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Abstract. Extending results of Schindler [Sch] and Hamkins and Welch

[HW03], we establish in the context of infinite time Turing machines that

P is properly contained in NP∩ co-NP. Furthermore, NP∩ co-NP is exactly

the class of hyperarithmetic sets. For the more general classes, we estab-

lish that P+ = NP
+ ∩ co-NP+ = NP∩ co-NP, though P++ is properly con-

tained in NP
++ ∩ co-NP++. Within any contiguous block of infinite clock-

able ordinals, we show that Pα 6= NPα ∩ co-NPα, but if β begins a gap in

the clockable ordinals, then Pβ = NPβ ∩ co-NPβ . Finally, we establish that

P f 6= NP
f ∩ co-NPf for most functions f : R → ord, although we provide

examples where P f = NP
f ∩ co-NPf and P f 6= NP
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1 Introduction

In this article, we take up the question of whether P = NP∩ co-NP for infinite
time Turing machines. The related P = NP problem was first considered in
connection with infinite time Turing machines by Schindler (the third author)
in [Sch], where he proved that P 6= NP and introduced the other natural
complexity classes P+, NP+, P++, NP++, Pα, NPα, P

f and NPf . He then
showed that P+ 6= NP+ and posed the corresponding questions for P++ and
P f when f is a suitable function from R to the ordinals. Hamkins (the
second author) and Welch answered these questions in [HW03] by showing
that P++ 6= NP++ and, more generally, that P f 6= NPf for almost every
function f . Here, we extend the analysis of all these complexity classes to the
analogues of the question of whether P = NP∩ co-NP. Unfortunately, there
is no uniform answer, as some of the complexity classes satisfy the equation
and some do not, though the general tendency is towards inequality.

We show, in particular, that P is properly contained in NP∩ co-NP. Fur-
thermore, NP∩ co-NP is exactly the class of hyperarithmetic sets. At the next
level, we establish P+ = NP+ ∩ co-NP+ = NP∩ co-NP. At a still higher level,
once again P++ is properly contained in NP++ ∩ co-NP++. Within any con-
tiguous block of infinite clockable ordinals, we establish Pα 6= NPα ∩ co-NPα,
but if β begins a gap in the clockable ordinals, then Pβ = NPβ ∩ co-NPβ. Fi-
nally, for almost all functions f : R → ord, the class P f is properly contained
in NPf ∩ co-NPf , though there are functions for which P f = NPf ∩ co-NPf ,
even with P f 6= NPf .

Infinite time Turing machines were introduced by Hamkins and Lewis in
[HL00], and we refer the reader to that article for reference and background.
Let us quickly describe here for convenience how the machines operate. The
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hardware of an infinite time Turing machine is the same as that of a classical
three-tape Turing machine: a head moves left and right on a semi-infinite
paper tape, reading and writing according to the rigid instructions of a fi-
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nite program with finitely many states in exactly the classical manner. The
operation of the machines is extended into transfinite ordinal time by defin-
ing the configuration of the machine at the limit ordinal stages. At such a
stage, the head is returned to the leftmost cell, the machine is placed into
the special limit state, and the tape is updated by placing into each cell the
lim sup of the values appearing in that cell before the limit stage. Thus, if the
cell values have stabilized before a limit, then at the limit the cell displays
this stabilized value, and otherwise, when the cell has changed from 0 to 1
and back again unboundedly often before the limit, then at the limit the cell
displays a 1. Having specified the operation of the machines, one obtains
for any program p the corresponding infinite time computable function ϕp,
namely, ϕp(x) = y when program p on input x halts with output y. The
natural context for input and output is infinite binary sequences, that is,
Cantor space ω2, which we refer to as the set of reals and denote by R. A set
A ⊆ R is infinite time decidable if its characteristic function is decidable. In
the context of certain time-critical complexity classes, we adopt the formal-
ism for deciding sets with two distinct halt states, accept and reject, so that
the machines can announce their decisions as quickly as possible, without
needing to position the head for writing on the output tape. For many of the
complexity classes, however, including P , P+, P++ and Pα for limit ordinals
α and their successors, the additional steps required for writing on the tape
pose no difficulty, and one can dispense with this formalism in favor of the
usual characteristic function notion of decidability.

Many of our arguments will rely on elementary results in descriptive set
theory, and we refer readers to [Mos80], [Kec95] and [MW85] for excellent
introductions. For background material on admissible set theory, we refer
readers to [Bar75]. We denote the first infinite ordinal by ω and the first
uncountable ordinal by ω1. Throughout the paper, we use ordinal as opposed
to cardinal arithmetic in such expressions as ω2 and ωω. The well-known
ordinal ωck

1 , named for Church and Kleene, is the supremum of the recursive
ordinals (those that are the order type of a recursive relation on ω). The
ordinal ωck

1 is also the least admissible ordinal, meaning that the ωck
1 level of

Gödel’s constructible universe Lωck
1

satisfies the Kripke-Platek (KP) axioms
of set theory. We denote by ωx

1 the supremum of the x-recursive ordinals, and
this is the same as the least x-admissible ordinal, meaning that Lωx

1
[x] |= KP .

An ordinal α is clockable if there is a computation of the form ϕp(0) taking
exactly α many steps to halt (meaning that the αth step moves into the halt

state). A writable real is one that is the output of a computation ϕp(0). An
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ordinal is writable when it is coded by a writable real. The supremum of the
writable ordinals is denoted λ, and by [Wel00] this is equal to the supremum
of the clockable ordinals. A real is accidentally writable when it appears on
one of the tapes at same stage during a computation of the form ϕp(0). The
supremum of the accidentally writable ordinals, those that are coded by an
accidentally writable real, is denoted Σ. A real is eventually writable if there
is a computation of the form ϕp(0) such that beyond some ordinal stage the
real is written on the output tape (the computation need not halt). Ordinals
coded by such reals are also said to be eventually writable, and we denote
the supremum of the eventually writable ordinals by ζ . Results in [HL00]
establish that λ < ζ < Σ and that λ and ζ are admissible. Welch [Wel00]
established that every computation ϕp(0) either halts before λ or else repeats
the ζ configuration at Σ, in a transfinitely repeating loop. Furthermore,
these ordinals are optimal in the sense that the universal computation that
simulates all ϕp(0) simultaneously first enters its repeating loop at ζ , first
repeating it at Σ. It follows that Σ is not admissible.

The research in this article was initiated by the first author in a prelim-
inary paper, which was subsequently refined and expanded into the current
three-author collaboration.

2 Defining the Complexity Classes

Let us quickly recall the definitions of the complexity classes.
Schindler [Sch] generalized the class of polynomial decidable sets to the

infinite time context with the natural observation that every input x ∈ R

has length ω, and so the sets in P should be those that are decidable in
fewer steps than a polynomial function of ω. Since all such polynomials are
bounded by those of the form ωn for n ∈ ω, he defined for A ⊆ R that A ∈ P
when there is a infinite time Turing machine T and a natural number n such
that T decides A and T halts on every input in fewer than ωn many steps.

