A First-Order Theory of Communication and
Multi-Agent Plans

Ernest Davis* Leora Morgenstern
Courant Institute IBM Watson Labs
New York University leora@us.ibm.com

davise@Qcs.nyu.edu

May 16, 2005

Abstract

This paper presents a theory expressed in first-order logic for describing and supporting inference
about action, knowledge, planning, and communication, in an egalitarian multi-agent setting. The
underlying ontology of the theory uses a situation-based temporal model and a possible-worlds
model of knowledge. It supports plans and communications of a very general kind, both informa-
tive communications and requests. Communications may refer to states of the world or states of
knowledge in the past, present, or future. We demonstrate that the theory is powerful enough to
represent several interesting multi-agent planning problems and to justify their solutions. We have
proven that the theory of knowledge, communication, and planning is consistent with a broad range
of physical theories, despite the existence of a number of potential paradoxes.

Keywords: multi-agent planning, knowledge, communication.

1 Introduction

An autonomous agent who shares his environment with other autonomous, cooperative
agents and who wishes to make plans that involve them should be able to reason about
his own actions and their actions; his knowledge and their knowledge; his plans and their
plans; and communications of information and requests between him and them. This paper
presents a theory that integrates these various issues, and a representation of this theory in
a first-order language.

Consider the following reasoning problems:

Problem 1: Ann and Barry are sitting together. Ann knows that Barry has her cell
phone. Infer that Ann can get her cell phone back by asking Barry to give it to her.

Problem 2: Carol wishes to email David, but does not know his email address. However,
Carol knows that Emily knows David’s email address, and Emily is nearby. Infer that Carol
can email David by executing the following plan: Ask Emily for David’s email address.
When she answers, email David.

*The research reported in this paper was supported in part by NSF grant IIS-0097537.

Problem 3: A warehouse is manned by a collection of robots, one on each floor. There
is an elevator (actually, perhaps, more like a dumbwaiter) used for moving packages from
one floor to another. The robots can communicate by radio. Each robot can carry out the
following actions: call for the elevator; load a package on the elevator; unload a package
from the elevator; communicate a fact to another robot; or broadcast a request to all the
other robots.

In the starting situation, a particular robot, called the “hero”, wants to get a particular
package labelled bl. He knows that it is on some other floor, but he does not know where.
Infer that the following plan will result in the hero having b1:

I will broadcast the following request:
If you have package b1, then {
call the elevator;
when the elevator arrives, load b1;
announce that bl is on the elevator; }
When I know that bl is on the elevator, I will call the elevator;
When the elevator arrives, I will unload bl off the elevator.

Our objective in this paper is to develop a representation language in which problems like
the above can be expressed and a theory in which inferences like the above can be justified.

The domain described in our theory is complex, and our theory combines a number of
pre-existing theories and adds some original elements:

e The theory of time and action is an adaptation of McDermott’s temporal logic [17].
e The theory of knowledge is a standard possible-worlds semantics.

e The theory of planning and of knowledge preconditions for plans follows Moore [18, 19]
as extended by Davis [8].

e The theory of informative actions and their relation to knowledge follows our previous
work in [9, 10].

e The theory of requests and commitments is original here.

The development of our theory is guided by the following considerations:

Expressivity. We wish our representation language to be as expressive as possible, in
two senses: First, the language in which we (the external reasoners) represent knowledge
about the agents and their plans should be as broad as possible. Second, the language in
which the agents themselves communicate information and requests should be as broad as
possible.

Our language supports both the representation and communication of information and
requests involving physical states, knowledge states, and informative communications in
the past, present, and future. It supports the representation of information about plans,
requests, and commitments and it supports plans that incorporates requests. It does not,
however, support the communication by agents of information about plans and requests;
this is a gap that we hope to fill in later work.

Modularity: We have proven that our theory of knowledge, communication, and plan-
ning is compatible with almost any causal, physical theory over discrete time. This is made
precise in the statement of Theorems 12 and 14 (section 9).

Minimality. In general, we wish to make as few unnecessary assumptions as possible;
that is, to keep the theory as weak as possible. In particular, we have tried to avoid making
closed-world assumptions, such as positing that the only events that occur are those required
by the plan. In a few cases, we have violated this principle, using strong assumptions where
weaker assumptions would suffice, for the sake of simplifying the analysis.

Monotonicity. We have used a monotonic logic, specifically first-order logic. The main
motivation for this choice was just simplicity of analysis; assembling a complex theory is
difficult enough without adding the well-known difficulties of plausible inference. The above
principle of minimality also contributed to this decision. Non-monotonic theories work by
filling gaps in a theory; it is difficult to get them to fill only the gaps that need to be filled
without making many additional unnecessarily strong assumptions. Probabilistic theories
in general require, first, the assignment of rather arbitrary numbers as base probabilities;
second, the adoption of strong and often implausible independence assumptions to enable
the determination of complex probabilities.

Of course, the use of a monotonic logic has its own drawbacks. First, there is a loss of
realism. In almost all real cases, predictions of the behavior of other agents are plausible
rather than deductive inferences. As we shall see, forcing these inferences into the Pro-
crustean bed of monotonic inference necessarily involves doing some violence to reality and
to common sense. Second, we cannot achieve our aims without making some closed-world
assumptions, and such assumptions as we do make are, of course, made absolutely, whereas
a non-monotonic theory makes these assumptions only provisionally.

Egalitarianism. The problem of multi-agent planning is much simpler and much less
interesting, if we assume there is one boss, and that the other agents immediately carry out
his requests. Indeed, such a theory is hardly a multi-agent theory at all; the only agent with
true choice is the boss, and the rest are just automata. In the theory developed here, any
agent can make a request of any other agent, and the latter will make a sincere effort to
carry it out.

This principle is, of course, on a very different level from the first three; it is a particular
type of multi-agent theory, rather than a general methodological choice. It has many rami-
fications for our theory development, some favorable, others more problematic. On the one
hand, it increases the importance of the minimality assumption. Certainly, in an egalitarian
theory, we cannot assume that the other agents are immediately available to carry out a
request; they may be busy with their own affairs or with someone else’s request, and the
state of the world may change while they are doing this. The planner himself may have to
be busy at times with someone else’s requests. Both the specific plan and the axiomatic
theory of plans must be formulated in a way that accommodates this.

On the other hand, the requirement that the social theory be egalitarian jibes rather
awkwardly with the need to prove that these plans will work. It is hard to see, in an egali-
tarian theory, why the hero of problem 3 should be certain of getting the package; suppose
someone else requests the same package simultaneously? Indeed, to achieve monotonicity,
we will be required, both to impose a rather restrictive protocol on how agents decide to
service requests, and to posit that the hero owns package bl and therefore gets to say what
is done with it. Egalitarian societies do not have fewer rules than despotic ones, just fairer
rules. Ultimately, though, the fundamental mode of interaction in egalitarian societies is not
through making requests and acceding to requests; it is through negotiation and bargaining
[14]. The analysis in this paper, however, does not attempt to deal with the complex issues
involved in negotation. Rather it focusses on a rather special case, though an important

one, in which a cooperative society has been established so that an individual request does
not require a specific quid pro quo.

A number of further strikes against our theory should also be noted. First, the theory
of requests is highly idealized. The actual rules of social and personal interaction that
determine, in human intercourse, whether person A can reasonably request B to do P and
whether he can be confident that B will in fact do as requested are immensely complex,
and depend on the social relation of A and B; their personal relation if any; the ease with
which B can do P; the previous interactions of A and B (making one request is different
from making a hundred requests); and so on. We have not modeled any of this. Rather, we
have invented a highly idealized protocol that is devised to enable the target inferences to
be justified while keeping the theory consistent.

Second, we only allow agents to request other agents to carry out specified plans, not to
achieve specified goals. Our theory of plans is very general, so this is not quite as burdensome
as it may seem; nonetheless, it certainly does lead to a rather micromanaging style of agent
interaction. We hope to remove this restriction in future work, but major technical issues
need to be resolved to do so.

Third, in order to avoid inconsistencies, our language excludes a number of types of
communications that intuitively would seem to fall into the same category as the above
examples. For example, in problem 1, after Ann has asked Barry to return her cell phone,
she cannot then tell Charley that she will be getting her cell phone back. All that she is
allowed to say is that she has asked Barry to give it back to her, and that if Barry does so,
then she will have it. Not that our theory forbids her to say that she will have the cell phone;
rather, there is no syntactically well-formed way, in our representation language, that she
can even express that she will have her phone. We, using the language, can express it, but
she cannot. This will all be explained in detail in section 8.

Despite these major limitations, we believe that this work is important for the following
reasons:

e The language of requests is, in important respects, the most general that has been
developed among theories that have a well-defined semantics and that have been proven
consistent.

e It is reasonable to expect that it will be found possible to extend our language of
requesting plans to a more expressive language of requesting goals.

e The protocol we define, though idealized, is a first approximation at a theory of agent
interaction, and for some problems will suffice. As more realistic theories of general
human interactions and of constrained interactions in specific contexts (e.g. client-
server models for Web interactions) are developed, the same language of requests can
still probably be used with little change. Our theory of requests here can probably
serve as the basis or template for the new theory, though this would by no means be
a plug-and-play operation.

Section 2 of this paper describes pre-formally how we develop an egalitarian multi-agent
protocol, in such a way that plans can be guaranteed to succeed. Sections 3 through 6
develop the the representation and axiomatization of, respectively, time, events and actions;
knowledge; speech acts; and multi-agent plans, incorporating our protocol. Section 7 shows
how problems 1, 2, and 3 above can be expressed in our representation language. Section
8 deals with formulating comprehension axioms for fluents and plans. This requires some

care, so that, on the one hand, you allow for very general communication of information and
requests, and, on the other hand, you avoid potential inconsistencies analogous to Russell’s
paradox. Section 9 presents a theorem that our theory of knowledge, communication, and
planning is consistent with a wide range of physical theories. Section 10 reviews the related
literature. Section 11 presents our conclusions. Appendix A discusses the differences between
the theory of time, knowledge, and informative acts presented here and that presented
in [9, 10], and sketches how the proof of consistency for the theory given there can be
extended to a proof of consistency for the theory presented here. Appendix B gives a detailed
proof of the correctness of the plan in problem 3. Due to length limitations, Appendices A
and B are published on the Web (http://cs.nyu.edu/faculty /davise/commplan/commplan-
appa.pdf and commplan-appb.pdf) but not included here.

2 Protocol

In this section, we address the following problem: We want to set up our theory so that,
under suitable circumstances, if agent AR requests agent AC to carry out plan P, then AR
can be sure that AC will make an earnest attempt to carry out P if possible. We want to be
able to do this with the fewest presuppositions about what else is going on. In particular,
we do not want to rule out the possibility that other agents may make their own requests
of AC or that AC' may have his own plans to work on. We do not want to demand that
AR should know what AC' is doing, or what requests have been made of him, or what he
is working on. (We do require that AR should know that AC has no outstanding requests
from AR himself that he is still working on.) We want the theory to be egalitarian over the
agents; the problem of conflicts is trivial if all requests are issued by an autocratic boss to
underlings.

Therefore, we need a protocol for making sure that the plans, either personal or requested,
being attempted by an agent do not conflict. We put the entire burden of coordinating these
plans on the acting agent AC'; there are no constraints placed on what one agent may request
of another, except that AR may not issue two requests to AC simultaneously. (He may,
however, issue a single request of the form “Please accomplish both P1 and P2.”) However,
we give the acting agent fairly large latitude in deciding to abandon a plan if he is unable
to proceed.

Our protocol is based around two ideas: Agent AC reserves a block of time for AR,
and AR governs certain actions of AC. First, we posit that an agent AC reserves blocks
of time for each of his fellow agents. A reserved block of time has a minimum duration
“min_reserved_block”, and there is a maximum delay “max_delay” between successive blocks
reserved for the same agent. During a block that AC has reserved for AR, AC is committed
to working on whatever plan has been requested by AR, if any. Therefore, AR can be sure
that, within a time no more than delay_time, AC will give his full attention to AR’s plan
for a period of time not less than min_reserved_block. If AC cannot finish the plan by that
time, then he will continue returning to it at future time blocks that he reserves for AR
until he finishes it.

However, AR may also need to exert some more limited control to block seriously counter-
productive actions during time periods not reserved for him. What he is allowed to do is to
prohibit actions that he “governs”. In problem 3, for example, we will suppose that the hero
“owns” the package that he is trying to get, and that he therefore “governs” the actions of
loading and unloading that package. (If he does not own it, then why should we be sure that

he ends up with it in a case where another agent requests it at the same time?) Governing
an action is an exclusive relation; only one agent may govern a particular action.

At best, however, there is necessarily a brief delay between the time when the hero
decides to make the request for the package, and the time when that request is accepted by
the other agents — namely, the time that it takes to carry out the action of broadcasting
the request — and during this delay, the hero has, of course, no control whatever over what
happens. There may also be a long delay between the time that the request is broadcast and
the time when the agent who has the package can attend to it (because he has reserved the
time for the hero), and another long delay between the time when the second agent informs
the hero that the package has been loaded onto the elevator and the time when the hero can
take his attention away from jobs that he is doing for other people and actually call for the
elevator. During both of these periods, the only control that the hero has over the actions
of the other agents, or even his own actions, is to prohibit them from carrying out actions
that he governs. In particular, he can instruct the other agents not to unload the package,
since he owns it. Therefore plans in this microworld end up with something of the flavor of
Schoppers’ “universal plans” [30], with built-in contingency plans for whatever is the state
of the world when the hero or his friends can get around to working on the plan.

Plans are specified in terms of the “next_step” and “succeeds” predicates, as in [8]. The
relation “next_step(F, P, S1,52)” means that, in situation S2, F is an acceptable next step
of an execution of plan P that started in situation S1. The relation “succeeds(P,S1,S572)”
means that an execution of plan P that started in situation S1 succeeds in situation SZ.
You can define the “success” of P as any property as any property you want of the history
between S1 and SZ; e.g. “Block A is on block B in SZ,” “Agent A runs around the block
three times between S1 and SZ,” “SZ is ten years after S1, and agent A does not go
bankrupt between S1 and SZ,” and so on. This kind of specification supports an extremely
broad class of plans, subsuming many standard plan representations [8].

The next_step relation is also used, in a negative way, to represent the actions that AR
prohibits to AC' during times that AC' does not reserve for AR. A plan P must be defined
to explicitly take into account the actions that AC takes in a situation S reserved for other
agents. In general, P will permit AC to take any action other than a small number of actions
that AR governs and that he wishes to prohibit as counter-productuve for the progress of
P. All permitted actions are considered “possible next steps” of P in S. Thus, an action E
executed by AC' in a situation S is generally a “possible next step” of all the active plans.
The plan requested by the agent for whom AC' reserves S specifies E as a “possible next
step” in the positive sense: it is one of a few choices of actions that will advance the plan.
The plans requested by all the other agents also charaterize E as a “possible next step”;
indeed, each such plan defines its own “possible next steps” as any action except for the few
it wishes to prohibit. The theory does not make any formal distinction, however, between
the two cases; in either case, F is simply characterized as a “possible next step”.

Thus, in problem 1, the plan P that Ann asks Barry to carry out has the following form:
In any situation S, if you have reserved time(S) for me, and you have the phone, then the
next step of P in S is to give me the phone. If you have not reserved time(S) for me then
the next step of P in S may be any action except to give the phone to someone else.

Putting all this together, we arrive at the following rule for an agent carrying out a plan:
(Tables 17 and 18 contain the formal statement of this rule.)

