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Abstract

The central topic of this work is the categories of modules over unital quantales. The

main categorical properties are established and a special class of operators, called Q-

module transforms, is defined. Such operators — that turn out to be precisely the

homomorphisms between free objects in those categories — find concrete applications

in two different branches of image processing, namely fuzzy image compression and

mathematical morphology.

1 Introduction

Actions of residuated structures on posets have been studied by many authors
(see, for instance, [1, 5, 15, 19, 20, 22–29]), especially in connection with mathe-
matical logic and topology. Such structures are involved in the development of
several — rather recent — interesting theories including, for instance, founda-
tional aspects of quantum mechanics (see, e.g. [19]), linear logic [6], and abstract
deductive systems for propositional logics [5].

In particular, the structure of a quantale module (or, equivalently, of a com-
plete poset subject to a biresiduated action from a complete residuated lattice)
appears often in such works, although the basic properties of these categories
still need to be investigated. A first aim of this paper is to fill this gap.

The second motivation that stimulated our investigation on quantale mod-
ules comes from the area of image processing. Indeed, in the literature of im-
age processing, several suitable representations of digital images as [0, 1]-valued
maps are proposed. Such representations are the starting point for defining
both compression and reconstruction algorithms based on fuzzy set theory —
also called fuzzy algorithms — and mathematical morphological operators, used
for shape analysis in digital images.

Most of the fuzzy algorithms use a suitable pair of operators, one for com-
pressing the image and the other one for approximating the original image start-
ing from the compressed one; see, for instance, [3, 17, 21]. The idea is similar
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to that of the so-called “integral transforms” in mathematical analysis: every
map can be discretized by means of the direct transform and then approxi-
mated through the application of a suitable inverse transform. Usually a direct
integral transform is defined as an integral-product composition; analogously, a
fuzzy compression operator is defined as a join-product composition (where the
product is actually a left-continuous triangular norm), and its inverse operator
has the form of a meet-division composition, where the division is the residual
operation of the same triangular norm.

In mathematical morphology, the operators of dilation and erosion — whose
action on an image can easily be guessed by their names — that are translation
invariant can be expressed, again, as join-product and meet-residuum composi-
tions, respectively. All these methods can be placed under a common roof by
essentially abstracting their shared properties. Indeed they are all examples of
Q-module transforms, that we will define in Section 5 and that turn out to be
precisely the homomorphisms between free Q-modules.

The paper is meant to be as self-contained as possible and is organized as
follows. The first two sections are preliminary and most of the results pre-
sented are known. Since quantale modules are basically sup-lattices subject to
a biresiduated action from a quantale, in Section 2 we recall definitions and
properties of residuated maps and sup-lattices, while Section 3 is dedicated to
residuated lattices and quantales, the latter being essentially complete resid-
uated lattices. It is important to underline immediately that, according to
Theorem 2.5, residuated maps, sup-lattice morphisms and closure operators are
pairwise in one-one correspondence. More precisely, sup-lattices and residuated
maps between sup-lattices coincide; moreover, each closure operator gives rise
to a sup-lattice morphism and each sup-lattice morphism, composed with its
residual map, yield a closure operator.

In Section 4 categorical properties of quantale modules are investigated. For
the reader’s convenience, it is divided into two subsections. The first contains
basic definitions (objects, morphisms, subobjects, interval modules and so on)
and results on quantale modules. In Subsection 4.2, we characterize free objects,
endow hom-sets with a sup-lattice structure and, lastly, show how products and
coproducts are made.

We introduce Q-module transforms and structural closure operators in Sec-
tion 5. Here we also show that Q-module transforms are precisely morphisms
of free modules — Theorem 5.19 — and that structural closure operators are
to Q-module morphisms what closure operators are to sup-lattice morphisms,
namely that each structural closure operator gives rise to a Q-module mor-
phism and vice versa. Morover, Theorem 5.19 is extended in a suitable way to
all Q-modules (Theorem 5.20).

Before concluding, in Section 6, we show the relationships that link Q-
module transforms with fuzzy algorithms for image compression and recon-
struction and with mathematical morphological operators. Also this section is
divided into subsections. In Subsection 6.1 the main idea underlying fuzzy al-
gorithms for image compression is described. Subsection 6.2 contains the bases
of mathematical morphology and a brief overview of its most important opera-
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tors. Then, in Subsection 6.3, we discuss the unification of the aforementioned
algorithms and operators in the framework of quantale modules.

2 Residuated maps and sup-lattices

Quantales and quantale modules are basically sup-lattices endowed with further
operations whose behaviour can be described in the frameworks of residuation
theory (see [2] for an introduction) and residuated lattices (for which the reader
may refer to [14]). Therefore in this section we recall some basic necessary
definitions and results on residuated maps and sup-lattices.

Definition 2.1. Let 〈X,≤〉 and 〈Y,≤〉 be two posets. A map f : X −→ Y is
said to be residuated provided there exists a map g : Y −→ X such that, for all
x ∈ X and for all y ∈ Y , the following condition holds:

f(x) ≤ y ⇐⇒ x ≤ g(y).

It is immediate to verify that the map g is uniquely determined; we call it the
residual map or the residuum of f , and denote it by f∗. The pair (f, f∗) is said
to be adjoint.

Before discussing the basic properties of adjoint pairs, we recall that, if
〈X,≤〉 is a poset, a map γ : X −→ X is called a closure operator if it is order
preserving, extensive and idempotent, i.e. iff for all x, y ∈ X

(i) x ≤ y implies γ(x) ≤ γ(y),

(ii) x ≤ γ(x),

(iii) γ ◦ γ = γ.

Dually, a map δ : X −→ X is called a coclosure operator, or an interior operator,
if

(i) δ is order preserving,

(ii) δ(x) ≤ x for all x ∈ X ,

(iii) δ ◦ δ = δ.

The following result is a classical characterization of residuated maps:

Theorem 2.2. Let 〈X,≤〉 and 〈Y,≤〉 be two posets, and f : X −→ Y . The
following statements are equivalent:

(a) f is residuated, with residual f∗;

(b) f is monotone and for all y ∈ Y there exists in X the element

f∗(y) =
∨

{x ∈ X | f(x) ≤ y};
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(c) f is monotone and there exists a unique monotone map f∗ : Y −→ X such
that

f ◦ f∗ ≤ idY (1)

and
f∗ ◦ f ≥ idX ; (2)

(d) f is monotone and there exists a unique monotone map f∗ : Y −→ X such
that

f ◦ f∗ ◦ f = f (3)

and
f∗ ◦ f ◦ f∗ = f∗. (4)

Corollary 2.3. Let 〈X,≤〉 and 〈Y,≤〉 be two posets and let (f, f∗) be an adjoint
pair, with f : X −→ Y . Then

(i) f∗ ◦ f is a closure operator over X;

(ii) f ◦ f∗ is an interior operator in Y .

Proof. It is enough to apply (1–4).

Moreover we have:

Proposition 2.4. Let 〈X,≤〉 and 〈Y,≤〉 be posets, and let (f, f∗) be an adjoint
pair, with f : X −→ Y . Then the following hold:

(i) f preserves all existing joins, i.e. if {xi}i∈I is a family of elements of X
such that there exists

∨

i∈I xi, then also
∨

i∈I f(xi) exists and

f

(

∨

i∈I

xi

)

=
∨

i∈I

f(xi);

(ii) f∗ preserves all existing meets, i.e. if {yj}j∈J is a family of elements of
Y such that

∧

j∈J yj exists, then also
∧

j∈J f∗(yj) exists and

f∗





∧

j∈J

yj



 =
∧

j∈J

f∗(yj);

(iii) f is surjective ⇐⇒ f∗ is injective ⇐⇒ f ◦ f∗ = idY ;

(iv) f is injective ⇐⇒ f∗ is surjective ⇐⇒ f∗ ◦ f = idX .

Let 〈X,≤〉, 〈Y,≤〉 and 〈W,≤〉 be posets. A map f : X × Y −→ W of
two variables is said to be biresiduated if it is residuated with respect to each
variable, i.e. if the following two conditions hold:
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- for any fixed y, there exists a map gy : W −→ X such that

f(x, y) ≤ w ⇐⇒ x ≤ gy(w);

- for any fixed x, there exists a map hx : W −→ Y such that

f(x, y) ≤ w ⇐⇒ y ≤ hx(w).

A poset 〈L,≤〉 which admits arbitrary joins is called a sup-lattice. A sup-
lattice homomorphism is a map that preserves arbitrary joins. If S ⊆ L, the
join over S will be denoted indifferently by

∨

s∈S s or
∨

S. It is easily seen
that a sup-lattice admits also arbitrary meets. Indeed, for any S ⊆ L, we can
consider the set S′ = {x ∈ L | s ≤ x ∀s ∈ S} of the lower bounds of S, and we
have

∨

S′ =
∧

S. Then the category SL of sup-lattices is the one whose objects
are complete lattices and morphisms are maps preserving arbitrary joins. If L1

and L2 are sup-lattices and ϕ : L1 −→ L2 is a sup-lattice homomorphism, then
clearly ϕ(⊥1) = ϕ

(

L1

∨

∅
)

= L2

∨

∅ = ⊥2, where ⊥i is the bottom element of
Li, i = 1, 2. Thus, for a sup-lattice L, we will use the notation L = 〈L,∨,⊥〉.

For any sup-lattice L = 〈L,∨,⊥〉 it is possible to define a dual sup-lattice
in an obvious way: if we consider the opposite partial order ≥ (also denoted by
≤op), then Lop = 〈L,∨op,⊥op〉 = 〈L,∧,⊤〉 — where ⊤ =

∨

L — is a sup-lattice
and, clearly, (Lop)op = L.

It is also clear that, given two sup-lattices L1 and L2, homSL(L1,L2) is a
sup-lattice itself, with the order relation — and, therefore, the operations —
defined pointwisely: f ≤ g ⇐⇒ f(x) ≤ g(x) ∀x ∈ L1. We will denote it by
homSL(L1,L2).

