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Abstract

A theory of infinitary deduction systems is developed for the modal logic of coalgebras for
measurable polynomial functors on the category of measurable spaces. These functors have
been shown by Moss and Viglizzo to have final coalgebras that represent certain universal
type spaces in game-theoretic economics. A notable feature of the deductive machinery is
an infinitary Countable Additivity Rule.

A deductive construction of canonical spaces and coalgebras leads to completeness re-
sults. These give a proof-theoretic characterisation of the semantic consequence relation
for the logic of any measurable polynomial functor as the least deduction system satisfying
Lindenbaum’s Lemma. It is also the only Lindenbaum system that is sound.

The theory is additionally worked out for Kripke polynomial functors, on the category of
sets, that have infinite constant sets in their formation.

1 Introduction

The theory of coalgebras of certain functors on the category Set of sets [Rut00] provides a
coherent framework for the study of structures and state-transition systems of interest to the
theory of computation. Relevant functors include those that are polynomial : constructible from
constant functors and the identity functor Id by forming products T1 × T2, coproducts T1 + T2,
and exponential functors TE with fixed exponent E. Coalgebras for polynomial functors can
be thought of as generalised deterministic automata, with fixed exponents providing ‘input”
sets, constant functors providing sets of “outputs” or “labels”, and the identity functor being
associated with a set of states.

A Kripke polynomial functor (KPF) is one constructible by the polynomial operations and the
powerset functor P. Coalgebras for KPF’s combine the notion of a non-deterministic automaton
with that of a Kripke frame for modal logic, resulting in many ideas and techniques from modal
logic being adapted to the coalgebraic setting.

A new dimension to this area has now been added by the work of Moss and Viglizzo
[MV04, Vig05, MV06], replacing Set by the category Meas of measurable spaces. They study
measurable polynomial functors, analogues of KPF’s in which P is replaced by a functor ∆ as-
signing to each measurable space X a space ∆X whose points are the probability measures on
X. They show that the category of coalgebras for any measurable polynomial functor has a final
(terminal) object. This is defined by adapting the modal canonical model construction to build

1



spaces in which each point is a “truth set”, or “description set”, the set of all formulas satisfied
by some point of some coalgebra. The motivation for this work came from game-theoretic eco-
nomics, where there are certain “universal type spaces”, representing the interactive beliefs of
agents, that can be realised as final coalgebras (see [MV04, HS98] for references to the literature
on this).

The main purpose of the present paper is to develop a theory of deduction for measurable
polynomial functors, investigating the notion ` ϕ of a formula ϕ being derivable as a theorem,
and more generally the concept of a deducibility relation Γ ` ϕ, capturing the idea that ϕ is
deducible from members of a set Γ of formulas by means of some axioms and rules of inference.
Deduction systems for the logic of a Kripke polynomial functor T were developed by Rößiger
[Röß00] and Jacobs [Jac01], providing canonical models and completeness theorems when all
constant sets involved in T are finite. In this case, deducibility is finitary in the sense that if
Γ ` ϕ, then Γ0 ` ϕ for some finite Γ0 ⊆ Γ . The approach taken was many-sorted, with the
sorts being the ingredients of T , these being the functors involved in the formation of T . Each
ingredient S has its own set FormS of formulas of sort S, and its own deducibility relation `S .
The many-sorted syntax and semantics was adapted to measurable polynomial functors by Moss
and Viglizzo, whose constructions were carried out model-theoretically without the use of proof
theory.

When T has an infinite constant ingredient, the modal logic of T -coalgebras has a non-
compact satisfaction relation, and deducibility is inevitably infinitary. Here we will use a general
methodology for infinitary propositional modal proof theory developed in [Gol82] and more
extensively in [Gol93]. This was adapted in [FG06] to the logic of polynomial functors, for
which a one-sorted language (essentially the formulas of sort Id) suffices to construct canonical
coalgebras that are final. Our aim now is to extend this to the many-sorted context.

There are a number of sources of non-compactness in the coalgebraic logic of a measurable
polynomial functor T . If a constant space X is an ingredient of T , then all singleton subsets of
X are formulas of sort X. If X is infinite, then the set of formulas ΓX = {¬{c} | c ∈ X} will be
finitely satisfiable, but not satisfiable. Hence ΓX will semantically entail a constant false formula
⊥, but no finite subset of ΓX will. In our proof theory we will need the deduction relation

{¬{c} | c ∈ X} `X ⊥.

Another source concerns the probability modalities [>p] that are used to make formulas of sort
∆X out of formulas of sort X. A formula [>p]ϕ can be read “the probability is at least p that ϕ”.
If ϕ defines a subset [[ϕ]] of X, then [>p]ϕ defines the subset of ∆X comprising those measures µ
for which µ([[ϕ]]) > p. There is a well-known observation that [>p]ϕ follows from all the formulas
[>q]ϕ with q < p, but may not follow from any finite number of them. Here we will need the
relation

{ [>q]ϕ | q < p} `∆X [>p]ϕ,

where p, q denote arbitrary rationals in the unit interval [0, 1]. Note that this observation, and
soundness of this rule, depend on the Archimedean property that no real number can be less
than p but closer to p than any rational q < p.

A third source of non-compactness is the countable additivity of measures. Suppose we have
a sequence {ϕn | n < ω} of formulas that define a non-increasing sequence [[ϕ0]] ⊇ [[ϕ1]] ⊇ · · · of
subsets of X with empty intersection. Then it is a standard fact that the countable additivity
of a measure µ ∈ ∆X implies limn→∞ µ([[ϕn]]) = 0 (see Lemma 2.1 below). In this situation, for
p > 0 the set {[>p]ϕn | n < ω} is not simultaneously satisfiable, while each of its finite subsets
may well be. This fact about measures ensures soundness of the rule

Γ `X ⊥ implies {[>p]ϕ | ϕ ∈
∧

ωΓ} `∆X ⊥,
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where p > 0, Γ is countable and
∧

ωΓ is the set of all conjunctions of finite subsets of Γ . More
strongly, it allows us to formulate a Countable Additivity Rule:

Γ `X ψ implies {[>p]ϕ | ϕ ∈
∧

ωΓ} `∆X [>p]ψ,

for countable Γ . This rule appears to be new in the literature on finite-formula languages with
probabilistic modalities.

Our approach to proof theory is abstract, or “postulational”, declaring certain formulas to
be axioms and laying down conditions that we require of the relations `S , including the Lin-
denbaum property that every deductively consistent set of formulas has a maximally consistent
extension. These maximal sets are then used to proof-theoretically build canonical spaces and
a canonical T -coalgebra, with the Countable Additivity Rule being needed to prove countable
additivity of measures associated with maximal sets of sort ∆X. From this we obtain a complete-
ness theorem and a verification that these canonical objects are the same as those constructed
model-theoretically by Moss and Viglizzo. From the completeness theorem we obtain a purely
proof-theoretic characterisation of the semantic consequence relation for the logic of a measur-
able polynomial functor, as the least deduction system that has the Lindenbaum property (see
Theorem 5.17). It is also the only Lindenbaum system that is sound (Corollary 5.15).

The adoption of “Lindenbaum’s Lemma” as a postulate rather than a property to be proved
is novel and may be a conceptual stumbling block at first. But it is a basic modus operandi
of mathematical research to turn a would-be theorem into an axiom. In this case the situation
is unavoidable: in [FG06] we showed that a natural deducibility relation for the exponential
functor ωR on Set fails to be Lindenbaum. This example adapts to Meas, to show that the
least deduction system for ωR is not Lindenbaum: it has a deductively consistent set of formulas
for which the existence of a maximally consistent extension would imply the impossibility that
there is an injective function R → ω (see the end of Section 5).

Sections 2–6 work out this theory for measurable spaces, including showing how an un-
countable but separable space like the unit interval [0, 1] can be handled by a countable syntax.
Sections 7 and 8 adapt the theory to Kripke polynomial functors over Set, and construct a
particular system of relations `+

S that is sound, and can be proven to have the Lindenbaum
property when the language is countable. The essential idea is that Γ `+

S ϕ when ϕ belongs
to every “theory” extending Γ , where a theory is a set of formulas that contains all axioms
and is closed under specified inference rules. In the measurable case it is not clear whether this
approach produces a system satisfying the Countable Additivity Rule, and this question remains
to be resolved.

The paper concludes with brief discussion of some related points, including obstacles to
adapting the theory to functors that involve the finitary powerset functor, or discrete probability
measures.

2 Measure-Theoretic Background

2.1 The Category of Measurable Spaces

Let A be a (Boolean) algebra on a set X, i.e. a non-empty collection of subsets of X closed
under complements and binary unions. A is a σ-algebra if it is also closed under countable
unions. Then X = (X,A) is called a measurable space and the members of A are its measurable
sets. The σ-algebra of X will often be denoted AX.

We write σ(Ag) for the smallest σ-algebra containing a given set Ag of subsets of X. σ(Ag)
is generated by Ag, and has the members of Ag as generators. X is a countably generated
measurable space if AX has a countable generating set. Later we will present spaces in the form
X = (X,AX,Ag

X) with a designated Ag
X generating AX.
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A measurable function f : (X,A) → (X ′,A′) is a function f : X → X ′ that pulls measurable
sets back to measurable sets. For this it suffices that f−1(A) ∈ A for all sets A in some
generating subset of A′. The category Meas has the measurable spaces as objects and the
measurable functions as morphisms, with the usual functional composition of morphisms.