Let AC be a cooperative agent who has accepted plan P from source AR in situation
S1. Suppose that AC has continued his work on P up to situation S2. Then the following

possibilities obtain in S2:

1. In 52, AC is engaged in some action. Then he continues that action.
2. In S2, AC knows that plan P has succeeded. Then he need do nothing more with P.

3. In 52, AC is idle, and AC does not know that P has succeeded (usually because P
has not yet succeeded.)

3.1. AC has reserved the time of situation S2 for AR.

An action E is said to be an executable continuation of P if AC knows that E is
a next step of P, is possible, and is not governed by A3 # AR.

3.1.1. If there exists an executable continuation of P, then AC' executes some exe-
cutable continuation of P.

3.1.2. If there does not exist an executable continuation of P, then AC' may abandon
P. (This is abandonment condition 1.)

3.2 AC has not reserved the time of situation S2 for AR. Then P may prohibit AC
from carrying out E only if AR governs E.

3.2.1. AC knows that the only actions that are prohibited by P are governed by
AR. Then AC may carry out any action that he knows is a next step of P
(i.e. not prohibited by P.)

3.2.2. AC does not know that the only actions that are prohibited by P are governed
by AR. (L.e. as far as AC knows, it is possible that there is an action F that
is not governed by AR and that is not a possible next step of P.) Then AC
may abandon P. (This is abandonment condition 2.)

Our protocol is quite inflexible and inefficient; for example, every agent AC reserves a
regular time-slot for every other agent AR even if AR has not made any request of AC. We
have done this in order to simplify as far as possible the logical statement of the protocol.
It would be easy to define informally a much more flexible and more efficient protocol and
we believe that most such protocols could be integrated into the axiomatization of the rest
of our theory in an analogous way without great difficulty. However, we have not done
s0, because our focus in this paper is not on protocol development and analysis but on
formalizing the theory of planning and communication. We have therefore tried to make
our protocol as simple as possible while still giving a consistent theory that can support our
target inferences. What would be very desirable, but we have not yet attained, would be
to separate the axiomatization of the protocol from the axiomatization of planning, so that
the identical axioms of planning could be used with any (reasonable) protocol.

The particular abandonment conditions have been adopted in order to simplify the proof
that the plan is executable. Abandonment condition 1 is natural enough; if the agent AC
does not know any way to continue the plan, he abandons it. Abandonment condition 2
seems over restrictive; why is it necessary that AC knows that AR governs all the actions
prohibited by plan P?7 Why does it not suffice that AC knows of some action he can do that
he can do that is not prohibited by P? The reason is AC needs to keep in mind the plans
of all the agents he is interacting with. In particular, if at a given time AC is executing
plan P1 of agent AR1, and E is a next step of P1, we need to make sure that none of the
plans that are currently on the back-burner prohibit £. Moreover, we have to ensure that,

when AR requests AC' to do P, AR can be sure that his prohibitions do not give rise to this
situation, regardless of whatever any other plans other agents have requested or will request
from AC (since AR cannot know what these are). There may be less restrictive ways of
accomplishing this, but this seems like the simplest.

3 Time

3.1 Formal notation

First, a few general rules about our formal notation. We use a sorted first-order logic. The
sort of a variable is indicated by its first letter. In almost all cases, any two different sorts
are disjoint. The one major exception is that “actions” is a sub-sort of “events”; a couple
of further minor exceptions are described in section 8. The scope of a quantifier is to the
end of the formula or of an outside close bracket. The definitional equivalence sign “="
has lower precedence than implication “=" or two-way implication “<”, which have lower
precedence than conjunction “A”; disjunction “V” or negation “—”; otherwise, precedence is
indicated with square brackets. Free variables are assumed to be universally quantified with
the whole sentence as scope. Variables are in upper case italics; other symbols are lower
case. All functions are total, over the sort of the arguments; when we have to deal with
what intuitively ought to be a partial function, we use a relation and add an axiom stating
that the relation is single-valued in its last argument.

3.2 The time structure

The temporal theory is basically that of McDermott [17] except that, for simplicity, it uses
a discrete rather than a continuous time line. We describe it here in terms of its relation to
the better-known situation calculus [16, 26]. The original version of the situation calculus
is designed for reasoning about a single agent who can choose between actions. Each action
FE is taken to be atomic, starting in a situation S and finishing in a successor situation
result(F, S). No situations occur between S and result(E,.S). The time structure reflects
the fact that the agent has a choice between actions by having it branch at S; each possible
action E gives rise to a different resulting situation S.

Our world is rather different. We have multiple agents. By the principle of making
minimal assumptions, we wish to posit that they act asynchronously; by the principle of
egalitarianism, we wish to posit that every agent can choose between actions. We do assume,
for simplicity, that there is a level of primitive, atomic (non-decomposable) actions, and,
more restrictively, that each agent is individually serial — that is, each agent can execute
only one primitive action at a time.

However, since agents are acting asynchronously, that means that if agent a2 finishes
what he was doing and must choose his next action while al is in the middle of action
el, then the time structure must split in the middle of al’s execution of el. (Figure 1).
Therefore, we cannot use a “result” function; if al starts to execute action el in situation
s0 the execution may end in any number of different situations, depending on the actions
begun by other agents while al is busy. Instead, we use a predicate “occurs(E,S1,S52)”;
action E occurs between situations S1 and S2. The constraint that an agent executes only
one action at a time is now expressed in axioms A.1 and A.2. This form of representation
was introduced in [17] and is expanded in [6].

.

O

--------------- d0(32,|oad(bl))_._“_“____,___
@

I EEITE TP PP PR PPTPTPITPRRILS do(al,call)
The event “do(al,call)” occurs, both over the interval [SP,SQ1] and over the interval
[SP,SQ2].

The time line splits at situation SM depending on whether agent a2 decides to unload
package b1l or to load package b2.

O

Figure 1: A branch in the middle of an event

Reiter [26] uses a different solution to the same problem. A single action at the intuitive
level, such as walking from home to the office, is broken formally into three parts: The
action of starting the walk, the fluent of walking as a state, and the action of ending the
walk. For most domains, the two approaches are probably isomorphic, but we think the one
here is clearer both ontologically and notationally.! Reiter’s approach has the advantage —
a critical one, in terms of his research program — of being a direct extension to the standard
situation calculus representation, and therefore more easily integrated with the large body
of theory that has been developed for that representation.

Following Reiter [26] we posit that no two agents attain a choice point simultaneously; we
call this the axiom of anti-synchrony. There are two advantages of this. The lesser advantage
is that it simplifies the physical theory; we do not have to characterize under what conditions
two agents can start two actions simultaneously. The more important advantage is that it
simplifies the theory of plan feasibility. If every choice point involves only one agent, then
we can easily locate the choices of a given agent in the time structure. If two agents A1 and
A2 reach a choice point simultaneously, then it becomes much more difficult to distinguish
the choices that are under the control of A1 from the choices that are under the control of
A2.

Other aspects of our theory are reasonably straightforward; they derive partly from our
principle of minimality and partly from convenience. For the purposes of our theory of
planning, it is useful to posit that an agent is always busy with some action. In our theory
of planning, a plan specifies what actions might be performed in a given circumstance; it
is simply awkward to allow the alternative “no action”. The theory of action provides an
action “wait” to fill up the gap when an agent does not want to be more energetically active.

One final difficulty: We wish to assume that there is an initial starting time 0t; otherwise,
the consistency proof does not work. (Time 0t does not have to be the time when the plan is
begun.) But by definition all agents must start an action in the starting situation, violating
the axiom of anti-synchrony. We get around this problem by making the starting situation
a specific exception to the axiom, and requiring that all agents begin with the action “wait”
in the starting situation, so that no problems of interaction arise then.

3.3 Metric time

Our protocol and our description of the elevator world are phrased in terms of metric time.
Our theory of metric time involves two sorts: durations, such as a minute, and clock-times,
such as “12:35 P.M. May 12, 2001.” Durations are taken to be the integers. (Axioms T.4
— T.9, T.15 of table 3). A duration can be added to a clock time to give another clock
time. For any clock-time 70, the function A(D)T'0+ D is an isomorphism from the space of
duration to the space of clock-times (Axioms T.11 — T.14). The function “time(S)” maps
a situation S to a non-negative clock-time. If £ is a time line in the branching structure of
situations — that is, £ is a maximal ordered set of situations — then the function time(-) is
an isomorphism from L to the space of non-negative clock-times (Axioms T.16-T.18).

Tn domains with continuous branching, it is possible to use the “occurs” representation [7] whereas it is
hard to see how the situation calculus could be extended to deal with these.

10

Sorts in the temporal theory: Situation (S) (= possible world), clock time (T"), duration
(D). For mathematical convenience, we allow negative durations and clock-times.

Non-logical symbols:

S1< 852,51 > 52, 51 <852, 51> 52— Predicates. The order relations on situations.
T1 < T2 etc. Predicates. The order relations on times.

D1 < D2 etc. Predicates. The order relations on durations.

D1 + D2. Function. Addition of durations.

T1+ D2. Function. Time plus duration — time.

0, 1. Constants. Duration.

0t. Constant. Time

time(S). Function situation — time.

ordered(SA, SB) — Predicate. Situations SA and SB are ordered.

Table 1: Durations, Times, Situations

Definitions:

TD.1 X1>X2=X2< XL
X1<X2=X1<X2V X1=X2.
X1>X2=X1>X2V X1=X2.
(Definition of the other order relations.)

TD.2 ordered(SA,SB)=SA< SBVSA=SBVSA>SB.

Table 2: Basic Temporal Elements: Definitions

11

Axioms:

T.1 51 <52 = (52 < S1).
(Asymmetry)

T.2 [S1<S2AS52< 83 = 51<S3.
(Transitivity)

T.3 SA<SASB < S = ordered(SA, SB).
(Forward branching)

Axioms of times and durations

T4 D1+ D2=D2+ D1

T.5 D1+ (D2+ D3) =(D1+ D2)+ D3
T6 D+0=D

T.7 Vp1 3p2 0= D1+ D2.

T.8 D1 < D2= D1+ D < D2+ D.
T.9 [D1 < D2 A D2 < D3] = D1 < D3.
T.10 D1 < D2V D2 < D1V D1 = D2.
T11 T+0="T.

T2 Ypiro 3p T1=T2+ D.

T.13 (T'+ D1)+ D2 =T+ (D1 + D2).
T14 Vrp T<T+D&0<D

T.15 Durations are integers. Axiom schema: Let ¢(D) be a formula with an open duration
variable D. Then the closure of
[6(0) A VD[(D =0) A ¢(D)]=¢(D +1)]= [Vp D > 0=¢(D)]

is an axiom.
Axioms of situations and times.
T.16 S1 < S2 = time(S1) < time(S2).
T.17 Vg time(S) > 0t.
T.18 Vg1,72T72 > 0t =3g2 ordered(S1,52) A T2=time(S52).

Table 3: Basic Temporal Elements: Axioms

12

Sort: Fluents (Q).

Non-logical symbols:

holds(S, Q) — Predicate. Fluent @ holds in situation S.

throughout(S1, 52, Q) — Predicate. Fluent @ holds throughout interval [S1, 52].
orf(Q1,Q2) — Function fluent,fluent — fluent. Either Q1 or @2 holds.
and_f(Q1,Q2) — Function fluent,fluent — fluent. Both @1 and @2 holds.
neg-f(Q)) — Function fluent — fluent. @ does not hold.

true_f — Constant. Fluent that is always true.

within(S, D, Q) — Predicate: Fluent @ will hold within time D of S.

Definitions:

FD.1 throughout(S1,52,Q) = Vs S1 < S < .52 = holds(S, Q).
FD.2 holds(S,orf(Q1,Q2)) = holds(S, Q1) V holds(S, Q2)
FD.3 holds(S,and_f(Q1,Q2)) = holds(S, Q1) A holds(S, Q2)
FD.4 holds(S,neg_f(Q)) = —holds(S, Q)

FD.5 Vg holds(S,true_f).

FD.6 within(S, D, Q) =
Ves3 [S3 > S A time(S3) = time(S)+D] = Jg2 S < 52 < S3 A holds(52, Q).

Axiom:
Comprehension axiom on fluents: See section 8.

Table 4: Fluents

3.4 Fluents

A Boolean fluent, such as “has(hero,b1)” is either true or false in any given situation. As
usual we write “holds(S,@)” to mean that fluent @ holds in situation S. (Table 4)

There is a comprehension axiom which states, roughly, that any property of situations
can be considered a fluent. Unfortunately, it can’t state exactly that, because that ends up
running into Russell’s paradox. The details of the problem and a correct statement of the
comprehension axiom will be discussed in section 8.

3.5 Unbounded Intervals

If the time structure is discrete, there is not much to be gained by including bounded
intervals as ontological entities; any property of the bounded interval [S1, S2] can be stated
as a property of the two situations S1,52. (In the English exposition, it will sometimes be
smoother to talk about the interval [S1, 52].) However, this does not apply to intervals that
are unbounded above, which we will call “u-intervals”; these cannot be specified in terms of
any finite number of situations. We will need unbounded intervals because plans in a general
planning language can go into an infinite loop, and this behavior can only be adequately
described in terms of unbounded time intervals. The axioms governing u-intervals are given

13

Sort: U-intervals.

Non-logical symbols:
elt(S, I) — Situation S lies in u-interval I.

Axioms:

L1 elt(S1,I) A elt(S2,I) = ordered(S1, 52).
(Totally ordered)

1.2 elt(S1,1) A elt(S2,1) A S1 < S < 52 = elt(S, I).
(No gaps)

1.3 V[1)12 [VS elt(S,Il) = elt(S, 12)] = 11 =12.
(Extensionality)

1.4 VI,SI dgo elt(S2,I) A ﬁ(SQ < Sl)
(Unbounded above)

1.5 (Schema) Let ¢(S) be a formula with an open situational variable S. Then
[0(51) A [Vs d(S) = Fs2 5 < 52 A ¢(52)]|=

3 S1 = start(I) A [Vs elt(S, 1) = T2 S < S2 A ¢(52) A elt(52,1)]

(Comprehension axiom for u-intervals unbounded above. If ¢ holds in S1 and every
occurrence of ¢ is followed by a later occurrence of ¢, then there is an u-interval
(unbounded above) starting in S1 in which ¢ occurs infinitely often.)

Table 5: U-Intervals: Axioms

in table 5. This includes a comprehension axiom 1.5 that states, intuitively, that all the
u-intervals that ought to exist actually do exist.

3.6 Actions, Events, Actionals

An action is an entity like “do(hero,unload(b1))”. An occurrence of an action takes place
from a starting situation to a later ending situation. An action has a single actor. As
discussed above, actions are atomic and mutually exclusive in the sense that an agent carries
out exactly one action at a time.

The category of events (event types) is a supercategory of actions. (This is the one
major case in our theory where two sorts are not disjoint.) An occurrence of an event takes
place from a starting situation to an ending situation. Events need not be associated with a
single actor, need not be atomic, and need not be mutually exclusive. In this paper, we use
events chiefly to encode abstract or partial characterizations of speech acts, as described in
section 5.

The second argument “unload(bl)” of an action term like “do(hero,unload(bl))” is, so
to speak, an action unanchored from the particular agent. For want of a better name, we
call this kind of term an “actional”.

”

14

Sort: Event
Non-logical symbols:
occurs(E, S1,52) — Predicate. Event E occurs from S1 to S2.

leads_towards(E, S1,52) — Event FE in situation S1 leads towards S2. (See discussion in
the text.)

feasible(E, S) — Predicate. Event E can occur beginning in situation S.