The corresponding nondeterministic class was defined by A ∈ NP if there
is an infinite time Turing machine T and a natural number n such that x ∈ A
if and only if there is y ∈ R such that T accepts (x, y), and T halts on every
input in fewer than ωn many steps. Sets in NP are therefore simply the
projections of sets in P .

The class P occupies a floor a little ways upwards in the skyscraper hi-
erarchy of classes Pα, indexed by the ordinals, where A ∈ Pα if and only if
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there is a Turing machine T and an ordinal β < α such that T decides A,
and T halts on every input in fewer than β many steps. In this notation, the
polynomial class P is simply Pωω , while the hierarchy continues up through
the countable ordinals to Pω1

, the class of sets that are decidable uniformly
by some countable stage, and Pω1+1, the class of all decidable sets. We admit
that the term “polynomial” and the letter P are perhaps only appropriate
at the level of Pωω , as one might naturally view Pω2 instead as the “linear
time” sets, P

ωω2 as the “exponential time” sets, Pǫ0 as the “super-exponential
time” sets, Pωck

1
as the “computable time” sets, and so on, though at some

point (probably already well exceeded) such analogies become strained. Nev-
ertheless, we retain the symbol P in Pα as suggesting the polynomial time
context of classical complexity theory, because we have placed limitations on
the lengths of allowed computations. After all, infinite time Turing machines
can profitably use computations of any countable length, and so any uniform
restriction to a particular countable α is a severe limitation. Since all these
classes concern infinite computations, one should not regard them as feasible
in any practical sense.

One defines the nondeterministic hierarchy in a similar manner: A ∈ NPα

if there is a Turing machine T and β < α such that x ∈ A if and only if there
is y ∈ R such that T accepts (x, y), and T halts on every input in fewer than
β steps. In this notation, NP is NPωω . Clearly, the sets in NPα are simply
the projections of sets in Pα.

As is usual in the classical context, for the nondeterministic classes we
assume that the witness y is provided on a separate input tape, rather than
coded together with x on one input tape. This is necessary because in order
to know Pα ⊆ NPα ∩ co-NPα, one wants to be able to ignore the witness y
without needing extra steps of computation. When α is a limit ordinal or
the successor of a limit ordinal, however, one can easily manage without an
extra input tape, because there is plenty of time to decode both x and the
verifying witness y from one input tape.

So far, these complexity classes treat every input equally in that they
impose uniform bounds on the lengths of computation, independently of the
input. But it may seem more natural to allow a more complicated input to
have a longer computation. For this reason, taking ωx

1 as a natural measure of
the complexity of x, Schindler defined A ∈ P+ when there is an infinite time
Turing machine deciding A and halting on input x in fewer than ωx

1 many
steps. The corresponding nondeterministic class is defined by A ∈ NP+ when
there is an infinite time Turing machine T such that x ∈ A if and only if
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there is y ∈ R such that T accepts (x, y), and T halts on input (x, y) in fewer
than ωx

1 many steps. Because this bound depends only on x and not on y,
one can’t conclude immediately that NP+ is the projection of P+. One of the
surprising results of the analysis, however, is that the apparent extra power
of allowing computations on input x to go up to ωx

1 , as opposed to merely
ωck
1 , actually provides no advantage (see the discussion following Theorem

5). Consequently, NP+ is the projection of P+ after all.
Allowing computations to proceed a bit longer, Schindler defined that

A ∈ P++ when there is an infinite time Turing machine deciding A and
halting on input x in at most ωx

1 +ω many steps. Similarly, A ∈ NP++ when
there is an infinite time Turing machine T such that x ∈ A if and only if
there is y ∈ R such that T accepts (x, y), and T halts on any input (x, y) in
at most ωx

1 + ω many steps.
Finally, Schindler observed that any function f from R to the ordinals

can be viewed as bounding a complexity class, namely, A ∈ P f if there is an
infinite time Turing machine deciding each x ∈ A in fewer than f(x) many
steps.1 And A ∈ NPf when there is an infinite time Turing machine T such
that x ∈ A if and only if there is y ∈ R such that T accepts (x, y), and T halts
on any input (x, y) in fewer than f(x) many steps. In this notation, P+ is the
class P f0, where f0(x) = ωx

1 + 1, and P++ = P f1, where f1(x) = ωx
1 + ω + 1.

3 Proving P 6= NP∩ co-NP

We begin with the basic result separating P from NP∩ co-NP. In subsequent
results we will improve on this and precisely characterize the set NP∩ co-NP.

Theorem 1 P 6= NP∩ co-NP for infinite time Turing machines.

Proof: Clearly P is contained in NP and closed under complements, so it
follows that P ⊆ NP∩ co-NP. We now show that the inclusion is proper.
Consider the halting problem for computations halting before ωω given by

hωω = { p | ϕp(p) halts in fewer than ωω steps }.

We claim that hωω /∈ P . This follows from [HL00, Theorem 4.4] and is
an instance of Lemma 8 later in this article, but let us quickly give the

1This definition differs from that in [HW03], which allows ≤ f(x) many steps in order
to avoid the inevitable +1 that occurs when defining such classes as P+ and P++. Here
we use the original definition of [Sch], which is capable of describing more classes.
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argument. If we could decide hωω in time before ωω, then we could compute
the function f(p) = 1, if p /∈ hωω , diverge otherwise, and furthermore we
could compute this function in time before ωω for input p /∈ hωω . If this
algorithm for computing f is carried out by program q, then q /∈ hωω if and
only if f(q) ↓= 1, which holds if and only if ϕq(q) halts in fewer than ωω

steps, which holds if and only if q ∈ hωω , a contradiction.
Let us now show that hωω ∈ NP. The idea of the proof is that the question

of whether p ∈ hωω can be verified by inspecting (a code for) the computation
sequence of ϕp(p) up to ωω. Specifically, to set this up, fix a recursive relation
✁ on ω having order type ωω and a canonical computable method of coding
infinite sequences of reals as reals, so that we may interpret any real z as
an infinite sequence of reals 〈zn | n ∈ ω〉. By combining this coding with
the relation ✁, we may view the index n as representing the ordinal α of its
order type with respect to ✁, and we have a way to view any real z as an
ωω-sequence of reals 〈(z)α | α < ωω〉. This coding is computable in the sense
that given any n ∈ ω representing α with respect to ✁, we can uniformly
compute any digit of (z)α.

Now consider the algorithm accepting input (p, z) exactly when with re-
spect to the above coding the real z codes a halting sequence of snapshots
〈(z)α | α < ωω〉 of the computation ϕp(p). That is, first, each (z)α codes
the complete configuration of an infinite time Turing machine, including the
contents of the tapes, the position of the head, the state and the program;
second, the snapshot (z)α+1 is computed correctly from the previous snap-
shot (z)α, taking the convention that the snapshots should simply repeat
after a halt; third, the limit snapshots (z)λ for limit ordinals λ are updated
correctly from the previous snapshots (z)α for α < λ; and finally, fourth, one
of the snapshots shows the computation to have halted. Since all of these
requirements form ultimately merely an arithmetic condition on the code z,
they can be checked by an infinite time Turing machine in time uniformly
before ω2. And since p ∈ hωω if and only if the computation sequence for
ϕp(p) halts before ωω, we conclude that p ∈ hωω exactly if there is a real z
such that (p, z) is accepted by this algorithm. Thus, hωω ∈ NP.