Any topological space becomes a measurable space by taking its measurable sets to be the
Borel sets, the members of the σ-algebra generated by the open sets (or by the closed sets). So
notable objects in Meas include the real line R, the unit interval [0, 1], Rn, [0, 1]n, the Hilbert
cube [0, 1]ω, the Cantor space, and the Baire space ωω — relative to the Borel sets for their usual
topologies. As topological spaces these are all Polish: separable and completely metrizable. But
it is a theorem of Kuratowski that between any two uncountable Polish spaces there is a Borel
isomorphism, a measurable bijection with measurable inverse (see [Sri98, Section 3.3]). Thus
from the point of view of the category Meas, these classical spaces are all essentially the same
object.

A function µ : A → [0,∞] = {x ∈ R | x > 0} ∪ {∞} on an algebra A is finitely-additive if
µ(A1 ∪ A2) = µ(A1) + µ(A2) whenever A1 and A2 are disjoint members of A. µ is countably
additive if µ(

⋃
nAn) =

∑∞
0 µ(An) whenever the sets {An | n < ω} are pairwise disjoint members

of A whose union
⋃

nAn belongs to A. A measure is a countably additive function with µ(∅) = 0.
We will need the following basic facts of measure theory, in which a sequence {An | n < ω} is
called non-increasing if An ⊇ An+1 for all n.

Lemma 2.1 Let A be an algebra.

(1) [Hal74, Theorem 9E] Any measure µ on A is continuous from above, meaning that if
{An | n < ω} ⊆ A is a non-increasing sequence whose intersection belongs to A, with at
least one An having finite measure, then µ(

⋂
n<ωAn) = limn→∞ µ(An).

(2) [Hal74, Theorem 9F] Let µ : A → [0,∞] be finitely additive with µ(X) < ∞. Then µ is a
measure if it is continuous at ∅, i.e. limn→∞ µ(An) = 0 for any non-increasing sequence
{An | n < ω} ⊆ A with

⋂
nAn = ∅.

From any measurable space X we obtain the space ∆X of all probability measures on X: the
measures with µ(X) = 1. The σ-algebra of ∆X is generated by certain sets βp(A) of probability
measures, where p ∈ [0, 1], A ∈ AX and βp(A) = {µ | µ(A) > p}. But βp(A) =

⋂
{βq(A) : p >

q ∈ [0, 1]Q}, where Q is the rationals and [0, 1]Q = [0, 1]∩Q. Thus the measurable subsets of ∆X
are generated by the sets βq(A) with rational q. Moreover, if AX is generated by an algebra Ag,
then the σ-algebra of ∆X is generated by the βq(A)’s with A ∈ Ag. This was shown in [HS98]
and generalised in [Vig05] to collections Ag that are only closed under finite intersections.

The ∆X construction lifts to a functor ∆ : Meas → Meas, taking each morphism f : X → X′
to ∆f : ∆X → ∆X′, defined by (∆f)µ = µ ◦ f−1, where f−1 : AX′ → AX maps each measurable
set in X′ to its inverse image under f . The proof that ∆f is measurable follows from the fact
[MV06, Lemma 2.1] that for all A ∈ AX′ ,

(∆f)−1(βp(A)) = βp(f−1(A)). (2.1)

For each functor T : Meas → Meas, we write ∆T for the composite functor ∆ ◦ T : Meas →
Meas.

2.2 Measurable Functors and Coalgebras

The Cartesian product X1 ×X2 of two sets has associated projections πj : X1 ×X2 → Xj for
j ∈ {1, 2}. The coproduct X1 +X2 of X1 and X2 is their disjoint union, with injective insertion
functions inj : Xj → X1 +X2 for j ∈ {1, 2}. Each element of X1 +X2 is equal to inj(x) for a
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unique j and a unique x ∈ Xj . The E-th exponential of a set X is the set XE of all functions
from set E to X. For each e ∈ E there is the evaluation-at-e function eve : XE → X having
eve(f) = f(e).

These constructions lift to measurable spaces. The σ-algebra of the product space X1 × X2

is generated by the products A1×A2 of measurable sets Aj from each factor Xj , or equivalently
by the inverse images π−1

j (Aj) of the measurable sets from each factor. The σ-algebra of the
coproduct space X1 + X2 is generated by the insertions inj(Aj) of the measurable sets Aj

from each summand Xj . The σ-algebra of the exponential space XE , where the exponent E
is any set, is generated by the inverse images ev−1

e (A) of the measurable sets A of X under
all evaluation functions. The associated projections, insertions and evaluations are then all
measurable functions.

Two measurable functions f1 : X1 → X′1 and f2 : X2 → X′2 have a measurable product
f1 × f2 : X1 ×X2 → X′1 × X′2 and a measurable coproduct f1 + f2 : X1 + X2 → X′1 + X′2, where

(f1 × f2)(x1, x2) = (f1(x1), f2(x2))
(f1 + f2)(inj(x)) = inj(fj(x)).

(2.2)

The product T1×T2 of two functors on Meas is the functor that acts on spaces by X 7→ T1X×T2X,
and on morphisms by f 7→ T1(f) × T2(f). The coproduct functor T1 + T2 has X 7→ T1X + T2X
and f 7→ T1(f) + T2(f).

For any function f : X1 → X2, there is a function fE : XE
1 → XE

2 defined by fE(g) = f ◦ g.
If f is measurable, then so is fE . This follows from the fact that for any subset A of X2,

(fE)−1(ev−1
e A) = ev−1

e (f−1A).

The exponential functor TE has TE(X) = (TX)E , and TE(f) = (Tf)E .
Each measurable space X determines the constant functor on Meas taking all objects to X

and all morphisms to the identity function on X. We denote this constant functor also by X.
The identity functor on Meas will be denoted Id .

A measurable polynomial functor is any functor on Meas that can be constructed in finitely
many steps from constant functors and/or the identity functor Id by forming products T1 × T2,
coproducts T1 + T2, exponentials TE , and measure-space functors ∆T .

For functor T : Meas → Meas, a T -coalgebra is a pair (X, α) comprising a measurable
space X and a measurable function α : X → TX. In the coalgebraic approach to systems and
processes, points of X are thought of as states, and α as transition structure. α(x) is a structured
organisation of the “next state after x”.

A T -coalgebra morphism f : (X, α) → (X′, α′) is given by a Meas-morphism f : X → X′
that preserves the transition structures in the sense that α′ ◦ f = Tf ◦ α. The notion of
measurable polynomial functor was introduced and developed in [MV04, Vig05, MV06], where
it is shown that the category of T -coalgebras and T -morphisms for a measurable polynomial T
has a terminal object, known as a final T -coalgebra.1

2.3 The Multigraph of Ingredients

The ingredients of a measurable polynomial functor T are all the functors involved in the con-
struction of T , along with the identity functor. The set Ing T of ingredients can be defined
inductively by putting Ing T = {T, Id} if T = Id or T = X; Ing T = {T} ∪ Ing T1 ∪ Ing T2 if
T = T1 × T2 or T = T1 + T2; and Ing T = {T} ∪ IngS if T = SE or T = ∆S.

1[MV04, Vig05, MV06] do not discuss exponential functors, but the theory readily includes them. XE is
essentially a special case of the direct product

Q
e∈E Xe with Xe = X.
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Ing T is a finite set that includes at least Id . We make it into a multigraph with labelled
edges κ

 T . Here κ is one of the constructor symbols pr1, pr2, in1, in2, eve, next, >p, where e is
an element of some set E occurring as an exponent in T , and p is any rational number from
[0, 1]. The constructors >p will be called probabilistic. The others are definite. The constructor
>1 will be called almost sure.

The edges κ
 T joining ingredients of T are defined by

• S1 × S2

prj
 T Sj and S1 + S2

inj
 T Sj , for j ∈ {1, 2};

• SE eve T S for all e ∈ E;

• ∆S
>p
 T S for p ∈ [0, 1]Q;

• Id next
 T T .

Note that the only edge in Ing T that depends on T is next
 T . Without it, the graph would be a

(multi-edged) tree. But if there is a path of edges from T to Id, then next
 T makes it into a cycle.

Typically we will drop the T -subscripts and write an edge as κ
 when the ambient functor

T is understood.

3 Syntax and Semantics

Let T be a measurable polynomial functor that remains fixed throughout. Furthermore, suppose
that each constant ingredient of T is given by a space presented in the form X = (X,AX,Ag

X),
with Ag

X being a fixed generating set for AX.
We define a many-sorted modal language for T -coalgebras, of the kind developed for certain

functors on Set in [Röß00, Jac01] and adapted to Meas in [MV04]. The sorts will be the
ingredients of T . Each constructor symbol κ has a modal connective [κ], of “box” type. For
each edge S κ

 S′ in Ing T , [κ] makes formulas of sort S out of formulas of sort S′. The notation
ϕ : S means that ϕ is a formula of sort S. The set of all formulas of sort S will be denoted
FormS . The notation Γ : S means that Γ is a set of formulas of sort S, i.e. Γ ⊆ FormS .