If L1 and L2 are sup-lattices and f ∈ homSL(L1,L2), f is monotone and,
for all y ∈ L2, there exists

∨

{x ∈ L1 | f(x) ≤ y}. Then, by Theorem 2.2, f is a
residuated map whose residual, f∗, is defined by f∗(y) =

∨

{x ∈ L1 | f(x) ≤ y}
for all y ∈ L2. Moreover, f∗ is a homomorphism between the dual sup-lattices
L
op
2 and L

op
1 ; to emphasize this fact, we will denote f∗ also by fop. For all

f, g ∈ homSL(L1,L2), we have:

- (fop)op = f ,

- f ≤ g ⇐⇒ g∗ ≤ f∗ ⇐⇒ fop ≤op gop,

- (g ◦ f)op = fop ◦ gop,

hence
homSL(L1,L2) ∼= homSL(Lop

2 ,Lop
1 ). (5)

Conversely, if f : L1 −→ L2 is a residuated map between sup-lattices, it is a
sup-lattice homomorphism between L1 and L2 by Proposition 2.4(i), and its
residuum f∗ is a sup-lattice homomorphism from L

op
2 to L

op
1 , by part (ii) of the

same proposition.
Then we have that sup-lattice homomorphisms coincide with residuated

maps between sup-lattices. Furthermore, by Corollary 2.3, if f : L1 −→ L2
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is a residuated map, then f∗ ◦ f : L1 −→ L1 is a closure operator. Indeed it is
also true that any closure operator γ : L −→ L gives rise to a residuated map
(i.e. a sup-lattice homomorphism) f : x ∈ L 7−→ γ(x) ∈ γ[L] (where the join
γ
∨

in γ[L] is defined by γ
∨

X = γ
(

L
∨

X
)

, for all X ⊆ γ[L]) whose residual
is f∗ : y ∈ γ[L] 7−→

∨

f−1[{y}] ∈ L, as we are going to see in Theorem 2.5.
Let Cl(L) be the set of all the closure operators over a given sup-lattice L; it

is easily seen to be a poset with respect to the order relation defined pointwise:
for all γ, δ ∈ Cl(L), γ ≤ δ ⇐⇒ γ(x) ≤ δ(x) ∀x ∈ L. Furthermore, let
us consider the set, Qt(L), of all the quotients of L and the one, Λ(L), of all
the subsets of L that are closed under arbitrary meets, both partially ordered
by set inclusion. The following result proves that the posets Cl(L)op, Λ(L)
and Qt(L) are isomorphic and, moreover, that any quotient of a sup-lattice is
isomorphic — in a precise sense — to a subset of the same sup-lattice that is
closed under arbitrary meets.

Theorem 2.5. For any sup-lattice L, Cl(L)op, Qt(L) and Λ(L) are isomorphic
posets. Moreover, every element of Λ(L) has a sup-lattice structure that is
canonically isomorphic to a quotient of L.

Proof. For all S ∈ Λ(L), we can define a map γS : L −→ L by setting, for
all x ∈ L, γS(x) =

∧

{y ∈ S | x ≤ y}. It comes straightforwardly from its
definition that γS is monotone, extensive and idempotent; hence γS ∈ Cl(L)
and γS [L] = S. Then we can define the map

Γ : S ∈ Λ(L) 7−→ γS ∈ Cl(L).

If S, T ∈ Λ(L) are two different sets, then there exists x ∈ (S \ T ) ∪ (T \ S). If
x ∈ S \T , then γS(x) = x 6= γT (x); analogously, if x ∈ T \S, then γT (x) = x 6=
γS(x). Hence S 6= T implies γS 6= γT , and Γ is injective.

On the other hand, if γ ∈ Cl(L) and S is an arbitrary subset of γ[L], then S is
also a subset of L; thus there exists z =

∧

S ∈ L. Now, since z ≤ x for all x ∈ S,
γ(z) ≤ γ(x) = x for all x ∈ S. Therefore γ(z) ≤ z, whence γ(z) = z ∈ S. Then
γ[L] is closed under arbitrary meets. Moreover, if we assume that there exists
x ∈ L such that γ(x) 6= γγ[L](x), then clearly γ(x) 	 γγ[L](x), by the definition
of γγ[L]. So we have x ≤ γγ[L](x) and γ(γγ[L](x)) = γγ[L](x) < γ(x), that
contradicts the monotonicity of γ. It follows that γ = γγ[L], for all γ ∈ Cl(L),
and Γ is surjective too, hence bijective. Now, if S ⊆ T ∈ Λ(L), then clearly
γT ≤ γS by the definition of such maps, so Γ is order reversing. Analogously
it is immediate to verify that also Γ−1 is order reversing and therefore Γ is an
isomorphism between Λ(L) and Cl(L)op.

Now it is easy to see that, if γ = γS is a closure operator, then S = 〈S, γ ◦
∨, γ(⊥)〉 is a sup-lattice. Then, given a set S ∈ Λ(L), we can define a map
ρS : L −→ S just by restricting the codomain of γS to S:

ρS : x ∈ L 7−→ γS(x) =
∧

{y ∈ S | x ≤ y} ∈ S. (6)

The map ρS , also called the reflection of L over S, is the left inverse of the
inclusion idL↾S : S →֒ L and is a surjective homomorphism from L to S; thus S
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is isomorphic to the quotient L/ρS of L. In this way we define a map

Π : S ∈ Λ(L) 7−→ L/ρS ∈ Qt(L),

and a map Θ = Π ◦ Γ−1, from Cl(L) to Qt(L).
It is easily seen that Π is an isomorphism and, consequently, Θ is an isomor-

phism between Cl(L)op and Qt(L); the theorem is proved.

The following well-known result describes free objects in the category SL.

Proposition 2.6. [15] For any set X, the free sup-lattice FreeSL(X) generated
by X is P(X) = 〈P(X),∪,∅〉.

In particular, by Proposition 2.6, the free sup-lattice over one generator P1
is isomorphic to {⊥,⊤} and, clearly, P1op ∼= P1. On the other hand, it is
clear as well that, for an arbitrary sup-lattice L, a map f : P1 −→ L is a
sup-lattice homomorphism if and only if f(⊥) = ⊥L. Thus, using also (5) and
the self-duality of P1, we have

L ∼= homSL(P1,L) ∼= homSL(Lop,P1)

and
Lop ∼= homSL(P1,L)op ∼= homSL(L,P1),

hence

L ∼= homSL(P1,L) ∼= homSL(Lop,P1) ∼= homSL(L,P1)op, (7)

Lop ∼= homSL(P1,L)op ∼= homSL(L,P1) ∼= homSL(Lop,P1)op. (8)

Proposition 2.7. [15] Let {Li}i∈I be a family of sup-lattices. Then the coprod-
uct

∐

i∈I Li is the product
∏

i∈I Li equipped with the maps µi : Li −→
∏

i∈I Li

that send each xi ∈ Li into the family of
∏

i∈I Li in which all the elements are
equal to ⊥ except the i-th that is equal to xi. Moreover, if πi :

∏

i∈I Li −→ Li

is the canonical i-th projection, for all i ∈ I, πi ◦ µi = idLi
.

Proposition 2.8. Every free sup-lattice is projective. An object L in SL is
projective if and only if its dual Lop is injective.

Proof. Let P(X) be a free sup-lattice, and let L1 and L2 be two sup-lattices
such that there exists a surjective morphism g : L1 −→ L2 and a morphism
f : P(X) −→ L2. Then f is the unique homomorphism that extends the map
fX : x ∈ X 7−→ f({x}) ∈ L2. If we consider the map g∗ ◦fX : X −→ L1, we can
extend it to a homomorphism h : P(X) −→ L1, and it is immediate to verify
that g ◦ h = f . Then any free sup-lattice is projective.

The second assertion is a trivial application of the self-duality of SL.
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3 Residuated lattices and quantales

A binary operation · on a partially ordered set 〈P,≤〉 is said to be residuated iff
there exist binary operations \ and / on P such that for all x, y, z ∈ P ,

x · y ≤ z iff x ≤ z/y iff y ≤ x\z.

The operations \ and / are referred to as the left and right residuals, or divisions,
of ·, respectively. In other words, a residuated binary operation over 〈P,≤〉 is
a map from P × P to P that is biresiduated. It follows from the results of
Section 2 that the operation · is residuated if and only if it is order preserving
in each argument and, for all x, y, z ∈ P , the inequality x · y ≤ z has a largest
solution for x (namely z/y) and for y (i.e. x\z). In particular, the residuals
are uniquely determined by · and ≤. The system P = 〈P, ·, \, /,≤〉 is called a
residuated partially ordered groupoid or residuated po-groupoid.

In the situations where · is a monoid operation with a unit element e and the
partial order is a lattice order, we can add the monoid unit and the lattice oper-
ations to the similarity type to get an algebraic structure R = 〈R,∨,∧, ·, \, /, e〉
called a residuated lattice-ordered monoid or residuated lattice for short. It is
not hard to see that RL, the class of all residuated lattices, is a variety and the
identities

x ∧ (xy ∨ z)/y ≈ x, x(y ∨ z) ≈ xy ∨ xz, (x/y)y ≈ x
y ∧ x\(xy ∨ z) ≈ y, (y ∨ z)x ≈ yx ∨ zx, y(y\x) ≈ x,

together with monoid and lattice identities, form an equational basis for it.
In the category Q of quantales1, Obj(Q) is the class of complete residuated

lattices and the morphisms are the maps preserving products, the unit, arbitrary
joins and the bottom element.

An alternative definition of quantale is the following

Definition 3.1. A quantale is an algebraic structure Q = 〈Q,∨, ·,⊥, e〉 such
that

(Q1) 〈Q,∨,⊥〉 is a sup-lattice,

(Q2) 〈Q, ·, e〉 is a monoid,

(Q3) x ·
∨

i∈I

yi =
∨

i∈I

(x · yi) and

(

∨

i∈I

yi

)

· x =
∨

i∈I

(yi · x) for all x ∈ Q,

{yi}i∈I ⊆ Q.

Q is said to be commutative if so is the multiplication.

The equivalence between the two definitions above is immediate to verify
by means of the completeness of the lattice order in Q and the properties of

1 In the literature, quantales are often defined as complete residuated po-groupoids, i.e.

they are not unital. However, since we deal only with unital quantales, we will use this

definition to avoid notational complications.