To see that hωω ∈ co-NP, we simply change the fourth requirement to
check that none of the snapshots show the computation to have halted. This
change means that the input (p, z) will be accepted exactly when z codes
a sequence of snapshots of the computation ϕp(p), exhibiting it not to have
halted in ωω many steps. Since there is a real z like this if and only if p /∈ hωω ,
it follows that the complement of hωω is in NP, and so hωω ∈ co-NP.
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Because the verification algorithm needed only to check an arithmetic
condition, the argument actually establishes hωω ∈ NPω2 ∩ co-NPω2 . A closer
analysis reveals that the requirements that need to be checked are Π0

3 (one
must check that every code for a cell at a limit stage has the right value). And
since any Π0

3 statement can be decided in time ω + ω, it follows that hωω is
in NPω·2+2 ∩ co-NPω·2+2. In fact, a bit of thought shows that the verification
idea of the proof shows that any set in NP can be verified by inspecting a
snapshot sequence of length ωω, so we may actually conclude NP = NPω·2+2

and co-NP = co-NPω·2+2. We now push these ideas harder, down to the
(optimal) level of ω + 2, by asking more of our witnesses.

Theorem 2 The classes NPα for ω + 2 ≤ α ≤ ωck
1 are all identical to

the class Σ1
1 of lightface analytic sets. In particular, NP = NPω+2, and so

membership in any NP set can be verified in only ω many steps. Similarly, the

corresponding classes co-NPα are all identical to the Π1
1 sets. Consequently,

NP∩ co-NP is exactly the class ∆1
1 of hyperarithmetic sets.

Proof: The idea is to have a witness not merely of the computation sequence
of a given computation, but also of all arithmetic truths. To recognize the
validity of such witnesses in ω many steps, we make use of the following two
lemmas.

Lemma 2.1 Any Π0
2(x) statement can be decided on input x in ω many

steps.

Proof: To decide the truth of ∀n∃mψ(n,m, x), where ψ has only bounded
integer quantifiers, one systematically considers each n in turn, searching for
a witness m that works with that n. Each time this succeeds, move to the
next n and flash a master flag on and then off again. If the flag is on at a
limit, it means that infinitely many n were considered, so the statement is
true. If the flag is off, it means that for some n the search for a witness m
was never completed, so the statement is false.

Lemma 2.2 There is an infinite time Turing machine algorithm deciding in

ω many steps on input (a, A) whether A is the set of arithmetic truths in a.

Proof: It is easy to see by induction on formulas that A ⊆ ω is the set of
codes for true arithmetic statements in a (that is, using a ⊆ ω as a predicate
in the language) if and only if the following conditions, using a recursive
Gödel coding pψq, are satisfied:

8



(i) If ψ is atomic, then pψq ∈ A if and only if ψ is true.

(ii) p¬ψq ∈ A if and only if pψq /∈ A.

(iii) pψ ∧ φq ∈ A if and only if pψq ∈ A and pφq ∈ A.

(iv) p∃uψ(u)q ∈ A if and only if there is a natural number n such that
pψ(n)q ∈ A.

The first three of these conditions are primitive recursive in (a, A), while
the fourth has complexity Π0

2 in (a, A), making the overall complexity Π0
2 in

(a, A). It follows from Lemma 2.1 that whether or not (a, A) satisfies these
four conditions can be checked in ω many steps. More concretely, we can
describe an algorithm: we systematically check that A satisfies each of the
conditions by considering each Gödel code in turn. For a fixed formula, the
first three conditions can be checked in finite time. For the fourth condition,
given a code for ψ(n) in A, the algorithm can check whether the code for
∃uψ(u) is in A; conversely, given that ∃uψ(u) is in A, let the algorithm search
for an n such that ψ(n) is in A. The point, as in Lemma 2.1, is that if this
search fails, then at the limit one can reject the input without more ado,
since it has failed Condition (iv). Otherwise, a witness n is found in finitely
many steps, and the next formula is considered.

Returning to the proof of Theorem 2, we now prove that when ω + 2 ≤
α ≤ ωck

1 , the classes NPα are identical. Since this is clearly a nondecreasing
sequence of classes, it suffices to show NPωck

1

⊆ NPω+2. For this, consider
any set B ∈ NPωck

1
. By definition, this means that there is a program p and a

recursive ordinal β such that ϕp(x, y) halts in time β for all input and x ∈ B if
and only if there is a y such that ϕp accepts (x, y). Fix a recursive relation on
ω having order type β. Consider the algorithm that accepts input (x, y, z, A)
exactly when A codes the set of arithmetic truths in (x, y, z) and z codes
the computation sequence of ϕp(x, y) of length β (using the fixed recursive
relation for β as the underlying order of the snapshots), and this computation
sequence shows the computation to have accepted the input. We claim that
this algorithm halts in just ω many steps. To see this, observe first that the
latter part of the condition, about z coding the computation sequence for
ϕp(x, y), is arithmetic in (x, y, z). Therefore, by trusting momentarily that A
is correct, it can be verified in finitely many steps by simply checking whether
the Gödel code of that arithmetic condition is in A. After this, one can verify
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in ω many steps that A is in fact correct using the algorithm of Lemma 2.2.
So altogether we can decide whether (x, y, z, A) has these properties in just
ω many steps. And since x ∈ B if and only if ϕp accepts (x, y), and this
happens just in case (x, y, z, A) is accepted by our algorithm, where z codes
the computation sequence of length β and A codes the arithmetic truths in
(x, y, z), we conclude that B ∈ NPω+2, as desired. We have therefore proved
NPωck

1

⊆ NPω+2, and so the classes NPα are identical for ω + 2 ≤ α ≤ ωck
1 .

We now draw the remaining conclusions stated in the theorem. Since
NP simply denotes NPωω , falling right in the middle of the range, it follows
that NP = NPω+2, and so membership in any NP set can be verified in ω
many steps. By [HL00, Theorem 2.7] we know that Pωck

1
= ∆1

1. It follows

immediately that NPωck
1

= Σ1
1, as these sets are the projections of sets in Pωck

1

.

So NPα = Σ1
1 whenever ω + 2 ≤ α ≤ ωck

1 , as these classes are all identical.
And finally, by taking complements, we conclude as well that co-NPα = Π1

1

whenever ω + 2 ≤ α ≤ ωck
1 .

It will follow from Theorem 5 that this result can be extended at least
one more step, to ωck

1 + 1, because NPωck
1

= NPωck
1
+1.

Corollary 3 NP 6= co-NP for infinite time Turing machines.

Proof: The classes Σ1
1 and Π1

1 are not identical.

Both Theorems 1 and 2 can also be proved using the model-checking
technique of [HW03], which we will use extensively later in this article.