Amongst the formulas of constant sort X will be the measurable generators from Ag
X. The

notation ϕ :: S is used to mean that ϕ : S and every subformula of ϕ of constant sort is a
measurable set. Γ :: S means that ϕ :: S for all ϕ ∈ Γ .

Here are the formation rules for formulas, in which S denotes an arbitrary ingredient of T .

• ⊥S : S.

• A : X if A ∈ Ag
X or A is a singleton subset of X.

• If ϕ1 : S and ϕ2 : S, then ϕ1 → ϕ2 : S.

• If S κ
 S′ in Ing T with κ 6= (>p), and ϕ : S′, then [κ]ϕ : S.

• If ∆S ∈ Ing T and ϕ :: S, then [>p]ϕ : ∆S for any p ∈ [0, 1]Q.

The probability modality [>p] can be read “the probability is at least p that . . . ”. The inclusion
of singletons as formulas of constant sort allows us to “name” the elements of a constant space
X. This will be needed later in the construction of canonical coalgebras (see the definition of
the measurable maps rX in the proof of Lemma 5.7).

The Boolean connectives ¬, ∧, ∨, ↔ are defined from → and ⊥S in the usual way; in
particular ¬ϕ is ϕ→ ⊥S for ϕ : S. >S is defined to be ¬⊥S . We write

∧
Γ for the conjunction

of a finite set Γ of formulas, in particular taking
∧
{ϕ} = ϕ and

∧
∅ = >S .
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In any T -coalgebra (X, α), each formula ϕ : S is interpreted as a subset [[ϕ]]αS of SX, thought
of as the set of points in the space SX that satisfy ϕ. This is defined inductively as follows,
using X ⇒ Y = (−X) ∪ Y :

[[⊥S ]]αS = ∅
[[A]]αX′ = A

[[ϕ1 → ϕ2]]αS = [[ϕ1]]αS ⇒ [[ϕ2]]αS
[[ [prj ]ϕ]]αS1×S2

= π−1
j [[ϕ]]αSj

[[ [in1]ϕ]]αS1+S2
= in1([[ϕ]]αS1

) ∪ in2(S2X)
[[ [in2]ϕ]]αS1+S2

= in1(S1X) ∪ in2([[ϕ]]αS2
)

[[ [eve]ϕ]]αSE = ev−1
e [[ϕ]]αS

[[ [next]ϕ]]αId = α−1[[ϕ]]αT
[[ [>p]ϕ]]α∆S = βp[[ϕ]]αS .

An inductive argument shows that if ϕ :: S, then [[ϕ]]αS is measurable. This is where the restriction
on formation of [>p]ϕ to ϕ :: S is needed.2 We will take it as understood that ϕ :: S whenever
the notation [>p]ϕ is used.

Satisfaction relations reminiscent of Kripkean modal semantics can be introduced by writing
α, x |=S ϕ to mean that x ∈ [[ϕ]]αS . This gives

α, x 6|=S ⊥S

α, x |=X′ A iff x ∈ A

α, x |=S ϕ1 → ϕ2 iff α, x |=S ϕ1 implies α, x |=S ϕ2

α, x |=S1×S2 [prj ]ϕ iff α, πj(x) |=Sj ϕ

α, x |=S1+S2 [inj ]ϕ iff x = inj(y) implies α, y |=Sj ϕ

α, f |=SE [eve]ϕ iff α, f(e) |=S ϕ

α, x |=Id [next]ϕ iff α, α(x) |=T ϕ

α, µ |=∆S [>p]ϕ iff µ([[ϕ]]αS) > p.

Note that the clauses for the definite modalities [κ] all have the familiar relational form

α, x |=S [κ]ϕ iff xRκy implies α, y |=S′ ϕ, (3.1)

where Rκ is a binary relation that is functional: each x is Rκ-related to at most one y. Here
xRπjy iff y = πj(x), xRnexty iff y = α(x), and these relations are total. On the other hand
xRinjy iff y = inj(x), and the domain of Rinj is the copy inj(SjX) of SjX within S1X + S2X.

Satisfaction is defined for formula-sets Γ : S by putting α, x |=S Γ iff for all ϕ ∈ Γ , α, x |=S ϕ.
Local and global semantic consequence relations are then defined, for Γ ∪ {ϕ} ⊆ FormS , by

Γ |=α
S ϕ iff for all x in SX, α, x |=S Γ implies α, x |=S ϕ;

Γ |=S ϕ iff Γ |=α
S ϕ for all T -coalgebras α.

2The syntax of [MV06] is slightly different. In place of [prj ] it has formulas 〈ϕ1, ϕ2〉S1×S2 : S1 ×S2 for ϕj : Sj ,
equivalent to [pr1]ϕ1 ∧ [pr2]ϕ2. In place of [inj ] it uses the formation injS1+S2

ϕj : S1 + S2 for ϕj : Sj . This is
effectively the “diamond dual” to [inj ], and is equivalent to ¬[inj ]⊥ ∧ [inj ]ϕj in the present semantics.
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We say that ϕ : S is valid in the coalgebra α, written α |=S ϕ, if α, x |=S ϕ for all x in SX.
Equivalently, this says both that [[ϕ]]αS = SX and that ∅ |=α

S ϕ. A set Γ : S is satisfiable if
α, x |=S Γ for some x in some α. Equivalently this means that Γ 6|=S ⊥S .

Now define
desα

S(x) = {ϕ : S | α, x |=S ϕ}.

desα
S(x) is the S-description set of x in α. Such sets are often called “truth sets” in traditional

modal semantics. Our aim is to provide a proof-theoretic characterisation of them.

4 T -Deduction Systems

We take an approach to infinitary proof theory that was developed for propositional modal logics
in [Gol82, Gol93] and adapted to polynomial coalgebraic logic in [FG06]. As explained in the
Introduction, the fundamental notion is a “deducibility relation” Γ ` ϕ, from sets of formulas to
formulas, that is intended to capture the idea that ϕ is deducible from members of Γ with the
aid of various axioms and rules of inference. The definition of ` is to be syntactic, depending
only on the symbolic pattern of formulas and basic set-theoretic properties of sets of them. We
then attempt to show that ` is identical to some semantically defined consequence relation |=,
thereby characterising |= proof-theoretically.

In our present context we need a many-sorted system { `S | S ∈ Ing T} of relations, with `S

being a relation from the powerset P(FormS) to FormS . The notion of a T -deduction system is
defined by declaring certain formulas to be axioms and laying down conditions that we require
of the relations `S , including the Lindenbaum property that every deductively consistent set
of formulas has a maximally consistent extension. These maximal sets are then used to build
a canonical T -coalgebra for which they turn out to be the description sets. This leads to a
characterisation of the semantic consequence relation system { |=S | S ∈ Ing T} as the least
system that satisfies our deducibility postulates and the Lindenbaum property. It is also shown
to be the only such system that is sound.

Definition 4.1 (Axioms) The set AxS ⊆ FormS of S-axioms is defined, for all S ∈ Ing T , to
consist of the following formulas.

1. All Boolean tautologies ϕ : S.

2. For S = X, A : X and c ∈ X,

(a) {c} → A if c ∈ A
(b) {c} → ¬A if c 6∈ A

3. For S = S1 × S2, j ∈ {1, 2} and ϕ : Sj ,

(a) ¬[prj ]ϕ→ [prj ]¬ϕ
(b) ¬[prj ]⊥Sj

4. For S = S1 + S2,

(a) ¬[inj ]ϕ→ [inj ]¬ϕ
(b) ¬[in1]⊥S1 ↔ [in2]⊥S2

5. For S = UE and ϕ : U ,

(a) ¬[eve]ϕ→ [eve]¬ϕ
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(b) ¬[eve]⊥U

6. For S = Id and ϕ : T ,

(a) ¬[next]ϕ→ [next]¬ϕ
(b) ¬[next]⊥T

7. For S = ∆S′,

(a) [>1](ϕ→ ψ) → ([>p]ϕ→ [>p]ψ)

(b) [>p]>S′

(c) [>p]¬ϕ→ ¬[>q]ϕ if p+ q > 1

(d) [>p](ϕ ∧ ψ) ∧ [>q](ϕ ∧ ¬ψ) → [>p+ q]ϕ if p+ q 6 1

(e) ¬[>p]ϕ ∧ ¬[>q]ψ → ¬[>p+ q](ϕ ∨ ψ) if p+ q 6 1

These axioms express evident properties of a T -coalgebra. In axiom-groups 3–6 for the definite
modalities [κ], axiom (a) corresponds to functionality of the relation Rκ of (3.1). Axioms (3b),
(5b) and (6b) correspond to the totality of Rκ, and (4b) expresses the fact that (S1 + S2)X is
the disjoint union of in1(S1X) = [[¬[in1]⊥S1 ]] and in2(S2X) = [[¬[in2]⊥S2 ]] in any coalgebra on
X. These can also be written as in1(S1X) = [[[in2]⊥S2 ]] and in2(S2X) = [[[in1]⊥S1 ]].