3 Residuated lattices and quantales 9

residuated maps. Indeed, since 〈Q,∨,⊥〉 is a sup-lattice, it is possible to define
the left and right residuals of ·:

x\y =
∨

{z ∈ Q | x · z ≤ y},

y/x =
∨

{z ∈ Q | z · x ≤ y}.

Obviously, if Q is commutative then the left and right divisions coincide:

x\y = y/x.

Example 3.2. Let A = 〈A, ·, e〉 be a monoid. We define, for all X,Y ⊆ A,

X · Y = {x · y | x ∈ X, y ∈ Y },
X ·∅ = ∅ ·X = ∅.

(9)

It is immediate to verify that the structure P(A) = 〈P(A),∪, ·,∅, {e}〉 is a
quantale, whose product is often called complex multiplication.

Proposition 3.3. Let Q and M be, respectively, the categories of quantales and
monoids. Then Q is a concrete category over M. Moreover, given a monoid
M, the free quantale over M is P(M).

Proof. The first part of the proposition is trivial. Indeed it is evident that the
functor U : Q −→ M — defined as the functor that forgets the join and the
bottom element — is faithful.

Now let us consider a monoid M = 〈M, ·, u〉, a quantale Q = 〈Q,∨, ·,⊥, e〉
and a monoid morphism f : M −→ UQ. If we consider the singleton map
σ : x ∈ M −→ {x} ∈ P(M), it is obviously a monoid morphism and, if we set
hf : X ∈ P(M) −→

∨

x∈X f(x), the result follows as an easy application of
Proposition 2.6.

Let S be a non-empty set. It is well-known that the free monoid on S is
S∗ = 〈S∗, ·,∅〉, where S∗ = {x1 . . . xn | n ∈ N, xi ∈ S} ∪ {∅} and the product
of two elements in S∗ is defined simply as their juxtaposition. With these
notations, we have immediately the following result.

Proposition 3.4. Let S be a non-empty set. The free quantale over S is P(S∗).

Proof. If we consider the category M as a construct, with forgetful functor U ,
and Q as a concrete category over M, with forgetful functor U ′, it is immediate
to verify that U ◦U ′ is the underlying functor that makes Q a construct. Then
UU ′Q = Q, for any quantale Q. Now let Q ∈ Q and f : S −→ Q be a map,
and consider the following diagram

S
idS∗↾S

//

f

��
?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

S∗

Uhf

��

σ
// P(S∗)

UU ′h′
f

��

Q
idQ

// Q

,
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where idS∗↾S is the inclusion map, σ is the singleton map, hf is the unique
monoid homomorphism that extends f and h′

f is the unique quantale homo-
morphism that extends hf .

Then the diagram above is easily seen to be commutative, hence h′
f is a

homomorphism of quantales that extends f ; the uniqueness of h′
f comes from

that of hf . So the assertion is proved.

Observe that, in P(S∗), ∅ is the bottom element and {∅} is the unit.

Proposition 3.5. Let Q be a quantale. Then, for any x, y, z ∈ Q and {yi}i∈I ⊆
Q,

(i) x⊥ = ⊥x = ⊥,

(ii) if x ≤ y then xz ≤ yz and zx ≤ zy,

(iii) if x ≤ y then x/z ≤ y/z, z\x ≤ z\y, z/y ≤ z/x and y\z ≤ x\z,

(iv) (y/x)x ≤ y and x(x\y) ≤ y,

(v) x/e = e\x = x,

(vi) x/
(
∨

i∈I yi
)

=
∧

i∈I(x/yi) and
(
∨

i∈I yi
)

\x =
∧

i∈I(yi\x),

(vii)
(
∧

i∈I yi
)

/x =
∧

i∈I(yi/x) and x\
(
∧

i∈I yi
)

=
∧

i∈I(x\yi),

(viii) y\(x\z) = xy\z and (z/y)/x = z/xy.

Proof. See Proposition 2.12 of [16].

4 The categories of Quantale Modules

4.1 Basic definitions and properties

Definition 4.1. Let Q be a quantale. A (left) Q-module M, or a module over
Q, is a sup-lattice 〈M,∨,⊥〉 with an external binary operation, called scalar
multiplication,

⋆ : (q,m) ∈ Q ×M 7−→ q ⋆ m ∈ M,

such that the following conditions hold:

(M1) (q1 · q2) ⋆ m = q1 ⋆ (q2 ⋆ m), for all q1, q2 ∈ Q and m ∈ M ;

(M2) the external product is distributive with respect to arbitrary joins in both
coordinates, i.e.

(i) for all q ∈ Q and {mi}i∈I ⊆ M ,

q ⋆ M
∨

i∈I

mi = M
∨

i∈I

q ⋆ mi,
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(ii) for all {qi}i∈I ⊆ Q and m ∈ M ,

(

Q
∨

i∈I

qi

)

⋆ m = M
∨

i∈I

qi ⋆ m,

(M3) e ⋆ m = m.

Condition (M2) can be expressed, equivalently, as follows:

(M2′) The scalar multiplication is residuated with respect to the lattice order in
M , i.e.

(i) for all q ∈ Q, the map

q⋆ : m ∈ M 7−→ q ⋆ m ∈ M

is residuated,

(ii) for all m ∈ M , the map

⋆m : q ∈ Q 7−→ q ⋆ m ∈ M

is residuated.

Then, from (M2′) it follows that, for all q ∈ Q, there exists the residual map
(q⋆)∗ of q⋆, and for all m ∈ M there exists the residual map (⋆m)∗ of ⋆m.
Consequently Theorem 2.2 implies

(q⋆)∗ : m ∈ M 7−→
∨

{n ∈ M | q ⋆ n ≤ m} ∈ M (10)

and
(⋆m)∗ : n ∈ M 7−→

∨

{q ∈ Q | q ⋆ m ≤ n} ∈ Q. (11)

Condition (10) defines another external operation over M :

\⋆ : (q,m) ∈ Q×M 7−→ q\⋆m = (q⋆)∗(m) ∈ M.

Analogously, condition (11) defines a map from M ×M to Q:

⋆/ : (m,n) ∈ M ×M 7−→ m⋆/n = (⋆m)∗(n) ∈ Q.

The proof of the following proposition is straightforward from the definitions
of ⋆, \⋆ and ⋆/ and from the properties of quantales.

Proposition 4.2. [5] For any quantale Q and any Q-module M, the following
hold.

(i) The operation ⋆ is order-preserving in both coordinates.

(ii) The operations \⋆ and ⋆/ preserve meets in the numerator; moreover, they
convert joins in the denominator into meets. In particular, they are both
order-preserving in the numerator and order reversing in the denominator.
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(iii) (m⋆/n) ⋆ n ≤ m.

(iv) q ⋆ (q\⋆m) ≤ m.

(v) m ≤ q\⋆(q ⋆ m).

(vi) (q\⋆m)⋆/n = q\(m⋆/n).

(vii) ((m⋆/n) ⋆ n)⋆/n = m⋆/n.

(viii) e ≤ m⋆/m.

(ix) (m⋆/m) ⋆ m = m.

Example 4.3. Let Q be a quantale and X be an arbitrary non-empty set. We
can consider the sup-lattice 〈QX ,∨X ,⊥X〉, where ⊥X is the ⊥-constant function
from X to Q and

(

X
∨

i∈I

fi

)

(x) =
∨

i∈I

fi(x) for all x ∈ X.

Then we can define a scalar multiplication in QX as follows:

⋆ : (q, f) ∈ Q×QX 7−→ q ⋆ f ∈ QX ,

with the map q ⋆ f defined as (q ⋆ f)(x) = q · f(x) for all x ∈ X .
It is clear that QX is a left Q-module — denoted by QX — and, for all

q ∈ Q, f ∈ QX and x ∈ X , the following holds:

(q\⋆f)(x) = q\f(x).

Example 4.4. Let S be a set and A = 〈A, ·, e〉 be a monoid from which an
action ⋆ on S is defined. Then the sup-lattice P(S) = 〈P(S),∪,∅〉 is a module
over the free quantale P(A) = 〈P(A),∪, ·,∅, {e}〉. Indeed it is easy to see that
the module action ⋆′ of the monoid 〈P(A), ·, {e}〉 on the set P(S), preserves
arbitrary unions in both arguments.

The definition and properties of right Q-modules are completely analogous.
If Q is commutative, the concepts of right and left Q-modules coincide and we
will say simply Q-modules. If a sup-lattice M is both a left Q-module and a
right Q′-module — over two given quantales Q and Q′ — we will say that M

is a (Q,Q′)-bimodule if the following associative law holds:

(q ⋆l m) ⋆r q
′ = q ⋆l (m ⋆r q

′), for all m ∈ M, q ∈ Q, q′ ∈ Q′, (12)

where ⋆l and ⋆r are — respectively — the left and right scalar multiplications.
It is easy to prove, by means of Proposition 2.4, that if Q is a quantale

and M is a left (respectively: right) Q-module, the dual sup-lattice Mop is a
right (resp.: a left) Q-module, with the external multiplication \⋆ defined by
condition (10).
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Definition 4.5. Let Q be a quantale and M1,M2 be two left Q-modules.
A map f : M1 −→ M2 is a Q-module homomorphism if f

(

M1

∨

i∈I mi

)

=
M2

∨

i∈I f(mi) for any family {mi}i∈I ⊆ M1, and f(q ⋆1 m) = q ⋆2 f(m), for all
q ∈ Q and m ∈ M1, where ⋆i is the external product of Mi, for i = 1, 2. The
definition of right Q-module homomorphism is analogous

Thus, given a quantale Q, the categories Ml
Q and Mr

Q have, respectively, left
and right Q-modules as objects, and left and right Q-module homomorphisms
as morphisms. If Q is commutative, Ml

Q and Mr
Q coincide, and we denote such

a category by MQ.

Remark 4.6. Henceforth, in all the definitions and results that can be stated
both for left and right modules, we will refer generically to “modules” — without
specifying left or right — and we will use the notations of left modules.