Definitions:
EVD.1 leads_towards(E, S1,SZ) = Jg2 occurs(E, S1,.52) A ordered(S2,5Z) A S1 < SZ.
EVD.2 feasible(E, S) = g2 occurs(E, S, 52).

Axiom:

EV.1 occurs(E, S1,52) = S1 < S2.
(Directionality. Note there are no instantaneous events.)

Table 6: Events

One predicate that we will find particularly useful is “leads_towards(E, S1,.52)”, defined
in definition EVD.1, table 6. What this means is that there is a time line containing
situations S1 and S2 and containing an occurrence of E that starts in S1. S2 may be either
during the occurrence of F or after the completion of E. For example, in figure 1, the action
“do(a2,load(b1))” leads from SM towards SQ1; the action “do(a2,unload(b2))” leads from
SM towards SQ2.

Tables 6, 7, and 8 give the axioms for events, actions, and actionals.

15

Primitive actions are a sub-sort of events. A primitive action is associated with a unique
actor. When one action finishes, another begins. An agent A does one action at a time;
that is, for any situation S, either A is in the middle of some action in S, or S marks the
end of one action and the beginning of the next. Of course, the action may be “wait”.

Sorts: Actions (F), actionals (Z), agents (A).

Non-logical symbols:

do(A4, Z) — Function: agent, actional — action.

action(F, A) — FE is a primitive action of agent A.

choice(A, S) — In S, A has just finished one action and must choose his next action.
engaged(E, A, S) — Predicate. Agent A is engaged in action F in S.

wait — Constant. Actional of waiting.

Definitions:

AD.1 engaged(E, A, S) = action(E, A) A Jg1,52 S1 < S < 52 A occurs(E, S1, 52).
AD.2 choice(A, S) = time(S) # 0t A Iz 1 occurs(do(4, Z),S, S1).

AD.3 action(E, A) = 3z F = do(4, Z).

Table 7: Primitive actions: Definitions

Axioms:

A.1 Va 51,52 choice(A,S1) A S1 < S2 = T} action(E, A) A leads_toward(F, S1, S2).
(In every branch of the time structure out from a choice point S1, agent A executes
exactly one action E. That action can be waiting, of course.)

A.2 V4 g choice(A4,S) & Tz 51 occurs(do(4, Z),51, 5).
(Choice points for agent A occur when A has completed an action do(A, Z).)

A3 do(Al,Z1)=do(A2,Z2) = Al = A2 N Z1 = Z2.
(Unique names axiom for actions.)

A4 [choice(Al,S) A choice(A42,5)] = Al = A2.
(Axiom of anti-synchrony: No two agents are at a choice point at the same time.)

A5 V4,5 choice(A, S) = feasible(do(4,wait), S).
(At a choice point, an agent can always choose to wait.)

A6 time(S0)=0t A occurs(do(4, Z),50,51) = Z=wait.
(Initially, all the agents begin by waiting.)

A.7 Unique names axioms over actionals.

Table 8: Primitive actions: Axioms

16

4 Knowledge

As first proposed by Moore [18, 19] and widely used since, knowledge is represented by
identifying temporal situations with epistemic possible worlds and positing a relation of
knowledge accessibility between situations. The relation k_acc(A4, S, SA) means that situa-
tion SA is accessible from S relative to agent A’s knowledge in S; that is, as far as A knows
in S, the actual situation could be SA. The statement that A knows ¢ in S is represented
by asserting that ¢ holds in every situation that is knowledge accessible from S for A. As
is well known, this theory enables the expression of complex interactions of knowledge and
time; one can represent both knowledge about change over time and change of knowledge
over time.

Again following Moore [19], the state of agent A knowing what something is is expressed
by using a quantifier of larger scope than the universal quantification over accessible possible
worlds. For example, the statement, “In situation s1, John knows who the President is” is
expressed by asserting that there exists a unique individual who is the President in all
possible worlds accessible for John from s1.

Jx Vs14 koacc(john,s1,51A4) = holds(S1A,president(X)).

For convenience, we posit an S5 logic of knowledge; that is, the knowledge accessibility
relation, restricted to a single agent, is in fact an equivalence relation on situations. This is
expressed in axioms K.1, K.2, and K.3 in table 9. Three important further axioms govern
the relation of time and knowledge. (These are discussed at greater length in [9].)

K.4. Axiom of memory: If A knows ¢ in S, then in any later situation, he remembers that
he knew ¢ in S.

K.5. A knows all the actions that he has begun, both those that he has completed and
those that are ongoing. A also knows what actions are feasible for him now. In terms
of possible worlds, this is expressed by stating that if SB is accessible from SA and
action F occurs on a time line containing SA and starts no later than SA then E also
occurs on a time line containing S B, and the relation between SA and the start and
end times of FE is the same as the relation between SB and the start end end times of
E.

K.6 Knowledge accessibility relations do not cross in the time structure.

Our theory also includes common knowledge. A set of agents U has common knowledge
of ¢ if they all know ¢, they all know that they all know ¢ and so on. We represent this by
defining a further accessibility relation, “ck_acc(U, S, SA)” (SA is accessible from S relative
to the common knowledge of U). This is defined as the transitive closure of links of the form
k_acc(A,-,-) where A is in U. (Of course, transitive closure cannot be exactly defined in a
first-order theory; axioms CK.1 and CK.2 define an approximation that is adequate for our
purposes.)

Finally, extending Moore’s theory, we say that agent A knows how to accomplish event
FE in situation S if there exists an atomic action E'1 such that A knows that executing E'1
will accomplish F; that is the execution of E1 in any situation knowledge accessible from
S entails the occurrence of E. (Table 11.) For example, taking “Dialing a sequence of
numbers” to be an atomic action, we can say that Sam knows how to call Margaret if there
is a sequence S such that Sam knows that dialing S constitutes calling Margaret.

17

<. precedes

Axiom K.6 prohibits this structure.

Figure 2: Axiom K.6

Non-logical symbols:
k_acc(4,SA,SB) — SB is accessible from SA relative to A’s knowledge in SA.

Axioms:

K.1
K.2
K.3

K.4

K.5

K.6

V4,54 keacc(A, SA,SA).
k_acc(A,SA,SB) = k.acc(A, SB,SA)

k_acc(A,SA,SB) A k.acc(A4,SB, SC) = k.acc(A,SA, SC).

(K.1 through K.3 suffice to ensure that the knowledge of each agent obeys an S5 logic:
what he knows is true, if he knows ¢ he knows that he knows it; if he doesn’t know ¢,
he knows that he doesn’t know it.)

[k_acc(A, S2A,S2B) A S14A < S24] =

ds15 S1B < S2B A k_acc(A4, S14, S1B).

(Axiom of memory: If agent A knows ¢ at any time, then at any later time he knows
that ¢ was true.)

[occurs(do(A4, Z),S1A4,52A) A STA< SA A

ordered(SA4, S2A) A k.acc(A,SA,SB)| =

ds1B,s2B occurs(do(A4, Z),S1B, S2B) A

S1IB< SB A

[S24 < SA = S2B < SB] A

[S2A = SA = S2B=SB| A

[SA < S2A = SB < S2B| A

[S1A=SA = S1B = SB]

(An agent knows which actions he has completed, which actions he has begun, and
which actions are now feasible.)

—34,514,51B,524,52B
S1A < S2A A S1B < 52B A k.acc(A, S1A,52B) A k.acc(A, S2A, S1B).
(Knowledge accessibility links do not cross in the time structure (Figure 2).)

Table 9: Axioms of Knowledge

18

Sort: Set of agents (U).

Non-logical symbols:
AeU — Agent A isin set U.

{ A1... Ak } — Outfix function. The set of agents containing Al ... Ak.

ck_acc(U, SA,SB) — SB is accessible from SA relative to the common knowledge of all
agents in U.

Axioms:

CK.1 ck.acc(U,SA,SB) <
[3a4 A€ U A koacc(4,SA,SB)] vV
ck_ace(U,SB,SA) v
ds¢ ckoace(U, SA, SC) A ck_ace(U, SC, SB))].
Definition of ck_acc as a equivalence relation that includes the k_acc links for all the
agents in U.

CK.2 (Induction from k_acc links to ck_acc links.) Let ®(S) be a formula with a free situa-
tional variable S. Then the closure of the formula

Yu [VA,SA,SB AeUN (I)(SA) AN k_acc(A, SA,SB) = (I)(SB)] =
Vsa,sB ®(SA) A ck_acc(U, SA, SB) = ®(SB)].

is an axiom.

CK.3 Ae{Al... Ak} & [A=AlV...A= Ak].

Table 10: Common Knowledge

Non-logical symbol:
know_how(A, E,S) — Agent A knows how to accomplish event E in situation S.

Definition:

KHD.1 know_how(A, E,S1) =
g1 action(E1, A) A
Vs14 koacc(4, S1,514) =
[feasible(F, S1A) = feasible(E1, S1A4)] A
Vg24 occurs(E1, S1A4,S2A) = occurs(E, S1A4, S2A).

Table 11: Definition of knowing how

19

In our theory, saying that A knows how to accomplish E in S does not require that E
is physically feasible in S, only that A knows what primitive action would be involved in
accomplishing E. (In fact, if A knows that E is not physically feasible in S, then by our
definition he vacuously knows how to accomplish F.)

5 Speech acts

Our theory of speech acts includes representation of a speech act at three different levels of
abstraction:

e At the locutionary level, “do(A4,utter(U, C))” is the atomic action of speaker A uttering
content C' to hearers U. (“Utter” here should be broadly construed to include any
physical medium of communication.)

e At the illocutionary level, there are four types of events:

“inform(A, U, @)” is the event of agent A informing agents U that fluent @ holds
at the time of the beginning of the utterance.

— “request(AS, AH, P)” is the event of speaker AS requesting AH to carry out plan
P.

— “broadcast_req(AS,U, R)” is the event of speaker AS broadcasting a request that
the agents in set U carry out the multi-agent plan R.

— “commit(A, P)” is the action of agent A committing to his own plan P. It turns
out to simplify the analysis if we view this as A talking to himself and asking
himself to carry out P.

e At the physical level, “communicate(AS, U)” is the event of speaker AS communicating
something to hearers U. A communicate event occurs whenever an utterance action
occurs; the primitive “communicate” just abstracts away the content. We introduce
this primitive in order to be able to isolate the interaction of the physical theory from
the theory of knowledge, communication and planning. Specifically, we posit that a
physical theory can include the primitive “communicate” but not any of the other
speech act primitives. (See section 9, definition 1.) That is, the physical preconditions
for communication and the physical effects of communication are independent of the
content being communicated; they depend only on the state of the agents.

One odd feature of our theory is that we shall say nothing more about what kind of thing
is the content of an utterance. We introduce no further primitives that use that sort in any
way. If you like, you can think of the content as the actual string or signal that is being
uttered. (In our formal semantics, it will turn out that the content of an informative act
is a fluent of a particular kind and that the content of a broadcast is a multi-agent plan.)
What is important here is that an utterance is an atomic action, since our whole theory
of planning is based on the foundation that the execution of a plan consists of a series of
atomic actions. By axioms A.1, A.2, an agent executes only one atomic action at a time.
This is not true, in general, of our other levels of descriptions of speech acts; as we shall see,
an informative utterance entails many inform events and a broadcast of a multi-agent plan
entails many request events.

20

Sorts: Content of an utterance (C).

Non-logical symbols:
utter(U, C') — Function: set of agents, content — actional.
communicate(A, U) — Function: agent, set of agents — event.

Axioms:

U.1 occurs(communicate(A, U),S1,.52) < I occurs(do(A,utter(U, C)),S1, S2).
(A communication event occurs if and only if some utterance occurs.)

U.2 occurs(communicate(4,U),S1,52) = A e U.
(By convention, an agent is always part of his own audience.)

U.3 choice(4, S) = feasible(communicate(4, {A}, 5)).
(An agent can always communicate with himself.)

Table 12: Physical axioms of communication

A multi-agent plan is an assignment of a plan to every agent. What a plan is will be
discussed in section 6.

Table 12 shows the physical axioms governing utterances and communication. Table 13
shows the axioms relating the different speech acts. Table 14 shows the axioms governing
the relation of informing and requesting to knowledge. The relation between requests and
plan execution must be deferred until after our discussion of plans.

Axioms S.1, C.1, C.2, and C.3 are presented and discussed at length in [9] in a slightly
different form.? Axiom C.2, it should be noted, precludes the possibility of AS simulta-
neously communicating N separate messages to N separate agents. This restriction could
easily be lifted, either by extending the theory of action to allow concurrent utterances, or
by introducing a new physical forms of utterance that entails separate inform events. Also,
C.2 is incompatible with many common scenarios, such as unsigned messages, open letters,
and messages sent over communication media that are unreliable or have unbounded delays.

Axiom C.3 is so peculiar that some explanation of why it is reasonable is needed here.
We begin with the following observation: in general, it is only necessary to distinguish
an occurrence of action Al from an occurrence of action A2 if they have different causal
consequences. For instance, in the blocks world, if all you are interested in is the position
of blocks, then all that matters in discriminating actions is the ending position of the block
being moved; the trajectory through which it moves is immaterial.

Now, in the case of informative acts, the causal consequence of concern is the effect on
knowledge states. The main effect of AS informing U of @ is that, when the communication
is complete, the agents in U have common knowledge that @ held at the beginning of the
communication. Therefore, if Q1 and Q2 are two informative contents such that the effects
on the common knowledge of U following a communication of Q1 from AS to U are the same
as those effects following a communication of)2, then we can treat the communication of

2That paper deals only with communication to a single hearer, not with communication to a set of
hearers.

21

Sorts: Plan (P), Multi-agent plan (R).

Non-logical symbols:

inform(A, U, Q) — Function: agent, set of agents, fluent — event.

request(Al, A2, P) — Function: agent, agent, plan — event.

broadcast_req(A4, U, R) — Function: agent, set of agents, multi-agent plan — event.
commit(A4, P) — Function: agent, plan — event.

assignment(R, A) — Function: multi-agent plan, agent — plan.

Axioms:

S.1 occurs(inform(A, U, P),S1, 52) = occurs(communicate(4, U),S1, 52).

S.2 occurs(request(Al, A2, P),S1,52) =
Ju A2 € U A occurs(communicate(Al, U),S1, .52).

S.3 occurs(broadcast.req(A, U, R),S1,52) = occurs(communicate(A, U),S1, 52).
(Axioms S.3 — S.4: inform, request, and broadcast events are types of communication.)

S.4 feasible(commit(A4, P),S) < feasible(communicate(A4, {4}, S).
(It is feasible to commit to a plan if one can communicate with oneself.)

S.5 occurs(commit(A4, P),S1,52) = occurs(request(4, A, P),51,52).
(Committing to P is requesting oneself to do P.)

S.6 occurs(broadcastreq(4,U, R),S1,52) A A2 €U =
occurs(request(A, A2 assignment(R, A2)),51, 52).
(Broadcasting a request entails requesting each of the hearers to carry out his assign-
ment.)

S.7 occurs(request(AR, AC, P),S1,52) =
[3r occurs(broadcastreq(AR, U, R) A AC € U A assignment(R, A)=P] V
[AC = AR A occurs(commit(AR, P),S1,52)].
(The only forms of requests are broadcasts and commitments. A closed-world assump-
tion.)

Table 13: Axioms of Speech Acts

22

C.1.

C.2.

C.3.