The axioms of group 7 expresses properties of finitely additive probability measures. Axioms
(7b)–(7d) appear in [HM01] as part of an axiom system for a propositional logic with probabilistic
modalities that is attributed to R. J. Aumann.3 (7e) is validated by the general inequality
µ(A) + µ(B) > µ(A ∪B). In place of (7e), Aumann’s system has the axiom

¬[>p](ϕ ∧ ψ) ∧ ¬[>q](ϕ ∧ ¬ψ) → ¬[>p+ q]ϕ if p+ q 6 1,

which corresponds to the weaker assertion of this inequality for disjoint A and B. (7c) and (7d)
together correspond to the reverse inequality µ(A) + µ(B) 6 µ(A ∪ B) for disjoint A and B.
See Lemma 4.7 and Theorem 5.4 for the use of these axioms in constructing finitely-additive
measures (similar axioms for probability quantifiers in predicate languages can be found in
[Hoo78], including axiom (7a)).

With these remarks in mind, it is left to the reader to complete the verification of

Theorem 4.2 For any S ∈ Ing T , all S-axioms are valid in all T -coalgebras. �

Definition 4.3 (Notation for formula-sets)

• Σ ⊆ω Γ means that Σ is a finite subset of Γ .

•
∧

ωΓ is the set {
∧
Σ | Σ ⊆ω Γ} of conjunctions of all finite subsets of Γ .

• ψ → Γ = {ψ → ϕ | ϕ ∈ Γ}.

• For each edge S κ
 S′ and Γ : S′, define [κ]Γ = {[κ]ϕ | ϕ ∈ Γ} : S.

Definition 4.4 (Deduction systems)
Let D = { `S | S ∈ Ing T} be a collection of relations `S ⊆ P(FormS)× FormS . Then D is a

T -deduction system if the following hold for all ingredients S:

• Assumption Rule: ϕ ∈ Γ ∪AxS implies Γ `S ϕ.
3In a 1995 discussion paper whose published version [Aum99] does not contain the axiom system.
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• Modus Ponens: {ϕ,ϕ→ ψ} `S ψ.

• Cut Rule: If Γ `S ψ for all ψ ∈ Σ and Σ `S ϕ, then Γ `S ϕ.

• Deduction Rule: Γ ∪ {ϕ} `S ψ implies Γ `S ϕ→ ψ.

• Constant Rule: If X ∈ Ing T , {¬{c} | c ∈ X} `X ⊥X.

• Definite Box Rule: For each edge S κ
 S′ in Ing T with κ a definite constructor,

Γ `S′ ψ implies [κ]Γ `S [κ]ψ .

• Archimedean Rule: If ∆S ∈ Ing T , { [>q]ϕ | q < p} `∆S [>p]ϕ.

• Countable Additivity Rule: If ∆S ∈ Ing T , then for countable Γ :: S,

Γ `S ψ implies [>p](
∧

ωΓ ) `∆S [>p]ψ. �

The following properties of a deduction system can be proven as in [Gol93, Lemmas 9.2.1, 9.2.2].

Lemma 4.5

(1) Monotonicity: If Γ `S ϕ and Γ ⊆ ∆, then ∆ `S ϕ.

(2) Detachment: If Γ `S ϕ and Γ `S ϕ→ ψ, then Γ `S ψ.

(3) Converse Deduction: Γ `S ϕ→ ψ implies Γ ∪ {ϕ} `S ψ.

(4) If Γ `S ϕ and Γ ∪ {ϕ} `S ⊥, then Γ `S ⊥.

(5) Γ ∪ {¬ϕ} `S ⊥S iff Γ `S ϕ.

(6) Implication Rule: Γ `S ϕ implies ψ → Γ `S ψ → ϕ. �

The next Lemma derives some modal principles. Here we write `S ψ to mean that ∅ `S ψ, and
ϕ `S ψ to mean that {ϕ} `S ψ.

Lemma 4.6

(1) `∆S [>0]ϕ.

(2) `∆S ¬[>q]⊥S if q > 0.

For each edge S κ
 S′ in Ing T ,

(3) `S′ ψ implies `S [κ]ψ;

(4) `S [κ](ϕ→ ψ) → ([κ]ϕ→ [κ]ψ), if κ is definite or almost sure;

(5) `S′ ϕ→ ψ implies `S [κ]ϕ→ [κ]ψ;

(6) `S′ ϕ↔ ψ implies `S [κ]ϕ↔ [κ]ψ.

(7) `∆S [>q]ϕ→ [>p]ϕ if q > p.

(8) Almost Sure Box Rule: If ∆S ∈ Ing T and Γ :: S is countable, then Γ `S ψ implies
[>1]Γ `∆S [>1]ψ.

Proof.
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(1) By the Archimedean Rule, as { [>0]ϕ | q < 0} = ∅.

(2) If q > 0, axiom (7c) gives `∆S [>1]¬⊥S → ¬[>q]⊥S . But `∆S [>1]¬⊥S by axiom (7b).

(3) If κ is definite, put Γ = ∅ in the Definite Box Rule and note [κ]∅ = ∅. If κ is probabilistic,
and `S′ ψ, putting Γ = ∅ in the Countable Additivity Rule gives [κ]>S′ `S [κ]ψ (since
>S′ =

∧
∅). But `S [κ]>S′ from axiom (7b), so the Deduction and Detachment Rules then

give `S [κ]ψ.

(4) If κ is definite, apply the Definite Box Rule to Modus Ponens to obtain {[κ](ϕ→ ψ), [κ]ϕ} `S

[κ]ψ. Then two applications of the Deduction Rule give the desired result.

If κ is almost sure, the result comes from axiom (7a) with p = 1.

(5) Let `S′ ϕ → ψ. Then if κ is definite, `S [κ](ϕ → ψ) by (3), and so the result follows from
(4) by Detachment. But if κ is probabilistic, with S = ∆S′, then `S [>1](ϕ → ψ) by (3),
and `S [>1](ϕ→ ψ) → ([κ]ϕ→ [κ]ψ) by axiom (7a), so again the result follows.

(6) By (5) and Boolean reasoning.

(7) If q > p, then by axiom (7e),

`∆S ¬[>p]ϕ ∧ ¬[> q − p]⊥S → ¬[>q](ϕ ∨ ⊥S).

Using (6) and Boolean reasoning, this gives

`∆S ¬[> q − p]⊥S → (¬[>p]ϕ→ ¬[>q]ϕ).

Since `∆S [> q − p]⊥S by (2), further Boolean reasoning gives the desired `∆S [>q]ϕ →
[>p]ϕ.

(8) From Γ `S ψ, the Countable Additivity Rule gives [>1](
∧

ωΓ ) `∆S [>1]ψ. But by part (3)
with κ = (>1) and axiom (7a) with p = 1, standard modal reasoning gives `∆S

∧
[>1]Γ0 →

[>1]
∧
Γ0 for all Γ0 ⊆ω Γ . Hence [>1]Γ `∆S ϕ for all ϕ ∈ [>1](

∧
ωΓ ). The Cut Rule then

gives [>1]Γ `∆S [>1]ψ.
�

Lemma 4.7 Suppose ∆S ∈ Ing T and `S ¬(ϕ ∧ ψ). Then

(1) `∆S [>p]ϕ→ ¬[>q]ψ if p+ q > 1.

(2) `∆S [>p]ϕ ∧ [>q]ψ → [>p+ q](ϕ ∨ ψ) if p+ q 6 1.

Proof.

(1) `∆S [>p]ϕ → [>p]¬¬ϕ by Lemma 4.6(5), and [>p]¬¬ϕ → ¬[>q]¬ϕ by axiom (7c). But if
`S ¬(ϕ ∧ ψ) then `S ψ → ¬ϕ, hence `∆S [>q]ψ → [>q]¬ϕ, so `∆S ¬[>q]¬ϕ→ ¬[>q]ψ.

(2) In axiom (7d), simultaneously replace ϕ by ϕ∨ψ, and ψ by ϕ. Now `S ((ϕ∨ψ)∧ϕ) ↔ ϕ, so by
Lemma 4.6(6), `∆S [>p]((ϕ∨ψ)∧ϕ) ↔ [>p]ϕ. But when `S ¬(ϕ∧ψ), `S ((ϕ∨ψ)∧¬ϕ) ↔ ψ,
hence `∆S [>q]((ϕ ∨ ψ) ∧ ¬ϕ) ↔ [>q]ψ. Therefore (2) follows from this instance of axiom
(7d).

�

Theorem 4.8
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(1) For any T -coalgebra (X, α), the system Conseqα
T = { |=α

S | S ∈ Ing T} of local consequence
relations is a T -deduction system.

(2) The global system ConseqT = { |=S | S ∈ Ing T} is a T -deduction system.

Proof. (2) follows readily from (1). For (1) we have to show that the relations |=α
S satisfy the

rules of Definition 4.4. Much of this is straightforward (recall Theorem 4.2), and we focus on
the rules for the probability modalities.

That { [>q]ϕ | q < p} |=α
∆S [>p]ϕ is immediate from the Archimedean property of [0, 1] that

no real number can be less than p but closer to p than any rational q < p.
We discuss the Countable Additivity Rule in more detail. Let Γ |=α

S ϕ for a countable Γ :: S.
If Γ = ∅, then α |=S ϕ, so µ([[ϕ]]αS) = 1 for all µ ∈ ∆SX, hence α |=∆S [>p]ϕ as desired.

