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Abstract

This position paper discusses the difficulty of interpreting it-
erated belief revision in the scope of the existing literature.
Axioms of iterated belief revision are often presented as ex-
tensions of the AGM axioms, upon receiving a sequence of
inputs. More recent inputs are assumed to have priority over
less recent ones. We argue that this view of iterated revision
is at odds with the claim, made by Gärdenfors and Makin-
son, that belief revision and non-monotonic reasoning are two
sides of the same coin. We lay bare three different paradigms
of revision based on specific interpretations of the epistemic
entrenchment defining an epistemic state and of the input
information. If the epistemic entrenchment stems from de-
fault rules, then AGM revision is a matter of changing plau-
sible conclusions when receiving specific information on the
problem at hand. In such a paradigm, iterated belief revi-
sion makes no sense. If the epistemic entrenchment encodes
prior uncertain evidence and the input information is at the
same level as the prior information and possibly uncertain,
then iterated revision reduces to prioritized merging. A third
problem is one of the revision of an epistemic entrenchment
by means of another one. In this case, iteration makes sense,
and it corresponds to the revision of a conditional knowledge
base describing background information by the addition of
new default rules.

Introduction
The interest in belief revision as a topic of investigation in ar-
tificial intelligence was triggered by Gärdenfors (1988) book
and the axiomatic approach introduced by C. Alchourrón, P.
Gärdenfors and D. Makinson (1985) in the setting of propo-
sitional logic. This approach assumes that the set of ac-
cepted beliefs held by an agent is a deductively closed set
of propositions. On this basis, axioms of belief change (re-
vision, but also contraction) formulate constraints that gov-
ern the “flux” of information, i.e. that relate one belief set
to the next one upon receiving a new piece of information.
An important assumption is that belief revision takes place
in a static world, so that the input information is supposed to
bring insight to a case that the agent deals with, but is never
meant to indicate that the world considered by the agent re-
ceiving it has evolved.

∗This position paper was triggered by discussions with Jerome
Lang and Jim Delgrande at a Belief Revision seminar in Dagstuhl,
in August 2005

The crucial point of the AGM theory is that the axiomatic
framework enforces the existence of a so-called epistemic
entrenchment relation between propositions of the language.
This relation acts like a priority assignment instrumental to
determine the resulting belief set after revision. It is also
similar (even if purely ordinal) to a probability measure.
More specifically, an epistemic entrenchment is a complete
preordering between propositions which looks like a com-
parative probability relation (Fishburn 1986), even if it has
different properties. Properties of an epistemic entrench-
ments make it expressible in terms of a complete plausibility
ordering of possible worlds, such that the resulting belief set
after receiving input A is viewed as the set of propositions
that are true in the most plausible worlds where A holds.

The AGM theory leaves the issue of iterated revision as
an open problem. Since then, iterated revision has been the
topic of quite a number of works (Nayak 1994), (Williams
1995), (Darwiche & Pearl 1997), (Lehmann 1995), (Jin &
Thielscher 2005). However it also seems to have created
quite a number of misunderstandings, due to the lack of in-
sight into the nature of the problem to be solved.

A typical question that results from studying the AGM
theory is: What becomes of the epistemic entrenchment af-
ter the belief set has been revised by some input informa-
tion? Some researchers claimed it was simply lost, and that
the AGM theory precludes the possibility of any iteration.
Others claimed that it changes along with K, and tried to
state axioms governing the change of the plausibility order-
ing of the worlds, viewing them as an extension of the AGM
axioms. This trend led to envisage iterated belief revision as
a form of prioritized merging where the priority assignment
to pieces of input information reflected their recency.

However, this notion of iterated belief revision seems to
be at odds with Gärdenfors and Makinson (1994) view of
belief revision as the other side of non-monotonic reason-
ing, where the epistemic entrenchment relation is present
from the start and describes the agent’s expectations in the
face of the available evidence. Such an epistemic entrench-
ment may also derive from the analysis of a set of condition-
als, in the style of (Lehmann & Magidor 1992), yielding a
ranking of worlds via the so-called rational closure. The re-
vised belief set is then the result of a simple inference step of
conditionals from conditionals, whereby propositional con-
clusions tentatively drawn are altered by the arrival of new



pieces of evidence. In this framework, the conditional in-
formation, hence the plausibility ordering, is never revised
and iteration comes down to inference of new conclusions
and dismissal of former ones, in the spirit of non-monotonic
reasoning.

