have score 0 (and their
score never increases), whereas the remaining candidates have the following scores:

1. candidate c has score T (this is currently the highest score and it cannot change;
any candidate that becomes a winner after the diffusion has to reach at least score
1),

11



° : ° : °

‘ T/c ‘ (T—{2x+9)*2/p ‘ (T—(Y+Z)*3—X/d ‘

[ e,1: 1/ edp{v,,v,} ]—[ e, : X + 3/ epd{v,,v,} ]—[ e, X +5 / ped{v,,v,} ]

—[ v, X/ edp{v,} H v,@:Y /depf{v,} H v, Z / dpefv,} }
:[ v, X / edp{v,} ]—[ v, Y /dep{v,} H v, Z / dpef{v,} J
—[ vy X / edpf{v,} H v,@: Y / depfv,} ]—[ v, Z / dpefv,} J

[ e,: 1/ edp{v,vs} H e, X + 3 [ epd{v,,vs} H e,V X +5 / ped{v,,vs} ]

Figure 2: An example for the reduction described in the proof of Theorem On top, we show a
graph containing 3 vertices and 2 edges. At the bottom, we show the constructed society graph.

2. candidate d has score T' — kX,
3. candidate p has score T — (X + 4)|E(G)|, and

4. candidate e has score much below 1" (and this score cannot reach 1" even due to
the diffusion).

Let us now argue that if there is a set S of at most & vertices from V' (G) such that
each edge in E(G) touches at least one vertex from S, then there is a diffusion order
that leads to p being a Plurality winner of the given election. Indeed, one such diffusion
order proceeds as follows:

)

%

()

%

is assimilated into v

(2)
J ¢

that, after this happens, there are no more nodes of the form Uf ) that can be

assimilated into any other node.

3. Next, foreacht € [m], node egl) is assimilated into e§2) (this is possible because,

. 1) .
as S is a vertex cover, now each eg ) is connected to at most one node of the form

oD

1. First, for each v; € S, society-graph node v

2. Then, for each j € [n], society-graph node v:~’ is assimilated into vj(.?’). Note

, with weight X, and to exactly one node e,(f), with weight X + 3; as the total

weight that egl) sees is 2X + 4, its weight can move to e§2)).
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4. Finally, for each t € [m], node e(?), currently with weight X + 4, is assimilated
into egd), who (prior to this) has weight X + 5. Note that, after this happens, no
further diffusion steps are possible. Moreover, p and ¢ have score 7', d has score

at most 7', and e has score below T'. Thus p is a winner.

Let us now consider the other direction, i.e., the case that p can become a winner of

our election for some diffusion order. For this to happen, p has to reach score at least

T and this is possible only if for each ¢t € [m], the weight from nodes egl) and e§2>

is assimilated into the node ef’), which ranks p on top (note that no other nodes can

transfer their weight to nodes that rank p on top). However, for a given ¢ € [m], the
weight from egl) can reach ef’) only by first being assimilated by e,(f). Yet, prior to the
diffusion, e(!) sees total weight equal to 3X +4 and cannot be immediately assimilated

by any of its neighbors (egl) sees its own weight of 1, weight X + 3 of e§2) and weight

X + X of the two nodes vgl) and vj(-l), such that edge e; connects v; and v;). Thus,
for each e, = {v;,v,;} € E(G), at least one of vfl), vj(-l)
respectively, vl@) or 11‘542). However, each such assimilation increases the score of d by
X If this happens for more than k nodes, then the score of d exceeds 71" and p does not
become a winner. In other words, if p becomes a winner, then there is a set of k vertices
in V(@) that touch all of the edges from E(G). This means that there is a vertex cover

of size k in our input graph. O

has to be assimilated into,

We have phrased Theorem [I]to speak of the Plurality rule as it is the simplest, yet
most widely used voting rule. Nonetheless, similar results hold for many other voting
rules. Indeed, it would be rather remarkable if there were a natural voting rule for
which it did not hold.

5 Complexity of Manipulating Society Graphs

In this section we present our main theoretical results. Briefly put, R-BSG is in-
tractable (both in the synchrounous and asynchronous variants) for nearly all natural
voting rules, but is fixed-parameter tractable with respect to the number of candidates.

5.1 General Intractability of BSG

As R-BSG is, in essence, a variant of the Shift Bribery problem [20], it naturally
inherits most of its hardness results. The difference between R-BSG and standard
Shift Bribery is that the former involves the diffusion process after the bribery. In
the reduction below, we “turn off” this diffusion by ensuring that every voter from a
Shift Bribery instance forms an isolated vertex in the society graph (as the diffusion
anyhow does not happen in isolated graphs, our proof works for both the synchronous
and asynchronous cases). We show the reduction for the Borda rule, but then we argue
that it is also applicable for many other rules.

Proposition 2. Borda-BSG is NP-hard for both the synchronous and the asynchronous
cases.

13



Proof. An instance of Borda-Shift Bribery with Unit Costs (Borda-SB for short) con-
sists of an election with candidate set C = {¢1,...,cm}, voters vy, ..., Uy, a distin-
guished candidate p € C, and budget b. We ask if it is possible to ensure that p becomes
a Borda winner of this election by performing b unit-cost shift bribery actions. Borda-
SB is well-known to be NP-hard [6 Proposition 3].