Suppose then that Γ 6= ∅, say Γ = {ϕn | n < ω}. Put ψn = ϕ0 ∧ · · · ∧ ϕn. Then
{[[ψn]]αS | n < ω} is a non-increasing sequence of measurable subsets of SX. Let A =

⋂
n<ω[[ψn]]αS ,

also measurable. Hence if µ ∈ ∆SX, Lemma 2.1(1) implies µ(A) = limn→∞ µ([[ψn]]αS). But then
if α, µ |=∆S [>p](

∧
ωΓ ), since ψn ∈

∧
ωΓ we get α, µ |=∆S [>p]ψn, hence µ([[ψn]]αS) > p, for all

n. Therefore µ(A) > p, because a non-increasing sequence of non-negative reals converges to
its greatest lower bound. Since Γ |=α

S ϕ, A =
⋂

n<ω[[ϕn]]αS ⊆ [[ϕ]]αS , implying µ([[ϕ]]αS) > p, hence
α, µ |=∆S [>p]ϕ. �

Example 4.9 Without the assumption of countability of Γ , the Countable Additivity Rule
need not hold for ConseqT . For example, let X be [0, 1] with Ag

X being the set of open sets,
generating the Borel σ-algebra, and take T = ∆X. Let Γ = {[0, 1] − {r} | r ∈ [0, 1]} ⊆ Ag

X.
Then Γ |=X ⊥X, since

⋂
r([0, 1]− {r}) = ∅. But if µ ∈ ∆X is the standard (Lebesgue) measure,

then in any T -coalgebra we get α, µ |=∆X [>1](
∧

ωΓ ), since the intersection of finitely many sets
of the form [0, 1] − {r} has measure 1, while of course α, µ 6|=∆X [>1]⊥X. So this shows that
ConseqT does not even satisfy the Almost Sure Box Rule for this uncountable Γ .

�

Definition 4.10 For any S ∈ Ing T , a set Γ ⊆ FormS is:

• closed under Detachment if ϕ,ϕ→ ψ ∈ Γ implies ψ ∈ Γ ;

• an S-theory if it includes the set AxS of S-axioms and is closed under Detachment;

• negation complete if for every ϕ : S, either ϕ ∈ Γ or ¬ϕ ∈ Γ ;

• ⊥-free if ⊥S 6∈ Γ . �

Using the fact that all tautologies are axioms, together with Theorem 4.2, standard arguments
show:

Lemma 4.11

(1) If Γ is a negation complete S-theory, then:

ϕ ∨ ψ ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ

ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ

ϕ→ ψ ∈ Γ iff ϕ ∈ Γ implies ψ ∈ Γ

ϕ↔ ψ ∈ Γ iff (ϕ ∈ Γ iff ψ ∈ Γ ),

and if Γ is ⊥-free, then

¬ϕ ∈ Γ iff ϕ 6∈ Γ.
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(2) Every S-description set desα
S(x) is a negation complete ⊥-free S-theory. �

The property “negation complete ⊥-free S-theory” is too weak to characterise the description
sets. For that we first need to consider notions of deductive consistency:

Definition 4.12 Let { `S | S ∈ Ing T} be any T -deduction system. A set Γ : S of formulas is

• `S-inconsistent if Γ `S ⊥S , and `S-consistent otherwise;

• finitely `S-consistent if all finite subsets of Γ are `S-consistent;

• maximally finitely `S-consistent if it is finitely `S-consistent but has no proper extension
that is finitely `S-consistent;

• maximally `S-consistent if it is `S-consistent but has no proper extension that is `S-
consistent;

• `S-maximal if it is negation complete and `S-consistent.

Notice that for the semantic consequence system Conseqα
T of a coalgebra α (see Theorem 4.8(1)),

|=α
S-consistency of Γ , i.e. Γ 6|=α

S ⊥S , just means satisfiability of Γ at some state of α. For the
global consequence system ConseqT , |=S-consistency means satisfiability in some coalgebra.

Here are some standard relationships between the notions of Definition 4.12:

Lemma 4.13

(1) If Γ `S ϕ and Γ `S ¬ϕ, then Γ is `S-inconsistent.

(2) If Γ is finitely `S-consistent, then so is one of Γ ∪ {ϕ} and Γ ∪ {¬ϕ} for each ϕ.

(3) If Γ is negation complete and finitely `S-consistent, then it is an S-theory.

(4) Γ is maximally finitely `S-consistent iff it is negation complete and finitely `S-consistent.

(5) Γ is `S-maximal iff it is maximally `S-consistent.

Proof. For (1)–(4) see [Gol93]. For (5), if Γ is `S-maximal, then it is `S-consistent, hence
finitely `S-consistent by Monotonicity, and negation complete, so altogether maximally finitely
`S-consistent by result (4). But then if it has no finitely `S-consistent proper extensions, it can
have no `S-consistent ones.

Conversely, if Γ is maximally `S-consistent, it suffices to show that it is negation complete.
But if both ϕ 6∈ Γ and ¬ϕ 6∈ Γ , then Γ∪{ϕ} `S ⊥S and Γ∪{¬ϕ} `S ⊥S by maximal consistency
of Γ , hence Γ `S ¬ϕ and Γ `S ¬¬ϕ by the Deduction Rule. But by (1), this contradicts the
`S-consistency of Γ . �

Corollary 4.14 If Γ is `S-maximal, then:

(1) Γ is `S-closed, i.e. if Σ ⊆ Γ and Σ `S ϕ, then ϕ ∈ Γ .

(2) `S ϕ implies ϕ ∈ Γ .

Proof.

(1) If Σ ⊆ Γ and Σ `S ϕ, then Γ `S ϕ by Monotonicity. But now if ϕ 6∈ Γ , then ¬ϕ ∈ Γ , so
Γ `S ¬ϕ, contradiction the `S-consistency of Γ .
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(2) If ∅ `S ϕ, then Γ `S ϕ by Monotonicity, hence ϕ ∈ Γ by (1).
�

We turn now to the main role of the Definite Box Rule. For each edge S κ
 S′ with κ definite,

and each Γ : S, let
[κ]−Γ = {ϕ : S′ | [κ]ϕ ∈ Γ}.

Lemma 4.15 Let Γ be `S-maximal.

(1) If κ is of the form prj or eve or next, then [κ]−Γ is `S′-maximal.

(2) If κ is inj, then ¬[inj ]⊥Sj ∈ Γ implies [inj ]−Γ is `Sj -maximal.

Proof. First, note that [κ]−Γ is always negation complete, for if ϕ 6∈ [κ]−Γ , then ¬[κ]ϕ ∈ Γ
by negation completeness of Γ , and ¬[κ]ϕ → [κ]¬ϕ is an axiom of type (a), hence in Γ , so
[κ]¬ϕ ∈ Γ , giving ¬ϕ ∈ [κ]−Γ .

If remains to show that [κ]−Γ is `S′-consistent. But if [κ]−Γ `S′ ⊥S′ then by the Definite
Box Rule {[κ]ϕ | [κ]ϕ ∈ Γ} `S [κ]⊥S′ , hence Γ `S [κ]⊥S′ by Monotonicity. If (1) κ is prj or eve

or next, this is a contradiction, as then ¬[κ]⊥S′ is an axiom, so Γ `S ¬[κ]⊥S′ in contradiction
to the consistency of Γ . For (2), it is similarly a contradiction if ¬[inj ]⊥Sj ∈ Γ . �

Definition 4.16 A T -deduction system is

• sound if Γ `S ϕ implies Γ |=S ϕ, for all S ∈ Ing T ; and

• Lindenbaum if, for all S ∈ Ing T , every `S-consistent set of formulas is included in some
`S-maximal set.

Theorem 4.17

(1) A T -deduction system is sound iff every satisfiable set of S-formulas is `S-consistent.

(2) If a T -deduction system is sound, then every S-description set is `S-maximal.

(3) For any T -coalgebra α, Conseqα
T = { |=α

S | S ∈ Ing T} is a Lindenbaum T -deduction system.

(4) ConseqT = { |=S | S ∈ Ing T} is a sound Lindenbaum T -deduction system.

Proof.

(1) Assume soundness. If Γ : S is satisfiable, then α, x |=S Γ for some x in some T -coalgebra
α. Since α, x 6|=S ⊥S this gives Γ 6|=S ⊥S , so soundness implies Γ 6`S ⊥.

Conversely, assume satisfiable S-sets are `S-consistent. Then Γ 6|=S ϕ implies Γ ∪ {¬ϕ}
is satisfiable, hence Γ ∪ {¬ϕ} 6`S ⊥S by assumption, so Γ 6`S ϕ by Lemma 4.5(5). Thus
soundness holds.

(2) Given soundness, any S-description set is `S-consistent by (1), since it is satisfiable by
definition. But every description set is negation complete.

(3) Conseqα
T is a T -deduction system by Theorem 4.8. For the Lindenbaum property: if Γ is

|=α
S-consistent, i.e. is satisfiable in α, then α, x |=S Γ for some x. Then the description set

desα
S(x) extends Γ and is negation complete and |=α

S-consistent.