Solving the clash of intuitions between iterated revision
and non-monotonic reasoning leads us to considering that
the AGM view of belief revision (related to non-monotonic
reasoning) has more to do with inference under incomplete
information than with iterated revision as studied by many
subsequent researchers (see a critical discussion of Dar-
wiche and Pearl(1997) axioms along this line in (Dubois,
Moral, & Prade 1998)). Two settings for revision, namely
revision as defeasible inference, and revision as prioritized
merging emerge, that deal with distinct problems.

This note is also in the spirit of a former position paper by
Friedman and Halpern (1996a). In that note, they complain
that iterated belief revision research relies too much on the
finding of new axioms justified by toy-examples, and repre-
sentation results, while more stress should be put on laying
bare an appropriate “ontology”, that is, describing a concrete
problem or scenario that iterated revision is supposed to ad-
dress. Friedman and Halpern suggest two such ontologies,
that basically differ by the meaning of the input information.
According to the first one, the agent possesses knowledge
and beliefs about the state of the world, knowledge being
more entrenched than beliefs, and receives inputs consid-
ered as true observations. This view is similar to a form
of conditioning in the sense of uncertainty theories. In the
other scenario, the input information is no longer system-
atically held for true and competes with prior beliefs, thus
corresponding to a kind of merging bearing much similarity
to the combination of uncertainty in the theory of evidence
(Shafer 1976).

In this paper, we somewhat pursue this discussion by
pointing out that the status of the epistemic entrenchment
itself may also be understood differently: in some scenar-
ios, it represents background information about the world,
telling what is normal from what it is not, in a refined way. In
that case, the plausibility ordering underlying the epistemic
entrenchment is similar to a statistical probability distribu-
tion, except that the underlying population is ill-specified,
and statistical data is not directly accessible. In other sce-
narios, the plausibility ordering expresses beliefs about un-
reliable observations about the solution to a problem at hand,
the pieces of evidence gathered so far from witnesses on a
whodunit case, for instance. In the latter situation, the result-
ing epistemic entrenchment is fully dependent on the case at
hand and has no generic value.

It leads to propose three change problems that have little
to do with each other even if they may share some technical
tools. If we take it for granted that belief revision and non-
monotonic reasoning are two sides of the same coin and if
we rely on technical equivalence results between Lehmann
and Magidor(1992) conditional logic under rational closure,
and the AGM theory, then we come up with a qualitative
counterpart of statistical reasoning, with inputs taken as in-
complete but sure information about a case at hand. We call
it Belief Revision as Defeasible Inference (BRDI). On the

other hand, if we take it for granted that the epistemic en-
trenchment gathers uncertain evidence about a case, likely
to evolve when new uncertain pieces of evidence are col-
lected, we speak of Belief Revision as Prioritized Merging
(BRPM). Finally, we consider the situation where our back-
ground knowledge is modified by new pieces of knowledge,
whereby states of fact that we used to think as normal turn
out not to be so, or conversely. We then speak of Revision of
Background Knowledge by Generic Information (RBKGI).
In the latter case, inputs take the form of conditionals.

It may be that other scenarios for belief change could be
pointed out. However, we claim that iterated revision in
each of the above scenarios corresponds to very different
problems. A companion paper (Delgrande, Dubois, & Lang
2006) proposes a formal framework for the BRPM situation
in full details. Here, we propose an informal comparative
discussion of the three scenarios.

Belief Revision as Defeasible Inference (BRDI)
In the first setting, the AGM theory and non-monotonic rea-
soning are really regarded as two sides of the same coin.
However, while in the AGM approach, only a flat belief
set denoted K, composed of logical formulas, is explicitly
available (since the epistemic entrenchment is implicit in
the axioms of the theory), the nonmonotonic logic approach
lays bare all the pieces of information that allows an agent
to reason from incomplete reliable evidence and background
knowledge. While in the AGM paradigm, the primitive ob-
ject is the belief set, in the following, everything derives
from conditional information, synthetized in the form of a
partial ordering of propositions, and the available evidence.
This view is fully developed by Dubois Fargier and Prade
(2004) (2005) as a theory of accepted beliefs.