C4

C.5

C.6

feasible(communicate(AS, U),S1)] =
[V feasible(inform(AS, U, @),51) <
[Vs1a k-acc(AS, S1,S51A) = holds(S1A4, Q)]].
(If a speaker AS can communicate with hearers U, then AS can inform U of some
specific @ if and only if A knows that @ holds at the time he begins speaking.)

Vs1,92,524 [occurs(inform(AS, U, Q),S1,52) A ck.acc(U, 52, 524)] =

Js14 occurs(inform(AS, U, Q),S1A, S2A).
(If AS informs U of @ from S1 to S2, then in 52, the agents in U have common
knowledge that AS has informed them of Q.)

occurs(inform(AS, U, Q1),51, 52) =
[occurs(inform(AS, U, Q2),51, 52) <

[Vs1a ckoacc(U, S1,51A4) = [holds(S14,Q1) < holds(S1A4, Q2)]]].
(If AS informs U of Q1 over [S1,52] and the common knowledge of U in S1 implies
that holds(S1, Q1) < holds(S1, Q2), then AS has also informed U of Q2 over [S1, S2].
Conversely, the two events inform(AS, U, Q1) and inform(AS, U, Q2) co-occur only if
Q1 and Q2 are related in this way.)

Vas,u,Q,s know_how(AS inform(AS, U, @Q),S).
(An agent always knows how to express any content that he wishes to communicate.)

V4 r,s feasible(communicate(AS, U),S) = feasible(broadcast_req(AS, U, R),S).
(If AS can communicate with hearers U then AS can broadcast to U a request for any
multi-agent plan.)

Vas,u,r,s know_how(AS broadcast_req(AS, U, R),S).
(An agent always knows how to express any multi-agent plan that he wishes to broad-
cast.)

Table 14: Axioms of Communication and Knowledge

23

Q1 and the communication of Q2 as the same action; they, so to speak, attain the same
end state via different trajectories. And a sufficient condition to ensure this is that U has
common knowledge at the start of the communication that @1 and Q2 are equivalent.

For example, if Jack and Jane share the knowledge that George Bush is the President
and that 1600 Pennsylvania Avenue is the address of the White House, then the action of
Jack informing Jane that Bush is at the White House is identical to the act of Jack informing
Jane that the President is at 1600 Pennsylvania Avenue. If they do not share this knowledge,
then these two acts are different.

As we will discuss in section 8, the purpose of this rather convoluted formulation is to
ensure that the overall theory is consistent; it turns out that simpler and more natural
formulations lead to inconsistencies.

6 Plans

We now have the foundations on which to develop the main point of this paper, the theory
of multi-agent plans. The informal theory is rather complex, and we develop it in five stages.
First, we discuss how a plan P is specified. Second, we define four key predicates on plans:

1. Agent AC executes plan P from S1 to S2.
2. Agent AC executes plan P deliberately from S1 to S2.

3. Agent AC executes plan P deliberately from S1 to S2, following the protocol described
in section 2.

4. Agent SA knows in situation S that he can execute P successfully, assuming that all
agents follow the protocol.

6.1 Specifying a plan

In our theory, any plan P has a unique actor AC=actor(P), and an execution of P consists
of the performance of a sequence of actions of AC.

A plan P is specified in terms of two predicates. First, “next_step(F, P, S1,52)” as-
serts that E is a possible next step in S2 of an instance of plan P begun in S1. Second,
“succeeds(P, S1,.52)” asserts that plan P, begun in S1, terminates successfully in S2. (This
does not, of course, mean that plans in practice have to be written in terms of these two
predicates, any more than programs have to be written in machine language. One can define
a higher-level planning language whose semantics are defined in terms of “next_step” and
“succeeds”, just as one can define a higher-level machine language, which is translated into
machine language.) A few examples:

Example 1 Consider a blocks world situation s1 where A, B, C, and D are on the table,
and where agent Joe has the goal, “on(A,B) and on(C,D).” The plan pl=*“put A on B; put
C on D” can be defined by the following axioms:

Vg, s2 next_step(E,pl,s1,52) <
[[S2 =s1 = E=do(joe,put_on(a,b))] A
[occurs(do(joe,put_on(a,b)),s1,52) = E=do(joe,put-on(c,d))]].

Vg2 succeeds(pl,s1,52) < holds(S2,0n(a,b)) A holds(52,0n(c,d)).

24

Thus, in S1, pl requires Joe to put A on B, and when that is complete, pl requires him
to put C on D. In all other situations, “next_step” is unconstrained; Joe can do what he
wants.

Example 2: In the same starting situation and with the same goal, let p2 be the plan, “In
either order, put A on B and put C on D.” Plan p2 can then be defined by the following
axioms:

VEg,s2 next_step(E,pl,s1,52) <
[[S2 =s1 = [E=do(joe,put_on(a,b)) V E=do(joe,put-on(c,d))]] A
[occurs(do(joe,put_on(a,b)),s1,52) = E=do(joe,put-on(c,d))] A
[occurs(do(joe,put-on(c,d)),s1,52) = E=do(joe,put_on(a,b))]].

Vg2 succeeds(pl,s1,52) < holds(S2,0n(a,b)) A holds(52,0n(c,d)).

Example 3: In the same starting situation, suppose the goal is “Get A on B within an
hour,” and it is known that any single action takes at most one minute. Let p3 be the
following plan:

If there are less than two minutes left in the hour and A is not yet on B, then
put A onto B. (We have to allow two minutes: The first so that the agent can
complete whatever other action he is working on, the second to complete the
action of putting A on B.) Otherwise, do whatever you want, except that, if A
is not on B, then don’t put anything onto A or anything other than A onto B.

We can formalize this plan as follows:

Vg, s2 next_step(E,p3,s1,52) <

[time(S2) — time(sl) > 58*minute = E=do(joe,put-on(a,b)) | A
[time(S2) — time(sl) < 58*minute =

[Vx E #do(joe,put-on(X,a) A [Vy E =do(joe,put_on(Y,b)) = Y=all|

V2 succeeds(p3,s1,52) < time(S2) < time(sl) + hour A holds(S2,0n(a,b)).

We can now define the successful execution of a plan: Agent AC begins the execution
of plan P over the interval [S1,S52] if at every choice point SM for AC between S1 and
S2, AC carries out an action that is a possible next step for P. (In this definition, saying
that AC “begins the execution of P” does not necessarily imply that AC will be able to
complete P.) Agent AC successfully executes P over [S1,52] if he begins P over [S1,52]
and P succeeds over [S1, 52].

6.2 Deliberate execution of a plan

Agent AC knowingly or deliberately executes plan P over interval [S1,52] if (1) at every
choice point SM between S1 and S2, AC carries out an action that he knows to be a
next step of P in SM; and (2) AC knows that P succeeds over [S1,52]. (In the spirit of
our theory of knowledge, “knows” here means just “can in principle deduce from what he
knows”. There is no implication that AC' is thinking about P or is interested in P.)

The distinction between simple execution and deliberate execution embodies our theory
of knowledge preconditions, discussed at greater length in [8]. Suppose that Mary’s phone
number is 546-9845 but that Sam does not know this; i.e. there are worlds that are knowledge
accessible for Sam in which Mary has a different phone number. Sam can execute the plan

25

“Dial Mary’s phone number” because dialing 546-9845 is a physically possible action, but he
cannot deliberately execute the plan, because he does not know that this action constitutes
an execution of the plan. Formally, there is no action F that is a next step of the plan in
all possible worlds that are knowledge accessible for Sam.

6.3 Following the Protocol

To impose our protocol, we need to consider the source AR of plan P as well as its actor.
Recall that, in our protocol, AC reserves certain time slots for AR. During a time reserved
for AR, AC will work on P as long as P does not require him to carry out an action governed
by someone other than AR. During a time not reserved for AR, the only constraint that
P may impose is that AC refrain from actions governed by AR. It is the responsibility of
the requestor AR to formulate P in a way that satisfies the protocol; otherwise, AC' may
abandon P.

For example, consider the starting situation and the goal of Example 1. Suppose that
AR governs manipulations of the blocks, but AC' is the only agent with physical access to
the blocks. Then AR can request that AC carry out the following plan:

When you are at a choice point at a time reserved for me:
if block A is not on B then put A on B
else if C is not on D then put C on D.

At any other time, do anything you want with the following exceptions:
Do not put anything on A or C; do not put anything other than A on B; do not
put anything other than C on D; do not take A off B.

If AC is working on P and he arrives at a choice point when the time is reserved for
AR, but every feasible action that he knows to be a next step of P is governed by some
actor other than AR, then AC abandons P (abandonment condition 1). If the time is not
reserved for AR and AC is not certain that every feasible action prohibited by P is governed
by AR, then AC abandons P (abandonment condition 2). Otherwise, AC carries out some
action that he knows to be a next step of P.

The protocol insures that AC' can always accommodate requests from any number of
different agents. It does not, however, deal with conflicts between two different requests
from a single agent. To take care of this, we posit a rule that AC need only accept one
request at a time from AR; that is, if AC is still working on one request of AR in situation
S, he may ignore any new request of AR that he received in S.

The following predicates are used to describe execution of the plan within the protocol:

The predicate exec_cont(F, P, AC, AR, S1,52) asserts that F is a next step in situation
52 of the execution, within our protocol, of plan P with actor AC and source AR beginning
in S1, where time(S2) is reserved by AC for AR.

The predicates abandonl(P, AC, AR, S1,52) and abandon2(P, AC, AR, S1,52) are the
two abandonment conditions. The predicate terminates(P, AC, AR, S1,52) characterizes
the situation S2 in which AC may quit working on P; either AC' knows in S2 that the plan
has succeeded or one of the abandonment conditions holds.

The predicate begin_plan(P, AC, AR, S1,52) asserts that AC begins the execution of P
over the closed interval [S1, S2] following the protocol. The predicate completes(P, AC, AR, S1,52)
asserts that AC' completes the execution of P over interval [S1,.52] following the protocol.

26

The predicate working_on(P, AC, AR, S1, 52) asserts that AC' is working on P at the re-
quest of AR beginning in S1 and continuing through S2. The predicate accepts_req(P, AC, AR, S1)
asserts that in S1, AC accepts the request that he work on P. Axiom Q.5 asserts that AC
is working on P if AC accepted a request to work on P and AC has begun work on P but
not finished it. Axiom Q.6 asserts that, if AC' is not working on some other request of AR’s
in S1 and AR request him to work on P, then he will accept the request. Thus, axioms Q.5
and Q.6 cause “accepts_req” and “working_on” to be mutually recursive working backward
through time.

6.4 Cooperative agents and multi-agent plans

Since the time structure includes all physically possible actions of agents, the description
of an agent as cooperative is construed as a property of a time interval rather than of the
agent. Over the time structure as a whole, there are intervals in which an agent does what
he is requested and those in which he does not; the theory singles out the former for special
interest. We say that agent A is cooperative up to S if the following holds: for any SM
before S, if A accepts a request in SM then he attempts to carry it out over some interval
[SM,SN], where SN and S are on the same time line. Moreover if SN < S, then A’s
attempt terminates in SN either because he achieves the request or because he encounters
one of the protocol’s abandonment conditions.

We say that situation S is socially possible, notated soc_poss(S), if all agents are cooper-
ative up to S. An unbounded interval I is socially possible, notated soc_poss_int(I), if every
situation in I is socially possible.

We now arrive at our objective. Agent AC can successfully execute plan P in situation
S0, notated “executable(P, AC, S0)”, if the following holds: Suppose that AC' commits to
P over the interval [SO,S1] where S1 is socially possible. Let I be any socially possible
u-interval following S1. Then P completes in I. In other words, if AC works on his plan
and all other agents cooperate, then the plan will be successfully completed.

27

Sorts: Plans (P).
Non-logical symbols:
actor(P) — Function: plan — agent.

next_step(E, P, S1,52) — Predicate. Action E in situation S2 is a possible next step in
the carrying out of P starting in S1.

succeeds(P, S1,52) — Plan P starting in situation S1 terminates successfully in situation
S2.

know_next_step(F, P, A, 51,52) — A, the actor of P, knows in S2 that
next_step(E, P, S1,.52).

know_succeeds(P, A, 51,52) — A, the actor of P, knows in S2 that P starting in S1
succeeds in S2.

Definitions:

PD.1 know_next_step(E, P, A, S1,52) =
A=actor(P) A feasible(E, S2) A
Vs14,524 [k-acc(A,52,52A) A k.acc(A,S1,514) A S1A < S24] =
next_step(E, P, S1A, S2A)

PD.2 know_succeeds(P, 4, S1,52) =
Vs14,524 [k-acc(A, S2,52A) A k_acc(A, S1,S1A4)] = succeeds(P, S1A4,S2A)

Axioms:
P.1 next_step(E, P, S1, S2) = action(E,actor(P)).

P.2 Comprehension axiom on plans. See section 8.

Table 15: Planning

28

Non-logical symbols:

Note: In all the primitives below, AC' is the agent carrying out the plan, and AR is the
agent who requested the execution of the plan.

governs(AR, E) — Agent AR “governs” action E.

reserved (T, AC, AR) — Time T is in a block reserved by AC to carry out plans whose
source is AR.

reserved_block(T, AC, AR, D) — The time interval from T to T + D is reserved by AC for
plans of AR.

min_reserve_block, delay_time — Constant durations. Agent AC must reserve time blocks
of length at least min_reserve_block separated by no more than delay_time. (See axiom Q.2)

working on(P, AC, AR, S1,52) — In S2, AC is still working on a previous request P of
AR’s, accepted in S1.

accepts_req(P, AC, AR, S1) — At time S1, AC accepts request P from AR.

exec_cont(F, P, AC, AR, S1,52), abandonl(P, AC, AR, 51, 52),
abandon2(P, AC, AR, S1,52) — As defined on page 26.

begin_plan(P, AC, AR, S1,52) — Predicate. AC begins plan P in interval [S1,S2] at the
request of AR.

completes(P, AC, AR, S1,57) — Plan P is completed in the interval [S1, SZ].

attempt_toward(P, AC, AR, S1,52) — An attempt of AC to carry out P begins in S1 and
proceeds on the timeline leading toward S2.

soc_poss(S) — All agents behave according to social norms up to S.
soc_poss_int(I) — All agents behave according to social norms throughout u-interval I.
executable(P, AC, S) — Plan P is executable by agent AC in situation S.

know_achievable(Q, P, AC,S) — Agent AC knows in S that he can achieve @) through the
execution of P.

Table 16: Multi-agent plans: Primitives

29

Definitions:

QD.1 reserved_block(T, AR, AC, D) =
V1 T <T1<T+ D = reserved(T1, AC, AR).

QD.2 exec_cont(E, P, AC, AR, S1,52) =
choice(AC, S2) A reserved(time(S2),AC, AR) A know_next_step(E, P, AC, S1,52) A
—Ja32ar governs(A3, E).

QD.3 abandonl(P, AC, AR, S1,52) =
choice(AC, S2) A reserved(time(S2),AC, AR) A —3g exec_cont(FE, P, AC, AR, S1,52).

QD.4 abandon2(P, AC, AR, S1,52) =
choice(AC, S2) A —reserved(time(S2),AC, AR) A
g action(E, AC) A —governs(AR, E) A —know_next_step(F, P, AC, S1, 52).

QD.5 terminates(P, AC, AR, S1,52) =
know_succeeds(P, AC, S1,52) V abandonl(P, AC, AR, S1,52) v
abandon2(P, AC, AR, 51, 52)

QD.6 begin_plan(P, AC, AR, S1,52)=
S1 <82/
Vou S1<SM < 52 =
[~terminates(P, AC, AR, S1,SM) A
[choice(AC, SM) =
3g know_next_step(E, P, AC, S1,SM) A leads_towards(F, SM, S2)]].