(4) ConseqT is sound tautologically. For the Lindenbaum property, if Γ is |=S-consistent, then
α, x |=S Γ for some x in some T -coalgebra α. But then the extension desα

S(x) of Γ is |=S-
maximal by (2). (Alternatively, desα

S(x) is |=α
S-consistent as in (3), hence |=S-consistent as

|=S is included in |=α
S .)
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As usual, one of the important roles of the Lindenbaum property is to ensure

Lemma 4.18 In a Lindenbaum deduction system, `S ϕ if, and only if ϕ belongs to every `S-
maximal set.

Proof. From left to right is by Corollary 4.14(2) But if 6`S ϕ, then {¬ϕ} 6`S ⊥S by Lemma
4.5(5), so by the Lindenbaum property there is a `S-maximal Γ extending {¬ϕ}, and hence
ϕ 6∈ Γ by `S-consistency of Γ . �

5 Canonical Spaces and Coalgebras

We are going to show that the system ConseqT of satisfaction relations |=S is the least Linden-
baum deduction system for T , and the only one that is sound. To do this we fix a Lindenbaum
T -deduction system D = { `S | S ∈ Ing T} and build a T -coalgebra (XD, αD) such that the
`S-maximal sets correspond to the points of the space SXD (for their precise relationship, see
Lemma 5.7 and Theorem 5.11). From this we conclude that all `S-maximal sets are S-description
sets, conversely to Theorem 4.17(2). The idea of this construction was developed algebraically
in [Jac01] for functors over Set, and adapted in [MV04, Vig05, MV06] to a model-theoretic
construction of final coalgebras for functors over Meas, working directly with description sets.
Here we give a proof-theoretic version, following the methodology of Sections 3 and 4 of [MV06],
but working instead with the maximal sets.

Definition 5.1

• XD
S = {Γ ⊆ FormS | Γ is `S-maximal}

• |ϕ|S = {x ∈ XD
S | ϕ ∈ x}

• AD
S = {|ϕ|S | ϕ :: S}

• XD
S = (XD

S , σ(AD
S )).

The facts in Lemma 4.11(1) ensure that the Boolean connectives are interpreted under ϕ 7→ |ϕ|S
as the Boolean set operations, i.e. |¬ϕ|S = XD

S − |ϕ|S , |ϕ ∨ ψ|S = |ϕ|S ∪ |ψ|S etc. Thus AD
S is

an algebra of sets and XD
S the measurable space it generates.

We will need the Lindenbaum property of D in a number of places, including to show

Lemma 5.2 For any ϕ,ψ : S,

(1) |ϕ|S ⊆ |ψ|S iff `S ϕ→ ψ.

(2) |ϕ|S = |ψ|S iff `S ϕ↔ ψ.

Proof. For (1): by Lemma 4.18, `S ϕ→ ψ iff ϕ→ ψ belongs to every member of XD
S , which

by Lemma 4.11 is equivalent to requiring that every member of XD
S containing ϕ must also

contain ψ.
(2) follows from (1) by Boolean reasoning. �

Definition 5.3 (Canonical measures)
If ∆S ∈ Ing T , for each `S-maximal set x ∈ XD

∆S , define a function µx on AD
S by

µx(|ϕ|S) = sup{q ∈ [0, 1]Q | [>q]ϕ ∈ x}.
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Theorem 5.4 µx is a well-defined probability measure on AD
S .

Proof. First observe that if |ϕ|S = |ψ|S , then `S ϕ↔ ψ, hence `∆S [>q]ϕ↔ [>q]ψ for any q
by Lemma 4.6(6), so [>q]ϕ ∈ x iff [>q]ψ ∈ x. Thus the definition of µx(|ϕ|S) does not depend
on how |ϕ|S is named.

Now Lemma 4.6(1) implies that 0 ∈ {q : [>q]ϕ ∈ x}, so µx(|ϕ|S) does exist as a supremum,
and we get µx : XD

S → [0, 1]. Moreover, as ∅ = |⊥S |, and Lemma 4.6(2) guarantees that
[>q]⊥S 6∈ x if q > 0, we have µx∅ = 0.

We will use the fact that for any ϕ :: S and p ∈ [0, 1]Q,

µx(|ϕ|S) > p implies [>p]ϕ ∈ x. (5.1)

To see why: if µx(|ϕ|S) > p but [>p]ϕ 6∈ x, then Lemma 4.6(7) ensures that [>q]ϕ 6∈ x for any
rational q > p, hence [>q]ϕ ∈ x only if q 6 p. However this contradicts the definition of µx(|ϕ|S)
as a supremum. Hence (5.1) holds.

Next we show that

µx(|ϕ1|S) + µx(|ϕ2|S) > µx(|ϕ1|S ∪ |ϕ2|S). (5.2)

If this were false, we could choose rationals q1, q2 with

µx(|ϕ1|S) + µx(|ϕ2|S) < q1 + q2 < µx(|ϕ1|S ∪ |ϕ2|S) = µx(|ϕ1 ∨ ϕ2|S) 6 1

and µx(|ϕi|S) < qi for i = 1, 2. But then [>qi]ϕi 6∈ x by definition of µx(|ϕi|S), hence ¬[>qi]ϕi ∈
x. By invoking axiom (7e) we infer from this that [>q1 + q2](ϕ1 ∨ ϕ2) 6∈ x. But then by (5.1),
µx(|ϕ1 ∨ ϕ2|S) 6> q1 + q2, a contradiction. So (5.2) is true.

The next step is to show that µx is finitely additive, by proving the reverse inequality

µx(|ϕ1|S) + µx(|ϕ2|S) 6 µx(|ϕ1 ∨ ϕ2|S) (5.3)

when |ϕ1|S and |ϕ2|S are disjoint, or equivalently when `S ¬(ϕ1 ∧ ϕ2). If (5.3) failed in this
case, we could choose rationals qi < µx(|ϕi|S) with

µx(|ϕ1 ∨ ϕ2|S) < q1 + q2 < µx(|ϕ1|S) + µx(|ϕ2|S).

Then (5.1) gives [>q1]ϕ1, [>q2]ϕ2 ∈ x. Also q1 + q2 6 1, for if q1 + q2 > 1, Lemma 4.7(1) gives
`∆S [>q1]ϕ1 → ¬[>q2]ϕ2, hence the contradictory ¬[>q2]ϕ2 ∈ x. Thus we can apply Lemma
4.7(2) to infer that [>q1 + qs](ϕ1 ∨ϕ2) ∈ x. But this implies the contradictory µx(|ϕ1 ∨ϕ2|S) >
q1 + q2 by definition of µx.

That completes the proof that µx is finitely additive. To prove that it is a measure, it suffices
by Lemma 2.1(2) to show that if { |ϕn|S | n < ω} is a non-increasing sequence of members of AD

S

whose intersection is empty, then µx(|ϕn|S) → 0. Now by finite additivity, the number-sequence
{µx(|ϕn|S) | n < ω} is non-increasing. Since it is bounded below by 0, it must converge to
its greatest lower bound. If this limit was positive, then there would exist a rational p with
µx(|ϕn|S) > p > 0 for all n. Then if Γ = {ϕn | n < ω}, any ψ ∈

∧
ωΓ has |ψ|S = |ϕm|S

for some m, since the |ϕn|S ’s are non-increasing, hence µx(|ψ|S) > p, so [>p]ψ ∈ x by (5.1).
This shows that [>p](

∧
ωΓ ) is a subset of x, and therefore is `∆S-consistent by the consistency

of x. But `∆S ¬[>p]⊥S by Lemma 4.6(2), so this implies [>p](
∧

ωΓ ) 6`∆S [>p]⊥S . By the
Countable Additivity Rule it then follows that Γ 0S ⊥S , so by the Lindenbaum property, there
is some y ∈ XD

S with Γ ⊆ y, hence y ∈
⋂

n<ω|ϕn|S , contradicting the fact that this intersection
is empty.

Hence limn→∞ µx(|ϕn|S) = 0 as required. �

That was the only use we need to make of the Countable Additivity Rule, and the argument
given shows that we really only needed its special case
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Γ `S ⊥S implies [>p](
∧

ωΓ ) `∆S ⊥∆S .

Here is where the Archimedean Rule is needed:

Lemma 5.5 For all |ϕ|S ∈ AD
S and p ∈ [0, 1]Q,

µx(|ϕ|S) > p iff [>p]ϕ ∈ x.

Proof. From right to left holds by definition of µx. Conversely, if µx(|ϕ|S) > p, then for all
q < p we get [>q]ϕ ∈ x by (5.1). The Archimedean Rule and the `∆S-closure of x (Corollary
4.14(1)) then ensure that [>p]ϕ ∈ x . �

Of course Lemma 5.5 implies (5.1), but we deferred it till after the proof of Theorem 5.4 in order
to make clear that the Archimedean Rule is not needed to prove that µx is a measure.

To increase legibility, we may drop the D-superscripts in referring to the spaces XD
S , under-

standing that the definition of XS depends on a particular deduction system.