In the following, we consider a classical propositional lan-
guage, and we do not distinguish between logically equiva-
lent propositions. Hence, we consider propositions as sub-
sets of possible worlds, in other words, events (to borrow
from the probabilistic literature). The influence of syntax on
revision is out of the scope of this paper. Under such a pro-
viso, it is assumed that the agent’s epistemic state is made of
three components:

1. A confidence relation, in the form of a partial ordering �
on propositions A,B, . . . expressed in a given language.
This relation, which should be in agreement with logi-
cal deduction, expresses that some propositions are more
normally expected (or less suprizing) than others. It en-
codes the background information of the agent, which de-
scribes how (s)he believes the world behaves in general.
It reflects the past experience of the agent. Such a con-
fidence relation may directly stem from a set of condi-
tionals ∆. ∆ contains pieces of conditional knowledge
of the form A → B where → is a nonclassical implica-
tion, stating that in the context where all that is known is
A, B is generally true. Each such conditional is then en-
coded as the constraint A ∧ B � A ∧ ¬B, understood as
the statement that A∧B is generally more plausible (that
is, less surprizing) than A ∧ ¬B (Friedman & Halpern
1996b). A plausibility ordering of worlds ≥π can be de-



rived from such constraints via some information mini-
mization principle (like rational closure of Lehmann and
Magidor (1992), or equivalently, the most compact rank-
ing compatible with the constraints(Pearl 1990), or yet the
principle of minimal specificity of possibilistic logic (see
(Benferhat, Dubois, & Prade 1997) for instance).

2. A set of contingent observations concerning a case of in-
terest for the agent, under the form of a propositional for-
mula A. The observations are sure evidence about this
case, not general considerations about similar cases. Such
pieces of evidence are sure facts (or at least accepted as
such), hence consistent with each other. It means that a
preliminary process is capable of handling conflicting ob-
servations and come up with a consistent report.

3. The belief set K ∗ A of the agent. It is made of propo-
sitions tentatively accepted as true by the agent about the
case, in the face of the current observations. Propositions
in K ∗A are inferred from the observations and the back-
ground knowledge (so it is not an independent part of the
epistemic state). K is the belief set of the agent before
hearing about A. That input information is safe explains
why the success postulate (A ∈ K ∗A) makes sense.

For instance consider a medical doctor about to diagnose
a patient. It is assumed that the aim is to determine what
the patient suffers from within a time-period where the dis-
ease does not evolve. The plausibility ordering reflects the
medical knowledge of the medical doctor in general. Before
seeing the patient, (s)he may have some idea of which dis-
eases are more plausible than others. Observations consist
of reports from medical tests and information provided by
the patient on his state of health. The resulting belief set
contains the diagnosis of the patient that will be formulated
by the doctor on the basis of the available observations. This
belief set concerns the patient, not people’s health in general.

Formally, under this view, the original belief set K is in-
ferred from ∆, or from �, or from ≥π , (according to the
choice of a representation) and from the tautology as input
(A = >, assuming no observations). K ∗ A is derived like-
wise from input A. In terms of conditionals, the change from
K to K ∗A stems from the fact that the conditionals> → K
and A → K ∗A, respectively, can be inferred from ∆ under
some inferential system. In terms of a confidence relation
� between propositions K ∗ A = {B,A ∧ B � A ∧ ¬B}.
Dubois et al. (2005) show that requiring the deductive clo-
sure of K ∗ A is enough to recover system P of Kraus et
al.(1990). Moreover if � is the strict part of a complete
preordering, one recovers the setting of possibility theory
(Dubois, Fargier, & Prade 2004) and all the AGM axioms
of belief revision (restricted to consistent inputs). In other
words, � is a comparative possibility relation in the sense
of Lewis(1973), that derives from a plausibility ordering ≥π

of possible worlds. Under a plausibility ordering ≥π , it is
well-known after Grove(1988) that K (resp. K ∗ A) are the
set of propositions true in the most plausible worlds (resp.
where A is true).

This approach is very similar to probabilistic reasoning as
emphasized by Pearl (1988), Dubois and Prade (1994). A
set of conditionals ∆ is the qualitative counterpart of a set of

conditional probabilities of the form P (B | A) = α defin-
ing a family of probability measures. There is no need to re-
sort to infinitesimals for bridging the gap between nonmono-
tonic reasoning and probabilistic reasoning. Recent works
by Gilio and colleagues (2002) indicate that probabilistic
reasoning with conditionals of the form P (B | A) = 1,
precisely behaves like system P of Kraus et al. Benferhat et
al. (1999), show that if we restrict to so-called big-stepped
probabilities, conditionals can be interpreted by constraints
P (A ∧B) > P (A ∧ ¬B).