Given an instance of Borda-SB, we create an instance of Borda-BSG. The idea is
to alter the instance so that, even after any set of bribery actions, the swap distance
between each two voters would be at least two; this will ensure that each voter is a sin-
gleton in the society graph and will prevent diffusion from happening. As Borda-BSG
is, in essence, Borda-SB with diffusion, the result will follow. To this end, our instance
of Borda-BSG is the same as the input Borda-SB distance, but with the following two
changes:

1. We introduce two sets of additional dummy candidates, D = {d1,...,d,} and
E={e,...,en}.

2. We set the preference orders of the voters as follows. For each voter v;, let
pref(v;) mean v;’s original preference order regarding the candidates ¢y, . . ., ¢,
We extend this preference order to be: pref(v;) = d; = D\ {d;} > e; >
E\{e;}, where by D\ {d;} and E'\ {e;} we mean, respectively, the preference
orders dy > dy > -+ > d, and e; > ey > --- = e, with candidates d; and e;
removed.

One can verify that in the resulting instance of Borda-BSG each two voters have pref-
erence orders that are at swap distance at least two and, thus, each voter is a singleton
in the society graph associated with the instance. Moreover, the dummy vertices do not
change the winner. As a consequece, the correctness of the reduction follows. O

Remark 2. The above proof works for every voting rule (i) for which Shift Bribery
with unit costs is NP-hard and (ii) whose results do not change after we add some
candidates that the voters rank last. Such rules include, e.g., Copeland or Maximin [6]
and, indeed, both conditions are commonly satisfied (yet, Plurality is an example of a
rule that fails the first criterion, and Veto is an example of a rule that fails the second
one).

5.2 Voting Rules and Integer Linear Programs

In the next section we show that the BSG problem is fixed-parameter tractable for the
parametrization by the number of candidates. Our algorithm is based on solving an
integer linear program (ILP), and we use the notion of ILP-expressible voting rules to
capture the class of rules for which the algorithm is applicable.

Intuitively, we say that a voting rule R is ILP-expressible if the problem of deciding
whether a given candidate p is an election winner can be expressed as a problem of
testing whether a certain integer linear program has a feasible solution. We require that
the number of variables and constraints in this program is a function of the number
of candidates and voter types in the election, and that the election is specified through
variables that represent the number of voters of different types. Formally, we have the
following definition.

14



Definition 1 (ILP-expressible voting rule). Let F/ be an election with candidate set
C' and with a collection of n voters. The preferences of the voters are encoded as a
society w € N7, where the j-th entry of w indicates how many voters of the j-th type
are present in the election. Let p € C' be a distinguished candidate. A voting rule R is
ILP-expressible if there exists a computable function f and integers 7/, < f(7+|C|),
a matrix W € Z™(+7) and a vector b € Z" such that (a) W and b are computable
in FPT time with respect to m + 7, and (b) it holds that p is a winner of the election,
ie.,p € R(E), if and only if:

IxeZ W-[w,x] <b,
where [w, X] € Z7+7" is the column vector obtained by concatenating w and x.

The class of ILP-expressible voting rules is quite large. Indeed, it includess all
scoring rules, all C1 rules (these are rules depending only on the majority graph of the
input election), Bucklin, STV, Kemeny, and many others. In the two examples below
we show arguments regarding the Borda rule and the STV rule.

Example 2 (Borda is ILP-expressible). We use the same notation as in Definition
Additionally, for a candidate ¢ € C and voter type j € [7], by rank(c,j) we mean
the position on which c is ranked by the type-j voters. To show that Borda is ILP-
expressible, we describe a collection of linear inequalities (defining the matrix W),
which are satisfied exactly if the Borda score of p is at least as large as the score of
every other candidate:

Z (m—dw; < Z (m—iw; VYeeC,c#p.

z‘e[m],je[r_] i€[m],jE[7]

rank(c,j)=1 rank(p,j)=i

Remark 3. For our next example, as well as for some further arguments in the paper,
we will need the ability to express a disjunction of several inequalities as an integer
linear program. We now discuss how to achieve this (we mention that such tricks are
well-known regarding ILPs [3l Section 7.4]). For the sake of simplicity, let x1, 22, x3
be three ILP variables and let us consider four linear inequalities (values a; ; and b; are
constants):

a1,171 + a1,272 + a1 373 < by,
a2,1T1 + G222 + a2 323 < ba,
as,1x1 + as o2 + as3rs < bs,
(4,171 + 42T + a4373 < by.

Additionally, we assume that =1, 3, and x3 come from some bounded domain (this is
always the case for the variables that we use in our ILP programs, and can be guaran-
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teed in general by standard techniquesﬂ). We would like to express the fact that:

(the first inequality is satisfied) V (the second inequality is satisfied)
V (the last two inequalities are satisfied).

To this end, we introduce three new variables, y1, ¥2, and y3 and the following (in)equalities:

0<y; <1 Vie[3], y1+y2+ys =1

This ensures that exactly one of these variables takes value 1 and the other ones take
value 0. Note that Definition [T] explicitly allows using such auxiliary variables. Let T’
be the largest value that either of the left-hand sides of our four ineqalities may take
(since we know the values a; ; and the ranges of variables x1, 2, and x3, we have
that the value T is easy to compute). We replace our four initial inequalities with the
following (note that the last two inequalities both involve variable ys3):

1—wy1)+ a1 + a1222 + a1 323 < by,
1—y
I—ys
1 —ys

+ a21%; + az2x2 + az 3x3 < ba,

+ a3 17; + az 272 + az3r3 < bs,

~—~ o~~~
e ' ~— —

+ Q41T + Ga,2T2 + Ga 373 < by.

By the choice of 7" and the constraints on the y-variables, we see that we implemented
exactly the desired disjunction. As an additional benefit, we can use variables y1, 4o,
and y3 to read off which disjunction clause is satisfied. While, for the sake of readabil-
ity, our example regards only a few inequalities, it is clear that it can be generalized in
a straightforward way.