Lemma 5.6 There exist measurable functions

XS1×S2

ρS1×S2−→ XS1 × XS2

XS1+S2

ρS1+S2−→ XS1 + XS2

XSE

ρ
SE−→ (XS)E

XId
ρId−→ XT

X∆S
ρ∆S−→ ∆(XS)

such that

ρ−1
S1×S2

(|ϕ1|S1 × |ϕ2|S2) = |[pr1]ϕ1 ∧ [pr2]ϕ2|S1×S2 (5.4)

ρ−1
S1+S2

(inj(|ϕ|Sj )) = |¬[inj ]⊥Sj ∧ [inj ]ϕ|S1+S2 (5.5)

ρ−1
SE (ev−1

e |ϕ|S) = |[eve]ϕ|SE (5.6)

ρ−1
Id (|ϕ|T ) = |[next]ϕ|Id (5.7)

ρ−1
∆S(βp(|ϕ|S)) = |[>p]ϕ|∆S . (5.8)

Proof. It suffices to define functions ρ satisfying the stated equations, since their measurability
immediately follows. This is because each equation has the form ρ−1(A) = B, such that when
A is any generator of the σ-algebra of the codomain of ρ, then B is a measurable set in the
domain space of ρ (recall that the σ-algebra of XS is generated by the sets |ϕ|S with ϕ :: S).

• Let ρS1×S2(x) = ([pr1]−x, [pr2]−x) for any `S1×S2-maximal set x. Here [prj ]−x is the
Sj-maximal set {ϕ : Sj | [prj ]ϕ ∈ x} given by Lemma 4.15(1). For (5.4), ρS1×S2(x) ∈
|ϕ1|S1 × |ϕ2|S2 iff ϕ1 ∈ [pr1]−x and ϕ2 ∈ [pr2]−x, iff [pr1]ϕ1 ∧ [pr2]ϕ2 ∈ x.

• ρS1+S2 is defined as follows. For each `S1+S2-maximal x, by axiom (4b) there is exactly
one j ∈ {1, 2} such that ¬[inj ]⊥Sj ∈ x. Put ρS1+S2(x) = inj([inj ]−x) for this j, noting
that [inj ]−x itself belongs to XSj by Lemma 4.15(2). Hence for each j ∈ {1, 2} we have
ρS1+S2(x) ∈ inj(XSj ) iff ¬[inj ]⊥Sj ∈ x.
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To prove (5.5), for all x ∈ XS1+S2 and ϕ : Sj we have

ρS1+S2(x) ∈ inj(|ϕ|Sj )

iff ¬[inj ]⊥Sj ∈ x and inj([inj ]−x) ∈ inj(|ϕ|Sj )

iff ¬[inj ]⊥Sj ∈ x and [inj ]−x ∈ |ϕ|Sj as inj is injective

iff ¬[inj ]⊥Sj ∈ x and [inj ]ϕ ∈ x

iff (¬[inj ]⊥Sj ∧ [inj ]ϕ) ∈ x.

• Let ρSE (x) be the function E → XS defined by ρSE (x)(e) = [eve]−x, which is `S-maximal
by Lemma 4.15(1).

Then x ∈ ρ−1
SE (ev−1

e |ϕ|S) iff ρSE (x)(e) ∈ |ϕ|S iff ϕ ∈ [eve]−x iff [eve]ϕ ∈ x, giving (5.6).

• Let ρId (x) = [next]−x. Then (5.7) amounts to the claim that [next]−x ∈ |ϕ|T iff [next]ϕ ∈ x,
which is true.

• ρ∆S is defined as follows. For each x in X∆S the function µx of Theorem 5.4 is a probability
measure on the algebra AS , so has a unique extension to a probability measure on the
σ-algebra generated by AS (by the famous Carathéodory outer measure construction). We
take ρ∆S(x) to be this unique extension, which will also be called µx.

For (5.8), with the help of Lemma 5.5 we reason that ρ∆S(x) ∈ βp(|ϕ|S) iff µx(|ϕ|S) > p
iff [>p]ϕ ∈ x iff x ∈ |[>p]ϕ|∆S .

�

Next we introduce “definable” subsets ‖ϕ‖S of S(XId ), for ϕ : S, that correspond to the subsets
|ϕ|S of XS . The inductive definition of ‖ϕ‖S imitates that of [[ϕ]]αS , except for the formulas
[next]ϕ:

‖⊥S‖S = ∅
‖A‖X = A

‖ϕ1 → ϕ2‖S = ‖ϕ1‖S ⇒ ‖ϕ2‖S

‖ [prj ]ϕ‖S1×S2 = π−1
j ‖ϕ‖Sj

‖ [in1]ϕ‖S1+S2 = in1(‖ϕ‖S1) ∪ in2(S2XId )
‖ [in2]ϕ‖S1+S2 = in1(S1XId ) ∪ in2(‖ϕ‖S2)

‖ [eve]ϕ‖SE = ev−1
e ‖ϕ‖S

‖ [next]ϕ‖Id = | [next]ϕ|Id
‖ [>p]ϕ‖∆S = βp‖ϕ‖S .

It follows by induction that for all ϕ : Id , ‖ϕ‖Id = |ϕ|Id ⊆ XId (see Lemma 4.11(1)).

Lemma 5.7 For each S ∈ Ing T there is a measurable map rS : XS → S(XId ) such that for all
formulas ϕ : S we have

r−1
S ‖ϕ‖S = |ϕ|S , i.e. rS(x) ∈ ‖ϕ‖S iff ϕ ∈ x. (5.9)

Proof. By induction on the formation of S. The class of S-formulas satisfying (5.9) is readily
seen to be closed under the Boolean connectives: this does not need to be repeated for each case
of S. The cases are as follows.
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• S = Id : let rId be the identity function on XId . Measurability is immediate and (5.9) just
repeats that ‖ϕ‖Id = |ϕ|Id .

• S = X, the functor with constant value X. Here rX : XX → X is defined by: rX(x) = the
unique c ∈ X such that {c} ∈ x. This exists because the Constant Rule and `X-consistency
of x ensure that we cannot have every c ∈ X satisfying ¬{c} ∈ x, so {c} ∈ x for at least
one c. But by axiom (2b), if c 6= d ∈ X, then ({c} → ¬{d}) ∈ x, so if {c} ∈ x then
{d} 6∈ x.
Thus {rX(x)} ∈ x. Now axioms (2a) and (2b) give, for all A : X, that ({rX(x)} → A) ∈ x
if rX(x) ∈ A and ({rX(x)} → ¬A) ∈ x if rX(x) 6∈ A. This implies that rX(x) ∈ A iff A ∈ x,
which is (5.9), and that r−1

X (A) = |A|X. In particular this holds for the generators A ∈ Ag
X

of the measure algebra of the constant space X, which is enough to make rX a measurable
function.

• S = S1 × S2: assume that rS1 and rS1 are defined and fulfil the Lemma. Let rS1×S2 be the
composition of

XS1×S2

ρS1×S2−→ XS1 × XS2

rS1
×rS2−→ S1(XId )× S2(XId ).

Since rS1 and rS2 are measurable, so too is their product rS1 × rS2 (2.2), and hence so too
is its composition with the measurable ρS1×S2 .

For (5.9), the definitions of the operators ρ and r give

rS1×S2(x) = (rS1

(
[pr1]

−x), rS2([pr2]
−x)

)
, (5.10)

so rS1×S2(x) ∈ ‖ [prj ]ϕ‖S1×S2 = π−1
j ‖ϕ‖Sj iff rSj

(
[prj ]−x) ∈ ‖ϕ‖Sj iff ϕ ∈ [prj ]−x (by

induction hypothesis on rSj ), iff [prj ]ϕ ∈ x.

• S = S1 + S2: let rS1+S2 be the composition of the measurable functions

XS1+S2

ρS1+S2−→ XS1 + XS2

rS1
+rS2−→ S1(XId ) + S2(XId ).

Thus
rS1+S2(x) = inj(rSj ([inj ]−x)), (5.11)

for the unique j such that ¬[inj ]⊥Sj ∈ x.

Now (rS1+S2)
−1 is ρ−1

S1+S2
◦(rS1 +rS2)

−1. Take a formula of type [in1]ϕ. Since ‖ [in1]ϕ‖S1+S2

is the union of the two sets in1(‖ϕ‖S1) and in2(S2XId ) from the disjoint components of
S1(XId ) + S2(XId ), we have

(rS1 + rS2)
−1‖ [in1]ϕ‖S1+S2 = in1(r−1

S1
‖ϕ‖S1) ∪ in2(XS2),

which is equal to in1(|ϕ|S1)∪ in2(XS2) by hypothesis on rS1 . Hence r−1
S1+S2

‖ [in1]ϕ‖S1+S2 is

(ρS1+S2)
−1in1(|ϕ|S1) ∪ (ρS1+S2)

−1in2(XS2),

which, by (5.5) and the definition of ρS1+S2 , is

|¬[in1]⊥S1 ∧ [in1]ϕ|S1+S2 ∪ |[in1]⊥S1 |S1+S2

= |[in1]ϕ|S1+S2 ∪ |[in1]⊥S1 |S1+S2 by Boolean reasoning
= |[in1]ϕ|S1+S2 ,

as `S1+S2 [in1]⊥S1 → [in1]ϕ by Lemma 4.6(5).

