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Abstract

It is shown that the intuitionistic theory of polynomial induction on positive Πb
1

(coNP) formulas does not prove the sentence ¬¬∀x, y∃z ≤ y(x ≤ |y| → x = |z|).
This implies the unprovability of the scheme ¬¬PIND(Σb+

1 ) in the mentioned theory.
However, this theory contains the sentence ∀x, y¬¬∃z ≤ y(x ≤ |y| → x = |z|). The
above independence result is proved by constructing an ω-chain of submodels of a
countable model of S2 +Ω3 +¬exp such that none of the worlds in the chain satisfies
the sentence, and interpreting the chain as a Kripke model.
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1 Introducing Classical and Intuitionistic Bounded Arithmetic

We first briefly describe the first-order theories of bounded arithmetic introduced by
Samuel Buss [B1]. The language of these theories extends the usual language of first-order
arithmetic by adding function symbols xx

2
y (= x

2
rounded down to the nearest integer),

|x| (=the number of digits in the binary expansion of x) and # (x#y = 2|x||y|).

The set BASIC of basic axioms for the theories of bounded arithmetic is a finite set of
(universal closures of) quantifier-free formulas fixing the basic properties of the relations
and functions of the language.

Below, we recall the exact syntactic definitions of the hierarchies of bounded formulas,
since we work with weak theories of bounded arithmetic, it is necessary to be careful
about the definitions. The set of sharply bounded formulas is the set of bounded formulas
in which all quantifiers are sharply bounded, i.e. of the form ∃x 6 |t| or ∀x 6 |t| where t
is a term that does not contain x.

Definition 1.1 (Buss’s hierarchy of bounded formulas)

(1) Σb
0 = Πb

0 is the set of all sharply bounded formulas.
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(2) Σb
i+1 is defined inductively by:

(a) Πb
i ⊆ Σb

i+1;

(b) If A ∈ Σb
i+1, so are (∃x 6 t)A and (∀x 6 |t|)A;

(c) If A, B ∈ Σb
i+1, so are A ∧B and A ∨B;

(d) If A ∈ Σb
i+1 and B ∈ Πb

i+1, then ¬B and B → A are in Σb
i+1.

(3) Πb
i+1 is defined dually.

(4) Σb
i+1 and Πb

i+1 are the smallest sets which satisfy (1)-(3).

The Σb
1 formulas represent exactly the NP relations in the standard model.

The (classical) theory S1
2 is axiomatized by adding the scheme PIND for Σb

1 formulas
A(x) to BASIC:

[A(0) ∧ ∀x(A(xx
2
y) → A(x))] → ∀xA(x)

A function f is said to be Σb
1-definable in S1

2 if and only if it is provably total in S1
2

with a Σb
1 formula defining the graph of f . Buss proved that a function is Σb

1-definable in
S1

2 if and only if it is polynomial time computable.

The theories Si
2, i > 0, are similarly defined as the theories axiomatized by BASIC

together with PIND on Σb
i formulas. S2 is the union of all Si

2, i > 0.

The theory IS1
2 is the intuitionistic theory axiomatized by BASIC plus the scheme

PIND on positive Σb
1 formulas (denoted Σb+

1 ), i.e. Σb
1 formulas that do not contain ¬ and

→. This theory was introduced and studied by Cook and Urquhart and by Buss (see [CU]
and [B3]). A function f is also defined to be Σb+

1 -definable in IS1
2 if it is provably total in

IS1
2 with a Σb+

1 formula defining the graph of f . They [CU] proved that f is Σb+
1 -definable

in IS1
2 if and only if it is polynomial time computable.

An intuitionistic version for each of the theories Si
2, i > 1, was defined and studied by

V. Harnik [H].

A positive Πb
1 formula (denoted Πb+

1 ), is defined to be a Πb
1 formula which does not

contain ¬ and →. The intuitionistic theory of BASIC + PIND(Πb+
1 ) was also discussed

in the literature on intuitionistic bounded arithmetic (see e.g. [B3] and [H]).

Fact 1.2 S1
2 ≡ BASIC + PIND(Πb

1).

Proof See [K, Lemma 5.2.5]. �

IBASIC is the usual notation for the intuitionistic deductive closure of BASIC.