Proposition 4.7. Let Q be a quantale, M1, M2 be two Q-modules and f :
M1 −→ M2 be a homomorphism. Then f is a residuated map and the residual
map f∗ : M2 −→ M1 is a Q-module homomorphism between M

op
2 and M

op
1 .

Proof. Since f is a Q-module homomorphism, a fortiori it is a sup-lattice ho-
momorphism, hence a residuated map and, as we proved in Section 2, f∗ is a
sup-lattice homomorphism from M

op
2 to M

op
1 . What we need to prove, now, is

that f∗ (q\⋆2
m2) = q\⋆1

f∗(m2). Let m ∈ M1; we have

m ≤ f∗ (q\⋆2
m2) ⇐⇒ f(m) ≤ q\⋆2

m2 ⇐⇒ q ⋆2 f(m) ≤ m2

⇐⇒ f(q ⋆1 m) ≤ m2 ⇐⇒ q ⋆1 m ≤ f∗(m2) ⇐⇒ m ≤ q\⋆1
f∗(m2),

and the result follows.

If M1 and M2 are left modules, then their duals are right modules and vice
versa. Then it follows from Proposition 4.7 that — as well as for sup-lattices —
there is a one-one correspondence between the hom-set of two given modules
and the hom-set of their dual modules. We will return to these properties (and
clarifying them) in the next subsection.

Let Q be a quantale and let M = 〈M,∨,⊥〉 be a Q-module. A Q-submodule
N of M is a sup-sublattice 〈N,∨,⊥〉 of 〈M,∨,⊥〉 that is stable with respect to
the external product of M. It is easy to verify that, for any family {Ni}i∈I of
Q-submodules of M,

〈
⋂

i∈I Ni,∨,⊥
〉

is still a Q-submodule of M. Thus, given
an arbitrary subset S of M , we define the Q-submodule 〈〈S〉,∨,⊥〉 generated
by S as the intersection of all the Q-submodules of M containing S. Vice versa,
given a submodule N of M, we will say that a subset S of M is a system of
generators for N — or that S generates N — if N = 〈S〉.

If {Mi} is a family of Q-modules, M is a Q-module and X is a non-empty
set, the product

∏

i∈I Mi = 〈
∏

i∈I Mi,∨, (⊥i)i∈I)〉 of the family {Mi}i∈I , and
MX = 〈MX ,∨X ,⊥X〉 are clearly Q-modules with the operations defined point-
wise. MX is also called the power module of M by X .
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Proposition 4.8. Let Q be a quantale, M a Q-module and S ⊆ M . Then
〈S〉 =

∨

Q ⋆ S, where

∨

Q ⋆ S =

{

∨

x∈S

qx ⋆ x
∣

∣

∣ {qx}x∈S ∈ QS

}

.

Proof. First we observe that ⊥ =
∨

x∈S ⊥ ⋆ x ∈
∨

Q ⋆ S; now let {yi}i∈I be an
arbitrary family of elements of

∨

Q⋆S, with set of indices I. Then, for all i ∈ I,
yi =

∨

x∈S qix ⋆ x, for a suitable family {qix}x∈S of elements of Q. We have

∨

i∈I

yi =
∨

i∈I

(

∨

x∈S

qix ⋆ x

)

=
∨

x∈S

(

∨

i∈I

qix ⋆ x

)

=
∨

x∈S

(

∨

i∈I

qix

)

⋆ x ∈
∨

Q ⋆ S.

Moreover, for all y =
∨

x∈S qx ⋆ x ∈
∨

Q ⋆ S and for all q ∈ Q,

q ⋆ y = q ⋆
∨

x∈S

qx ⋆ x =
∨

x∈S

q ⋆ (qx ⋆ x) =
∨

x∈S

(q · qx) ⋆ x ∈
∨

Q ⋆ S;

hence
∨

Q⋆S is a Q-submodule of M and it is clear that S ⊆
∨

Q⋆S. Therefore
〈S〉 ⊆

∨

Q ⋆ S.
On the other hand, if N is a Q-submodule of M containing S, if we fix an

element qx ∈ Q for each x ∈ S, the scalar product qx ⋆ x must be in N for all
x ∈ S; thus also

∨

x∈S qx ⋆ x ∈ N ; hence
∨

Q ⋆ S ⊆ N. The arbitrary choice of
N, among the submodules of M containing S, ensures that

∨

Q ⋆ S ⊆ 〈S〉; the
result follows.

Given a quantale Q, a Q-module is called cyclic if it is generated by a single
element v. According to the notation introduced in Proposition 4.8, a cyclic
module generated by a certain v, will be also denoted by Q ⋆ v.

Lemma 4.9. [5] A Q-module M is cyclic with generator v iff (m⋆/v) ⋆ v = m,
for all m ∈ M .

Definition 4.10. Let Q be a quantale, and let M = 〈M,∨,⊥〉 be a Q-module
and m be a fixed element of M . If we consider the set M↑m = {n ∈ M | m ≤ n},
we can endow such a set with the structure of a Q-module. Indeed it is clear
that M↑m is closed both under arbitrary joins and meets; on the other hand, its
bottom element is m and we define the external operation ⋆↑m as

q ⋆↑m n = m ∨ q ⋆ n, for all n ∈ M↑m.

It is easy to verify that M↑m = 〈M↑m,∨,m〉 is a Q-module, with such an
external operation. We will call it the (upper) interval Q-module determined
by m in M. For M↑m, we will use also the notation [m,⊤], indifferently.
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4.2 Free modules, hom-sets, products and coproducts

In the present subsection, we investigate several basic constructions and proper-
ties of the categories of quantale modules. According to Remark 4.6, in all the
definitions and statements regarding modules over a non-commutative quantale
Q, whenever we say simply Q-module or write MQ, we mean that the definition
or the result holds for both left and right modules (suitably reformulated, where
necessary).

Proposition 4.11. For any set X, the free Q-module generated by X is the
function module QX = 〈QX ,∨X ,⊥X〉, with join and scalar multiplication de-
fined pointwise, equipped with the map χ : x ∈ X 7−→ χx ∈ QX , where χx is
defined, for all x ∈ X, by

χx(y) =

{

⊥ if y 6= x
e if y = x

. (13)

Proof. Let M = 〈M,∨,⊥〉 be any Q-module and f : X −→ M be an ar-
bitrary map. We shall prove that there exists a unique Q-module morphism
hf : QX −→ M such that hf ◦ χ = f . First observe that, for any α ∈ QX , α =
∨

x∈X α(x)⋆χx; then let us set hf(α) =
∨

x∈X α(x)⋆f(x). For any fixed x ∈ X ,
(hf ◦χ)(x) = hf (χx) =

∨

x∈X χx(x)⋆f(x) = e ·f(x)∨
∨

x∈X\{x} ⊥·f(x) = f(x),
hence hf ◦ χ = f .

Let now (αi)i∈I be a family of elements of QX and observe that
∨

i∈I αi =
∨

i∈I

(
∨

x∈X αi(x) ⋆ χx

)

=
∨

x∈X

(
∨

i∈I αi(x) ⋆ χx

)

. Then

hf

(
∨

i∈I αi

)

= hf

(
∨

i∈I

(
∨

x∈X αi(x) ⋆ χx

))

= hf

(
∨

x∈X

(
∨

i∈I αi(x) ⋆ χx

))

= hf

(
∨

x∈X

(
∨

i∈I αi(x)
)

⋆ χx

)

=
∨

x∈X

(
∨

i∈I αi(x)
)

⋆ f(x)
=

∨

x∈X

(
∨

i∈I αi(x) ⋆ f(x)
)

=
∨

i∈I

(
∨

x∈X αi(x) ⋆ f(x)
)

=
∨

i∈I hf (αi),

thus hf preserves arbitrary joins; the proof of the fact that it also preserves
scalar multiplication is straightforward, and therefore hf is a Q-module homo-
morphism. Moreover, the uniqueness of hf can be proved exactly as in the proof
of Proposition 2.6.

Obviously, every Q-module is homomorphic image of a free module.

Definition 4.12. Given Q-modules M and N, we define, on homQ(M,N), the
following operations and constants:

- for all {hi}i∈I ⊆ homQ(M,N), the homomorphism
⊔

i∈I hi is defined by
(
⊔

i∈I hi

)

(x) =
∨

i∈I hi(x), for all x ∈ M ,

- let ⊥⊥ and ⊤⊤ be the maps defined, respectively, by ⊥⊥(x) = ⊥N and
⊤⊤(x) = ⊤N , for all x ∈ M
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and, if Q is commutative,

- for all q ∈ Q and h ∈ homQ(M,N), let q ⋄ h be the map defined by
(q ⋄ h)(x) = q ⋆ h(x) = h(q ⋆ x), for all x ∈ M .

It is easy to see that homQ(M,N) = 〈homQ(M,N),⊔,⊥⊥〉 is a sup-lattice and,
if Q is a commutative quantale, it is a Q-module with the external multiplication
⋄. If N = M, the sup-lattice (or, in case, the module) of the endomorphisms
homQ(M,M) will be denoted by EndQ(M) = 〈EndQ(M),⊔,⊥⊥〉.

By Proposition 4.7, the sup-lattices homQ(M,N) and homQ(Nop,Mop)
are isomorphic and, if Q is a commutative quantale, they are isomorphic Q-
modules.

Proposition 4.13. Let Q be a quantale. For any family of Q-modules {Mi}i∈I ,
the coproduct

∐

i∈I Mi is the product
∏

i∈I Mi equipped with the right inverses
µi : Mi −→

∏

i∈I Mi of the projections πi :
∏

i∈I Mi −→ Mi. Moreover, for all
i ∈ I, πi ◦ µi = idMi

.

Proof. First of all, let us observe that, for any fixed index j ∈ I and for any
x ∈ Mj, µj(x) is the family of

∏

i∈I Mi in which all the elements are equal to
⊥ except the j-th that is equal to x. Thus, in particular, for any family (xi)i∈I ,
(xi)i∈I =

∨

i∈I µi(xi).
Now we want to prove that, given an arbitrary Q-module M and a family

of homomorphisms fi : Mi −→ M, there exists a unique homomorphism f :
∏

i∈I Mi −→ M such that f ◦ µi = fi for all i ∈ I.
Let f ((xi)i∈I) =

∨

i∈I fi(xi). For all i ∈ I and xi ∈ Mi, we have (f ◦
µi)(xi) = f (µi(xi)) = fi(xi) ∨

∨

j∈I\{i} fj(⊥) = fi(xi).