Example 3 (STV is ILP-expressible). The Single Transferrable Vote rule (STV) is
defined via the following iterative process: If some candidate is a majority winner (i.e.,
is ranked first by more than half of the voters), then this candidate is declared a winner:
Otherwise, the candidate with the lowest Plurality score is removed from the election
and the next iteration starts. If several candidates have the same lowest Plurality score,
then we use lexicographic tie-breaking (in our case, where C = {c1, ..., ¢y}, it means
removing the candidate with the lowest index).

To show that STV is ILP-expressible, we will first tackle a simpler task. Let (Cr (1), - - .

be a sequence of m’' (m’ < m) candidates. We say that this is an elimination order
if cr(1) is removed in the first iteration, cr () is removed in the second interation, and
50 on, until cy(,,1y who is chosen as a winner in the m/-th iteration. We will provide a

set of linear inequalities that are satisfied if and only if (cr(1y, - .., Cx(m?)) IS a correct
elimination order. For eachi € [m] andt € [m/], let first(c;, t) be the set of voter types
that would rank c; on the first position if candidates cr(1y, . . ., Cr(s—1) were deleted.

To ensure that the elimination order is correct, we introduce the following inequalities:

3For example, one may solve the (potentially unbounded) continuous relaxation, obtain a continuous
optimum x*, apply the proximity theorem of Cook et al. [14] to determine a box around x* which must
contain an integer optimum if it exists, and then introduce lower and upper bounds corresponding to this
box, hence bounding all variables.
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1. For each i € [m' — 1] we have to ensure that c.(;y has the lowest Plurality
score among the candidates remaining in the i-th round (and that it has the
lowest index among the candidates with the same Plurality score). For each
cj € C\{cx(1),---sCn(i—1)} We introduce one of the following inequalities. If
J < (i) (and, thus, c, @ has to have strictly lower Plurality score than c;), we

have:
Z Wy < Z Wy,

Lefirst(c;,i) 0 efirst(cr(s),%)

and if j > w(i) then we have an analogous inequality, but with “<” replaced
with “<.”

2. For each i € [m' — 1] we have to ensure that neither of the remaining can-
didates has majority support. Thus, for each i € [m' — 1] and each ¢; €
C\{cr1),---,Cr(i—1)} we have the inequality:

Z wy < 1/2 Z Wyr .

Leref(cy,i) 0 elr]

3. We require that cr () is selected in the final round, so we also have inequality:

Z wy > 1/2 Z Wy .

Leref(Crm,m) elr]

To ensure that p is an STV winner, we use the above approach to generate inequali-
ties for every possible elimination order that ends with p, and—using the trick from
Remark[3}—we form their disjunction.

Remark 4. Our class of ILP-expressible rules is very similar to the class of election
systems described by linear inequalities of Dorn and Schlotter [[17]; their definition
says that there must exist f(m) linear systems W;w < by, i € [f(m)], such that p is a
winner if at least one of these systems is satisfied. In other words, it means that R can
be described by a bounded disjunction of linear systems. Since such disjunctions can be
expressed in ILPs, the rules that fit their definition also fit oursE] Another related notion,
called integer-linear-program implementable rules, due to Faliszewski, Hemaspaandra,
and Hemaspaandra [22} Definition 6.1], is weaker than ours in that it does not allow for
auxiliary variables x; without these variables it is not clear how to define, e.g., Bucklin
or STV (for example, it is not clear how to implement disjunctions without auxiliary
variables).

5.3 Fixed-Parameter Tractability of BSG

We prove that R-BSG is FPT with respect to the number m of candidates for any ILP-
expressible rule. The result follows by formulating 7R-BSG as an integer linear program

4Note that we need the variables to be bounded to implement such a disjunction. However, as demon-
strated previously, boundedness is always achievable by standard techniques and, so, it is not an issue.
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and invoking Lenstra’s famous result [39]] (which implies that ILP is FPT with respect
to the number of integer variables); it is arguably quite surprising, since, as it turns
out, it is possible to encode the complete diffusion process using integer variables and
linear constraints. We first prove the result for the synchronous variant, and then show
how to modify it to work also for asynchronous diffusion.

Theorem 2. Synchronous R-BSG is fixed-parameter tractable with respect to the num-
ber m of candidates for every ILP-expressible voting rule R.

Proof. As a preprocessing phase, we augment the given society graph to have exactly
m/! vertices, one vertex for each possible preference order; to this end, we might create
some vertices of weight ZCI‘OE] Thus, the number of types in the input is 7 = m!, and
the number of voters of type i, ¢ € [7], is w;. Let k be the number of steps of the
diffusion process; Proposition [I|says that k£ < 7 and, thus, we simply set k = 7 = ml!.
For i € [7], denote by N[i] the closed neighborhood of i (i.e., the set that includes i
and all the vertices that are directly connected to it by and edge). Similarly, by N (i) =
NTi] \ {i} we denote i’s open neighborhood. We use the Iverson bracket notation, i.e.,
for a logical expression F', we write [F'] to mean 1 when F is true and to mean 0 when
Fis false.
We construct an ILP with the following variables:

1. For each type i € [r]| and each diffusion step ¢ € [k], we define an integer

variable x¢ representing the number of voters of type i after ¢ diffusion steps.

2. For types i, j € [r] we define variables j3;; describing the bribery, where 3;;
corresponds to the number of voters bribed from being of type ¢ to being of type
j; note that we also consider 3;;, the number of voters of type ¢ which are not
bribed.

3. For every i,j € [r] and £ € [k], we define a binary variable z{; indicating
whether in the /-th step the voters of type ¢ are being assimilated into type j (for
technical reasons, we also use variables tfj; see explanations below).