4 Proving P+ = NP+∩ co-NP+

At first glance, the class P+ appears much more generous than the earlier
classes, because computations on input x are now allowed up to ωx

1 many
steps, which can be considerably larger than ωck

1 . But it will follow from
Theorem 5 that if a set is in P+, then there is an algorithm deciding it
in uniformly fewer than ωck

1 many steps, much sooner than required. Our
arguments rely on the following fact from descriptive set theory.

Lemma 4 Π1
1 absorbs existential quantification over ∆1

1. That is, if B is Π1
1

and x ∈ A ⇐⇒ ∃y ∈ ∆1
1(x)B(x, y), then A is Π1

1 as well.

10



Proof: This lemma is a special case of [Mos80, Theorem 4D.3], and is due
to Kleene. We provide a proof sketch here. Let U be a universal Π1

1 set
and suppose y ∈ ∆1

1(x). Then there is an integer i0 such that y(n) = m if
and only if U(i0, x, n,m). Let U∗ be a Π1

1 set uniformizing U , so that for
all i, x, n if there is an m with U(i, x, n,m) then there is a unique m with
U∗(i, x, n,m). In particular, y(n) = m if and only if U∗(i0, x, n,m). So we
have altogether that x ∈ A if and only if there is an integer i such that for all
n there is exactly one m with U∗(i, x, n,m), and for all y, either B(x, y) or
there are n,m with U∗(i, x, n,m) and y(n) 6= m. In other words, we say that
there is an index i of a computation of a real z via a Π1

1(x) recursive function
such that B(x, z). As Π1

1 is closed under quantification over integers, this
shows that A is in Π1

1, as desired.

Theorem 5

(i) NP+ = Σ1
1 = NP = NPα whenever ω + 2 ≤ α ≤ ωck

1 + 1.

(ii) P+ = ∆1
1 = Pωck

1
= Pωck

1
+1.

(iii) P+ = NP+ ∩ co-NP+.

Proof: For (i), we have already proved in Theorem 2 that Σ1
1 = NP, and

since clearly NP ⊆ NP+, it follows that Σ1
1 ⊆ NP+. Conversely, suppose that

A ∈ NP+. This means that there is an infinite time Turing machine program
p such that ϕp(x, y) halts on all input (x, y) in fewer than ωx

1 many steps,
and x ∈ A if and only if there is a real y such that ϕp accepts (x, y). The set
A is therefore the projection of the set

B = { (x, y) | ϕp accepts (x, y) }.

In order to see that A is in Σ1
1, it suffices to show B ∈ Σ1

1 (and our argument
shows just as easily that B ∈ ∆1

1). The complement of B is the set ¬B =
{ (x, y) | ϕp rejects (x, y) }, and these computations also have length less than
ωx
1 . It follows that the computation sequence for ϕp(x, y) exists in the model
Lωx

1
[x, y], and so (x, y) ∈ ¬B if and only if Lωx

1
[x, y] |= θ(x, y), where θ(x, y)

asserts that the computation ϕp(x, y) rejects the input. Since this is a Σ1

assertion, it follows that (x, y) ∈ ¬B if and only if there is an ordinal β < ωx
1

such that Lβ [x, y] |= θ(x, y). Since the model Lβ [x, y] is hyperarithmetic

11



in (x, y), and any well-founded model showing the computation to reject the
input will do, we see that (x, y) ∈ ¬B if and only if there is a real z ∈ ∆1

1(x, y)
coding a well-founded model of V = L[x, y] that satisfies θ(x, y). Since the
property of coding a well-founded model (of any theory) is Π1

1 in the theory,
it follows by Lemma 4 that ¬B is Π1

1. Consequently, B ∈ Σ1
1, and so A, being

the projection of B, is in Σ1
1 as well. So we have proved that NP+ = Σ1

1.
It follows from Theorem 2 that NP+ = NPα whenever ω + 2 ≤ α ≤ ωck

1 .
The remaining case of α = ωck

1 +1 follows from (ii) and the observation that
NPωck

1
= NPωck

1
+1, as these are the projections of Pωck

1
= Pωck

1
+1.

For (ii) and (iii), observe that since NP+ = Σ1
1, it follows that co-NP

+ =
Π1

1, and so P+ ⊆ NP+ ∩ co-NP+ = Σ1
1 ∩Π1

1 = ∆1
1, which by [HL00, Theorem

2.7] is equal to Pωck
1

, which is a subset of Pωck
1
+1, which is clearly a subset of

P+. So all of them are equal, as we claimed.

The fact that P+ = ∆1
1 was Theorem 2.13 of [Sch], and one can view our

argument here as a detailed expansion of that argument. In fact, however,
once one knows P+ = Pωck

1
= ∆1

1, it follows immediately that sets in NP+ are

projections of sets in Pωck
1

= ∆1
1, since all the computations halt uniformly

before ωck
1 , which is certainly not larger than ωx

1 , and consequently NP+ = Σ1
1.

By this means, Theorem 5 follows directly from [Sch, Theorem 2.13].
The fact that P+ = Pωck

1

should be surprising—and we mentioned this in
the introduction—because it means that although the computations deciding
x ∈ A for A ∈ P+ are allowed to compute up to ωx

1 , in fact there is an
algorithm needing uniformly fewer than ωck

1 many steps. So the difference
between ωck

1 and ωx
1 , which can be substantial, gives no advantage at all in

computation. An affirmative answer to the following question would explain
this phenomenon completely.

Question 6 Suppose an algorithm halts on each input x in fewer than ωx
1

steps. Then does it halt uniformly before ωck
1 ?

Secondly, the fact that Pωck
1

= Pωck
1
+1 is itself surprising, because the differ-

ence in the definitions of these two classes is exactly the difference between
requiring the computations to halt before ωck

1 and requiring them to halt
uniformly before ωck

1 , that is, before some fixed β < ωck
1 on all input. Since

the classes Pωck
1

= Pωck
1
+1 are equal, any set that can be decided before ωck

1

can be decided uniformly before ωck
1 .

12



Finally, let us close this section with a more abstract view of Theorem
5. Suppose that f : R → ω1 is Turing invariant and for some Σ1 formula ϕ
we have f(x) = α if and only if L[x] |= ϕ(x, α). We define the pointclass
Γf by A ∈ Γf if and only if there is some Σ1 formula θ such that x ∈
A ⇐⇒ Lf(x)[x] |= θ(x). Then for “natural” f one should be able to show
that P f = ∆f = NPf ∩ co-NPf and NPf = Γf -dual, by our arguments above.
(We do not attempt to classify the functions f for which these equations
hold true.) For f(x) = ωx

1 , these equations collapse to the the statement of
Theorem 5. The pointclasses Γf exhaust all of ∆1

2.

5 The Question Whether Pα = NPα∩ co-NPα

We turn now to the relation between Pα and NPα ∩ co-NPα for various or-
dinals α. We begin with the observation that the classes Pα increase with
every clockable limit ordinal α.