Now, let f ′ :
∏

i∈I Mi −→ M be another homomorphism such that f ′ ◦µi =

fi for all i ∈ I. Then f ′ ((xi)i∈I) = f ′
(
∨

i∈I µi(xi)
)

=
∨

i∈I f
′(µi(xi)) =

∨

i∈I fi(xi) = f ((xi)i∈I). Thus f ′ = f and also the uniqueness is proved.

5 Q-module structural closure operators and transforms

In Section 2 we saw the connection between the homomorphisms whose domain
is a given sup-lattice L and the closure operators on L. Now, since Q-module
homomorphisms are special sup-lattice homomorphisms, we expect Q-modules
to be fit for a suitable class of operators that would allow us to establish a
similar result. Indeed the notion that corresponds to that of closure operator,
in the categories of Q-modules, is the one of structural closure operator, also
called a nucleus (see [20]).

As a matter of fact, the importance of such operators goes far beyond the
relationship with homomorphisms. In [5] the authors proved that structural
closure operators between complete posets allow an algebraic representation of
propositional deductive systems, and a re-examination of these results in the
framework of Q-modules has been presented in [29]. Moreover, they are also
involved in the applications to image processing we will present in Section 6.
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Definition 5.1. Let Q be a quantale and M a Q-module. A map γ : M −→ M
is said to be a structural operator on M provided it satisfies, for all m,n ∈ M
and q ∈ Q, the following conditions:

(i) m ≤ γ(m);

(ii) m ≤ n implies γ(m) ≤ γ(n);

(iii) q ⋆ γ(m) ≤ γ(q ⋆ m).

We will say that a structural operator γ is a nucleus, or a structural closure
operator, if it is also idempotent:

(iv) γ ◦ γ = γ.

Then a nucleus is a closure operator that satisfies also condition (iii). So it
is natural to call a conucleus a structural coclosure operator, i.e. a coclosure
operator satisfying condition (iii).

If γ is a nucleus, we denote by Mγ the γ-closed system γ[M ] and it is
easily seen that Mγ is closed under arbitrary meets. Dually, the image M δ of
a conucleus δ is closed under arbitrary joins. In the following result we give
several characterizations of structural closure operators.

Lemma 5.2. [5] Let M be a Q-module and let γ be a closure operator on M.
The following are equivalent:

(a) γ is structural;

(b) γ(q ⋆ γ(m)) = γ(q ⋆ m), for all q ∈ Q and m ∈ M ;

(c) γ(m)⋆/n = γ(m)⋆/γ(n), for all m,n ∈ M ;

(d) γ(q\⋆m) ≤ q\⋆γ(m), for all q ∈ Q and m ∈ M ;

(e) q\⋆γ(m) ∈ Mγ, for all q ∈ Q and m ∈ M .

Before we prove the next result, recall that — according to Proposition 4.7 —
any Q-module homomorphism is a residuated map.

Theorem 5.3. Let Q be a quantale, M and N Q-modules, and f : M −→ N

a homomorphism. Then f∗ ◦ f is a nucleus on M.
Vice versa, if γ is a nucleus on M, then Mγ — with the join ∨γ = γ ◦∨, the

external product ⋆γ = γ ◦⋆ and the bottom element ⊥γ = γ(⊥) — is a Q-module
(denoted by Mγ) and there exists fγ ∈ homQ(M,Mγ) such that fγ∗ ◦ fγ = γ.

Proof. By Corollary 2.3, if (f, f∗) is an adjoint pair, then f∗ ◦ f is a closure
operator on the domain of f ; therefore what we need to prove is condition (iii)
of Definition 5.1 for f∗ ◦ f .
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Since (f, f∗) is an adjoint pair and f is a homomorphism,

q ⋆ f(m) ≤ q ⋆ f(m)

⇐⇒ q ⋆ (f ◦ f∗ ◦ f)(m) ≤ q ⋆ f(m)

⇐⇒ f(q ⋆ (f∗ ◦ f)(m)) ≤ q ⋆ f(m)

⇐⇒ q ⋆ (f∗ ◦ f)(m) ≤ f∗(q ⋆ f(m))

⇐⇒ q ⋆ (f∗ ◦ f)(m) ≤ (f∗ ◦ f)(q ⋆ m);

then f∗ ◦ f is a nucleus.
Now let γ be a nucleus on M. The fact that Mγ is a Q-module comes easily

from the fact that it is closed under arbitrary meets, and the definitions of join
and product. For the same reasons the map

fγ : m ∈ M 7−→ γ(m) ∈ Mγ

is a Q-module homomorphism. If we apply Theorem 2.2(b) to fγ , we get

fγ∗(γ(m)) =
∨

{n ∈ M | fγ(n) = γ(n) ≤ γ(m)} = γ(m),

for any element γ(m) ∈ Mγ ; thus fγ∗ = idM↾Mγ
, whence

(fγ∗ ◦ fγ)(m) = (idM↾Mγ
◦fγ)(m) = idM↾Mγ

(γ(m)) = γ(m),

for all m ∈ M . The theorem is proved.

In the same hypotheses of the previous theorem, we observe explicitly that,
even if f ◦f∗ is an interior operator in the sup-lattice N, it is not — in general —
a conucleus on the Q-module N. It is, instead, a nucleus on the Q-module Nop.
It suffices to notice that, by Proposition 4.7, f∗ is a Q-module homomorphism
from Nop to Mop whose residual is f , and to apply Theorem 5.3.

The next result is an interesting, though immediate, property of structural
closure operators.

Proposition 5.4. [5] Let Q be a quantale. If γ : Q −→ Q is a nucleus on the
Q-module Q, then Qγ is a cyclic module and it is generated by γ(e).

Next, we introduce the Q-module transforms and prove some results about
them. Then we show that any direct transform is a Q-module homomorphism
and a residuated map whose residual is its inverse transform.

On the other hand, Q-module faithful transforms — i.e. those transforms
whose kernel is a coder (see Definition 5.8) — have many further interesting
properties. We will also see that the  Lukasiewicz transform defined in [3] is
effectively a (orthonormal) Q-module transform.

Definition 5.5. Let Q ∈ Q and X,Y be non-empty sets and let us consider
the free Q-modules QX and QY . We call a Q-module transform between QX

and QY , with kernel p, the map

Hp : QX −→ QY
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defined by

Hpf(y) =
∨

x∈X

f(x) · p(x, y) for all y ∈ Y, (14)

where p ∈ QX×Y . Its inverse transform Λp : QY −→ QX is the map defined by

Λpg(x) =
∧

y∈Y

g(y)/p(x, y) for all x ∈ X. (15)

Remark 5.6. Recalling that we are using the notations of left modules, we ob-
serve that, if we consider QX and QY as right modules, the direct and inverse
transforms are defined respectively by

Hpf(y) =
∨

x∈X

p(x, y) · f(x) for all y ∈ Y, (16)

and
Λpg(x) =

∧

y∈Y

p(x, y)\g(y) for all x ∈ X. (17)

Up to a suitable reformulation, all the results we will present for Q-module
transforms hold also for free right modules.

Theorem 5.7. Let Q ∈ Q, X,Y be two non-empty sets and p ∈ QX×Y . If Hp

is the Q-module transform, with kernel p, between QX and QY , and Λp is its
inverse transform, then the following hold:

(i) (Hp,Λp) is an adjoint pair, i.e. Hp is a residuated map and Λp = Hp∗;

(ii) Hp ∈ homMl
Q

(

QX ,QY
)

and Λp ∈ homMr
Q

((

QY
)op

,
(

QX
)op)

;

(iii) Λp ◦Hp is a nucleus over QX and Hp ◦ Λp is a nucleus over
(

QY
)op

.

Proof. (i) Both Hp and Λp are clearly monotone; let us prove that (Hp,Λp)
is an adjoint pair by showing that (1) and (2) hold. For any f ∈ QX and
g ∈ QY , we have:

Hpf ≤ g ⇐⇒
Hpf(y) ≤ g(y) ∀y ∈ Y ⇐⇒
∨

x∈X f(x) · pY (x, y) ≤ g(y) ∀y ∈ Y ⇐⇒
f(x) · pY (x, y) ≤ g(y) ∀x ∈ X, ∀y ∈ Y ⇐⇒
f(x) ≤ g(y)/pY (x, y) ∀x ∈ X, ∀y ∈ Y ⇐⇒
f(x) ≤

∧

y∈Y g(y)/pY (x, y) = Λpg(x) ∀x ∈ X.

Hence Hpf ≤ g ⇐⇒ f ≤ Λpg; thus, by setting alternatively g = Hpf
and f = Λpg, we get respectively (2) and (1), and the (i) is proved.

(ii) Since Hp is a residuated map, it is a sup-lattice homomorphism. Moreover
it is evident from the definition that Hp preserves the scalar multiplication.
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(iii) It follows from the (ii) and Theorem 5.3.

The following classification of the kernels has few interesting theoretical im-
plications but it is important for applications to image processing.

Definition 5.8. Let Q ∈ Q, and X,Y be non-empty sets. Let us consider a
map p ∈ QX×Y ; we set the following definitions:

(i) p is called a coder iff there exists an injective map ε : Y −→ X such that
e ≤ p(ε(y), y) for all y ∈ Y ;

(ii) p is said to be normal iff there exists an injective map ε : Y −→ X such
that p(ε(y), y) = e for all y ∈ Y ;

(iii) p is said to be strong iff it is normal and

p(ε(y1), y2) = ⊥ for all y1, y2 ∈ Y, y1 6= y2; (18)

(iv) p is said to be orthogonal iff p(x, y1) · p(x, y2) = ⊥ for all y1, y2 ∈ Y such
that y1 6= y2 and for all x ∈ X ;

(v) p is said to be orthonormal iff it is orthogonal and normal.

If p is a coder, the Q-module transform Hp will be called faithful.

Remark 5.9. (i) If p is normal, then it is a coder.

(ii) If p is strong, it is a normal coder by definition.