Let ¢;; be the cost of bribing one voter of type ¢ to become a voter of type j (we set
¢i; to be oo if j is not reachable from ). As our aim is to minimize the cost of bribery,
the objective of our ILP is to minimize ) i.j Cig Bij. Our ILP constraints are presented
in Figure |3} note that some of them are non-linear. Below we discuss their meaning
and, for the non-linear ones, we explain how they can be encoded within an ILP.

Constraints (1) and (2). These constraints are standard and express that the vector x°
describes the society after the bribery (recall that 3;; corresponds to non-bribed
voters of type 7).

Constraint (3). This constraint assigns 1 to zfj if the weight in type j exceeds half of
the total weight of N[i] and 0 otherwise. Note that we do not affect 2, here as the

SThis phase is needed as we want to consider bribery operations, which might in certain cases introduce
new preference orders not originally present in the election. To avoid formal difficulties, we simply introduce
those preference orders beforehand.
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D1 Bij = wi Vi € [7] (1)

> i1 Bij = 2 Vj € [r] )
2 = Daent] 3%a < xffl} Vje N(i), L € [K] 3)
ZjGN[i] ij =1 Vi € [7] 4)
ti; = zia; ! Vi, j € [7],£ € [K] 5)
xf = ZieN[j] tfj Vi e [7],¢ € [K] (6)
w- [Y7Xk] <b 7

Figure 3: Constraints used in the proof of Theorem We omitted the simple constraints requir-
ing that the variables are in the right domains for clarity.

constraint goes only over j in the open neighborhood N (7). Since Constraint
is non-linear, using the approach from Remark [3] for each i, j, and ¢ we express
it as a disjunction of two inequalities:

1,../0—1 £—1 1,./—1 -1
D aenN(] 2%a - < T } v [ZaeN[i] 3Tq 2 } :

The approach taken in Remark 3] provides us with a binary variable, which takes
value 1 if the first inequality is satisfied and value 0 otherwise. We simply take
zfj to be this variable.

Constraint (). This constraint enforces that at least one of Zfi is 1, and this includes

zfz, thus, if there is no j € N (i) with weight more than half of the weight of
NTi], then zfz = 1 holds, which corresponds to ¢ keeping its weight (i.e., voters
of type ¢ are not being assimilated into some other type).

Constraints (5) and (6). These constraints define the weights for step ¢, given the
weights from step £ — 1. Precisely, ;rf takes the weight of all its neighbors (in-
cluding itself) for whom zfj = 1. We use the tfj variables as temporary variables

that are non-zero for those ¢ and j for which zfj = 1. Notice that Constraint (5)
is non-linear but, again, can be handled using standard ILP tricks. Indeed, we
can express the constraint as:

(=1 = (t =2 A (= =0) = (t,;=0)) .

ij %

Since variables zfj are binary and implication can be seen as a disjunction, we
can further transform this into:
¢ 1 -1 ‘ l
((z5; =0) Vv (ti; = x; ) A ((z =1V (t;= 0)) -

) L)

We express the disjunctions as in Remark [3] Everything else is linear.
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Constraint (7). This constraint corresponds to the specific voting rule being consid-
ered, with y as the auxiliary variables (called x in Definition [I); it is satisfied
if and only if the given, preferred candidate p wins the election specified by x*
(i.e., the election after the bribery and at the end of the diffusion process). The
constraint can be expressed as part of an ILP due to our assumption that R is
ILP-expressible.

This completes the description of our ILP. As the number of variables is a function of
the number of candidates, we solve it in FPT time using the algorithm of Lenstra [[39].
O

Corollary 1. Asynchronous R-BSG is fixed-parameter tractable with respect to the
number m of candidates for every ILP-expressible voting rule R, for both the optimistic
and the pessimistic variants.

Proof. For the optimistic variant, we modify the ILP described above as follows. We
add variables y!, representing whether type i is updated in the (-th step. We require
that >, y¢ = 1 to enforce that exactly one vertex is updated. We add variables éfj and

we want to enforce that 2{; = z{; Ay the interpretation is that 7 might be assimilated
only if y¢ = 1. However, instead of directly encoding éfj = zfj A yf, in our case it
fja 253‘
Z;; in constraint (6). Finally, we need to enforce that the diffusion ends after at most
k steps. To this end, for each pair of types i, j we add a constraint requiring that it
is impossible to assimilate 7 into j after the k-th diffusion step (the constraint can be
expressed analogously to constraint (3)) and we do not spell it out explicitly).

For the pessimistic variant, notice that any sequence of diffusion steps which con-
verges contains a maximal irredundant sequence, and irredundant sequences are of
length at most 7 (this follows from Proposition[I)). It thus suffices to consider the set
of permutations of [r]. Expressing that in none of them p is losing can be done by a
long conjunction of ILPs given by constraints (3)-(7), with a clause for each sequence
(note that we could have used analogous approach for the optimistic variant too, but
the presented approach is more efficient). O

suffices to add constraints 25 <z
54

< y!. Then, it suffices to replace zfj with

6 Model Generalizations

Here we generalize the simple model described above and demonstrate far broader sce-
narios for which R-BSG remains fixed-parameter tractable. In particular, we consider
models with arbitrary connections between voter types, models with different bribery
operations and manipulative actions, and models with different diffusion processes.

6.1 Various Voter Types

Instead of partitioning the voters by preference orders, we can consider arbitrary parti-
tions. Our motivation may be either that the partition by preference orders is too crude
when there are significant differences between voters with the same preference (e.g.,
young and old voters are convinced by different methods), or, on the other hand, the
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partition may be too fine-grained when different preference orders should nonetheless
be treated identically, e.g., because of the choice of a voting rule which does not signif-
icantly distinguish them. As the number of variables in the ILP described in the proof
of Theorem [2] depends only on the numbers of types and candidates, it follows that
‘R-BSG remains fixed-parameter tractable with respect to the number 7 of types and
the number of candidates. Taken to the extreme, namely if we set each voter in a given
election to constitute her own voter type, we arrive at the model of diffusion studied,
e.g., by Wilder and Vorobeychik [53]] or by Bredereck and Elkind [7]].