Along the same lines, extracting a minimally informative
plausibility ordering of worlds ≥π from a set of condition-
als is very similar to the application of the maximal entropy
principle from a set of conditional probabilities, an approach
advocated by Paris (1994). This similarity has been stud-
ied by Maung(1995). So reasoning according to a plausi-
bility ordering is also similar to probabilistic reasoning with
Bayes nets (Pearl 1988). In this approach, the background
knowledge is encoded by means of a (large) joint probabil-
ity distribution on the state space defined by a set of (often
Boolean) attributes. This probability distribution embodies
statistical data pertaining to a population (e.g. of previously
diagnosed patients, for instance) in the form of a directed
acyclic graph and conditional probability tables. The ad-
vantage of the Bayes net format is to lay bare conditional
independence assumptions and simplify the computation of
inference steps accordingly. The network is triggered by the
acquisition of observations on a case. Inferring a conclu-
sion C based on observing A requires the computation of a
conditional probability P (C | A), and interpreting it as the
degree of belief that C is true for the current situation for
which all that is known is A. Apart from computing degrees
of belief, one is interested in determining the most probable
states upon learning A.

It is clear that the plausibility ordering in the above view
of the AGM framework plays the same role as a Bayes net.
Especially, ≥π might compile a population of cases, even
if this population is ill-defined in the non-monotonic set-
ting (the agent knows that “Birds fly” but it is not entirely
clear which population of birds is referred to). It means that
the input observations, since pertaining only to the case at
hand, are not of the same nature as the plausibility ordering,
and are not supposed to alter it, just like a Bayes net is not
changed by querying it. In this framework, iterating belief
change just means accumulating consistent observations and
reasoning from them using the background knowledge. In-
terestingly, plausibility orderings, encoded as possibility dis-
tributions can be represented using the same graphical struc-
tures as joint probability distributions (see (Benferhat et al.
2002a)), and local methods for reasoning in such graphs can
be devised (BenAmor, Benferhat, & Mellouli 2003). These
graphical representations are equivalent to the use of possi-
bilistic logic, but not necessarily more computationally effi-
cient. In the purely ordinal case, CP-nets are also the coun-
terparts of Bayes nets, and it is strange they are only pro-
posed for preference modeling, while they could also im-
plement a form of plausible reasoning compatible with the
above “ontology” of qualitative reasoning under incomplete
observations using background knowledge.



Belief Revision as Prioritized Merging
A radically different view is to consider that an epistemic
state is made of uncertain evidence about a particular world
of interest (a static world, again). It gathers the past uncer-
tain observations obtained so far about a single case. So the
belief set K is actually a completely ordered set (ordered by
the epistemic entrenchment), and the underlying plausibility
ordering on worlds describes what is the most plausible so-
lution to the problem at hand. The epistemic entrenchment
describes what should be more or less believed about the
current case. In the BRPM view, the plausibility ordering is
no longer like a statistical distribution.

The new observations A have the same status as the plau-
sibility ordering, and are likely to modify it. They are testi-
monies or sensor measurements. They could be unreliable,
uncertain.

So this kind of belief change is particularly adapted to the
robotics environment for the fusion of unreliable measure-
ments. It also accounts for the problem of collecting evi-
dence, where the main issue is to validate facts relevant to
a case on the basis of unreliable testimonies and incomplete
observations. As an example, consider a criminal case where
the guilty person is to be found on the basis of (more or less
unreliable) testimonies and clues. The investigator’s beliefs
reflect all evidence gathered so far about the case. The input
information consists of an additional clue or testimony.

Under this view, belief revision means changing the pair
(K,≥π) into another pair (K ∗ A,≥πA

). Again the belief
set K is induced by the plausibility ordering, but here there
is no background knowledge at work. A new input should
be merged with the existing information, with its own relia-
bility level. If this level is too weak, it may be contradicted
by the original belief set. Note that K cannot be viewed as
knowledge (as opposed to belief). It is just what the agent
thinks is more likely. Here, iterating the revision process
makes sense, and comes down to a merging process because
the a priori information and the input information are of the
same nature. The success postulate just expresses the fact
that the newest information is the most reliable. Not ques-
tioning this postulate has led to a view of iterated belief revi-
sion where the newest piece of information is always more
reliable than the previous ones. One may argue that iterated
belief revision can be more convincingly considered as a
form of prioritized merging. Indeed, it seems that assigning
priorities on the sole basis of the recency of observations in
a static problem about which information accumulates is not
always a reasonable assumption. Sherlock Holmes would
not dismiss previously established facts on the basis of new
evidence just because such evidence is new.