(iii) If p is an orthonormal map and ε : Y −→ X is an injective map as
in Definition 5.8 (ii), for any two arbitrary different elements y1, y2 ∈
Y , from p(ε(y1), y1) · p(ε(y1), y2) = e · p(ε(y1), y2) = ⊥, it follows that
p(ε(y1), y2) = ⊥. Then any orthonormal map is a strong coder.

Definition 5.10. Let Q ∈ Q, X,Y be two non-empty sets and p ∈ QX×Y be
a coder. Let us consider the faithful Q-module transform Hp, with kernel p,
between QX and QY . We set the following definitions:

(i) Hp will be called a normal transform if p is normal;

(ii) Hp will be called a strong transform if p is strong;

(iii) Hp will be called an orthonormal transform if p is orthonormal.

Example 5.11. In [3] the authors define the  Lukasiewicz transform

Hn : [0, 1][0,1] −→ [0, 1]n

and its inverse transform Λn, respectively, as

Hn(f) =





∨

x∈[0,1]

f(x) ⊙ p0(x), . . . ,
∨

x∈[0,1]

f(x) ⊙ pn−1(x)



 ,
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Λn(v0, . . . , vn) =

n−1
∧

k=0

pk(x) → vk =

(

n−1
∨

k=0

v∗k ⊙ pk(x)

)∗

,

where

p0(x) =

{

−(n− 1)x + 1 if 0 ≤ x ≤ 1
n−1

0 otherwise
,

pn−1(x) =

{

(n− 1)x− (n− 2) if n−2
n−1 ≤ x ≤ 1

0 otherwise

and, for k = 1, . . . , n− 2,

pk(x) =











(n− 1)x− (k − 1) if k−1
n−1 ≤ x ≤ k

n−1

−(n− 1)x + k + 1 if k
n−1 ≤ x ≤ k+1

n−1

0 otherwise

.

It is easy to see that 〈[0, 1][0,1],∨,0〉 and 〈[0, 1]n,∨,0〉 are Q-modules over
the commutative quantale 〈[0, 1],∨,⊙, 0, 1〉 and Hn is a Q-module orthonormal
transform with inverse transform Λn, if we set:

- In = {0, . . . , n− 1},

- ε : k ∈ In 7−→ k
n−1 ∈ [0, 1],

- pIn(x, k) = pk(x) for all x ∈ [0, 1] and for all k ∈ {0, . . . , n− 1}.

Theorem 5.12. Let Q ∈ Q and let Hp be a Q-module strong transform, by the
coder p ∈ QX×Y , with inverse transform Λp. Then

Hp ◦ Λp = idQY ;

thus Hp is onto and, by Proposition 2.4 (iii), Λp is one-one.

Proof. By Theorem 5.7 we have Hp ◦ Λp ≤ idQY . In order to prove the inverse
inequality, let us proceed as follows.

Since p is strong, we can consider an injective map ε : Y −→ X such that
condition (18) holds. Let now g ∈ QY be an arbitrary function and let us fix
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an arbitrary y ∈ Y . We have:

(Hp ◦ Λp)g(y) =

∨

x∈X









∧

y∈Y

g(y)/p(x, y)



 · p(x, y)



 ≥





∧

y∈Y

g(y)/p(ε(y), y)



 · p(ε(y), y) =







∧

y∈Y

y 6=y

g(y)/p(ε(y), y)






∧ (g(y)/p(ε(y), y)) =







∧

y∈Y

y 6=y

g(y)/⊥






∧ (g(y)/e) =

⊤ ∧ g(y) =

g(y).

Since the above relations hold for all g ∈ QY and y ∈ Y , the result is proved.

Lemma 5.13. Let Q ∈ Q, X and Y be non-empty sets and p, p′ ∈ QX×Y be
two maps. Then Hp = Hp′ if and only if p = p′.

Proof. Since the other implication is trivial, let us prove that Hp = Hp′ implies
p = p′ by showing that, if p 6= p′, then Hp 6= Hp′ .

By assumption, there exists a pair (x, y) ∈ X×Y such that p(x, y) 6= p′(x, y).
Let us consider the map f ∈ QX defined by

f(x) =

{

e if x = x
⊥ if x ∈ X \ {x}

.

It is immediate to verify that Hpf(y) = p(x, y) 6= p′(x, y) = Hp′f(y), and the
result follows.

The previous result ensures that a Q-module transform Hp is completely
determined by its kernel p.

In what follows we will always assume that Y is a subset of X and, if p ∈
QX×Y is a coder, then the map ε is the inclusion map idX↾Y : y ∈ Y 7−→ y ∈ X .

Lemma 5.14. Let Q ∈ Q, X be a non-empty set, Y be a non-empty subset of
X and p ∈ QX×Y be a coder. Then, for any fixed y ∈ Y , Hpf(y) = f(y) for all
f ∈ QX if and only if

p(x, y) =

{

e if x = y
⊥ if x 6= y

. (19)
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Proof. If condition (19) holds, then Hpf(y) = f(y) for all f ∈ QX , trivially.
On the other hand, if (19) does not hold for p, then we distinguish two cases:

Case 1: p(y, y) = q1 6= e, for some q1 ∈ Q;

Case 2: there exists x ∈ X such that p(x, y) = q2 	 ⊥.

In the first case, let f ∈ QX be the map defined by

f(x) =

{

e if x = y
⊥ if x 6= y

.

It is easy to see that Hpf(y) = q1 6= e = f(y).
In the second case, let g ∈ QX be the map defined as

g(x) =

{

e if x = x
⊥ if x 6= x

.

Clearly Hpg(y) = q2 6= ⊥ = g(y), and the lemma is proved.

Given the sets X and Y , we will denote by πY the coder defined, for all
x ∈ X and for all y ∈ Y , by condition (19) and we will call it a projective coder.
By Lemma 5.14, for all f ∈ QX , HπY

f = f↾Y , i.e. HπY
is the projection of QX

on QY .

Definition 5.15. If p is a coder of QX×Y , let Y ′
p ⊆ Y be the set of all the

elements y of Y such that p(x, y) is defined by condition (19):

Y ′
p = {y ∈ Y | p(x, y) = πY (x, y)} .

The set Ẏp = Y \ Y ′
p will be called the support of p and the restriction p = p↾Ẏp

will be called the core of p. If Ẏp = Y , then p = p and we will say that p is

irreducible; p is reducible if Ẏp $ Y .

Definition 5.16. Given a coder p ∈ QX×Y and a set Z such that Y ⊆ Z ⊆ X ,
let us consider the extension pZ of the coder p to X × Z, defined as follows:

pZ(x, z) =

{

p(x, z) if (x, z) ∈ X × Y
πZ\Y (x, z) if (x, z) ∈ (X × Z) \ (X × Y )

.

The coder pZ will be called the projective extension of p to Z. In this case, it is
clear that Ẏp = ŻpZ and p = pZ .

If Z = X , we will denote pX by p and we will call it the closure of p. So p
is the coder defined by

p(x, z) =

{

p(x, z) if (x, z) ∈ X × Y
πX\Y (x, z) if (x, z) ∈ (X ×X) \ (X × Y )

.

Clearly, for any coder p ∈ QX×X , p = p; therefore, such coders will be called
closed coders.
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Definition 5.17. Let Q ∈ Q, X be a non-empty set, Y, Z be two non-empty
subsets of X and p ∈ QX×Y , p′ ∈ QX×Z be two coders. We will say that p and
p′ are equivalent up to projections — and we will write p

.
= p′ — iff p = p′, i.e.

iff Ẏp = Żp′ and p↾Ẏp
= p′

↾Ẏp
.

Proposition 5.18. Let Q ∈ Q, X be a non-empty set, Y, Z be two non-empty
subsets of X and p ∈ QX×Y , p′ ∈ QZ be two coders. Then

p
.
= p′ ⇐⇒ p = p′.

In other words, p and p′ are equivalent up to projections if and only if they have
the same closure.

Proof. It is trivial.

The last definitions and Proposition 5.18 are significant, again, for applica-
tions. In the next result we invert Theorem 5.7, showing that all the homomor-
phisms between free modules are transforms.

Theorem 5.19. The sup-lattices homQ(QX ,QY ) and QX×Y are isomorphic.

Proof. Let
~ : QX×Y −→ homQ(QX ,QY ) (20)

be the map defined by ~(p) = Hp, for all p ∈ QX×Y ; in other words ~ sends
every map p ∈ QX×Y in the transform between QX and QY whose kernel is p.

The fact that ~ is injective comes directly from Lemma 5.13. Moreover it
is clear that ~(⊥X×Y ) = ⊥⊥. Now let {ki}i∈I ⊆ QX×Y ; we must prove that
~
(
∨

i∈I ki
)

=
⊔

i∈I ~(ki). For any f ∈ QX and for all y ∈ Y , we have

~

(

∨

i∈I

ki

)

f(y) =
∨

x∈X

f(x) ·

(

∨

i∈I

ki

)

(x, y)

=
∨

x∈X

f(x) ·

(

∨

i∈I

ki(x, y)

)

=
∨

x∈X

∨

i∈I

f(x) · ki(x, y)

=
∨

i∈I

∨

x∈X

f(x) · ki(x, y) =
∨

i∈I

~(ki)f(y)

=

(

∨

i∈I

~(ki)f

)

(y) =

(

⊔

i∈I

~(ki)

)

f(y);

whence ~ is a sup-lattice monomorphism.
Now we must prove that ~ is surjective too. Let h ∈ homQ(QX ,QY ) and,

for any x ∈ X , let us consider the map χx defined by (13). Let now kh ∈ QX×Y

be the function defined by

kh(x, y) = hχx(y), for all (x, y) ∈ QX×Y ;
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then we have

hf(y) = h

(

∨

x∈X

f(x) ⋆ χx

)

(y)

=

(

∨

x∈X

f(x) ⋆ hχx

)

(y) =
∨

x∈X

f(x) · hχx(y)

=
∨

x∈X

f(x) · kh(x, y) = Hkhf(y),

for all f ∈ QX and for all y ∈ Y . It follows that h = Hkh = ~(kh), hence ~ is a
sup-lattice isomorphism whose inverse is — obviously — defined by

~−1h(x, y) = hχx(y),

for all h ∈ homQ(QX ,QY ) and (x, y) ∈ X × Y .