QD.7 completes(P, AC, AR, S1,57) =
begin_plan(P, AC, AR, S1,5Z) A know_succeeds(P, AC, S1,57)

QD.8 attempt_toward(P, AC, AR, S1,52) =
begin_plan(P, AC, AR, S1,52) V
Jg3 S1 < 83 < S2 A begin_plan(P, AC, AR, S1,.53) A terminates(P, AC, AR, 51, 53).
(52 lies in a time-line in which AC attempts to execute P starting in S1.)

QD.9 soc_poss(S1) =
Vpac.arsp SP < S1 A accepts_req(P, AC, AR, SP) =
attempt_toward(P, AC, AR, SP, S1).

QD.10 soc_poss_int(I) = Vg elt(S,I) = soc_poss(S5).

QD.11 executable(P, AC, S0) =
Vs1,1 [socposs_int(I) A elt(S1,I) A occur(commit(AC, P)),S0,51)] =
g2 €lt(S2,I) A completes(P, AC, AC, S1,52).

QD.12 know_achievable(Q, P, AC, S1) =
Vs1a koacc(AC, S1,S514) =
[executable(P, AC, S1A) A Vsza completes(P, AC, AC,S1A,SZA) = holds(SZ A, Q)].

Table 17: Multi-agent plans: Definitions

30

Axioms:

Q.1 reserved(T, AC, AR1) A reserved(T, AC, AR2) = AR1 = AR2.
(Any time is reserved for at most one agent.)

Q.2 Yac,ar,r 31 T1 < T+delay_time A reserved_block(T'1, AR, AC min reserve_block).
(At any time T one can be sure that, within time delay_time, there will be a block of
time that AC reserves for AR of length at least min_reserve_block.)

Q.3 governs(AR1, Z) A governs(AR2,Z) = AR1 = AR2.
(At most one person governs any given action Z.)

Q.4 —governs(AR,do(AC,wait)).
(No one governs the action of waiting.)

Q.5 working_on(P, AC, AR, S0,S51) <
accepts_req(P, AC, AR, S0) A begin_plan(P, AC, AR, S0, S51) A
—terminates(P, AC, AR, S0, S1).
(In S1, AC has not finished a plan P that he accepted from AR earlier.)

Q.6 accepts_req(P, AC, AR, S) <
g2 occurs(request(AR, AC, P),52,5) A
—3pp.so PB # P A working on(PB, AC, AR, 50, S).
(Agent AC accepts plan P from AR in S if there are no outstanding requests from
AR.)

Q.7 accepts_req(P, AC, AR, S) A k.acc(AC, S, SA) = acceptsreq(P, AC, AR, SA).
(Agent AC knows when he has accepted a request.)

Table 18: Multiagent Plans: Axioms

31

Non-logical symbols:

instance(E1, F2,S): Predicate. Event F1 is an instance of event E2 in situation S.
opportunity(S2, AC, AR, Q): Predicate. See text.

first_opportunity(S1, AC, AR, S0, Q): Predicate. See text.

max_action_time: Duration constant.

Definitions:
MD.1 instance(F1, E2,S5) =34 action(E1, A) A [Vg2 occurs(E1, S, S2) = occurs(FE2, S, S2)].

MD.2 opportunity(S1, AC, AR, Q) =
choice(AC, S1) A reserved(time(S1),AC, AR) A holds(S1, Q).

MD.3 first_opportunity(S1, AC, AR, S0,Q) =
S0 < S1 A opportunity(S1, AC, AR, Q) A
—Jgnp S0 < SM < S1 A opportunity(SM, AC, AR, Q).

Axiom:

M.1 Va4,zs1,52 occurs(do(A4, Z),51,52) = time(S2) < time(S1) + max_action_time
Table 19: Useful abbreviations in plan statement

7 Examples

We now return to the examples in section 1, and show how the plans are represented in our
language.

In representing plans, the following defined predicates will be useful. An utterance action
A is an instance of speech act E in situation S if the execution of A starting in S entails
the concurrent occurence of E. Situation S1 is an opportunity for agent AC to react to a
circumstance @ (a fluent) mentioned in a request of agent AR if S1 is a choice point for
AC, AC has reserved S1 for AR and @ holds in S1. We also have a predicate stating that
S1 is the first opportunity of this kind following S0. The constant max_action_time is the
maximum time needed for any primitive action. (Table 19.)

7.1 Problem 1

Ann and Barry are sitting together. Ann knows that Barry has her cell phone. Infer that
Ann can get her cell phone back by asking Barry to give it to her.

Representation: Let sO be the starting situation. The plan p.1.1 that Ann requests
Barry to carry out is as follows: As soon as Barry reaches a time that he has reserved for
Ann, he should give her the cell phone. In the meantime, he may do whatever he likes
except giving it to someone else. His part is complete when he no longer has the cell phone.
Symbolically,

Vg, s2 next_step(F, p.1.1, s0, S2) <
action(F,barry) A
[[reserved(time(S2),barry,ann) A has(barry,cellPhone)] =
E=do(barry,give(cellPhone,ann))] A

32

[-reserved(time(S2),barry,ann) =
—Jax AX #ann A E =do(barry,give(cellPhone, AX))].

Vg2 succeed(p.1.1,barry,52) < —holds(52,has(barry,cellPhone)).

Ann’s plan p.1.2 is that, at her first opportunity, she will request Barry to give her the
cell phone. The plan succeeds when she has the cell phone.

Vg, s2 next_step(F,p.1.2,80,52) <
action(F,ann) A
[first_opportunity(52,ann,ann,s0,true) =
instance(F,request(ann, {barry}, p.1.1), S2)]

Vg2 succeeds(ann,s0,52) < holds(52,has(ann,cellPhone)).

To justify the inference that Ann knows that this plan is feasible and achieves the goal
— that is, to prove the proposition “know_achievable(has(ann,cellPhone),p.1.2,ann,s0)” —
the domain theory and problem specification must include the following constraints, or
something similar. It should be emphasized, since it is the whole point of defining this
complex and restrictive protocol, that this proof establishes that the plan is correct regardless
of whatever other plans Ann and Barry are involved in, whatever any other agents are doing,
and whatever other requests are made.

e X can give O to Y if X and Y are nearby and X has O.

e Ann knows that Barry is nearby and will remain so for at least the time period 2 x
delay_time + max_action_time. (Ann may be delayed for delay_time before she can
make the request; then max_action_time may pass before the request is complete; then
delay_time may pass until Barry can act on her request.)

e The only way to cease to have an object is to give it to someone else.
e A person knows whether or not he has the cell phone.

e Ann is physically able to communicate to Barry.

e Barry is not currently working on some previous request of Ann’s.

e The trickiest part is actually to ensure that Barry does not give away the cell phone
to someone else until Ann has been able to finish speaking her request. There are
a number of ways in which this can be kludged; perhaps the simplest is to specify
physical axioms that guarantee that no other agents will be nearby during that delay.

7.2 Problem 2

Carol wishes to email David, but does not know his email address. However, Carol knows
that Emily knows David’s email address, and Emily is nearby. Infer that Carol can email
David by executing the following plan: Ask Emily to tell me David’s email address. After
she answers, email David.

33

Representation: Assume that the term “eaddress(A, X)” denotes the fluent® of X
being A’s email address and that the function “email(AR, X,C)” denotes the actional of
emailing content C' to recipient AR at address C. Let sO be the starting situation.

The plan p.2.1 that Emily is supposed to carry out is that, at her first opportunity, she
should tell David’s address to Carol. The plan is complete when this is done.

Vg, s2 next_step(F,p.2.1,80,52) <
action(F,emily) A
[first_opportunity(S2,emily,carol,S1,nearby(emily,carol)) =
Jx instance(F,inform(emily,{emily,carol},eaddress(X ,david)),S2)].

Vg2 succeeds(p.2.1,80,52) <
Jsa.sB,x,5 SB <582 A occurs(E, SA,SB) A
instance(E,inform(emily,{emily,carol } ,eaddress(X ,david)),S A).

The condition (fluent) q.2.1 that Carol knows David’s email address is represented:

Vs holds(5,q.2.1) &
Jdx Vga k.acc(carol,S, SA) = holds(SA,eaddress(X ,david)).

Carol’s plan p.2.2 is (a) to request Emily to carry out p.2.1; (b) to email David content
c0 at her first opportunity when q.2.1 is satisfied. (Note that she has to wait until a time
that she has reserved for her own plans.) The plan succeeds when she has emailed David.

Vg, s2 next_step(F,p.2.2,50,52) <
action(F,carol) A
[first_opportunity(S2,carol,carol,s0,truef) =
instance(F,request(carol,emily,p.2.1),52)] A
[first_opportunity(52,carol,carol,s0,q.2.1) =
Jx holds(S2,eaddress(X,david)) A E=do(carol,email(david, X ,c0))].

Vg2 succeeds(p.1.1,80,52) <
Jsa.sp,x s0 < SA < SB < 52 A occurs(do(carol,email(david, X ,c0)),5 A, SB).

To prove this plan correct requires the following assumptions, in addition to those listed
in the problem specification.

e It is universally known that email addresses don’t change (or, at least, Carol knows
that Emily knows this.)

e Carol and Emily can communicate if they are nearby.

e Carol knows that Emily will remain nearby for at least the time period max_action_time
+ delay_time.

e It is always possible to send email.

3This has to be a fluent because it is unknown, and thus varies from one epistemically possible world to
another, even if it taken to be constant over time.

34

Problem 3: A warehouse is manned by a collection of robots, one on each floor. There is
an elevator used for moving packages from one floor to another. The robots can communicate
by radio. Each robot can carry out the following actions: call for the elevator; load a package
on the elevator; unload a package from the elevator; communicate a fact to another robot;
or broadcast a request to all the other robots.

In the starting situation, a particular robot, called the “hero”, wants to get a particular
package labelled bl. He knows that it is on some other floor, but he does not know where.
Infer that the following plan will result in the hero having b1:

I will broadcast the following request:
If you have package b1, then {
call the elevator;
when the elevator arrives, load b1;
announce that bl is on the elevator; }
When I know that bl is on the elevator, I will call the elevator;
When the elevator arrives, I will unload bl off the elevator.

Representation: Tables 20 and 21 give an axiomatization for the elevator world. Ta-
bles 22, 23, and 24 give the representation of this plan.

35

Sorts: Packages (B).
Note: We conflate a robot with the floor that it is on.

Non-logical symbols:

Predicate: owns(A4, B)

Fluent functions: elevator_at(A), on_elevator(B), has(A, B).
Actional constant: call.

Actional functions: load(B), unload(B).

Duration constants:
max_elevator_wait — The longest delay between calling an elevator and its arrival.
min_elevator_open — The minimum time an elevator will wait on its floor.

Axioms

Comparative time lengths
E.1 0 < max_action_time < min_elevator_open.
E.2 0 < max_elevator_wait.

Atemporal axiom:

E.3 Vp 3} owns(4, B).
(Unique owner for each package.)

Causal axioms:
E.4 occurs(do(A4,call),S1,.52) = within(S2, max_elevator_wait, elevator_at(A)).

E.5 occurs(do(A4,load(B)),S1,52) =
Jsm S1 < SM < 52 A throughout(SM, S2,0n_elevator(B)).

E.6 occurs(do(A,unload(B)),S1,.52) = holds(52,has(A, B))
Elevator stays in place for minimum time and during other actions

E.7 holds(S,elevator_at(A)) =
Js1,92 S1 < S < 52 A time(S1) + min_elevator_open < time(S2) A
throughout(S1, S2,elevator_at(A))

E.8 occurs(do(A,load(B)),S1,52) A S1 < SM < S2 = holds(SM elevator_at(A))
E.9 occurs(do(A,unload(B)),S1,52) A S1 < SM < S2 = holds(SM ,elevator_at(A))
E.10 occurs(do(A,load(B)),S1,52) = throughout(S1, 52,0rf(has(4, B),on_elevator(B))).

E.11 occurs(do(A,unload(B)),S1, 52) =
throughout(S1, S2,0or f(has(A, B), on_elevator(B))).

Table 20: Elevator world: Part I

36

Domain constraints

E.12 holds(S,on_elevator(B)) V 34 holds(S,has(A, B))
E.13 Vs34 holds(S,elevator_at(A))

Preconditions

E.14 feasible(do(A4,load(B
choice(A4, S) A holds

~—

):S) <
S,has(A, B)) A holds(S,elevator_at(A))

B)),S) <
S,on_elevator(B)) A holds(S,elevator_at(A))

—~

E.15 feasible(do(A,unload
choice(A4, S) A holds

TN~

E.15 feasible(do(A,call),s) <
choice(A4, S) A —holds(S,elevator_at(A))

E.16 Va,u A €robots = feasible(communicate(A,robots),S).

Frame axioms: (Note: there is also a frame axiom for “elevator_at”, but it has no importance.
The frame axioms for “on_elevator” are consequences of E.17, E.18, and E.12.)

E.17 holds(S1,has(A, B)) A —holds(52,has(A, B)) A S1 < 52 =
Jg3,54 S3 < 52 A S1 < S4 A ordered(S52, 54) A occurs(do(A,load(B)),S3, 54).
(A can only cease to have B if he executes a “load” action).

E.18 —holds(S1,has(A, B)) A holds(S2has(4, B)) A S1 < S2 =
Jg3,54 S3 < 52 A S1 < S4 A ordered(S52, 54) A occurs(do(A,unload(B)),S3, 54)
(A can only come to have B if he executes a “unload” action).

Knowledge axioms:

E.19 k.acc(A, SA, SB) = [holds(SA,elevator_at(A)) < holds(SB,elevator_at(A))].
(You know whether the elevator is on your floor.)

E.20 k.acc(A, SA, SB) = [holds(SA,has(4, B)) < holds(SB,has(A, B))].
(You know whether you have a package.)

E.21 [k-acc(A, SA, SB) A holds(SA,elevator_at(A))] =
[holds(SA,on_elevator(B)) < holds(SB,on_elevator(B))].
(If the elevator is on your floor, then you know what packages are in it.)

Governance of actions

E.22 governs(AG,do(AC, Z)) < [3p owns(AG, B) A [Z=load(B) V Z=unload(B)]].
(Loading and unloading a package are governed by the owner of the package. Other
actions are ungoverned.)

E.23 V4 A €robots.
(The set ”robots” includes all the agents.).

Table 21: Elevator world: Part II

37

Constants:

ell — the hero’s plan.

r2 — the hero’s broadcast

bl — the package being sent.

max_el2b_time — maximum time needed from the start of plan el2 until every agent can be
sure that the hero has the package.

robots — the set of all robots.