At the computational level, an epistemic state (K,≥π)
is best encoded as an ordered belief base using possibilis-
tic logic (Dubois, Lang, & Prade 1994) or kappa rankings
(Williams 1995). However the meaning of a prioritized be-
lief base differs according to whether it is viewed as a partial
epistemic entrenchment (what Williams calls an “ensconce-
ment”) or as a set of constraints on a family of possible epis-
temic entrenchments (possibilistic logic). Practical methods
for merging ordered belief bases were devised in (Benferhat
et al. 1999), (Benferhat et al. 2000) and in the special case

when the success postulate is acknowledged see (Benferhat
et al. 2002c).

The numerical counterpart to this view of iterated revision
here is to be found in Shafer(1976)’s mathematical theory
of evidence. In this theory, an unreliable testimony takes
the form of a proposition E and a weight m(E) reflecting
the probability that the source providing E is reliable. It
means that with probability 1−m(E), the input information
is equivalent to receiving no information at all. More gen-
erally, a body of evidence is made of a set of propositions
Ei along with positive masses m(Ei) summing to 1. m(Ei)
is the probability that proposition Ei correctly reflects the
agent’s evidence about the case at hand. The degree of belief
Bel(C) of a proposition C is the probability that C can be
logically inferred from the agent’s body of evidence (sum-
ming the masses of propositions Ei that imply C). Revising
the agent belief upon arrival of a sure piece of information A
(m′(A) = 1) comes down to a conditioning process ruling
out all states or worlds that falsify A. If the input informa-
tion is not fully reliable, Dempster’s rule of combination, an
associative and commutative operation, carries out the merg-
ing process. Note that the symmetry of the operation is due
to the fact that the new pair (A,m′(A)) is merged with the
body of evidence. The smaller m′(A), the less effective is
the input information A in the revision process.

When the input information is legitimately considered as
more reliable than what has been acquired so far, merging
the plausibility ordering and the new observation in a non-
commutative way is a possible option. A similar view was
advocated by (Dubois & Prade 1992) where the plausibility
ordering was encoded by means of a possibility distribution.
The AGM axioms were extended to plausibility orderings
≥π and are thus discussed in terms of their relevance for
characterizing the revision of possibility distributions by in-
put information. The success postulate led us to consider
belief revision as a form of conditioning, in the tradition of
probability kinematics (Domotor 1980).

Darwiche and Pearl (1997) axioms of iterated belief
change embody the principle of minimal change of the or-
dering that is expected when the priority is always given
to the new information. Among revision operations sat-
isfying these postulates (applied to plausibility orderings)
Boutilier’s natural revision (Boutilier 1993) can be viewed
as iterated revision of a plausibility ordering ≥π , with pri-
ority to the new input A. In this scheme, the resulting most
plausible worlds are the ≥π-best A-worlds, all other things
remaining equal, while possibilistic conditioning flatly elim-
inates worlds not in agreement with the input information
(thus not obeying the Darwiche-Pearl postulates). Papini
and colleagues (Benferhat et al. 2002b) adopt the view that
in the resulting plausibility ordering all A-worlds are more
plausible than any ¬A-world all things being equal. This
method also satisfies the Darwiche-Pearl postulates.

The case of uncertain inputs is discussed in (Dubois &
Prade 1992). It is pointed out that two situations may oc-
cur: one whereby the degree of certainty of the new piece of
information is considered as a constraint. Then, this piece
of information is to be entered into the a priori ordered be-
lief set with precisely this degree of certainty. If this degree



of certainty is low it may result in a form of contraction (if
the source reliably claims that a piece of information can-
not be known, for instance). In probability theory this is at
work when using Jeffrey’s revision rule (Jeffrey 1965). Dar-
wiche and Pearl (1997) propose one such revision operation
in terms of kappa-functions. The other view is that the de-
gree of uncertainty attached to the input is an estimation of
the reliability of the source, and then the piece of informa-
tion is absorbed or not into the belief set. The latter view is
more in line with the prioritized merging setting.

The companion paper (Delgrande, Dubois, & Lang 2006)
reconsiders postulates for iterated revision without making
any recency assumption: there is a certain number of more
less reliable pieces of information to be merged, one of them
being the new one. If we postulate that all uncertain obser-
vations play the same role and have the same reliability, a
symmetric (and possibly associative) merging process can
take place.

Reliability degrees are no longer a matter of recency, but
can be decided on other grounds. In (Delgrande, Dubois,
& Lang 2006), four axioms, for the prioritized merging of
unreliable propositions into a supposedly accepted one are
proposed. They embody the BRPM scenario of evidence
collection and sorting producing a clearly established fact (a
propositional formula representing a belief set). Informally
they express the following requirements:

• A piece of information at a given reliability level should
never make us disbelieve something we accepted after
merging pieces of information at strictly higher reliabil-
ity levels.