6.2 Arbitrary Bribery Operations and Manipulative Actions

Our model can incorporate, e.g., all bribery operations mentioned by Faliszewski and
Rothe [24]. Indeed, the constants c;; used in the proof of Theorem E] encode the cost
of transforming a voter of type ¢ into a voter of type j and can be redefined for other
bribery operations.

Furthermore, following the discussion of Knop et al. [37, Section 3.2], this ap-
proach can be extended to other types of manipulative operations, such as voter con-
trol [24], at no asymptotical cost in terms of computational complexity. Specifically,
say that some voters are active while others are latent, and there is a cost for activating
a latent voter or vice versa. Accordingly, we can define two types for each preference
order, one corresponding to it being active while the other corresponding to it being
latent, and set the cost of “moving” a voter from the active type to the latent and/or
vice versa according to the specific control operation. Notice that this only doubles the
number of voter types, so the asymptotic complexity remains intact.

6.3 General Diffusion Processes

So far our society graphs had an undirected edge between two vertices if their corre-
sponding preference orders were of swap distance one, and we considered a specific,
simple diffusion process. In fact, our model can incorporate directed arcs, where a
vertex would be influenced by those vertices for which it has an outgoing arc and, in
particular, we do not have to be confined to connections between types associated with
preferences that differ in the ranking of a single pair of candidates. Furthermore, those
arcs can be weighted, representing different influence strengths (e.g., consider damping
the influence of voters which are, swap distance-wise, farther). Adding weights can be
done by modifying Equation (3) in a straightforward way.

Moreover, and most importantly, we can express in our model a large class of diffu-
sion processes. The following definition is inspired by viewing the diffusion of prefer-
ences as an abstract process, in which each voter holds a local election to decide which
preference order to assume. For example, the diffusion process described in Section [3]
corresponds to holding an election containing the voters of swap distance at most one,
and changing to the preference order of the majority, if such exists. In the definition
below we use the notation from Theorem 21

Definition 2 (ILP-expressible diffusion process). Let k be an upper bound on the
number of diffusion steps, recall that for diffusion step ¢ € [k], the variables zi!

7 >
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i € [r], express the current society, and let f be a computable function. Then, an
ILP-expressible diffusion process is a process such that for each 4, j € [r] and ¢ € [k],
there are integers (i, j,£), 7(i,5,¢) < f(7), a matrix D; ;, € Z"H3OXTH7(05.0),
and a vector b; ;o € 7" (53:9) such that, in the /-th diffusion step, voters of type 7 are
assimilated into type j if and only if the following formula is satisfied:

Ix' € 77030 Di,j,z(x/,xe_l) <bije.

Our basic diffusion process corresponds to Equation (3). Another ILP-expressible
diffusion process is that each voter replaces her preference order by the Kemeny rank-
ing computed for the voters in her neighborhood (for the definition of a Kemeny rank-
ing, see the original research paper [33]] or, e.g., the chapter of Fischer et al. [26]).

Remark 5. Proposition [I] does not hold for all generalized diffusion processes, as
the number of diffusion steps might not be bounded by the size of the society graph
or the diffusion may never stabilize (cf. Remark E] below). (Also, new voter types
might sometimes appear as a result of diffusion steps.) Thus, the corresponding ILP
to solve R-BSG would have to be supplied with the number k of diffusion steps to
simulate. Sometimes it is indeed plausible that an agent can estimate the number of
diffusion steps to occur after the manipulative actions, e.g., when he knows the time
of the election, or when it is provable (although differently than by the argument of
Proposition[I)) that the process stabilizes after k steps.

Theorem 3. R-BSG is fixed-parameter tractable with respect to the number of can-
didates, the number T of types, and the number k of diffusion steps if both R and the
diffusion process are ILP-expressible.

6.4 Exemplary Models

We conclude this section with several examples of scenarios that are captured by such
generalized diffusion processes.

Example 4 (Multidimensional Societies). Consider voters of different age groups. It
is plausible that the tendency to be influenced by other voters depends on age, and so
we might have a voter type for each tuple of (preference order, age group), with different
outgoing arcs and different diffusion conditions. Note that we can thus express, e.g.,
that voters may be strongly influenced by some voter groups, yet cannot be assimilated
into them (e.g., a junior person can be influenced by a senior one, but this does not
make him or her senior).

Remark 6 (Periodic behavior). As an example of how Proposition [T] might not hold
(as noted in Remark E]), consider that there are three voter types (0, 1,2) subdivided
into young (Y) and old (O). Moreover, let’s say that young people change their mind,
but old people don’t. Next, people of type ¢ are influenced by people of type ¢ + 1
mod 3. Denote w; r for i € {0,1,2} and T' € {Y, O} the number of people of type
¢ and age group T'. Finally, say that min; w; 0 > max; w;y, i.e., there are at least
as many old people of each type as there are young people of any type. Consider the
synchronous model. Then, in each iteration, the young people of type ¢ move to type
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¢+ 1 mod 3, and the diffusion does not stabilize but oscillates periodically. (Similar
behavior can be achieved also in the asynchronous model.)