The previous theorem allows us to define the structure of a Q-module on
the sup-lattice homQ(QX ,QY ), also when Q is not commutative, by defining
the external multiplication

⋆ : Q × homQ(QX ,QY ) −→ homQ(QX ,QY )
(q, h) 7−→ ~(q ⋆ ~−1(h))

, (21)

in such a way that this Q-module is isomorphic to QX×Y ; we will denote this
structure by hom

⋆
Q(QX ,QY ).

We will not discuss projective objects in the categories of quantale modules,
here, several interesting results about them were presented in [5]. However,
before extending Theorem 5.19, we recall that free modules are projective and
that every module is the homomorphic image of a free module.

Theorem 5.20. Let M and N be Q-modules, X and Y be two sets such that M
and N are homomorphic images of QX and QY respectively, and π : QX −→ M

and π′ : QY −→ N be the respective surjective morphisms.
Then, for any homomorphism h : M −→ N there exists k ∈ QX×Y such

that h ◦ π = π′ ◦Hk, where Hk is the transform from QX to QY whose kernel
is k.

Proof. Consider the following diagram

QX
Hk

//______

π

��

QY

π′

��

M
h

// N

.
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The existence of the morphism Hk that closes such a diagram follows immedi-
ately from the projectivity of QX , and we know by Theorem 5.19 that Hk is
indeed a transform.

Nonetheless it is interesting to notice that, since each element m of M can
be written as

∨

x∈X qx ⋆ π(χx), with the qx’s in Q, then

h(m) = h
(
∨

x∈X qx ⋆ π(χx)
)

=
∨

x∈X qx ⋆ h(π(χx))
=

∨

x∈X qx ⋆ π′(Hk(χx)) =
∨

x∈X qx ⋆ π′(k(x,−)).

This shows how “concretely” k determines h.

6 Applications

In this section we show how certain techniques of image processing, with dif-
ferent scopes, can be grouped together under the common “algebraic roof” of
Q-module transforms.

The theory of fuzzy relation equations [4], is involved in many algorithms for
compression and reconstruction of digital images (see, for example, [11–13]). As
a matter of fact, fuzzy relations fit the problem of processing the representation
of an image as a matrix with the range of its elements previously normalized
to [0, 1]. In such techniques, however, the approach is mainly experimental and
the algebraic context is seldom clearly defined.

A first unification of fuzzy image processing has been proposed by I. Perfilieva
in [21], with an approach that is analytical rather than algebraic. Moreover, the
field of applications of the operators (called Fuzzy transforms) defined in [21]
is limited to the real unit interval, [0, 1], endowed with the usual order relation
and a triangular norm.

Basically, most of the fuzzy algorithms for image compression, make use of
join-product operators, and they can be seen as approximate discrete solutions
of fuzzy relation equations of the form A(x, z) =

∨

y B(x, y) · C(y, z); after
all, a complete lattice order and a multiplication that is residuated w.r.t. the
lattice-order are the fundamental ingredients of these operators. So it is natural
to think of them as examples of Q-module transforms. Indeed we will see in
Subection 6.1 that the class of Q-module transforms contains all these operators
and much more.

Further classes of operators that fall within Q-module transforms are those
of mathematical morphological operators. Mathematical morphology is a tech-
nique for image processing and analysis whose origins can be traced back to the
book [18], of 1975, by G. Matheron, and whose development is due mainly to
the works by J. Serra and H. J. A. M. Heijmans.

Essentially, mathematical morphological operators analyse the objects in an
image by “probing” them with a small geometric “model-shape” (e.g., line seg-
ment, disc, square) called the structuring element. These operators are defined
on spaces having both a complete lattice order (set inclusion, in concrete ap-
plications) and an external action from another ordered structure (the set of



6 Applications 27

translations); they are also usually coupled in adjoint pairs. A description of
such operators in terms of Q-module transforms can easily be anticipated.

In the next subsections, rather than dwelling upon technical details, we will
try to give the basic ideas of how fuzzy transforms and mathematical mor-
phological operators work (Subsections 6.1 and 6.2), and then to show — in
Subsection 6.3 — how Q-module transforms suffice to describe all those tech-
niques.

6.1 Image Compression and Reconstruction

In the literature of image compression, the fuzzy approach is based essentially
on the theory of fuzzy relation equations, deeply investigated by A. Di Nola, S.
Sessa, W. Pedrycz and E. Sanchez in [4]. The underlying idea is very easy: a
grey-scale image is basically a matrix in which every element represents a pixel
and its value, included in the set {0, . . . , 255} in the case of a 256-bit encoding,
is the “grey-level”, where 0 corresponds to black, 255 to white and the other
levels are, obviously, as lighter as they are closer to 255. Then, if we normalize
the set {0, . . . , 255} by dividing each element by 255, grey-scale images can be
modeled equivalently as fuzzy relations, fuzzy functions (i.e. [0, 1]-valued maps)
or fuzzy subsets of a given set.

As already mentioned, we will neither cover the wide literature on this sub-
ject, nor show how such techniques have been developed in recent years (also
because it would be a thankless task). Here we rather want to point out the
connection with our work, and the best way to show it is to present the first
attempt of unifying all (or most of) these techniques in a common algebraic
framework, namely the fuzzy transforms expressed by residuated lattice opera-
tions, introduced by I. Perfilieva in [21].

A binary operation ∗ : [0, 1]2 −→ [0, 1] is called a triangular norm, t-norm
for short, provided it verifies the following conditions

- commutativity: x ∗ y = y ∗ x;

- monotonicity: x ∗ y ≤ z ∗ y if x ≤ z and x ∗ y ≤ x ∗ z if y ≤ z;

- associativity: x ∗ (y ∗ z) = (x ∗ y) ∗ z;

- 1 is the neutral element: 1 ∗ x = x = x ∗ 1.

A t-norm ∗ is called left-continuous if, for all {xn}n∈N, {yn}n∈N ∈ [0, 1]N,

(

∨

n∈N

xn

)

∗

(

∨

n∈N

yn

)

=
∨

n∈N

(xn ∗ yn).

In this case, clearly, ∗ is a residuated operation and its residuum (unique, since
∗ is commutative) is given by

x → y =
∨

{z ∈ [0, 1] | z ∗ x ≤ y}.
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Although t-norms are the fuzzy logical analogues of the conjunction of clas-
sical logic, here we are mainly interested in them as algebraic operations. The
defining conditions of t-norms are exactly the same as those that define a par-
tially ordered (integral) Abelian monoid on the real unit interval [0, 1]. Therefore
some authors call t-norm also the monoidal operation of any partially ordered
Abelian monoid; then, in this case, the concept of left-continuity can be substi-
tuted by the requirement that the Abelian po-monoid is actually a commutative
residuated lattice.

By a fuzzy partition of the real unit interval [0, 1], we mean an n-tuple of
fuzzy subsets A1, . . . , An, with n ≥ 2, identified with their membership functions
Ai : [0, 1] −→ [0, 1] satisfying the following covering property

for all x ∈ [0, 1] there exists i ≤ n such that Ai(x) > 0. (22)

The membership functions A1, . . . , An are called the basic functions of the par-
tition. There is assumed to exist a finite subset P ⊂ [0, 1], consisting of nodes
p1, . . . , pl where l is a sufficiently large natural number. Moreover, we assume
that P is sufficiently dense with respect to the fixed partition, i.e.

for all i ≤ n there exists j ≤ l such that Ai(pj) > 0. (23)

Definition 6.1. Let f ∈ [0, 1]P and A1, . . . , An, n < l, be basic functions of

a fuzzy partition of [0, 1]. We say that the n-tuple (F ↑
1 , . . . , F

↑
n) is the F ↑-

transform of f with respect to A1, . . . , An if, for all k ≤ n,

F ↑
k =

l
∨

j=1

(Ak(pj) ∗ f(pj)). (24)

We say that the n-tuple (F ↓
1 , . . . , F

↓
n) is the F ↓-transform of f with respect to

A1, . . . , An if, for all k ≤ n,

F ↓
k =

l
∨

j=1

(Ak(pj) →∗ f(pj)). (25)

Definition 6.2. Let f ∈ [0, 1]P , A1, . . . , An, with n < l, be basic functions of a

fuzzy partition of [0, 1], and (F ↑
1 , . . . , F

↑
n) be the F ↑-transform of f with respect

to A1, . . . , An if, for all k ≤ n. The map defined, for all j ≤ l, by

f↑(pj) =
n
∧

k=1

(Ak(pj) →∗ F ↑
k ) (26)

is called the inverse F ↑-transform of f .
Let (F ↓

1 , . . . , F
↓
n) be the F ↓-transform of f with respect to A1, . . . , An if, for

all k ≤ n. The map defined, for all j ≤ l, by

f↓(pj) =

n
∨

k=1

(Ak(pj) ∗ F
↓
k ) (27)

is called the inverse F ↓-transform of f .
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Apart from the definitions above, several results on such tranforms are pre-
sented in the cited paper; further algebraic results on join-product composition
operators were also presented in the aforementioned paper [3]. We do not list
them here since they are essentially special cases of more general results that
we presented in Sections 2 and 5.

6.2 Mathematical Morphology

In [7], the authors state:

The basic problem in mathematical morphology is to design nonlinear

operators that extract relevant topological or geometric information from

images. This requires development of a mathematical model for images

and a rigorous theory that describes fundamental properties of the desir-

able image operators.

Then, not surprisingly, images are modeled, in the wake of tradition and
intuition, as subspaces or subsets of a suitable space E, which is assumed to
possess some additional structure (topological space, metric space, graph, etc.),
usually depending on the kind of task at hand. We have seen that, in the case
of digital image compression, the image space is often modeled as the set of all
the functions from a set — the set of all the pixels — to the real unit interval
[0, 1]. Then, depending on several “experimental” factors, the properties of [0, 1]
involved may be the usual operations, the order relation, t-norms and so on.