Functions:

el2(A) — The task assigned to A.

ell_q1(S1,50) etc. — This is a flag used in stating the plan ell. S0 is the situation in
which the hero starts to execute plan ell. In the situation S where ell_q1(.5,S0) is true,
the hero should execute the first step of plan ell. Similarly, ell_q2(S, S0) and ell_q3(S, SO0)
are flags indicating that the hero should execute the second and third step of ell in S1;
and el2_ql(A4, S, S50), el2_.q2(4, S, 50), and el2_.q3(4, S, S0) are flags indicating that agent
A should execute the first, second, and third steps of plan el2(A).

loaded_since(B, A, T) — Fluent. Package B was loaded on the elevator, which was at A, at
some time before the present but after 7'

Table 22: Problem statement: Predicates

38

Definitions:

XD.1

XD.2

XD.3

XD.4

XD.5

XD.6

XD.7
XD.8

XD.9

XD.10

XD.11

holds(S,know_loaded(A4, B)) =
reserved_block(time(S),A4, A,max_action_time + max_elevator_wait) A
Vsa koacc(4, S, SA) = holds(SA,on_elevator(B))

ell_q1(S,50) =
first_opportunity(S,hero,hero,S0,true f).

ell_q2a(S$,50) =

first_opportunity(S,hero,hero,S0, know_loaded(hero,b1))

ell_g3(S5,50) =

first_opportunity (S, hero, hero, S0, and_f(elevator_at(hero), on_elevator(b1))).

ell_q2(S,S0) =
ell_q2a(S, S0) A ~Jga4 S0 < SA < S A ell_g3(SA, S0)

holds(S,el2_q1.f(A4)) =
holds(S,has(4, bl)) A —holds(S,elevator_at(A)) A
reserved_block(time(S), A hero,
max_action_time 4+ max_elevator_wait + max_action_time + max_action_time).

el2_ql(A, S, S0)) = first_opportunity(S, A, hero, S0,el2_q1_f(A4))

holds(S,el2_.q2_f(A)) =
holds(S,has(A4, bl)) A holds(S,elevator_at(A))) A
reserved_block(time(S),A4,hero, max_action_time + max_action_time).

el2_q2(A4, S,50) =
first_opportunity(S, A, hero, S0, el2_q2_f(A)).

holds(S,loaded since(B, A,T)) =
Jsa T <time(SA) A SA < S A holds(SA,on_elevator(B)) A
holds(S A, elevator_at(A4)) A —engaged(do(A,unload(B)),A, SA).

el2.q3(A4, S, S0) =
first_opportunity (.5, A,hero,S0,loaded since(b1,A,time(S0))).

Table 23: Problem statement: Part I

39

Axioms

X.1 succeeds(ell,S1,SZ) < holds(SZ,has(hero,bl)).

X.2 next_step(E,ell,S1,52) <
[action(E,hero) A
[el1_q1(S2, S1) = instance(E,broadcastreq(hero,robots,r2),52)] A
[el1_q2(S52, S1) = E=do(hero,call)] A
[el1_q3(52, S1) = E=do(hero,unload(bl))] A
[-ell_q1(S2,51) = —3gu instance(E,broadcast_req(hero,U, R),52)]].

X.3 actor(ell) = hero.
X.4 V4 A #hero = assignment(r2,4) = el2(A).

X.5 A #hero =
succeeds(el2(A),A,51,57) < time(SZ) > time(S1) + max_el2b_time.

X.6 A #hero =
next_step(F,el2(A4),51, 52) <
[action(E, A) A E #do(A,unload(b1)) A
[el2_q1(A, S2,51) = E=do(A4,call)] A
[el2_q2(A, S2,51) = E=do(A,load(bl))] A
e12.q3(A, 52, 51) =
instance(F,inform (A, robots, loaded_since(bl,az,time(S1))), S2)]]

X.7 min_reserve_block >
max_action_time + max_action_time + max_elevator_wait
+ max_action_time + max_action_time.

X.8 max_el2b_time > delay_time 4+ min_reserve_block + delay_time 4+ min_reserve_block.
(An upper bound on the time necessary for el2(A).)

X.9 owns(hero,bl).

X.10 soc_poss(s0).

X.11 reserved(time(s0),hero,hero).

X.12 choice(hero,s0).

X.13 Vgoa k-acc(hero,s0,504) = —3p ac,sx working on(P, AC, AR, SX,S0A).
To prove: know_achievable(has(hero,b1),ell,hero,s0).

Table 24: Problem statement : Part II

40

Appendix B contains the complete, formal proof that this plan is correct; that is, that
the hero knows that it is executable and that it will end in his having the package. This
appendix is not physically included with the paper; it is available on the Web in PostScript
and PDF at

http://cs.nyu.edu/faculty /davise/elevator /commplan-appb.ps and .pdf.

A few features of this proof may be described here.

Overall, the proof begins with proving some general lemmas about time, actions, plans,
and so on. It then proves that if all the agents receive request el2(A), then, within a certain
time period, the package will be on the elevator and the hero will be informed that the
package is on the elevator. It then proves that, if the hero executes plan p.3.1, then, within
a certain time period, the hero will have the package. The proof is pretty straightforward,
though long. Some unexpected complexity is introduced by the need to take care of cases
where things happen fortuitously; for example, if the agent with the package loads it onto the
elevator before he receives the request el2(A); if the elevator happens to come to the hero’s
floor before the package is loaded on it; and so on. In dealing with all these possibilities,
the plan starts to resemble a “universal plan” [30].

One of the lemmas in Appendix B is of some general interest. Lemma B.32 establishes
that an agent can always follow the protocol, no matter what requests he has received or what
commitments he has made. Of course, the reason for this is that the protocol is specifically
designed so that, if an agent cannot continue to execute a plan that was requested of him,
he is allowed to abandon it. But this lemma establishes that the theory is properly set up
so that the agent has an out in all possible cases of conflict between the requests he has
received and the constraints of the external world.

8 Paradoxes and comprehension axioms

Our representation of the examples in section 7 works by positing the existence of a variety of
fluents to be communicated and of plans to be broadcast, and associating constant symbols
with these. A fluent @ is defined in terms of a formula that characterizes the situations
where @ holds; a plan is characterized in terms of two formulas, one of which characterizes
the “next_step” relation and the other of which characterizes the “succeeds” relation. How
can a planner be sure that the fluent or plan so defined can exist? After all, asserting that
fluent @ exists is an assumption with substantial logical consequences: If fluent Q exists and
agent A knows that @, then A can inform other agents of @), and then they will know Q.
Thus, positing that @ exists imposes a substantial demand on the time structure. How can
a planner be sure that these demands are consistent with the other axioms? What kinds of
formulas can be used to define a fluent or a plan?

To answer this question, we will first, in this section, formulate comprehension axioms,
which characterize the types of formulas that can legitimately be used to define fluents and
plans. Then in section 9 we will assert a theorem that asserts that our theory of knowledge
and speech acts is consistent with any purely physical theory satisfying certain constraints.

In general, it is preferable for the comprehension axioms to be as inclusive as possible,
in order that the range of possible speech acts permitted to the agents should be as broad
as possible. Care is needed here, however; the domain of speech acts contains potential
paradoxes which can lead to inconsistencies if the comprehension axioms are stated too
broadly. In particular, the ability of speech acts to refer to other speech acts is potentially

41

dangerous. Agent Al can tell A2 that it is raining; he can tell A3 that he has told A2 that
it is raining; he can tell A2 that he will tell A3 that he has told A2 that it is raining. Worse,
he can tell A2 at noon that he will tell A3 at 1:00 that at noon he told A2 something; in
that case, the content of his communication at noon refers to itself.

The difficulties here manifest themselves in a number of paradoxes. We discuss three
of them below: two that are analogous to Russell’s paradox; one related to the conflict of
free will with knowledge of the future.* After presenting the paradoxes, we will present our
formulation of the comprehension axioms and show how by using these axioms and using
axiom C.3 to individuate occurrences of “inform” acts, these paradoxes can be defanged, so
that they do not lead to inconsistency in the theory.

Paradox 1: Let Q be a fluent. Suppose that over interval [S0, S1], agent al carries out
the action of informing a2 that @ holds. Necessarily, Q must hold in SO, since agents are
not allowed to lie (axiom C.1). Let us say that this communication is immediately obsolete
if @ no longer holds in S1. For example, if it is raining in s0, the event of al telling a2 that
it is raining occurs over [s0,s1], and it has stopped raining in s1, then this communication
is immediately obsolete. Now let us say that situation .S is “misled” if it is the end of an
immediately obsolete communication from al to a2. As being misled is a property of a
situation, it should be definable as a fluent. Symbolically,

holds(S,misled) =
Jg,s0 occurs(inform(al, {al,a2},@),50,5) A —holds(Q, S)

Now, suppose that, as above, in s0 it is raining; from s0O to sl, al tells a2 that it is
raining; and in sl it is no longer raining and al knows that it is no longer raining. Then al
knows that “misled” holds in s1. Therefore, (axiom C.1) it is feasible for al to tell a2 that
“misled” holds in s1. Suppose that, from sl to s2, the event occurs of al informing a2 that
“misled” holds. The question is now, does “misled” hold in s2?7 Well, if it does, then what
was communicated over [s1,s2] still holds in s2, so “misled” does not hold; but if it doesn’t,
then what was communicated no longer holds, so “misled” does hold in s2.

Paradox 2: A similar type of problem arises with the interaction between a comprehen-
sion axioms for plans and the actions of committing to plans and of broadcasting requests
for plans. Plans in our theory are defined by giving conditions on the “next_step” and “suc-
ceeds” relations, so a comprehension axiom for plans will have a form something like the
following:

Let I'(E, S0, S1) and let A(S0,S1) be formulas. Then the following is an axiom:
dp [VE750751 next_step(E, P, 50, Sl) = F(E, S0, Sl)] N
[Vso,51 succeeds(P, S0, S1) < A(S0,S1)]

That is, we can use any property expressible in the language to define “next_step” and
“succeeds” relations, and these will together define a meaningful plan. (Not necessarily, of
course, an executable or correct plan, just a well-defined plan.)

Again, however, this would lead to paradox. Let us say that I'(E, S0,51) holds if F is
the act of committing to a plan P and E is not the next step in S1 of P started at S0:

I'(E, S0,51) = dp instance(F,commit(al,P),S0) A —next_step(E, P, S0, S1).

4A fourth paradox — the unexpected hanging paradox — is discussed in [9, 10]. A complete discussion
of that paradox in terms of the theory here would be even more involved than the discussion there, but the
formal resolution of the paradox that we adopt is essentially the same.

42

Choose A however you want. Then the above axiom would say that there is a plan pl
such that next_step(F,p1,50,51) < T'(E,S0,S51). Now, let action el be an instance of
commit(al,pl) in S0; is el an acceptable next step of pl? Again, we have a paradox: el is
a next step of pl if and only if it isn’t.

The same paradox, with a couple of additional layers of wrapping, applies to the action
of broadcasting a multi-agent plan.

Paradox 3: Let pl be the following plan for actor al: “I will clap my hands at 12:01
if and only if a2 informs me by 12:00 that I will not clap my hands at 12:01.” Suppose
that over interval [s0,s1], al carries out the action of committing to pl and that a2 knows
that he has committed to pl. Let s2 be the first choice point for al after s1; suppose that
time(s2)=11:55 and that all inform acts take 1 minute. Let el be the action of a2 informing
al that he (al) will not clap his hands at 12:01. The question is, is el feasible in 2?7 On the
one hand, if el is not feasible then a2 will not carry out el, and therefore al, following pl,
will not clap his hands at 12:01. But since a2 knows that el is not feasible, and he knows
that al is committed to pl, he also knows that al will not clap his hands, so by C.1 action
el is feasible. On the other hand, if el is feasible, then it occurs over some interval [s2,s3],
and then on the time-line following s3, al following pl will clap his hands. Thus, a2 does
not know that al will not clap his hands, and therefore el is not feasible in s2.

From the above description, the reader may suspect that the problem is due to applying
a linear-time argument to a branching time model; in other words, confounding what may
happen with what will happen. Indeed, as we shall see, this suspicion is not far from our
ultimate resolution, but this contradiction can be made perfectly tight within the theory as
we have set it up, as follows:

Define fluent q1, action e1(SX), and plan pl by the following formulas:

Vs1 holds(S1,ql) <
—Jg2,53 S1 < 52 < 83 A occurs(do(al,clap),S2,.53) A time(S2)=1201 A soc_poss(S3).

instance(el(SX),inform(a2,{al,a2},q1),5X).

Vg, 51,52 next_step(E,pl,51, 52) <
[E=do(al,clap) <
[time(S52)=1201 A Jgx sy SY < 52 A time(SY) < 1200 A occurs(el(SX),SX, SY)]].

V0,51 succeeds(pl,50, 51) < time(S1)=1210.

Posit that occurs(commit(al,pl),s0,s1), time(s1)=1150, s2 > s1, choice(a2,s2), time(s2)=1155,
and that soc_poss(s2). Just to make things simple, posit also that k_acc(a2,s2,524) <
S2A=s2; i.e. that a2 is omniscient in s2. (The argument will go through without this
last assumption, but this makes the argument easier to write.) Then the contradiction goes
through as above: If el is feasible in s2, then do(al,clap) will occur in every soc_poss interval
following s2, so ql is false in s2, so el is not feasible. But if el is not feasible, then it does
not occur in any interval following s2, so do(al,clap) never occurs in any soc_poss interval
following s2, so ql is true in s2, so el is feasible.

The paradoxes here, which arise from over-powerful comprehension axioms, are closer to
Russell’s paradox than to paradoxes that arise from over-powerful syntactic theories, such
as the Liar’s paradox. Finding a formulation of the comprehension axiom which is strong
enough to support the intended application (usually mathematics) but still weak enough to

43

be consistent, is one of the major hurdles in axiomatizing set theory. Usually, the objectives
of set theory is to make the comprehension axioms as broad as possible while maintaining
the consistency of the theory. Within the scope of this paper, however, our interest is the
exact reverse; to find a reasonably simple solution that will be adequate for this class of
plans.

Our solution to Paradox 1 uses a device that, as far as we know, is original to us [10].
Our solution to Paradoxes 2 and 3 falls back on a stratified language analogous to Russell’s
theory of types [27] or Tarski’s [32] levels of language used to solve the Liar paradox.®

The solution to Paradox 1 begins with the observation that the unique names assumption
is subtly hidden in the argument. The argument presumes that if fluent Q1 # @2, and
the event inform(A1,{A1l, A2},Q1) occurs from S1 to S2 then inform(Al,{Al, A2}, Q2)
does not occur from S1 to S2. (Our English description of the argument used the phrase
”what was communicated between s1 and s2”, which presupposes that there was one unique
content that was communicated.) However, axiom C.3 specifically denies this. Therefore,
the argument collapses.

In particular, it is a consequence of our theory of time and knowledge that the clock
time is always common knowledge among all agents. (See [10] appendix A, Theorem 3).
Now, let q1 be any fluent, and suppose that inform(al,{al,a2},ql) occurs from sl to s2. Let
t1=time(sl) and let q2 be the fluent defined by the formula

Vs holds(S5,q2) < holds(S,ql) A time(S)=t1.

Then it is common knowledge between al and a2 that holds(s1,q2) < holds(s1,ql). Hence,
by axiom C.3, inform(al,{al,a2},q2) also occurs from sl to s2. But by construction g2 does
not hold in s1; hence the occurrence of inform(al,{al,a2},q2) from sl to s2 is immediately
obsolete. Therefore “misled” holds following any informative act.

Changing the definition of misled to use the universal quantifier over @, thus:

holds(S,misled) =
g0 Vg occurs(inform(al, {al,a2},@),50,5) A —holds(S, Q)

does not rescue the contradiction. One need only change the definition of q2 above to be
Vs holds(5,q2) < holds(S,ql) V time(S)#t1.
Clearly, the new definition of “misled” never holds after any informative act.