Example 5 (Advanced diffusion model). Say there are four candidates {c1, ..., cs},
3 age groups {Y, M, O} (for Young, Middle-aged, and Old), and two “stubbornness”
levels {P, S} (for Persuadable and Stubborn). People are divided into types by their
preference, age group, and stubbornness level. Since there are 4! = 24 possible pref-
erence orders, there are altogether T = 3 - 2 - 24 = 144 possible voter types. Next, we
describe “coefficients of influence” which will be used to define the diffusion process.
Define a function f as follows:

FY,Y) =12, FOM,Y) = 0.8, F(M, M) =1,
F(0, M) = 0.5, F(M,0) = 0.3, £(0,0) = 0.8,
F(0,Y) =0, F(Y,0) =0, FY, M) =0.

The meaning is that age group G influences age group Go with a coefficient f(G1,G2)

for the persuadables, and with a coefficient 0.5 - f(G1,G2) for the stubborn. For
example, persuadable young people have relatively low self-esteem and weight the
opinion of other young people as 1.2 higher than their own, they weigh the opinion of
middle-aged people as 0.8 of their own, and they completely disregard the opinions of
old people.

Denote by G(t) the age group of type t, let S(t) = 1 if t is persuadable and S(t) =
0.5 otherwise, and let k € N be the number of rounds of diffusion to simulate, perhaps
as an estimate of how much diffusion happens before a (global) election takes place.
We assume that one type is influenced by other types to a degree that exponentially
decreases with the swap distance of their preference orders, and also that it decreases
inversely as the election draws closer, perhaps because voters become skeptical and
more rigid in their opinions. The coefficient of influence of voter type t on voter type t'
in round ¢ € (k] is computed as follows:

. 1/3. 1/2d . S(t’) . f(G(t),G(t’)) ift' ?é t,
R ! ift="t.

where d is the swap distance between the preference orders of voters of types t and t'.

Then, the diffusion process is synchronous and in each step, each voter type t' holds
a “local election” defined as follows. There are c(t,t') - wy many voters of type t (for
all types t € [7]), and the voting rule is Borda (note that for Borda, the definition is
sensible even if the number of voters as defined is fractional). After this election, we
obtain some winning ranking r (breaking ties according to the ordering of candidates
asci,...,cs), and all voters of type t' move to a type with ranking r and the same age
group and stubbornness level. The final vote is evaluated with the Plurality rule.

Now we wish to apply Theorem |3| and for that we need to show that R and the
diffusion process are ILP-expressible. Since R = Plurality, we focus on the diffusion
process. Let rank(i,t) be the rank of candidate i in the preference order of type t. We
define the score of candidate i in the local election of type t in round { as

5f7t = Z Cf/7t(4—rank(i,t')):rf,_1 .
t'elr]
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Recall that we use the Iverson bracket notation, i.e., [F) evaluates either to 1 or to 0,
depending on the truth value of condition F. For each two i,i' € [4], i # i/, define:

i<pid = (st > s ,) vV ((sh, = s )ni>i)]

Definition 2| requires that, for each two types t,t' and each round { € [k], there is
a linear system that is satisfied exactly if voters of type t should be assimilated by type
t'. Let t' have a preference order ¢;; = ¢;y, = ¢y = ¢, and let G(t) = G(t') and
S(t) = S(t'). Then t should be assimilated into t' exactly if

(il <1£ ig) A\ (ig <lf ig) A\ (7:3 <lf ’i4) ,

which is a boolean combination of linear inequalities and can be rewritten into the
format required by Definition[2using the same standard tricks used in the proof of The-
orem[2)(see [3| Section 7.4]). This shows that the diffusion process is ILP-expressible.
Hence, if the above were generalized to m candidates, o age groups, and o stubornness
levels, then R-BSG would be fixed-parameter tractable with respect tom+ o+ o + k
for any ILP-expressible voting rule R.

7 Experiments

In addition to our theoretical results, we also evaluated our ILP-based algorithm exper-
imentally. Unfortunately, it turned out that, while it can produce results for up to four
candidates in a reasonable amount of time, going beyond this number is not practical.
Thus, we sought heuristic algorithms instead. In particular, we designed one deter-
ministic heuristic, a greedy algorithm, and one heuristic based on simulated annealing.
Unfortunately, our other attempts were not very successful either—our heuristics often
produced much more costly bribery strategies than the (optimal) ILP algorithm (even
for the cases of 3 or 4 candidates) and often required even more time to complete (es-
pecially for the cases with more voters). Two possible explanations for these results
are that:

1. Our R-BSG problem is a particularly hard combinatorial problem. If this is
indeed the case, then it might be a good testbed for improved ILP algorithms.

2. Our heuristics are poorly designed and there is room for significant improvement
and further research to obtain better ones. Indeed, we did not aim at optimizing
heuristics but rather at gathering a basic feeling of the practical complexity of
our problem.

In either case, our results call for further research and further analysis. Below
we describe our experimental setup, the heuristics that we have tried, and how they
compare to the ILP-based algorithm.

7.1 Experimental Setup

We consider elections with either 3 or 4 candidates and either 1000 or 10000 voters.
In each case, we generate the voters’ preferences using the impartial culture model;
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i.e., by drawing the preference order of each voter uniformly at random. We used
the Borda voting rule and focused on the basic variant of our problem, where voter
types are equivalent to the voters’ preference orders, two voter types are connected if
their swap distance is one, and there is unit cost for shifting the preferred candidate by
one position up in a single voter’s preference order. We considered the synchronous
diffusion process only. For the case of three candidates, we generated 55 elections for
each combination of a heuristic algorithm and the number of voters. For the case of
four candidates, we generated 10 elections for each heuristic algorithm. We ran the
ILP-based algorithm for every generated election, in each setting.