Fact 1.3 IBASIC proves the Principle of Excluded Middle for atomic formulas of its
language. IS1

2 proves the same principle for sharply bounded formulas.

Proof See [B3] and [CU]. �
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In the following, the notation `i shows provability in intuitionistic first order logic.

For the definition of Kripke models of intuitionistic bounded arithmetic and basic
results about them, see [M2] and [B2]. The general results on intuitionistic logic and
arithmetic, and also Kripke models, can be found in [TD]. [MM] contains a study of weak
fragments of first-order intuitionistic arithmetic (Heyting arithmetic) concerning closure
properties via Kripke models. Here, we just mention that all intuitionistic theories we
will study prove the principle of excluded middle for atomic formulas, and so we can
use a slightly simpler version of the definition of Kripke model. So, a Kripke model in
the language of bounded arithmetic is a set of (normal) classical structures in the same
language partially ordered by the relation substructure. In these Kripke models, forcing
and satisfaction of quantifier-free formulas in each node (world) are equivalent.

In [M2], it is shown that the intuitionistic theory axiomatized by BASIC + PIND(Πb+
1 )

does not imply IS1
2 by using Kripke models. The paper also proves the converse assuming

the Polynomial Hierarchy S1
2-provably does not collapse. Similar techniques are used

in [M1] to show that certain apparently stronger extensions of S1
2 are actually stronger

assuming the above mentioned complexity assumption.

Here, we strengthen the first independence result mentioned above by showing that
the sentence ¬¬∀x, y∃z ≤ y(x ≤ |y| → x = |z|) is not provable in the intuitionistic
theory of BASIC + PIND(Πb+

1 ). This can be easily applied to prove that even the double
negation of the scheme PIND(Σb+

1 ) is not deducible in this intuitionistic theory. In [M3],
we showed the same for the sentence ¬¬∀x∃y < x(x = 0∨ x = y + 1). The following fact
shows a difference between the classical power of these two sentences.

Fact 1.4

i) S0
2 ` ∀x, y∃z ≤ y(x ≤ |y| → x = |z|),

ii) S0
2 0 ∀x∃y < x(x = 0 ∨ x = y + 1).

Proof See [J1, Proposition 8] and [T]. �

2 A model theoretic construction and its application

In this section we work in the language of BASIC. Also, IBASIC is the underlying
theory for all intuitionistic theories we will mention.

Let M and N be two models of BASIC. Let Log(M) = {a ∈ M : ∃b ∈ M
a ≤ |b|}. N is called a weak end extension of M and it is written that M ⊆w.e. N ,
if N extends M and Log(N) is an end extension of Log(M). This means that, for all
a ∈ Log(M) and b ∈ Log(N) with N � b ≤ a, we have b ∈ Log(M). It is known and
easy to check that weak end extensions are always Σb

0-elementary. Elements of Log(M)
are called small elements of M . The others are large elements of M .

Recall that, the axiom exp states that the exponentiation function is total. Here
we express two well known weak forms of exp: the axiom Ω2 states that the function
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x#3y = 2|x|#|y| is total and the axiom Ω3 states that the function x#4y = 2|x|#3|y| is
total. For more on these axioms, see e.g. [HP], pages 272-274. The functions #3 and #4

mentioned above have the same growth rates as the functions ω3 and ω4 mentioned in
[HP], respectively. The axioms Ω2 and Ω3 are consistent with ¬exp by Parikh’s theorem,
see [HP].

Theorem 2.1 There is a weak end extension ω-chain of classical structures such
that the union of its worlds satisfies S2 but none of its worlds satisfies the sentence
∀x, y∃z ≤ y(x ≤ |y| → x = |z|).

Proof Let M be a countable (nonstandard) model of S2 + Ω3 + ¬exp. Assume that
a ∈ M is large.

Inductively define a#3(0) = 1 and a#3(n+1) = a#3(n)#3a for each n ≥ 1. Also define,

I = {x ∈ M : x < a#3(n) for some non-negative integer n}.

One can easily see that I is closed under #3, and so under +, · and #. Note that, I is
a proper cut in M , since for example a#4a ∈ M − I as obviously a#3(n) < a#4a for any
n.

Suppose that a0, a1, a2, · · · is a cofinal sequence of large elements of I such that a#n
i <

ai+1 for all n ≥ 0. Here a#n
i is defined similar to a

#3(n)
i by changing #3 to #. One should

choose ai+1 > ai#3ai.