Definition 7 The lightface halting problem is the set h = { p | ϕp(p) halts}.
Approximating this, for any ordinal α the halting problem for α is the set
hα = { p | ϕp(p) halts in fewer than α many steps}. We sometimes denote
hα+1 by h≤α, to emphasize the fact that it is concerned with computations
of length less than or equal to α. Similarly, we denote Pα+2, NPα+2 and
co-NPα+2 by P≤α, NP≤α and co-NP≤α, respectively, as these classes are also
concerned only with the computations of length less than or equal to α.
It follows that NP≤α is the projection of P≤α, and co-NP≤α consists of the
complements of sets in NP≤α.

Lemma 8 If α is any ordinal, then hα /∈ Pα. Indeed, hα /∈ Pα+1. In partic-

ular, h≤α /∈ P≤α. However, if α is a clockable limit ordinal, then hα ∈ P≤α.

Proof: Suppose to the contrary that hα ∈ Pα+1 for some ordinal α. It
follows that there is an algorithm q deciding hα in fewer than α many steps.
That is, the computation of ϕq(x) halts in fewer than α many steps on
any input and x ∈ hα if and only if ϕq accepts x. Consider the modified
algorithm q0 that runs ϕq(x), but when the algorithm is just about to move
into the accept state, it instead jumps into a non-halting transfinite repeating
loop. This algorithm computes a function ϕq0(x) which halts in fewer than
α steps if x /∈ hα and diverges otherwise. Therefore, q0 ∈ hα if and only
if ϕq0(q0) halts, which holds if and only if q0 /∈ hα, a contradiction. So we
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have established hα /∈ Pα+1 for any ordinal α. It follows, in particular, that
h≤α = hα+1 /∈ Pα+2 = P≤α.

Finally, when α is a clockable limit ordinal, consider the algorithm that on
input p simulates both the computation ϕp(p) and the α clock (simulating
ω many steps of each in every ω many actual steps). If the computation
stops before the clock runs out, the algorithm accepts the input, but if the
clock runs out, it rejects the input. By placing the first column of the clock’s
computation in the actual first column, the algorithm will be able to detect
that the clock has stopped at exactly stage α, and thereby halt in α steps.
So hα ∈ P≤α.

Corollary 9 If α is a clockable limit ordinal, then Pα ( P≤α.

For recursive ordinals α and even α ≤ ωck
1 + 1, the question whether Pα =

NPα ∩ co-NPα is already settled by Theorem 2, and we summarize the situa-
tion here.

Theorem 10 Pα 6= NPα ∩ co-NPα whenever ω + 2 ≤ α < ωck
1 . Equality is

attained at ωck
1 and its successor with

Pωck

1

= NPωck

1

∩ co-NPωck

1

= ∆1
1 = Pωck

1
+1 = NPωck

1
+1 ∩ co-NPωck

1
+1 .

Proof: For α < ωck
1 we know by Corollary 9 that Pα is a proper subset of Pωck

1

,
which by Theorem 2 is equal to NPωck

1
∩ co-NPωck

1
= NPα ∩ co-NPα. So none of

the earlier classes Pα are equal to NPα ∩ co-NPα; but at the top we do achieve
the equalities Pωck

1
= NPωck

1
∩ co-NPωck

1
and Pωck

1
+1 = NPωck

1
+1 ∩ co-NPωck

1
+1

because by Theorem 5 these are both instances of the identity ∆1
1 = Σ1

1∩Π
1
1.

Corollary 9 and Theorem 10 show that the class ∆1
1 of hyperarithmetic

sets is ramified by the increasing hierarchy ∪α<ωck
1

Pα in a way similar to the

traditional hyperarithmetic hierarchy ∆1
1 = ∪α<ωck

1
∆0

α, and one can probably
give a tight analysis of the interaction of these two hierarchies.

We now prove that the pattern of Theorems 2 and 10—where the classes
NPα are identical for α in the range from ω + 2 up to ωck

1 + 1—is mirrored
higher up, within any contiguous block of clockable ordinals. It will follow
that Pα is properly contained in NPα ∩ co-NPα within any such block of
clockable ordinals. We subsequently continue the pattern at the top of any
such block, by proving that Pβ = NPβ ∩ co-NPβ for the ordinal β that begins
the next gap in the clockable ordinals.
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Theorem 11 If [ν, β) is a contiguous block of infinite clockable ordinals,

then all the classes NPα for ν + 2 ≤ α ≤ β + 1 are identical. Consequently,

all the corresponding classes co-NPα for such α are identical as well.

Proof: Since the sequence of classes NPα is nondecreasing, it suffices to
show NPβ+1 ⊆ NPν+2. Suppose B ∈ NPβ+1, so that there is an algorithm e
such that ϕe(x, y) halts on every input in in time less than β, and x ∈ B if
and only if there is y such that ϕe accepts (x, y). Since ν is clockable, there
is a program q0 such that ϕq0(0) takes exactly ν steps to halt.

Consider the algorithm which on input (x, z) checks, first, whether z codes
a model Mz of KP containing x in which the computation ϕq0(0) halts and
there is a y ∈Mz such that ϕe accepts (x, y); and second, verifies that Mz is
well-founded up to νMz , the length of the clock computation ϕq0(0) in Mz .
If both of these requirements are satisfied, then the algorithm accepts the
input, and otherwise rejects it.

If x ∈ B, then there is a y such that ϕe accepts (x, y), and so we may
choose z coding a fully well-founded model Mz that is tall enough to see
this computation and ϕq0(0). It follows that (x, z) will be accepted by our
algorithm. Conversely, if (x, z) is accepted by our algorithm, then the corre-
sponding model Mz is well-founded up to ν. Since the well-founded part is
admissible and no clockable ordinal is admissible, Mz must be well-founded
beyond the length of the computation ϕe(x, y) (which is less than β), since
all the ordinals in [ν, β) are clockable. Therefore, Mz will have the correct
(accepting) computation for ϕe(x, y), and so x ∈ B. Thus, our algorithm
nondeterministically decides B. And as before, since ν is inadmissible, this
algorithm will either discover ill-foundedness below ν, halting in time at most
ν, or else halt at ν with well-foundedness up to νMz = ν. So B ∈ NPν+2, as
desired.

The corresponding fact for co-NPα follows by taking complements.

Corollary 12 Pα 6= NPα ∩ co-NPα for any clockable ordinal α ≥ ω + 2,
except possibly when α ends a gap in the clockable ordinals or is the successor

of such a gap-ending ordinal.

Proof: If α ≥ ω + 2 is clockable but is neither a gap-ending ordinal nor
the successor of a gap-ending ordinal, then there is an infinite ordinal ν <
ν + 2 ≤ α such that [ν, α] is a contiguous block of clockable ordinals. By
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Theorem 11, the classes NPξ are identical for ν + 2 ≤ ξ ≤ β + 1, where β is
the next admissible beyond α. Since by Corollary 9 the corresponding classes
Pξ increase at every clockable limit ordinal in this range and are subsets of
NPξ ∩ co-NPξ, it follows that Pα ( NPα ∩ co-NPα.

Corollary 13 In particular, P≤α 6= NP≤α ∩ co-NP≤α for any infinite clock-

able ordinal α.

Proof: This is an instance of the previous theorem, because P≤α = Pα+2

and α + 2 is neither a limit ordinal nor the successor of a limit ordinal.