We have not found an analogous solution to paradoxes 2 and 3, so we have fallen back
on the standard device of stratifying the language. In particular, we divide the sort of
“plans” into the two subsorts “simple plans” and “complex plans,” and we posit the following
restrictions.

e Fluents and simple plans cannot refer to the language of plans, requests, or broadcasts.

e A plan may refer to simple plans but not to complex plans. It is convenient, therefore,
to divide the “commit” function into two cases: “commitl(A, P)” takes as argument
agent A and a simple plan P, and returns a speech act event whose instances may
be part of a complex plan. “commit2(A, P)” takes as argument a complex plan, and
returns an speech act events whose instances cannot be of a plan.

5Tt is possible instead to use a Zermelo-Fraenkel-like approach to this comprehension axiom. This requires
involve quantifying over entire time-structures. We have not explored the consequences of this approach, or
whether it leads to a more expressive language. Our thanks to Walter Dean for suggesting this approach.

44

This eliminates paradoxes 2 and 3. In paradox 2, the quantified variable P can only
range over simple plans, not over plans generally, whereas p1l is a complex plan. Hence the
definition

I'(E,S0,S51) = 3p instance(E,commitl(A, P),S1) A —mext_step(E, P,S0, S1).

would allow an utterance F that is an instance of commit1(al,pl) as a next step of p1, with
no circularity.

The statement of paradox 3 requires that the content of the “inform” act include the
predicate “soc_poss(S53)”; but since this predicate is defined in terms of the execution of
plans, it is disallowed in the construction of fluents. This point is worth emphasizing: In
this theory the distinction between what can happen, physically, and what will happen,
assuming that agents are cooperative, is defined in terms of the theory of plan execution; it
is not a fundamental aspect of the theory of time.

We can now give the formal statement of the comprehension axioms: Let D be a set of
domain-specific symbols, disjoint from the symbols defined in tables 1-16. For instance, in
the elevator domain, D would be { “elevator_at”, “on_elevator”, “call”, “load” } In the
blocks world, D might be { “on”, “clear”, “table”, “puton” }.

Definition 1 The language L*(D) is the first-order language containing all the sorts and
symbols defined in tables 1-10; the symbols “inform”, “communicate”, and “reserved”; and
the symbols in D.

Definition 2 The language L£L?(D) is the language containing L plus the sorts “simple_plan”
and “multi-agent plan” and the primitives “assignment”, “commitl”, “request”, “broad-
cast_req”, “next_step” and “succeeds”.

Definition 3 The language L£3(D) is the first-order language over all the symbols defined
in tables 1-16 union D, plus the symbol “commit2”, except that

o The sort “simple_plan” is defined as a subsort of “plan”. (We don’t actually need a
sort “complex_plan”.)

o The argument to “commitl” and the value of “assignment” are each restricted to be a
simple plan.

Axiom 4 (Comprehension axiom schema for fluents) Let ®(S) be a formula in £ (D)
such that S is a free variable in ® of sort “situation” and Q) does not appear free in ®. Then
the closure of the formula ‘IgV¥Vs holds(S,Q) < ®(S)” is an aziom.

Example 4: The formula “holds(S,elevator_at(A)) A holds(S,on_elevator(B))” satisfies the
conditions on ® in axiom 4. Therefore, the sentence

VA,B HQ Vs hOldS(S,Q) =
holds(S,elevator_at(A)) A holds(S,on_elevator(B))

is an axiom. That is, for any agent A and package B, there is a fluent @ corresponding to
the condition that the elevator is at A and contains B. @ can then be the content of an
“inform” act.

Example 5: The formula “Jg1 g2 S1 < 52 < S A occurs(do(A,load(B)),S1,52)” satisfies
the conditions on ® in axiom 4. Therefore, the sentence

45

VA,B HQC Vs hOldS(S,QC) <~
Js1,52 S1 < 52 < S A occurs(do(A,load(B)),S1, 52)

is an axiom. That is, there is a fluent which asserts of situation S that A has loaded B onto
the elevator prior to S.

Example 6: The formula “S1 < S2 < S A occurs(do(4,load(B)),S1,.52)” violates the
conditions of axiom 4, as it contains free variables S1 and 52 of sort “situation”. Therefore
axiom 4 does not apply. If this exclusion were not made, then an inform act could refer de
re to two particular situations S1,52 in the same way that it refers de re to agent A and
package B. It is not at all clear what such a de re reference would mean.

Example 7: Let ®(S5) be the formula

Jdg Vs2 [3E instance(E,inform(a2,{al,a2},Q),52) A occurs(E, S, S2)] =
Vsoa k-acc(al,S2,524) =
[holds(S2,0n_elevator(bl)) < holds(S2A4,on_elevator(bl))]

That is, ® holds on S if there is something that agent a2 can tell al in S which will cause al
to know whether or not package bl is on the elevator. Note that this fluent both quantifies
over fluents and refers to future informative events. Further, more natural, examples of this
kind are presented in [9].) ® satisfies the conditions of axiom 4. Therefore there is a fluent
ql such that holds(S,ql) < ®(S) and ql can be the content of an inform act. That is, for
example, a3 can inform a2 that there is something that agent a2 can tell al in S which will
cause al to know whether or not package bl is on the elevator.

Axiom 5 (Comprehension axiom schema for simple plans) LetT'(E, S0, S1) and A(S0, S1)
be formulas in L' (D) such that

1) E is a free variable of sort “action” and S1 and S2 are free variables of sort “situation”.
2) The variable PS does not appear free in T' or A.
Then the closure of the formula

Va4 3ps N so,s1 next_step(E, PS,S0,51) < action(E,A) A T'(E,S0,51)] A
Nso,s1 succeeds(PS, S0,51) < A(S0,51)]

18 an axiom. The variable PS above has sort “simple_plan”.

That is, you can use any formulas in £(D) of the appropriate sort to define the next
step and the success conditions for a simple plan for actor A.. Note that the subformulas I"
and A are in language £!(D); the axiom as a whole is in language £?(D).

Example 8: The plan pl defined on page 25 exists and is a simple plan. Define I'(E, S0, S1)
and A(S0,51) as

I'(E,S0,51) =

[[S1 =50 = E=do(joe,put_on(a,b))] A
[occurs(do(joe,put-on(a,b))S0, S1) = E=do(joe,put-on(c,d))]].
A(S0,51) =

holds(S1,0n(a,b)) A holds(S1,on(c,d)).

46

Clearly, I and A are both in the language £(D).

Then axiom 5 asserts that there exists a simple plan PS such that
next_step(E, PS, S0, S1) < action(E,joe) AT'(E, S0, S1) and succeeds(PS, S0, S1) < A(S0, S1).
Example 9: It is a consequence of axiom 5 that, for every AZ, the plan “el2(AZ)” defined
in tables 23 and 24 is a simple plan. The definitions introduced in table 23 can all be
expanded out into formulas in £'. The constant symbol “max_el2b_time” can be replaced
by an existentially quantified variable M satisfying axiom X.8. Thus axiom 5 can be applied
to assert that, for every agent AZ and duration M there exists a plan whose “next_step”
and “succeeds” relations satisfy the appropriate conditions, stated in formulas I' and A
expressed in £1(D).

Axiom 6 (Comprehension axiom schema for multi-agent plans) Let ¥ (P, A) be a
formula in L?(D) such that

1) P is a variable of sort “simple plan” and A is a variable of sort “agent”.
2) The variable R does not appear free in V.
Then the closure of the formula
Nadp U(P,A)] = 3r Va V(assignment(R, A),A).

is an aziom. That is, if there exists a plan P satisfying V(P, A) for every agent A, then
there is a multi-agent plan R that assigns to A a plan P satisfying ¥(P, A).

Axiom 7 (Comprehension axiom schema for complex plans) Let T'(E, S0,51) and
A(S0,S1) be formulas in L3(D) such that

1) E is a free variable of sort “action” and S1 and S2 are free variables of sort “situation”.
2) The variable P does not appear free in T' or A in D.

Then the closure of the formula

V4 3p YE.s0,51 [next_step(E, P,S0,S51) < action(E, A) A T'(E,S0,S1)] A
[succeeds(P, S0, S51) < A(S0,S1)].

is an axiom. The variable P is of sort “plan”.

That is, you can use any formulas in £2(D) of the correct sort to define the next step
and the success conditions for a plan.
Example 10: Let pl be the plan that al will broadcast a request that all the agents in
set u2 should clap their hands at the first opportunity. Define I's and As be the following
formulas in £!({“clap”}):

I'y(E, S0,51, AZ) = first_opportunity(S1, AZ,al1,50,true) = E=do(AZ clap).
A3(S0,51,AZ) = g2 occurs(do(AZ,clap),S2, S1).

Let U(P, AZ) be the following formula in £

U(P,AZ) =
VE 50,51 [nextstep(E, P, S0,S51) < I'y(E, 50,51, AZ)] A
[succeeds(P, S0, 51) < A3(S0,51,57)]

47

Define T'y and A; to be the following formulas in £3:

I1(E,S0,S1) =
S0 = S1 = Jr [V4 assignment(R, A)=P < ¥(P, A)] A
instance(F,broadcast_req(al,u2,R),S1).

A4(S0,51,AZ) =
IR [V 4 assignment(R, A)=P < U(P, A)] A occurs(broadcastreq(al,u2,R),S0, S1)

Then axiom 7 asserts

dp VE750)51 [next_step(E, P, S0, Sl) =2 Fl(E, S0, Sl)] AN
[succeeds(P, S0, S1) < A1(50,S51)).

Here I's and As characterize the plans requested from the other agents; ¥ characterized

the content of the broadcast; and 'y and A; characterize al’s plan of broadcasting the
request.
Example 11: Expanding out the definitions XD.1-XD.13 in table 23, axiom 5 states that
there do exist simple plans satisfying axioms X.5 and X.6. Axiom 6 states that there exists
an assignment satisfying axioms X.4. Axiom 7 asserts that there exists a plan satisfying
axioms X.1 and X.2.

It is certainly possible to find quite natural examples of plans that fall outside the
scope of these comprehension axioms, or their natural extension to additional levels of
stratification. For example, suppose that each agent can only communicate directly with
the agent immediately above or below him. Then an agent who wishes to get a package on an
unknown floor will ask the other agents to keep passing the request upward until it reaches
the agent who has the package. This involves an imbedding of requests of unbounded depth,
and so cannot be handled by theory stratification such as we have described. Indeed, it is
not even clear how one would extend the representation language to describe such a plan.
Another problem for another day.

9 Consistency

We have shown that, with the above comprehension axioms, our theory can side-step these
three paradoxes. How do we know that the next paradox won’t uncover an actual inconsis-
tency in the theory? We can eliminate all worry about paradoxes once and for all by proving
that the theory is consistent; in fact, that it is consistent with a very broad class of physical
theories and problem specifications. The previous paper [10] presents, discusses, and proves
a consistency theorem for our theory of knowledge and informative acts. It turns out that
it is straightforward to extend this proof to a proof of the consistency of the theory in this
paper, which includes multi-agent planning as well. Therefore, in this section we will give
the minimum discussion needed to correctly state this consistency result. Appendix A gives
a brief sketch of how the proof given in [10] can be modified for the new theorem.

Theorem 12 below states that the axioms in this theory are consistent with essentially
any physical theory that has a model over discrete time with a starting point state and
physical actions.

Definition 8 A physical language is a first-order language containing the sorts “situa-
tions”, “agents”, “physical actionals”, “physical actions”, “physical fluents”, “clock times”

48

and “u-intervals”; containing all the non-logical symbols introduced in tables 1-8 and table
12; and excluding all symbols introduced in tables 9-11 and 13-18.

Definition 9 Let £ be a physical language, let T be a theory over L. T is an acceptable
physical theory (i.e. acceptable for use in theorem 12 below) if there exists a model M and
an interpretation T of L over M such that the following conditions are satisfied:

1. Z maps the sort of durations to the integers, the duration constant 0 to integer zero, the
relation D1 < D2 on clock times to the usual ordering on integers, and the function
D1 + D2 on clock times to the usual addition on integers,

2. The axioms of time, events, and actions, TD.1, TD.2, T.1 — T.18, EVD.1, EVD.2,
EV.1, AD.1 — AD.3, A.1 — A.7, and U.1 — U.3 hold in M under T.

8. Theory T is true in M under T.

4. The theory is consistent with the following constraint: In any situation S, if any
communication act is feasible, then infinitely many physically indistinguishable com-
munication acts are feasible.

5. If a is a predicate symbol in L with more than one situational argument, then (X7 ... Xy)
holds only if all the situations among X1 ... Xy are ordered with respect to <. (Note
that this condition holds both when « is“<” and o is “occurs”.) If B(X1...Xy) is a
function symbol, then the above condition holds for the relation X1 = B(X1 ... Xk).

6. There are finitely many agents.

Condition (4) no doubt seems complex, strange, and restrictive. But in fact any phys-
ical model can be easily transformed into one satisfying this condition: take the original
model and, wherever a communicative act occurs, make an infinite number of identical
copies of the subtree following the branch where the act occurs. (The exact definition of
“physically indistinguishable” is given in [10].) Moreover, most reasonable physical theories
T will accept this transformation, or can be straightforwardly transformed into theories
that will accept this transformation. In fact, therefore, condition (4) is not a substantial
restriction on 7. The reason it is needed is that, without this condition, the physical the-
ory could include an axiom like, “In any situation S there is only one situation S1 such
that occurs(communicate(AS, U),S, S1)” whereas our theory demands that there must exist
many such situations corresponding to the different informative acts and requests possible
in S.

Condition (5) is a technical one needed for the proof. We do not know of any causal
theories that contain predicates that do not satisfy this condition and cannot be defined in
terms of simpler predicates that satisfy this condition.

Definition 10 Let £ be a physical language. The type-1 social language over £ is equal
to L together with the symbols, “govern”; “reserved”, “reserved_block”, “min_reserve_block”
and “delay_time”.

Definition 11 Let £ be a physical language, and let T be an acceptable physical theory over
L. Let M be a model and let T be an interpretation satisfying the conditions of definition 9.
Let L' be the type-1 social language over L and let ' be an extension of I that provides an

49

interpretation for the additional symbols such that axioms QD.1 and Q.1 — Q.4 are satisfied.
A theory T' over L' that extends T and that is true under Z' is called an acceptable type-1
social theory.

It is trivial to show that any acceptable physical theory can be extended to an acceptable
type-1 social theory.

Theorem 12 Let L be a type-1 social language, and Let T be an acceptable type-1 social
theory over L. Let L' be equal to L together with all the general non-logical symbols in this
paper (i.e. all those not specific to particular domains and problems). Let U be T together
with all the general azioms in this paper. Then U is consistent.

In order to verify the consistency of our theory of the elevator domain and our problem
specification, it is necessary to strengthen theorem 12 by adding in domain-specific axioms of
knowledge acquisition, plus conditions on the initial knowledge and ignorance of the agents.

Specifically, we define a knowledge acquisition axiom as follows: (see [10] for more ex-
tensive discussion.)

Definition 13 A knowledge acquisition axiom has the form

VA,S /NSA k,_CLCC(A,S, SA) = @i(A,S)] V
Nsa k-acc(A,S,SA) = —®;(A,S5)]]

where ®(A, S) satisfies the following conditions:
e The only free variables in ®(A,S) are A and S.

e If S1 is a quantified variable other than S appearing in ®, and S1 is used as either
the second-to-last or last argument for either k_acc or ck_acc, then the quantification
of S1 imposes the restriction S1 < S.

o If S1 is a quantified variable other than S appearing in ®, and S1 is not used as
an argument for either k_acc or ck_acc, then the quantification of S1 imposes the
restriction S1 < S.