7.2 Algorithms

We tested three algorithms, namely our ILP-based algorithm—described in Section[5.3}—
and two heuristics. The ILP-based algorithm solves the optimization variant of R-BSG,
i.e., it does not need the budget to be part of its input; it simply finds the lowest cost of
ensuring that the preferred candidate is a winner. The heuristics, on the other hand, are
phrased as decision algorithms and, thus, need the budget b to be given. We convert
them to optimization algorithms using the standard approach of binary searching for
the right value of b. Specifically, our binary-search method has two phases and, for a
given decision algorithm H, proceeds as follows:

1. In the first phase, we begin with b = 1; then, we use algorithm H to see whether
this budget is sufficient to succeed. If this is the case, then we halt; otherwise,
we multiply b by 2 and, again, use H to check whether this b suffices. If this is
the case, then we halt; otherwise, we again multiply b by 2 and repeat. The first
phase continues until we have some b = 2! for which H succeeds.

2. In the second phase, we perform a binary search on the values of b between
b = 2! and b = 2% this allows us to find the minimum b* for which H
succeeds; we return this b*.

7.3 Heuristic Algorithms

We design two heuristic algorithms. One is a simple greedy algorithm whereas the
other is an adaptation of the classic simulated annealing approach. Both algorithms
are using the same idea regarding evaluation of partial solutions, based on the idea
of margin of victory. Given a (partial) solution for the problem, i.e., the number of
positions by which to shift the preferred candidate in the preference orders of the voters,
we evaluate the quality of this solution as follows:

1. we implement the shifts as specified in the solution,
2. we run the diffusion process, and

3. we compute the difference between the Borda score of the preferred candidate
and the Borda score of the highest-scoring opponent; this value is known as
margin of victory and we interpret it as the quality of the solution.
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Figure 4: The performance of the greedy heuristic against ILP with respect to run time and cost
with 3 candidates and 1000 voters.
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Figure 5: The performance of the greedy heuristic against ILP with respect to run time and cost
with 3 candidates and 10000 voters.

Note that if the solution indeed leads to the victory of the preferred candidate then the
margin of victory is non-negative. Either way, the higher it is, the better (indeed, if it is
positive then we want the preferred candidate to have high advantage over the second-
best candidate; if it is negative, then we want the preferred candidate to, nonetheless,
be as close as possible to the current winner).

7.3.1 The Greedy Heuristic

Our greedy heuristic proceeds as follows: We maintain a solution, which is a set of
bribery operations, initialized to be the empty set. We perform b iterations, where in
each iteration we go over all possible bribery operations—one operation at a time—
and select the operation that, when added to the partial solution, increases its quality
the most. We also experimented with several other variants of this heuristic, but neither
of them led to substantial changes or improvements in the performance.
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Figure 6: The performance of the SA heuristic against ILP with respect to run time and cost with
3 candidates and 1000 voters.

SA/ILP M=3, Voters 10,000

700%

600% -
500%
o . °
g
€ 400% * ° . o
g
E . . *
£ 300% s . e .
8 . . - ¢ °
. .
200% | R e 0 . * .
_l' . . ® ° . . .
100% | ** e . ° e
0%
0% 100% 200% 300% 400% 500% 600%

Time Percentage

Figure 7: The performance of the SA heuristic against ILP with respect to run time and cost with
3 candidates and 10000 voters.

7.3.2 The Simulated Annealing Heuristic

In the simulated annealing heuristic (SA) we maintain a matrix A with m! rows and
m columns, which represents b bribery operations, where each cell a; ; of the matrix
represents the number of voters from type ¢ for whom we shift the preferred candidate
p up by j positions. Note that the cost of the set of bribery operations corresponding
to some matrix A is the summation over the costs given by the cells, where the corre-
sponding cost of cell a; ; is a; ;- j (it costs j to shift p by j positions); for convenience,
for a given A, we referto ), ; a; j - j as “the cost of A”.

Initial solution We initialize A as follows: first, we set all cells of A to be 0. Then,
we iterate until the cost of A is b, where in each iteration:

1. We choose ¢ and j uniformly at random (i ranges from O to m!, while j ranges
from 0 to m).

2. If a; 5 is 0, then we select a value v uniformly at random between 0 and the
number of voters of type 7.
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Figure 8: The performance of the greedy heuristic against ILP with respect to run time and cost
with 4 candidates and 1000 voters.
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Figure 9: The performance of the SA heuristic against ILP with respect to run time and cost with
4 candidates and 1000 voters.

3. If the cost of A plus v - j is not greater than b, then we set a; ; to be v; otherwise,
we leave a; ; to be 0 and proceed to the next iteration.

Local improvements After initializing the matrix A as described above, we proceed
to the main algorithm, in which we perform 7' = 10000 iterations, where in each
iteration we aim at improving the current solution. In particular, in each iteration we
pick, uniformly at random, two different voter types ¢ # k (note that we only choose
such voter types for which at least one voter exists) and two indices j; and js such that
arj, > 0, a;;, > 0, and proceed as follows: (1) we decrease ay ;, by one; (2) we
increase ay ;, —1 by one; (3) we decrease a; j,—1 by one; and (4) we increase a; ;, by
one. (Intuitively, (1) and (2) “free” one unit of budget as it corresponds to taking one
voter of type k that previously was shifted by j; positions to now be shifted by only
j1 — 1 positions; and, then, (3) and (4) “use” this one unit of budget as it corresponds
to taking one voter of type ¢ that previously was shifted by jo — 1 positions to now be
shifted by j2 positions. Indeed, we choose such j; and jo for which this local step is
feasible.
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Acceptance probability Let A be the current solution and let A’ be a modified solu-
tion according to the procedure described in the previous paragraph. Next we describe
under which conditions we “accept” the modification and replace A with A’. First,
recall that the number of iterations is 7' = 1000; moreover, we have a parameter po,
set to be 0.2, and we maintain a parameter p1, initially set to be py.