• The result of merging should be consistent.

• Vacuous evidence does not affect merging.

• Optimism: The result of merging consistent propositions
is the conjunction thereof.

The important postulate is optimism, which suggests that
if supposedly reliable pieces of information do not conflict,
we can take them for granted. In case of conflicts, one may
then assume as many reliable pieces of information as pos-
sible so as to maintain local consistency. It leads to opti-
mistic assumptions on the number of truthful sources, and
justify procedures for extracting maximal consistent subsets
of items of information, see (Dubois & Prade 2001). This
may be viewed as an extended view of the minimal change
postulate, via the concern of keeping as many information
items as possible. A restricted form of associativity stat-
ing that merging can be performed incrementally, from the
most reliable to the least reliable pieces of information is
proposed as optional. These axioms for prioritized merging
recover Darwiche and Pearl postulates (except the contro-
versial C2 dealing with two successive contradictory inputs)
as well as two other more recent postulates from (Nayak
et al. 1996; Nayak, Pagnucco, & Peppas 2003), and from
(Jin & Thielscher 2005), when the reliability ordering corre-
sponds to recency. It also recovers the setting of Konieczny
and Pino-Perez (2002) for flat merging under integrity con-
straints for the fusion of equally reliable items in the face
of more reliable ones. The prioritized merging setting of

(Delgrande, Dubois, & Lang 2006) can also be viewed as
a framework for extracting a set of preferred models from
a potentially inconsistent prioritized belief base. Extending
the postulates to outputs in the form of an ordered belief set
is a matter of further research.

Interestingly, the BRPM scenario can be articulated with
the previous BRDI scenario. One may see the former as a
prerequisite for the latter: first evidence must be sorted out
using a BRPM step, and then once a fact has been suffi-
ciently validated, the agent can revise plausible conclusions
about the world, based on this fact using BRDI (in order to
suggest the plausible guilty person in a case, thus guiding
further evidence collection).

AGM = BRDI or BRPM ?
Considering the relative state of confusion in the iterated re-
vision literature, it is not completely clear what the AGM
theory is talking about: BRDI or BRMP. Due to the stress
given subsequently by Gärdenfors and Makinson (1994) to
the similarity between non-monotonic reasoning and belief
revision, it is natural to consider that BRDI is the natural
framework for understanding their results. But then it fol-
lows that iterated revision deals with a different problem,
and the above discussion suggests it can be BRMP.

1. In the AGM theory you never need K to derive K ∗ A,
you only need the revision operation * (in other words the
plausibility ordering) and A. So the notation K ∗ A is
in some sense misleading, since it suggests an operation
combining K and A. This point was also made by Fried-
man and Halpern (1996a) In the BRPM view, the result-
ing epistemic state is also a function of the prior epistemic
state and the input information only.

2. The AGM postulates of belief revision are in some sense
written from a purely external point of view, as if an ob-
server had access to the agent’s belief set from outside,
would notice its evolution under input information viewed
as stimuli, and describe its evolution laws (the AGM the-
ory says: if from the outside, an agent’s beliefs seem to
evolve according to the postulates, then it is as if there
were a plausibility ordering that drives the belief flux). In
this view, the background knowledge remains hidden to
the observer, and its existence is only revealed through
the postulates (like small particles are revealed by theo-
ries of microphysics, even if not observed yet). In the
BRPM problem, the prior plausibility ordering is explic-
itly stated. Under the BRDI view, for practical purposes, it
also looks more natural to use the plausibility ordering as
an explicit primitive ingredient (as done by (Gärdenfors
& Makinson 1994) and to take an insider point of view
on the agent’s knowledge, rather than observing beliefs
change from the outside.

3. The belief revision step in the AGM theory leaves the or-
dering of states unchanged under the BRDI view. This is
because inputs and the plausible ordering deal with differ-
ent matters, resp. the particular world of interest, and the
class of worlds the plausible ordering refers to. The AGM
approach, in the BRDI view is a matter of “querying” the



epistemic entrenchment relation, basically, by focusing it
on the available observation. Under this point of view,
axioms for revising the plausibility ordering, as proposed
by (Darwiche & Pearl 1997), for instance, cannot be seen
as additional axioms completing the AGM axioms. On
the contrary, the prioritized merging view understands the
AGM axioms as relevant for the revision of epistemic
states and apply them to the plausibility ordering. As such
they prove to be insufficient for its characterization, hence
the necessity for additional axioms.