These last two conditions mean that a knowledge acquisition axiom may specify that an
agent may gain knowledge about the physical state of the world in the past and present but
not (except by inference) in the future, and may gain knowledge about the knowledge states
of other agents in the past but not in the present or future. Axioms E.19, E.20, and E.21 are
examples of such axioms: the robot knows whether the elevator is on his floor, whether he
has package B, and whether [the elevator is on his floor and package B is on the elevator].

Theorem 14 Let T be an acceptable type-1 social theory, and let U be the union of:
A T;
B. All the general axioms in this paper.
C. A collection of domain-specific knowledge acquisition azioms.
D. Any set of axioms K specifying the presence or absence of k_acc relations among situ-

ations at time 0 as long as:

50

1. The azioms in IC do not refer to any situations of time later than 0.

ii. The azioms in K are consistent with T, axioms K.1 — K.3, K.5 (as regards
knowing the feasibility of actions at time 0); and the azioms in (C).

Then U is consistent.

The proof of theorems 12 and 14 is sketched in appendix A
http://cs.nyu.edu/faculty /davise/elevator /commplan-appa.ps and .pdf.
It is straightforward to verify

e That the physical elevator axioms E.1 — E.18 and X.9 satisfy the conditions of an
acceptable physical theory;

e That adding axioms X.7, X.8, and E.22 to the above satisfy the conditions of an
acceptable type-1 social theory;

e That axioms E.19, E.20, and E.21 satisfy the conditions in definition 4 for knowledge
acquisition axioms.

e Using lemma B.38 of appendix B, one can establish that there exists a socially possible
situation s0 satisfying conditions X.10 — X.13.

e As discussed above, it follows from axioms F.1 — F.4 that a plan exists satisfying the
conditions on ell in axioms XD.1 — XD.11, X.1 — X.6.

Therefore, the axiomatization of the elevator world and of the problem statement are
consistent with the remaining axioms in this paper. Hence the proof of the correctness of
plan ell in appendix B is non-vacuous. (If this theory were not consistent, then of course
any statement can be proven from it, so the fact we can prove that ell is correct would not
be very impressive.)

10 Related Work

The foundations of this work come from Moore [19], which makes the key proposals that:
1. Temporal situations [16] could be identified with epistemic possible worlds [13].

2. A first-order language, in which situations were first-class entities, could be used to
represent statements about knowledge and time. Reasoning about knowledge and time
could be modelled as deduction in this language.

3. Agent A knows how to do action F in situation S if, in S, A knows a standard identifier
for E.

Moore further proposed that the “knowledge preconditions” problem for plans, (discussed
briefly in [16]) could be solved by using recursive rules over the form of the plan, where rule
(3) above is the base of the recursion. For example, agent A knows in S how to do the plan
“if (@) then do P1 else do P2” if either [A knows in S that @ is true and knows in S how
to do P1] or [A knows in S that @ is false and knows in .S how to do P2].

This analysis of knowledge preconditions for plans is extended and improved in [8] where
it is shown that

o1

1. Moore’s recursive rules constitute sufficient, but not necessary conditions.

2. A general rule that covers all cases is the following: Agent A has enough knowledge to
execute plan P starting in situation S if and only if the following holds: If A has begun
the execution of P from S to S1, then in S1, A will know whether he has completed
the execution of P and, if he has not completed P, then he will know how to execute
some next step of P.

3. Moore’s recursive rules can be proven as theorems from the general rule (2).

The theory of planning put forward in this paper is a direct extension of the theory of
[8] to the case of multi-agent plans.

Morgenstern [20, 21] recasts Moore’s theory in a “syntactic” theory of knowledge, in
which the content of knowledge is viewed as a string of characters. This move was motivated
by the desire to avoid using a modal logic of knowledge with possible worlds semantics,
and its attendant and sometimes undesirable consequences, such as all agents knowing all
axioms. To avoid Liar-style paradoxes, it uses a three-valued logic. This work also extends
Moore’s theory to deal with general multi-agent plans. It examines specific actions such
as agent Al informing A2, Al querying A2 (i.e., requesting that A2 inform him about
some particular fact), and Al commanding A2 to perform a particular action. The theory
of delegation is substantially less restrictive than the theory developed in this paper. For
example, delegation can be done micromanager-style or executive-style: Al can ask A2 to
execute a highly specific plan, or just ask that A2 achieve some goal in whichever way A2
prefers (see section 11). In addition, the notion of plan execution is not tied to specific
protocols of agent interaction.

Steel [31] recasts Moore’s theory using a combination of dynamic and epistemic modal
logic.

The literature on theories of time and knowledge is immense (e.g. [29, 12]). In [10] we
give a detailed analysis of the relation between some of the particularly relevant theories
in this area and our theory of time and knowledge. Wooldridge [34] chap. 12 includes a
short but very useful survey of the applications of these theories to multi-agent systems, and
includes an extensive bibliography.

There is also a large literature on “BDI” (belief, desire, intention) models, ranging from
logical analyses, which are relevant here, to implementations, which mostly are not. The
general BDI model was first proposed by Cohen and Perrault [4]; within that model, they
formalized illocutionary acts such as “Request” and “Inform” and perlocutionary acts such
as “Convince” using a STRIPS-like representation of preconditions and effects on the mental
states of the speaker and hearer. Cohen and Levesque [3] extend and generalize this work
using a full modal logic of time and propositional attitudes. Here, speech acts are defined
in terms of their effects; a request, for example, is any sequence of actions that achieves the
specified effect in the mental state of the hearer. Rao [25], despite the title, is more nearly a
Prolog implementation of BDI than a logical theory; in particular, his theory does not have
an explicit representation of time. A major problem in developing a logic of planning based
on BDI is that it is extremely difficult to formulate universally valid rules that relate the
desires or goals of an agent to its actions.

Update logic (e.g. [23, 33]) combines dynamic logic with epistemic logic, introducing
the dynamic operator [A!]¢, meaning “¢ holds after A has been truthfully announced.”.
The properties of this logic have been extensively studied. Baltag, Moss, and Solecki [2]

92

extend this logic to allow communication to a subset of agents, and to allow “suspicious”
agents. Colombetti [5] proposes a timeless modal language of communication, to deal with
the interaction of intention and knowledge in communication. Parikh and Ramanujam [22]
present a theory of messages in which the meaning of a message is interpreted relative to a
protocol.

A number of researchers have applied modal logics of knowledge to the analysis and
implementation of multi-agent systems. For example, Sadek et al. [28] present a first-order
theory with two modal operators B;(¢) and I;(¢) meaning “Agent i believes that ¢” and
“Agent i intends that ¢” respectively. An inference engine has been developed for this
theory, and there is an application to automated telephone dialogue that uses the inference
engine to choose appropriate responses to requests for information. However, the temporal
language associated with this theory is both limited and awkward; it seems unlikely that the
theory could be applied to problems involving multi-step planning. (The dialogue application
requires only an immediate response to a query.)

The multi-agent communication languages KQML [11] and FIPA [1] provide rich sets of
communication “performatives”. KQML was never tightly defined [34]. FIPA has a formal
semantics defined in terms of the theory of Sadek et al. [28] discussed above. However,
the content of messages is unconstrained; thus, the semantics of the representation is not
inherently connected with the semantics of the content, as in our theory.

Other modal theories of communication, mostly propositional rather than first-order, are
discussed in [35, 15, 24].

11 Conclusions

The major accomplishments of this paper are:

1. The construction of a first-order language sufficient to characterize a multi-agent do-
main, integrating action, knowledge, plans, and communication.

2. The validation of a simple plan in a simple specific physical domain. It is quite clear
that the general language of knowledge, planning, and communication can be applied
to a very broad range of physical domains.

3. The identification of potential paradoxes in the theory analogous to Russell’s paradox
and the formulation of comprehension axioms that avoid the paradoxes but still allow
a very expressive language of planning and communication. Some aspects of these
comprehension axioms are standard; others are new and interesting.

4. The proof that the theory is consistent.

The theory has many significant limitations that we would like to overcome, and that
we plan to address in future work:

1. The rather restrictive protocol for agent interaction is “hard-wired” into the definition
of executing a plan. Presumably, some protocol is necessary if we wish to prove with
certainty that the plan will be correctly executed, in this kind of general setting.
However, it would be better if it were possible to separate out the specifics of the
protocol from the general definition of correct execution. We do not see how to do
this.

93

2. There are important classes of communicative plans that do not come within the scope
of our comprehension axioms; for example, passing a message along until reaching the
intended recipient.

3. The theory would be much more powerful if it were extended to allow plausible rea-
soning.

4. The theory here deals only with a rather restrictive and, indeed, rather micro-managing
form of delegation: One agent can ask another to carry out a specified plan. A more
general notion of delegation would allow one agent to request another to achieve a
specified goal. For example, Morgenstern [21] discusses the following example:

Alice knows that Bob is able, one way or another, to find out Charley’s tele-
phone number. Alice can therefore ask Bob for Charley’s telephone number
and be sure that he will find it out and tell it to her.

The theories in [21] or in [3] are sufficient to handle these kinds of problem. The
theory here cannot handle this, because Alice is not specifying a plan for Bob to carry
out. One might think that she could do this by making the request “Do whatever is
necessary, then tell me Charley’s telephone number”. However, this is not a “plan”
within the scope of our definition, because at no stage does it specify a next step to
be carried out.

5. The theory of planning here, as presented in section 6 is largely a matter of formulating
a definition of “knowing enough to execute a plan.” The definition that we have
constructed, in tables 17 and 18 are much too complicated and too dependent on
the specifics of the protocol to command anything like immediate assent or support
any claim of “self-evident truth”. It would be well to put this on firmer ground.
One promising possibility might be to show the definition of “executable plan” is in
fact satisfied by some specific class of implementable agents, along the lines of the
framework defined by Fagin et al. [12].

The paper is somewhat unusual methodologically in that it starts with examples that
are comparatively natural and that, though simple, draw on many different aspects of multi-
agent interactions. These examples drive the analysis of the concepts. By contrast many of
the theoretical papers in this area start either with no specific examples, or with artificial
and implausible puzzles, such as the “Muddy Children” problem. These papers start out
with the concepts the authors wish to analyze, then design problems to specifically highlight
these concepts; the concepts drive the examples. The hope is that our approach will lead to
more natural and central problems and to raise earlier and more centrally the problem of
integrating many different domains for reasoning. All example-driven analysis is, of course,
open to the danger that the analysis of each individual domain will be more superficial,
and may omit considerations that are in fact important but do not happen to arise in the
particular example being studied.

References

[1] FIPA 2001. The foundation for intelligent physical agents.

54

2]

A. Baltag, L. Moss, and S. Solecki. The logic of public announcements, common knowl-
edge, and private suspicions. Tech. Report 534, Computer Science Dept., U. Indiana,
2000.

P.R. Cohen and H. Levesque. Intention is choice with commitment. Artificial Intelli-
gence, 42(2-3):213-261, 1990.

P.R. Cohen and C.R. Perrault. Elements of a plan-based theory of speech acts. Cognitive
Science, 3(3):177-212, 1979.

M. Colombetti. A modal logic of intentional communication. Mathematical Social
Sciences, 38:171-196, 1999.

E. Davis. Representations of Commonsense Knowledge. Morgan Kaufmann, San Mateo,
CA, 1990.

E. Davis. Branching continuous time and the semantics of continuous action. In AIPS-
94, pages 1-100, 1994.

E. Davis. Knowledge preconditions for plans. Journal of Logic and Computation,
4(5):721-766, 1994.

E. Davis. A first-order theory of communicating first-order formulas. In Ninth Inter-
national Conference on Principles of Knowledge Representation and Reasoning, pages

235-245, 2004.

E. Davis. Knowledge and communication: A first-order theory. Artificial Intelligence,
to appear.

T. Finin et al. Specification of the KQML agent communication language, 1993.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT Press,
1995.

J. Hintikka. Semantics for propositional attitudes. In L. Linsky, editor, Reference and
Modality, pages 145-167. Oxford University Press, 1969.

S. Kraus. Negotiation and cooperation in multi-agent environments. Artificial Intelli-
gence, 94:79-97, 1997.

A. Lomuscio and M. Ryan. A spectrum of modes of knowledge sharing between agents.
In N. Jennings and Y. Lesperance, editors, Intelligent Agents VI: Agent Theories, Ar-
chitectures, and Languages, Lecture Notes in Artificial Intelligence 1757, pages 13-26.
Springer-Verlag, 2000.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463—
502. Edinburgh University Press, Edinburgh, 1969.

D.V. McDermott. A temporal logic for reasoning about processes and plans. Cognitive
Science, 6:101-155, 1982.

95

18]

[19]

R. Moore. Reasoning about knowledge and action. Note 191, SRI International, Menlo
Park, CA, 1980.

R. Moore. A formal theory of knowledge and action. In Jerry Hobbs and Robert
Moore, editors, Formal Theories of the Commonsense World, pages 319-358. ABLEX
Publishing, Norwood, New Jersey, 1985.

L. Morgenstern. Knowledge preconditions for actions and plans. In Proceedings of the
Tenth International Joint Conference on Artificial Intelligence, pages 867-874, 1987.

L. Morgenstern. Foundations of a Logic of Knowledge, Action, and Communication.

PhD thesis, New York University, 1988.

R. Parikh and R. Ramanujam. A knowledge-based semantics of messages. Journal of
Logic, Language, and Information, 12(4):454-467, 2003.

J. Plaza. Logics of public announcements. In Proceeding of the 4th International Sym-
posium on Methodologies for Intelligence Systems, 1989.

A.S. Rao. Decision procedures for propositional linear time belief-desire-intention logics.
In Michael Woodridge, Jorg P. Muller, and Milind Tambe, editors, Intelligent Agents I1:
Agent Theories, Architectures, and Languages, Lecture Notes in Artificial Intelligence
1037, pages 33-48. Springer-Verlag, 1995.

A.S. Rao. Agentspeak(l): BDI agents speak out in a logical computable language. In
Agents Breaking Away: Tth FEuropean Workshop on Modelling Autonomous Agents in a
Multi-Agent World, Lecture Notes in Artificial Intelligence 1038, pages 42-55. Springer-
Verlag, 1996.

R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, 2001.

B. Russell. Mathematical logic as based on the theory of types. American Journal of
Mathematics, 30:222-262, 1908.

M.D. Sadek, P. Bretier, and F. Panaget. Artimis: Natural dialogue meets rational
agency. In Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence, pages 1030-1035, 1997.

R.B. Scherl and H.J. Levesque. Knowledge, action, and the frame problem. Artificial
Intelligence, 144(1):1-39, 2003.

M.J. Schoppers. Universal plans for reactive robots in unpredictable environments. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pages
1039-1046, 1987.

S. Steel. Action under uncertainty. Journal of Logic and Computation, 4(5):767-795,
1994.

A. Tarski. The concept of truth in formalized languages. In Logic, Science, and Meta-
mathematics. Oxford University Press, 1956.

o6

[33] J. van Benthem. ‘one is a lonely number’: on the logic of communication. ILLC
Tech Report 2003-07, Institute for Logic, Language and Computation, University of
Amsterdam, 2003.

[34] M. Wooldridge. Introduction to MultiAgent Systems. John Wiley and Sons, 2002.

[35] M. Wooldridge and A. Lomuscio. Reasoning about visibility, perception, and knowl-
edge. In N. Jennings and Y. Lesperance, editors, Intelligent Agents VI: Agent Theories,
Architectures, and Languages, Lecture Notes in Artificial Intelligence 1757, pages 1-12.
Springer-Verlag, 2000.

o7