Now, if A" has higher quality than A, then with probability 1 — p; we accept it (i.e.,
set A = A’ and reiterate); while if A’ has lower quality than A, then with probability
p1 we accept it. Lastly, we replace the value of p; with p; — po/T. This ensures that
after T iterations p; drops down to 0, at which point we halt.

7.4 Results of the Experiments

We present the results of our experiments regarding three candidates in Figures [4] and
B] (for the greedy heuristic) and in Figures [6] and [7] (for the SA heuristic). For the
case of four candidates, we show our results in Figures and@} For the case of three
candidates, we show results for 1000 and 10000 voters, whereas for the case of four
candidates we give results for 1000 voters only.

For the case of three candidates and 1000 voters, the greedy heuristic is significantly
faster than the ILP-based algorithm, but for 10000 voters it works much more slowly.
The SA heuristic tends to be slower than the ILP-based algorithm irrespective of the
number of voters. However, for the case of four candidates both heuristics are much
faster than the ILP solution. Unfortunately, in each of the presented cases the heuristics
quite often return solutions of cost that is much higher than the optimal one (indeed,
for the case of the greedy algorithm and four candidates, for one of the elections the
heuristic found a solution about 15 times more expensive than the optimal one). More
commonly, the heuristics provide solutions that are up to 3-4 times more expensive
than the optimal ones. All in all, this means that the heuristics can hardly be seen as
feasible means of solving our problem.

Nonetheless, it is interesting to also compare the running times of the heuristics
depending on the number of voters. For the greedy heuristic, in Figure ] we see
that for 1000 voters the heuristic completes in at most half of the time of the ILP-
based algorithm, even for the most difficult instances. Yet, for the case of 10000 voters
(Figure 5) we already see that it can be up to 20 times slower than ILP (although for
most instances the heuristic is at most five times slower). This is natural as the ILP-
based solution scales logarithmically with the number of voters, whereas the greedy
heuristic scales polynomially. On the other hand, for SA we do not see such effect as
the number of iterations is fixed and its running time depends logarithmically on the
number of voters (compare Figures 6} [7)).

From the experiments we conclude that the problem of computing the cheapest
campaign for rigging a given election by influencing a society graph either is a chal-
lenging problem, or our heuristics are poorly chosen or are poorly optimized. While we
were able to prove, using certain ILP techniques, that the problem is FPT with respect
to the number of candidates, there is room for future work, both theoretical and regard-
ing algorithm engineering, to design algorithms that perform well in practice. Indeed,
in our experiments we used standard local search algorithms without significant opti-
mization, and our ILP implementation is using the standard setting of an off-the-shelf
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ILP solver (Gurobi 7.5). All experiments were run on two Intel Xeon Gold 6230 - 20
Cores 125W 2.1GHz CPU Processor and 192 GB RAM.

Let us explain one possible direction that seems especially viable to us. Intuitively,
the reason our ILP formulations are difficult to solve is that we are using a geomet-
ric tool (ILP) to express complex logical constraints. Recently, an alternative method
for expressing ILP-definable voting rules and diffusion processes was shown via Pres-
burger Arithmetic [38]]. There exist Presburger Arithmetic solvers such as Omega [32]
and TAPAS [40]], and we hope that using them to solve R-BSG would yield interesting
results.

8 Outlook

We described a powerful model capturing various scenarios of opinion diffusion in
networks, under various manipulative actions. By considering voter types and soci-
ety graphs, we were able to provide quite strong tractability results. In particular, we
have shown that, under certain circumstances, it is possible to find an optimal bribery
scheme, taking into account various diffusion processes operating on various society
graphs, for very general models. Below we discuss several research directions follow-
ing from our work.

ILP Techniques. We do hope that this paper will have the side-effect of populariz-
ing a number of ILP techniques within the area of computational social choice.
While using Lenstra’s algorithm to obtain FPT algorithm is already well-known,
we have used a number of tricks that allow expressing more involved constraints
than typically found in the ILPs used in this area (even though they are, gen-
erally, well-known in the area of mathematical programming). We hope that
promoting these techniques would lead to discovering further voting-related al-
gorithms and further transfer of knowledge between mathematical programming
and computational social choice.

Generalized Diffusion Processes. We believe that our concept of a generalized diffu-
sion process deserves more study. Here we mainly cared for identifying whether
such generalized diffusion processes can be efficiently encoded via linear con-
straints, but studying their further properties, such as finding sufficient condi-
tions for convergence, is an intriguing research direction. In particular, it would
be interesting to explore connections between generalized diffusion processes
and iterative voting (for more details on iterative voting, see the work of Meir et
al. [42]] and many papers that followed up on its ideas, in particular those of Sina
et al. [50] and Tsang and Larson [52f]). Under iterative voting, all the voters ob-
serve the votes currently cast by all the other voters and, in each round, they can
modify their votes to obtain a more desirable outcomes. Generalized diffusion
processes are capable of encoding such dynamics and, additionally, can impose
restrictions on which votes the voters see (e.g., according to a given social net-
work).
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Probabilistic Models. Our model is inherently deterministic. While in the introduc-
tion we mentioned that, on the one hand, such determinism is quite common
and, on the other hand, there are workarounds to simulate stochastic bahavior,
it would be quite interesting to build a stochastic ingredient into the model in a
way that does not require workarounds. Doing so deserves a careful study.

Our work is primarily theoretical, but we have also included an experimental com-
ponent. So far, our conclusion from these experiments is that our bribery problem on
society graphs is either quite challenging to solve or our approaches to solve it are too
naive. Thus it is natural to seek better algorithms and to perform experiments on more
realistic data, including data coming from real-life settings.
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