Because of the possible exceptions in Corollary 12 at the gap-ending or-
dinals, we do not have a complete answer to the following question.

Question 14 Is Pα 6= NPα ∩ co-NPα for any clockable ordinal α ≥ ω + 2?

The first unknown instances of this occur at the first gap-ending ordinal
ωck
1 + ω and its successor ωck

1 + ω + 1. Thus, we don’t know whether

Pωck
1
+ω = NPωck

1
+ω ∩ co-NPωck

1
+ω,

nor do we know whether

Pωck
1
+ω+1 = NPωck

1
+ω+1 ∩ co-NPωck

1
+ω+1 .

A related question concerns the gap-starting ordinals and their successors,
such as ωck

1 and ωck
1 + 1, where we have proved the equalities

Pωck
1
= NPωck

1
∩ co-NPωck

1
and Pωck

1
+1 = NPωck

1
+1 ∩ co-NPωck

1
+1 .

We will now show that this phenomenon is completely general, appealing to
the following unpublished results of Philip Welch.

Lemma 15 ([Wel, Lemma 2.5]) If α is a clockable ordinal, then every ordinal

up to the next admissible beyond α is writable in time α + ω.

Theorem 16 ([Wel, Theorem 1.8]) Every ordinal beginning a gap in the

clockable ordinals is admissible.
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This latter result is a converse of sorts to [HL00, Theorem 8.8], which es-
tablishes that no admissible ordinal is clockable. It is not the case, however,
that the gap-starting ordinals are exactly the admissible ordinals below λ,
because admissible ordinals can appear in the middle of a gap. To see that
this phenomenon occurs, observe that the suprema of the writable and even-
tually writable ordinals are both admissible, with no clockable ordinals in
between, and this situation reflects downwards into an actual gap, because
an algorithm can search for accidentally writable admissible ordinals having
no clockable ordinals in between, and halt when they are found.

Theorem 17 Suppose that β begins a gap in the clockable ordinals. Then

Pβ = NPβ ∩ co-NPβ. Furthermore, if β is in addition not a limit of non-

clockable ordinals, then Pβ = Pβ+1 = NPβ+1 ∩ co-NPβ+1.

Proof: Let us suppose first that β begins a gap in the clockable ordinals,
but is not a limit of non-clockable ordinals, so that there is some ν < β such
that [ν, β) is a contiguous block of clockable ordinals. Since ν is clockable, it
follows by Lemma 15 that there is a real u coding ν that is writable in time
ν + ω, which is of course still less than β. We claim that β = ωu

1 . To see
this, observe that since β is admissible, Lβ has the computation producing u
and so u ∈ Lβ. Consequently, β is u-admissible and so ωu

1 ≤ β. Conversely,
since u codes ν and there are no admissible ordinals in [ν, β), it follows that
β ≤ ωu

1 , and so β = ωu
1 .

Next, we relativize Theorem 10 with respect to an oracle for u, concluding
that P u

ωu

1

= NPu
ωu

1

∩ co-NPu
ωu

1

= ∆1
1(u) = P u

ωu

1
+1 = NPu

ωu

1
+1 ∩ co-NPu

ωu

1
+1, where

the superscript indicates the presence of an oracle for u. But since u is
writable in time ν +ω < β by Lemma 15, we can simulate such an oracle by
simply taking the time first to write it out. By admissibility, ν + ω + β =
β, and so this preparatory step will not cause any ultimate delay in our
calculations. Therefore, Pβ = P u

β , NPβ = NPu
β and co-NPβ = co-NPu

β, and
the same for β+1. We conclude that Pβ = NPβ ∩ co-NPβ = ∆1

1(u) = Pβ+1 =
NPβ+1 ∩ co-NPβ+1, as desired.

It remains to consider the case of gap-starting ordinals β that are limits
of gaps. In this case, β is a limit of ordinals ξ that begin gaps but are
not limits of non-clockable ordinals (they begin the “successor” gaps), and
consequently by the previous paragraph satisfy Pξ = NPξ ∩ co-NPξ = Pξ+1 =
NPξ+1 ∩ co-NPξ+1. Because Pβ is the union of the nondecreasing sequence of
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classes Pξ for ξ < β, and the same for NPβ and co-NPβ, it follows that

Pβ =
⋃

ξ<β

Pξ =
⋃

ξ<β

NPξ ∩ co-NPξ = (
⋃

ξ<β

NPξ) ∩ (
⋃

ξ<β

co-NPξ) = NPβ ∩ co-NPβ,

and so the proof is complete.

Corollary 18 In particular, Pλ = NPλ ∩ co-NPλ, where λ is the supremum

of the clockable ordinals.

More generally, we ask for a characterization of these exceptional ordinals.

Question 19 Exactly which ordinals α satisfy Pα = NPα ∩ co-NPα?

Just for the record, let us settle the question for the classes Pω and Pω+1,
as well as Pn for finite n, which are all trivial in the sense that they involve
only finite computations. The class Pω concerns the uniformly finite com-
putations, while Pω+1 allows arbitrarily long but finite computations. The
class Pn for finite n concerns computations having at most n− 2 steps. Ob-
serve that P0 = P1 = ∅ because computations have nonnegative length, and
P2 = {R, ∅ } because a computation halts in 0 steps only when the start state
is identical with either the accept or reject states. Infinite computations first
appear with the class Pω+2.

Theorem 20 For the classes corresponding to finite computations:

(i) Pn = NPn = co-NPn for any finite n. Consequently, Pn = NPn ∩ co-NPn.

(ii) Pω = NPω = co-NPω. Consequently, Pω = NPω ∩ co-NPω.

(iii) Pω+1 = ∆0
1, NPω+1 = Σ0

1 and co-NPω+1 = Π0
1. Consequently, Pω+1 =

NPω+1 ∩ co-NPω+1.

Proof: For (i), observe that the computations putting a set in Pn, NPn or
co-NPn are allowed at most n − 2 many steps, and so the sets they decide
must depend on at most the first n−2 digits of the input. But any such set is
in Pn, because if membership in A ⊆ R depends on the first n−2 digits of the
input, then there is a program which simply reads those digits, remembering
them with states, and moves to the accept or reject states accordingly. So
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Pn = NPn = co-NPn. Claim (ii) follows, because Pω =
⋃

n Pn =
⋃

n NPn =
NPω.

For (iii), observe that a set B is in Pω+1 if x ∈ B can be decided by
a Turing machine program that halts in finitely many steps. Since this is
precisely the classical notion of (finite time) computability, it follows that
Pω+1 = ∆0

1, the recursive sets of reals. If B ∈ NPω+1, there is an algorithm p
such that ϕp(x, y) halts in finitely many steps on all input and x ∈ B if and
only if there is a y such that ϕp accepts (x, y). Thus, x ∈ B if and only if
there is a finite piece y ↾ n such that ϕp accepts (x, y ↾ n), where the piece
is long enough that the algorithm never inspects y beyond n bits. Since this
has now become an existential quantifier over the integers, we conclude that
B ∈ Σ0

1. Conversely, every set in Σ0
1 is clearly the projection of a set in ∆0

1,
so we conclude NPω+1 = Σ0

1. By taking complements, co-NPω+1 = Π0
1.

Returning our focus to the infinite computations, let us now consider the
case of ordinals that are not necessarily clockable. Our first observation is
that the key idea of the proof of Theorem 1—the fact that one could easily
recognize codes for ωω or any other recursive ordinal—generalizes to the
situation where one has only nondeterministic algorithms for recognizing the
ordinals in question.