4. In BRDI, while belief sets seem to evolve (from K to K ∗
A to (K ∗A) ∗B . . . ) as if iterated belief revision would
take place, (K ∗A)∗B is really obtained by gathering the
available observations A and B and inferring plausible
beliefs from them. Again we do not compute (K ∗A)∗B
from K∗A. But (K∗A)∗B means K∗(A∧B) (itself not
obtained from K), with the proviso that A and B should
be consistent. And indeed, within the BRDI view,

(K ∗A) ∗B = K ∗ (A ∧B) if A ∧B 6= ⊥

is a consequence of AGM revisions (especially Axioms 7
and 8), if we consider that after revision by A the plausi-
bility ordering does not change (we just restrict it to the
A-worlds). Strictly speaking, these axioms say that the
identity holds if B is consistent with K ∗ A (not with
A). However, if the relative plausibility of worlds is not
altered after observing A, the subsequent revision step
by observation B will further restrict ≥π to the A ∧ B-
worlds since A ∧ B 6= ⊥, and the corresponding belief
set is thus exactly K ∗ (A ∧ B) corresponding the most
plausible among A∧B-worlds. It underlies an optimistic
assumption about input information, namely that both A
and B are reliable if consistent (a postulate of prioritized
merging). This situation is similar to probabilistic con-
ditioning whereby iterated conditioning (P (C | A | B))
comes down to simple conditioning on the conjunction of
antecedents (P (C | A ∧ B)). Of course this is also a re-
stricted view of the AGM theory, forbidding not only the
revision by ⊥, but also by a sequence of consistent in-
puts that are globally inconsistent. But we claim that this
restriction is sensible in the BRDI scenario.

5. If in the AGM setting, observations A, B are inconsistent
then the BRDI scenario collapses, because it means that
some of the input facts are wrong. In this case, even if the
AGM theory proposes something, the prospect it offers is
not so convincing, as this is clearly a pathological situ-
ation. Similarly, in probabilistic reasoning, conditioning
on a sequence of contradicting pieces of evidence makes
no sense. Within the BRDI view, the natural approach is
to do a merging of observations so as to restore a con-
sistent context prior to inferring plausible beliefs (and as
suggested above, the BRPM could be applied to the merg-
ing of such inconsistent input observations). In the med-
ical example, it is clear that the physician receiving con-
tradictory reports about the patient will first try to sort out
the correct information prior to formulating a diagnosis.
In the BRPM view, there is nothing anomalous with the
situation of several conflicting inputs, because this con-

flict is expected as being of the same nature as the pos-
sible conflict between the agent’s epistemic state and one
piece of input information.

In summary, under the BRDI view, the belief revision
problem (moving from K to K ∗A) is totally different from
the problem of revising the plausible ordering of states of na-
ture, while in the BRPM view both are essentially the same
problem and must be carried out conjointly. In particular, it
makes no sense to “revise an ordering by a formula”, in the
AGM framework. In the BRPM view, the input proposition
A is viewed as an ordering of worlds such that at least one
world where A is true is more likely than any world where
A is false. In other words, belief revision can be cast within
a more general setting of merging uncertain pieces of evi-
dence (encoded by plausibility orderings).

Revision of Background Knowledge by
Generic Information (RBKGI)

In the BRDI view, apart from the (contingent) belief revi-
sion problem addressed by the non-pathological part of the
AGM theory and non-monotonic inference, there remains
the problem of revising the generic knowledge itself (en-
coded or not as a plausibility ordering) by means of input
information of the same kind. The AGM theory tells noth-
ing about it. This problem is also the one of revising a set of
conditionals by a new conditional (Boutilier & Goldszmidt
1993). Comparing again to probabilistic reasoning, contin-
gent belief revision is like computing a conditional probabil-
ity using observed facts instantiating some variables, while
revising a plausibility ordering is like revising a Bayes net
(changing the probability tables and/or the topology of the
graph). In the medical example, the background knowledge
of the physician is altered when reading a book on medicine
or attending a specialized conference on latest developments
of medical practice.

One interesting issue is the following: since background
knowledge can be either encoded as a plausibility ordering
≥π or as a conditional knowledge base ∆, should we pose
the RBKGI problem in terms of revising ∆ or revising ≥π?