In mathematical morphology, the family of binary images is given by P(E),
where E is, in general, Rn or Zn, for some n ∈ N. In the first case we have
continuous binary images, otherwise we are dealing with discrete binary images.
The basic relations and operations between images of this type are essentially
those between sets, namely set inclusion, union, intersection and so on. As a
first example, we can consider an image X that is hidden by another image Y .
Then we can formalize this fact by means of set inclusion: X ⊆ Y . Analogously,
if we simultaneously consider two images X and Y , what we see is their union
X ∪Y ; the background of an image X is its complement Xc in the whole space,
and the part of an image Y that is not covered by another image X is the set
difference Y \X = Y ∩Xc.

It is easily anticipated, then, that the lattices are the algebraic structures
required for abstracting the ideas introduced so far. Nonetheless, keeping in
mind the models Rn and Zn, it is possible to introduce the concepts of translation
of an image and translation invariance of an operator, by means of the algebraic
operation of sum.

The reader may recognize the following definitions as those of a residuated
map and its residual, and of an adjoint pair.

Definition 6.3. Let L, M be complete lattices. A map δ : L −→ M is called a
dilation if it distributes over arbitrary joins, i.e., if δ

(

L
∨

i∈I xi

)

= M
∨

i∈I δ(xi),
for every family {xi}i∈I ⊆ L. A map ε : M −→ L is called an erosion if it
distributes over arbitrary meets, i.e., if ε

(

M
∧

i∈I yi
)

= L
∧

i∈I ε(yi), for every
family {yi}i∈I of elements of M .
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Two maps δ : L −→ M and ε : M −→ L are said to form an adjunction,
(δ, ε), between L and M if δ(x) ≤ y ⇐⇒ x ≤ ε(y), for all x ∈ L and y ∈ M .

Notice that the notation used in mathematical morphology is slightly differ-
ent. Indeed, an adjoint pair is presented with the residuated map in the second
coordinate and its residual in the first. Here, in order to avoid confusion, we
keep on using the notations introduced in Section 2. So we may reformulate the
definition above by considering the sup-lattice reducts of L and M, and saying
that δ : L −→ M is a dilation if it is a sup-lattice homomorphism between L

and M. Dually, an erosion ε : M −→ L is a sup-lattice homomorphism between
Mop and Lop. Then a dilation δ and an erosion ε form an adjunction if ε = δ∗.

Assume that δ : L −→ M is a dilation. For x ∈ L, we can write

δ(x) =
∨

y≤x

δ(y), (28)

where we have used the fact that δ distributes over join. Every dilation defined
on L is of the form (28), and the adjoint erosion is given by

ε(y) =
∨

δ(x)≤y

x. (29)

In the case of powersets, if δ is a dilation between P(E) and P(F ), where E
and F are nonempty sets. For X ⊆ E, we can write

δ(X) =
⋃

x∈X

δ({x}), (30)

and the adjoint erosion is, for all Y ⊆ F ,

ε(Y ) = {x ∈ E | δ({x}) ⊆ Y } =
⋃

δ(X)⊆Y

X. (31)

Next, we consider the special case when the operators are translation in-
variant. In this case, the sets δ({x}) are translations of a fixed set, called the
structuring element , by {x}. Let E be Rn or Zn, and consider the complete
lattice P(E); given an element h ∈ E, we define the h-translation τh on P(E)
by setting, for all X ∈ P(E),

τh(X) = X + h = {x + h | x ∈ X}, (32)

where the sum is intended to be defined coordinatewise.
An operator f : P(E) −→ P(E) is called translation invariant , T-invariant

for short, if τh ◦f = f ◦ τh for all h ∈ E. It can be proved that every T-invariant
dilation on P(E) is given by

δA(X) =
⋃

x∈X

A + x, (33)



6 Applications 31

and every T-invariant erosion is given by

εA(X) = {y ∈ E | A + y ⊆ X} = {y ∈ E | y ∈ X + Ă}, (34)

where A is an element of P(E), called the structuring element, and Ă = {−a |
a ∈ A} is the reflection of A around the origin.

Now we observe that the expressions for erosion and dilation in (33) and
(34) can also be written, respectively, as

δA(X)(y) =
∨

x∈E

A(y − x) ∧X(x) (35)

and
εA(Y )(x) =

∧

y∈E

A(y − x) → Y (y), (36)

where each subset X of E is identified with its membership function

X : x ∈ E 7−→

{

1 if x ∈ X
0 if x ∈ Xc,

∈ {0, 1}

and X → Y =: Xc ∨ Y . Moving from these expressions, and recalling that
∧ is a residuated commutative operation (that is, a continuous t-norm) whose
residuum is →, it is possible to extend these operations from the complete lattice
of sets P(E) = {0, 1}E to the complete lattice of fuzzy sets [0, 1]E, by means
of continuous t-norms and their residua. What we do, concretely, is extend the
morphological image operators of dilation and erosion, from the case of binary
images, to the case of grey-scale images.

So let ∗ be a continuous t-norm and → be its residuum; a grey-scale image
X is a fuzzy subset of E, namely a map X : E −→ [0, 1]. Given a fuzzy subset
A ∈ [0, 1]E , called a fuzzy structuring element , the operator

δA(X)(y) =
∨

x∈E

A(y − x) ∗X(x) (37)

is a translation invariant dilation on [0, 1]E, and the operator

εA(X)(x) =
∧

y∈E

A(y − x) → X(y) (38)

is a translation invariant erosion on [0, 1]E.
Combining the operators of dilation and erosion by means of the usual al-

gebraic operations in [0, 1] it is possible to define new operators, e.g. outlining
and top-hat transform. Their treatment is beyond the scope of this paper, hence
we will not present them in details; however some examples can be found at the
webpage [32] or in some major reference works in the area of mathematical
morphology, such as [7–10,31], as well as the aforementioned [30].
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6.3 A unified approach by Q-module transforms

The operators defined so far in this section have a familiar form. Indeed they are
all special cases of Q-module transforms between free modules over the quantale
reducts of residuated lattice structures defined on the real unit interval [0, 1].
We now analyse them in detail.

Let us consider the F ↑-transforms of Definition 6.1. Its domain is [0, 1]l

and its codomain is [0, 1]n with n ≤ l. We get immediately that a Q-module
transform

Hk : f ∈ [0, 1]l 7−→

l
∨

j=1

f(j) ∗ k(j,−) ∈ [0, 1]n

is an F ↑-transform iff the kernel k satisfies condition (23) rewritten as

for all i ≤ n there exists j ≤ l such that k(j, i) > 0. (39)

Obviously, the inverse F ↑-transform of Hk is right

Λk : g ∈ [0, 1]n 7−→
n
∧

i=1

k(−, i) →∗ g(i) ∈ [0, 1]l,

i.e. the inverse Q-module transform of Hk. The case of F ↓-transforms is dual
to that of F ↑, in the sense that the direct F ↓-transform is an inverse Q-module
transform, thus a homomorphism between the duals of free modules, and the
inverse transform has the shape of a Q-module transform. In other words, for
F ↓-transforms we assume l ≤ n and the condition

for all j ≤ l there exists i ≤ n such that k(j, i) > 0; (40)

then Λk above is the direct F ↓-transform and Hk is its inverse.
We already observed in Subsection 6.2 that dilations are precisely the sup-

lattice homomorphisms, while erosions are their residua. In order to faith-
fully represent dilations and erosions that are translation invariant as Q-module
transforms from a free [0, 1]-module to itself, we make the further assumption
that the set over which the free module is defined has the additional structure
of an Abelian group.

So, let X = 〈X,+,−, 0〉 be an Abelian group, ∗ a t-norm on [0, 1], and
consider the free [0, 1]-module [0, 1]X . For any element k ∈ [0, 1]X , we define
the two variable map k : (x, y) ∈ X × X 7−→ k(y − x) ∈ [0, 1]. Then, for
all k ∈ [0, 1]X , the translation invariant dilation, on [0, 1]X , whose structuring
element is k, is precisely the Q-module transform Hk, with the kernel k defined
above. Obviously, the translation invariant erosion whose structuring element
is k is Λk.

Then the representation of both fuzzy transforms and pairs dilation–erosion
as quantale module transforms is trivial. Actually, what we want to point out
here is that, if we drop the assumption that our quantale is defined on [0, 1], the
classes of transforms defined in this section become much wider. The purpose of
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this consideration is not to suggest a purely speculative abstraction but, rather,
to underline that suitable generalizations of these operators exist already and
they may be useful provided their underlying ideas are extended to other kind
of tasks. Indeed the aim of fuzzy transforms is to approximate maps that take
values in [0, 1]; hence the area of application of the whole class of Q-module
transform, as approximating operators, can be easily enlarged. On the other
hand, the idea of dilating and eroding a shape, in order to analyse it, has not
yet found an appropriate concrete extension to situations where [0, 1] must be
replaced by a non-integral quantale. Nonetheless, we strongly believe (and we
are working in this direction) that Q-module dilations and erosions will soon
find concrete tasks for being fruitfully applied.

Conclusion

In this paper we proposed an investigation of the basic categorical and algebraic
properties of quantale modules, and we showed that certain operators between
objects in these categories find important applications in image processing.

We showed, in Section 5, the properties of Q-module structural closure op-
erators and Q-module transforms, and their connection with Q-module mor-
phisms. In Section 6 we proved that certain operators used for digital image
compression and analysis are special cases of Q-module transforms.

Although the results seem to be promising, especially for how easily they can
be applied, we cannot pretend — of course — that the applications presented
are not open to further significant developments and improvements.

In fact, as we already observed in Section 6, the approach via quantale
modules allowed us to group together, in a unique formal context, algorithms
that act on digital images in completely different ways and have been proposed
for dealing with problems different in nature. Apart from the obvious (and
eternal) issue of improving the results of applications, the main open problem is
the following: currently, the Q-modules we really encounter in these situations
are exclusively [0, 1]-modules, a very special class of modules, hence such a
formal context will be redundant from this point of view, until its applications
will be extended to a wider class of tasks in data management. This is probably
the most important challenge in this connection. Last, we also need to take into
account that meeting this challenge would naturally give rise to a further issue,
namely the necessity of numerically (or, anyhow, objectively) estimating results
of the applications by introducing a sort of “measure” on quantale modules.
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