Definition 21 An ordinal α is recognizable (in time ξ) when there is a
nonempty set of reals coding α that is decidable (in time ξ). The ordi-
nal α is nondeterministically recognizable (in time ξ) if there is a nonempty
set of codes for α that is nondeterministically decidable (in time ξ).

If α is nondeterministically recognizable in time ξ, then the set woα of all
reals coding α is nondeterministically decidable in time ξ, because a real is
in woα if and only if there is an isomorphism from the relation it codes to
the relation coded by any other real coding α.

Lemma 22 If an ordinal α is nondeterministically recognizable in time ξ,
then hα ∈ NP≤ξ ∩ co-NP≤ξ.

Proof: Suppose that α is nondeterministically recognizable in time ξ, so
there is a nonempty set D of codes for α that is in NP≤ξ. We may as-
sume both α and ξ are at least ωck

1 . Consider the algorithm that on input
(p, u, v, w) checks, first, that u codes a linearly ordered relation on ω with
respect to which v codes the snapshot sequence of ϕp(p), showing it to halt,
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and second, that (u, w) is accepted by the nondeterministic algorithm decid-
ing D, verifying u ∈ D. If p ∈ hα, then the computation ϕp(p) halts in fewer
than α many steps, and so we may choose a real u ∈ D coding α, along with
a real w witnessing that u ∈ D, and a real v coding the halting snapshot se-
quence of ϕp(p), so that (p, u, v, w) is accepted by our algorithm. Conversely,
if (p, u, v, w) is accepted by our algorithm, then because (u, w) was accepted
by the algorithm for D, we know u really codes α, and so the snapshot se-
quence must be correct in showing ϕp(p) to halt before α, so p ∈ hα. Finally,
the algorithm takes ξ steps, because the initial check takes fewer than ω2

steps, being arithmetic, and so the computation takes ω2+ ξ = ξ many steps
altogether. Thus, hα ∈ NPξ.

To see that hα ∈ co-NPξ, simply modify the algorithm to check that v
codes a snapshot sequence with respect to the relation coded by u, but v
shows the computation not to halt.

One can use the same idea to show that if NPα contains a set of codes
for ordinals unbounded in α, then Pα 6= NPα.

We will now apply this result to show that Pα 6= NPα ∩ co-NPα for all
sufficiently large countable ordinals α. Recall from the introduction that
λ < ζ < Σ refer to the suprema of the writable, eventually writable and
accidentally writable ordinals, respectively. The first two of these are admis-
sible, while the latter is not, and every computation either halts before λ or
repeats the ζ configuration at Σ. And furthermore, Σ is characterized by
being the first repeat point of the universal computation simulating all ϕp(0)
simultaneously.

Theorem 23 If Σ + 2 ≤ α, then Pα 6= NPα ∩ co-NPα. In fact, the class

NP≤Σ ∩ co-NP≤Σ contains a nondecidable set, the halting problem h.

Proof: The proof relies on the following.

Lemma 23.1 Σ is nondeterministically recognizable in time Σ.

Proof: The model-checking algorithm of [HW03, Theorem 1.7] essentially
shows this, but let us sketch the details here. By results in [Wel00], the
ordinal Σ is the first stage at which the universal computation (simulating
ϕp(0) for all programs p) repeats itself. Consider the algorithm which on
input (x, y) checks whether x codes a relation on ω and y codes a model
My |= “KP + Σ exists” containing x and satisfying the assertion that the
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order type of x is ΣMy . If y passes this test, then the algorithm counts-
through the relation coded by x to verify that it is well-founded. If all these
tests are passed, then the algorithm accepts in the input, and otherwise
rejects it. If the well-founded part ofMy exceeds the true Σ, thenMy will have
the correct value for Σ, and the algorithm will take exactly Σ many steps. If
the well-founded part of My lies below Σ, then this will be discovered before
Σ and the algorithm will halt before Σ. Finally, because Σ is not admissible,
the well-founded part of My cannot be exactly Σ, and so in every case our
algorithm will halt in at most Σ many steps. And since the acceptable
x have order type Σ, this shows that woΣ, the set of reals coding Σ, is
nondeterministically decidable in Σ steps, as desired.

By Lemma 22, it follows that hΣ ∈ NP≤Σ ∩ co-NP≤Σ. But since Σ is
larger than every clockable ordinal, it follows that hΣ = h, the full lightface
halting problem. So we have established that if Σ + 2 ≤ α, then the halting
problem h is in NPα ∩ co-NPα. Since h is not decidable, it cannot be in Pα.
So Pα 6= NPα ∩ co-NPα.

This establishes Pα 6= NPα ∩ co-NPα for all but countably many α. We
close this section with another definition and an application.

Definition 24 An ordinal α is nondeterministically clockable if there is an
algorithm p which halts in time at most α for all input and in time exactly α
for some input. More generally, α is nondeterministically clockable before β
if there is an algorithm that halts before β on all input and in time exactly
α for some input.

Such an algorithm can be used as a clock for α in nondeterministic compu-
tations, since there are verifying witnesses making the clock run for exactly
the right amount of time, with a guarantee that no other witnesses will make
the clock run on too long.

Theorem 25 If α is an infinite nondeterministically clockable limit ordinal,

then P≤α 6= NP≤α.

Proof: By Lemma 8, it follows that hα+ω /∈ P≤α. But we claim that
hα+ω ∈ NP≤α. By Theorem 2 we may assume α > ωck

1 , because when α
is recursive hα+ω is hyperarithmetic, and hence already in NPω+2. Fix a
nondeterministic clock for α, a program e such that ϕe(z) halts in exactly α
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many steps for some z and in at most α many steps on all other input. We
will now nondeterministically decide hα+ω by the following algorithm. On
input (x, y, z), first determine whether x is some finite p. If not, then reject
the input, otherwise, check whether y codes a model My of KP containing
z and satisfying the assertion that ϕe(z) halts, with ϕp(p) halting at most
finitely many steps later. Since this is an arithmetic condition on y, it can
be checked in fewer than ω2 many steps. Next, assuming that these tests
have been passed successfully, we verify that the model My is well-founded
up to what it thinks is the halting time of ϕe(z), which we denote αMy . If
ill-foundedness is discovered, we reject the input. By flashing a master flag
every time we delete what is the current smallest (in the natural ordering of
ω) element still in the field, we can tell at a limit stage that we have finished
counting, and when this occurs, we accept the input.