Suppose ∆ is a conditional knowledge base, which, using
rational closure, delivers a plausibility ordering≥π of possi-
ble worlds. Let A → B be an additional generic rule that is
learned by the agent. If ∆ ∪ {A → B} is consistent (in the
sense that a plausibility ordering ≥π′ can be derived from
it), it is natural to consider that the revision of ≥π yields the
plausibility ordering ≥π′ , obtained from ∆ ∪ {A → B} via
rational closure. Viewed from the conditional knowledge
base this form of revision is just an expansion process. The
full-fledged revision would take place when the conditional
A → B contradicts ∆, so that no plausibility ordering is
compatible with ∆∪{A → B} (Freund 2004). This kind of
knowledge change needs specific rationality postulates for
the revision of conditional knowledge bases, in a logic that
is not classical logic, but the logic of conditional assertions
of Kraus et al.(1990).

Alternatively, one may attempt to revise the plausibil-
ity ordering ≥π (obtained from ∆ via a default informa-
tion minimisation principle), using a constraint of the form



A∧B � A∧¬B. To do so, Darwiche-Pearl postulates can be
a starting point, but they need to be extended in the context
of this particular type of change. Results of (Freund 2004)
and (Kern-Isberner 2001) seem to be particularly relevant
in this context. For instance it is not clear that the change
process should be symmetric. One might adopt a principle
of minimal change of the prior beliefs under the constraint
of accepting the new conditional or ordering as a constraint
(Domotor 1980). A set of postulates for revising a plausibil-
ity ordering (encoded by a kappa-function) by a conditional
input information of the form A ∧ B � A ∧ ¬B is pro-
posed by Kern-Isberner (2001). They extend the Darwiche-
Pearl postulates and preserve the minimal change require-
ment in the sense that they preserve the plausibility ordering
≥π among the examples A∧B of the input conditionals, its
counterexamples A ∧ ¬B, and its irrelevant cases ¬A.

Some insights can also be obtained from the probabilistic
literature (van Fraassen 1980) (Domotor 1985). For instance
Jeffrey’s rule consists in revising a probability distribution
P , enforcing a piece of knowledge, of the form P (A) = α,
as a constraint which the resulting probability measure P ∗

must satisfy. The probability measure “closest” to P in the
sense of relative entropy, and obeying P ∗(A) = α is of
the form P ∗(.) = α.P (. | A) + (1 − α)P (. | ¬A). The
problem of revising a probability distribution by means of a
conditional input of the form P (A|B) = α has been consid-
ered in the probabilistic literature by (van Fraassen 1981).
Rules for revising a plausibility ordering can be found in
(Williams 1995), (Weydert 2000), (Kern-Isberner 2001) (us-
ing the kappa functions of (Spohn 1988)) and (Dubois &
Prade 1997) using possibility distributions.

However it is not clear that revising the plausibility or-
dering ≥π obtained from ∆ by a constraint of the form
A ∧ B � A ∧ ¬B has any chance to always produce the
same result as deriving the plausibility ordering ≥′

π from
the revised conditional knowledge base ∆ after enforcing a
new rule A → B.

While our aim is not to solve this question, at least our
paper claims that revising generic knowledge whether in the
form of a conditional knowledge base, or in the form of a
plausibility ordering, is a problem distinct from the one of
contingent belief revision (BRDI, which is only a problem
of inferring plausible conclusions), and from the prioritized
merging of uncertain information. The RBKGI problem can
be subject to iterated revision, as well. One may argue that
RBKGI underlies an evolving world in the sense of account-
ing for a global evolution of the context in which we live.
In some respects, the normal course of things to-day is not
the same as it used to be fifty years ago, and we must adapt
our generic knowledge accordingly. The distinction between
updates and revision is not so clear when generic knowledge
is the subject of change.

Conclusion
This position paper tried to lay bare three problems of be-
lief change corresponding to different scenarios. Results in
the literature of iterated belief change should be scrutinized
further in the context of these problems. It is clear that ad-
dressing these problems separately is a simplification. For

instance in the BRDI approach, observations are always con-
sidered as sure facts, but one may consider the more com-
plex situation of inferring plausible conclusions from uncer-
tain contingent information using background knowledge.
Also the assumption that in the BRDI approach, contingent
inputs never alter the background knowledge is also an ideal-
ization: some pieces of information may destroy part of the
agent’s generic knowledge, if sufficiently unexpected (think
of the destruction of the Twin Towers); moreover, an intel-
ligent agent is capable of inducing generic knowledge from
a sufficient amount of contingent observations. The latter
is a matter of learning, and the question of the relationship
between learning and belief revision is a natural one even if
beyond the scope of this paper.
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