Also, for each i, define

a
# 1

N
i = {x ∈ M : x#n < ai for all non-negative integers n}.

Define, Mi = a
# 1

N
i ∪ (M − I) for each i. It is easy to see that Mi is closed under +, ·,

xx
2
y, and #. Moreover, Mi is closed under the function |x| because each small element of

M is in a
# 1

N
i (note that ai is large).

Now it should be clear that Mi � BASIC as BASIC is a universal theory. Also, clearly,
the union of the Mi’s is M . So, to complete the proof of the Theorem, it is enough to
show the following.

Claim: Mi � ∃x, y(x < |y| ∧ ∀z ≤ y x 6= |z|).

Proof of Claim: One can consider |ai| as x and any fixed element c ∈ (M − I) as y.

The proof is as follows. For each x ∈ a
# 1

N
i we have |x| < |ai|. To see it suppose |b| ≥ |ai|

for some b ∈ a
# 1

N
i . We have b#b < ai. So |b#b| ≤ |ai|. But, in this case, we would have

|b#b| = |b|2 + 1 ≤ |ai| ≤ |b|, contradiction. Moreover, for each y ∈ (M − I), we have
y > 2ai. Therefore, |y| > |ai|. �

The structures of the form a
# 1

N
i used in the proof above were first applied in Johannsen

[J, Proposition 6-7].
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Now we use the above classical result to prove a strong independence result for the
theories of intuitionistic bounded arithmetic. We shall give a model theoretic argument.

Proposition 2.2 Suppose K is a weak end extension Kripke model whose accessibility
relation is ω and decides atomic formulas. Then for any node α in K and any Πb+

1 Lα-
sentence A we have, Mα 
 A if and only if the union of the worlds in K satisfies A.

Proof Use induction on formulas and Fact 1.3. �

Corollary 2.3 Suppose K is a weak end extension Kripke model whose accessibility
relation is ω and decides atomic formulas. K forces BASIC + PIND(Πb+

1 ) if and only if
the union of the worlds in K satisfies BASIC + PIND(Πb+

1 ).

Proof By the definition of forcing and the above Proposition. Recall that BASIC is
a universal theory. �

The scheme ¬¬PIND(Σb+
1 ) is double negation of the scheme PIND(Σb+

1 ).

Corollary 2.4 BASIC + PIND(Πb+
1 ) 0i ¬¬PIND(Σb+

1 ).

Proof Consider the ω-chain M0 ⊂w.e. M1 ⊂w.e. M2 ⊂w.e. · · · constructed in Theo-
rem 2.1. Interpret the chain as an ω-framed Kripke model K. Since the union of the
worlds in this Kripke model is clearly equal to M � S1

2, by the above Corollary, it forces
BASIC + PIND(Πb+

1 ). Also, none of the models in K satisfies

∀x, y∃z ≤ y(x ≤ |y| → x = |z|).

Therefore, by the definition of forcing, one can easily see that K forces

¬∀x, y∃z ≤ y(x ≤ |y| → x = |z|).

Hence, this Kripke model does not force

¬¬∀x, y∃z ≤ y(x ≤ |y| → x = |z|).

On the other hand, S1
2 is ∀Σb

1-conservative over IS1
2 (that is the intuitionistic theory of

BASIC + PIND(Σb+
1 ), see e.g. [A]), and so

IS1
2 `i ∀x, y∃z ≤ y(x ≤ |y| → x = |z|).

Therefore,

BASIC + ¬¬PIND(Σb+
1 ) `i ¬¬∀x, y∃z ≤ y(x ≤ |y| → x = |z|). �

It is interesting to see that, however,

BASIC + PIND(Πb+
1 ) `i ∀x, y¬¬∃z ≤ y(x ≤ |y| → x = |z|).

The reason for this last result is that, the intuitionistic theory of BASIC + PIND(Πb+
1 )

is obviously closed under the negative translation, and its classical counterpart proves the
sentence ∀x, y∃z ≤ y(x ≤ |y| → x = |z|) (in fact, polynomial induction on a simple
atomic formula is sufficient for this provability, see [J. Proposition 8]). For the definition
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of the negative translation and basic results about it, see e.g. [TD].
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