Let’s argue that this algorithm accomplishes what we want. First of all, if
p ∈ hα+ω, then ϕp(p) halts before α+ω and there is a real z such that ϕe(z)
halts in α steps and a real y coding a fully well-founded model My |= KP in
which these computations exist. So the previous algorithm will accept the
input (p, y, z). Conversely, if the algorithm accepts (p, y, z) for some y and
z, then the corresponding model My is well-founded up to the length of the
computation ϕe(z), which is at most α because the computation ϕe(z) in
My agrees with the actual computation as long as the model remains well-
founded. It follows that model is also well-founded for an additional ω many
steps, and so the model is correct about ϕp(p) halting before α + ω. So the
algorithm does nondeterministically decide hα+ω.

It remains to see that the algorithm halts in at most α many steps on all
input. Since ωck

1 ≤ α, it follows that ω2 + α = α, and so the initial checks
of those arithmetic properties do not ultimately cause any delay. The only
question is how many steps it takes to check the well-foundedness of My up
to αMy . If My is well-founded up to αMy , then this takes exactly αMy many
steps (as the count-through algorithm is designed precisely to take β steps
to count through a relation of limit order type β), and this is at most α.
If My is ill-founded below αMy , then this will be discovered exactly ω many
steps beyond the well-founded part of My, and so the algorithm will halt in
at most α many steps. Lastly, the well-founded part ofMy cannot be exactly
α, because α is not z-admissible. So in any case, on any input the algorithm
halts in at most α many steps.
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This argument does not seem to establish that P≤α 6= NP≤α ∩ co-NP≤α for
such α, however, because one cannot seem to use a nondeterministic clock
in this algorithm to verify that a computation ϕp(p) has not halted. The
problem is that a prematurely halting nondeterministic clock might cause
the algorithm to think that ϕp(p) does not halt in time α + ω even when it
does, which would lead to false acceptances for the complement of hα+ω.

6 The Cases of P f and P++

Let us turn now to the question of whether P f = NPf ∩ co-NPf , where
f : R → ord. A special case of this is the question of whether P++ =
NP++ ∩ co-NP++, because P++ = P f1, where f(x) = ωx

1 +ω+1. We consider
only functions f that are suitable, meaning that f(x) ≤T f(y) whenever
x ≤T y and f(x) ≥ ω + 1.

Many of the instances of the question whether P f = NPf ∩ co-NPf are
actually solved by a close inspection of the arguments of [HW03], though the
results there were stated only as P f 6= NPf . The point is that the model-
checking technique of verification used in those arguments is able to verify
both positive and negative answers.

But more than this, the next theorem shows that the analysis of whether
P f = NPf ∩ co-NPf , at least for sets of natural numbers, reduces to the
question of whether Pα = NPα ∩ co-NPα, where α = f(0) + 1. And since
the previous section provides answers to this latter question for many values
of α, we will be able to provide answers to the former question as well, in
Corollaries 27 and 28.

Theorem 26 For any suitable function f and any set A of natural numbers,

(i) A ∈ P f if and only if A ∈ Pf(0)+1;

(ii) A ∈ NPf if and only if A ∈ NPf(0)+1;

(iii) A ∈ co-NPf if and only if A ∈ co-NPf(0)+1.

Proof: By suitability, f(0) ≤ f(x) for all x, and f(0) = f(n) for all natural
numbers n. Since any set in Pf(0)+1 is decided by an algorithm that takes
fewer than f(0) many steps, it follows that Pf(0)+1 ⊆ P f . Conversely, suppose
that A ⊆ ω and A ∈ P f . So there is an algorithm that decides whether x ∈ A
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in fewer than f(x) many steps. Although this algorithm might be allowed to
take many steps on a complicated input x for which f(x) may be large, we
know since A ⊆ ω that the ultimate answer will be negative unless x ∈ ω.
Thus, we design a more efficient algorithm by rejecting any input x that
does not code a natural number. Since the natural number n is coded by
the sequence consisting of a block of n ones, followed by zeros, the sequences
that don’t code natural numbers are precisely the sequence of all ones, plus
those containing the substring 01. While continuing with the algorithm to
decide A, our modified algorithm searches for the substring 01 in the input,
and also turns on a flag if 0 is encountered in the input. This algorithm
decides n ∈ A in fewer than f(n) = f(0) many steps, and rejects all other
input either in finitely many steps, if the input contains 01, or in ω many
steps, if the input has no zeros. It therefore places A in Pf(0)+1, as desired.

A similar argument establishes the result for NPf and NPf(0)+1. Specifi-
cally, if A ∈ NPf , then there is a nondeterministic algorithm such that x ∈ A
if and only if the algorithm accepts (x, y) for some y. Once again, we can
modify this algorithm to reject any input (x, y) in finitely many steps unless x
codes some finite n, in which case the algorithm is carried out as before. The
result is that x ∈ A is decided in finite time unless x = n ∈ ω, in which case
it is decided in fewer than f(n) = f(0) many steps, placing A in NPf(0)+1.
The result for co-NPf and co-NPf(0)+1 follows by taking complements.

The argument of [HW03, Theorem 3.1] essentially proves the following
result, though that result is stated merely as P f 6= NPf . Here, we will derive
it as a corollary to the previous theorem and Theorem 23. Note that if
f : R → ord is suitable, then f(q) = f(0) for any finite q.

Corollary 27 If f : R → ord is suitable and f(0) > Σ, then P f is properly

contained in NPf ∩ co-NPf .

Proof: This follows immediately from Theorems 23 and 26, because the
halting problem h, being a set of natural numbers and in NP≤Σ ∩ co-NP≤Σ,
must be in NPf ∩ co-NPf , but it is not decidable and consequently not in
P f .

Corollary 28 If f : R → ord is suitable and f(0) is clockable, but does

not end a gap in the clockable ordinals, then P f is properly contained in

NPf ∩ co-NPf .
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Proof: By Theorem 26, the sets of natural numbers in P f and NPf ∩ co-NPf

are exactly those in Pα+1 and NPα+1 ∩ co-NPα+1, respectively, where α =
f(0). Since f(0) does not end a gap in the clockable ordinals, it follows
that α + 1 is neither a gap-ending ordinal nor the successor of a gap-ending
ordinal. Therefore, by Corollary 12 there are sets of natural numbers in
NPα+1 ∩ co-NPα+1 that are not in Pα+1. Consequently, there are sets of nat-
ural numbers in NPf ∩ co-NPf that are not in P f .

An instance of this settles the question for P++.

Corollary 29 P++ 6= NP++ ∩ co-NP++.

Proof: This follows from Corollary 28 and the fact that P++ = P f1, where
f1(x) = ωx

1 +ω+1. By [HL00, Theorem 3.2], the ordinal ωck
1 +ω is clockable,

and consequently so is ωck
1 + ω + 1.

So the previous corollaries establish that P f 6= NPf ∩ co-NPf for many
or most functions f . But of course, we have examples of ordinals α for
which Pα = NPα ∩ co-NPα, such as α = ωck

1 or α = ωck
1 + 1. If f is the

constant function f(x) = ωck
1 , then it is easy to see that P f = Pωck

1
+1 and

NPf = NPωck
1
+1, and this provides an example where P f = NPf ∩ co-NPf ,

even when P f 6= NPf . The equation P+ = NP+ ∩ co-NP+ provides another
such example.
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