The proof that r−1
S1+S2

‖ [in2]ϕ‖S1+S2 = |[in2]ϕ|S1+S2 is likewise, and (5.9) follows for this
case.
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• Suppose SE ∈ Ing T and assume that rS is defined and fulills the Lemma. Let rSE =
rES ◦ ρSE :

XSE

ρ
SE−→ (XS)E rES−→ (S(XId ))E .

Then rSE (x) = rS ◦ (ρSE (x)) is the function with domain E for which

rSE (x)(e) = rS([eve]−x). (5.12)

Hence rSE (x) ∈ ‖ [eve]ϕ‖SE = ev−1
e ‖ϕ‖S iff rS([eve]−x) ∈ ‖ϕ‖S iff ϕ ∈ [eve]−x (by induc-

tion hypothesis on rS), iff [eve]ϕ ∈ x, proving (5.9) in this case.

• If ∆S ∈ Ing T , assume the construction of rS , and define r∆S = ∆rS ◦ ρ∆S :

X∆S
ρ∆S−→ ∆(XS) ∆rS−→ ∆S(XId ).

Then r∆S(x) is the measure on S(XId ) having

r∆S(x)(A) = µx(r−1
S (A)) (5.13)

for all measurable subsets A of S(XId ).

The derivation of (5.9) in this case follows the pattern of [MV06, p. 626]:

r−1
∆S‖[>p]ϕ‖∆S = ρ−1

∆S

(
(∆rS)−1(βp‖ϕ‖S)

)
= ρ−1

∆S

(
βp(r−1

S ‖ϕ‖S)
)

by (2.1)

= ρ−1
∆S

(
βp(|ϕ|S)

)
hypothesis on rS

= |[>p]ϕ|∆S (5.8).
�

Definition 5.8 (The Canonical T -Coalgebra for D) For a Lindenbaum T -deduction sys-
tem D, the canonical T -coalgebra for D is (XD, αD), where XD is XId , and αD is rT ◦ ρId :

XId
ρId−→ XT

rT−→ T (XId ).

Lemma 5.9 (The Truth Lemma) For any ϕ : S,

(1) [[ϕ]]α
D

S = ‖ϕ‖S.

(2) For all x ∈ XS, αD, rS(x) |=S ϕ iff ϕ ∈ x.

Proof.

(1) By induction on ϕ. We have [[⊥S ]]α
D

S = ∅ = ‖⊥S‖S and [[A]]α
D

X = A = ‖A‖X by definition.
In fact the match between the definitions of [[ϕ]]αS and ‖ϕ‖S make all the inductive cases
routine except for [next]ϕ : Id , where ϕ : T . But

[[nextϕ]]α
D

Id = (αD)−1[[ϕ]]α
D

T by definition

= (αD)−1‖ϕ‖T by induction hypothesis

= ρ−1
Id (r−1

T ‖ϕ‖T )

= ρ−1
Id |ϕ|T by Lemma 5.7

= |[next]ϕ|Id by (5.7)

= ‖[next]ϕ‖Id .
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(2) From (1) and Lemma 5.7, r−1
S [[ϕ]]α

D

S = |ϕ|S , which is what (2) says.
�

Corollary 5.10 desαD

S ◦ rS is the identity function on XS. Hence if D is a sound deduction
system, then XS is the set of all S-description sets.

Proof. For each x ∈ XS , by definition

desαD

S (rS(x)) = {ϕ : S | αD, rS(x) |=S ϕ}.

But by (2) of the Truth Lemma, this is just {ϕ | ϕ ∈ x} = x.
Hence each `S-maximal x is the description set desαD

S (rS(x)). But if D is sound, every
S-description set is `S-maximal by Theorem 4.17(2). �

In [Vig05, MV06] a final T -coalgebra is constructed from spaces S∗ based directly on the set
of all S-description sets. We have arrived at a proof-theoretic construction of the same spaces
from a sound Lindenbaum T -deduction system. We will shortly show (in Corollary 5.15) that
this system must be ConseqT . But first we confirm that connection between rS and desαD

S is
even tighter than indicated above:

Theorem 5.11 rS and desαD

S are mutually inverse and give an isomorphism between the mea-
surable spaces XS and S(XId ) = S(XD).

Proof. Let |ϕ|S ∈ AD
S be a generating measurable set from XS (Definition 5.1). Then

(desαD

S )−1|ϕ|S = {y | ϕ ∈ desαD

S (y)} = [[ϕ]]α
D

S ,

which is a measurable subset of S(XId ) as ϕ :: S. Hence desαD

S : S(XId ) → XS is measurable.
It remains to show that rS ◦ desαD

S is the identity function. This requires a consideration of
cases, by induction on S.

• S = Id . Here rId is the identity function on XId . Hence by Corollary 5.10, desαD

Id is also
the identity function on XId .

• S = X. Then for x ∈ XX, rX(x) = the unique c ∈ X such that {c} ∈ x. Thus if c belongs
to X, and x = desαD

X (c), then {c} ∈ x as αD, c |=X {c}, so rX(desαD

X (c)) = rX(x) = c as
required.

• S = S1×S2: assume the result for S1 and S2. Take z = (z1, z2) in S1(XId )×S2(XId ), and
let x = desαD

S1×S2
(z). We want rS1×S2(x) = z.

Now for ϕ : Sj , ϕ ∈ [prj ]−x iff αD, πj(z) |=Sj ϕ, hence [prj ]−x = desαD

Sj
(zj). Thus

rSj ([prj ]
−x) = rSj (des

αD

Sj
(zj)) = zj by hypothesis on Sj . It follows from (5.10) that

rS1×S2(x) = (z1, z2) as required.

• S = S1 + S2: Take z in S1(XId ) + S2(XId ), with z = inj(zj) for some j and some zj in
Sj(XId ). Let x = desαD

S1+S2
(z). Then ¬[inj ]⊥Sj ∈ x, so rS1+S2(x) = inj(rSj ([inj ]−x)) by

(5.11).

Now for ϕ : Sj , ϕ ∈ [inj ]−x iff αD, zj |=Sj ϕ, hence [inj ]−x = desαD

Sj
(zj). Thus rSj ([inj ]−x) =

rSj (des
αD

Sj
(zj)) = zj by hypothesis on Sj . Hence rS1+S2(x) = inj(zj) = z as required.
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• If SE ∈ Ing T , assume the result for S. Take f ∈ (S(XId ))E , and let x = desαD

SE (f). We
want rSE (x) = f .

Now for ϕ : S and e ∈ E, ϕ ∈ [eve]−x iff αD, f(e) |=S ϕ, hence [eve]−x = desαD

S (f(e)).
Thus rS([eve]−x) = rS(desαD

S (f(e))) = f(e) by hypothesis on S. Since this holds for all
e ∈ E, it follows from (5.12) that rSE (x) = f as required.

• If ∆S ∈ Ing T , assume the result for S. Take a member µ of ∆S(XId ) and let x = desαD

∆S(µ).
Now by the induction hypothesis, rS is an isomorphism between XS and S(XId ), so as XS

is generated by the algebra of sets |ϕ|S with ϕ :: S, S(XId ) is generated by their rS-images
rS |ϕ|S . Hence by (5.13), the measure r∆S(x) has

r∆S(x)(rS |ϕ|S) = µx((rS)−1rS |ϕ|S) = µx(|ϕ|S).

By the Truth Lemma, |ϕ|S = r−1
S [[ϕ]]α

D

S , so rs|ϕ|S = [[ϕ]]α
D

S , hence µ(rS |ϕ|S) > q iff
µ([[ϕ]]α

D

S ) > q iff [>q]ϕ ∈ desαD

∆S(µ) = x. Thus

µ(rS |ϕ|S) = sup{q ∈ [0, 1]Q | [>q]ϕ ∈ x} = µx(|ϕ|S).

Since any probability measure is determined by its values on a generating algebra, this
shows that r∆S(x) = µ as required.

�

We are now ready to give a characterisation of the semantic consequence relations |=S .

Definition 5.12 A T -deduction system { `S | S ∈ Ing T} is called complete if, for all S and
all Γ ∪ {ϕ} ⊆ FormS, Γ |=S ϕ implies Γ `S ϕ.

With the help of Lemma 4.5(5), one can show

Lemma 5.13 A T -deduction system is complete iff every `S-consistent set of formulas is sat-
isfiable in some T -coalgebra. �

Theorem 5.14 (Completeness) For any Lindenbaum T -deduction system D = { `D
S | S ∈

Ing T},

(1) Γ |=αD

S ϕ if, and only if, Γ `D
S ϕ.

(2) Γ |=S ϕ implies Γ `D
S ϕ.

Proof. For (1), suppose first that Γ 0D
S ϕ. Then Γ ∪{¬ϕ} is `D

S -consistent by Lemma 4.5(5).
Then the Lindenbaum property implies that Γ ∪ {¬ϕ} ⊆ x for some x ∈ XD

S . Hence by the
Truth Lemma 5.9(2), αD, rS(x) |= Γ and αD, rS(x) 6|= ϕ, so Γ 6|=αD

S ϕ.
Conversely, if Γ 6|=αD

S ϕ, then for some y ∈ S(XId ), αD, y |= Γ and αD, y 6|= ϕ. But by
Theorem 5.11, y = rS(x) for some x ∈ XD

S , and hence by the Truth Lemma, Γ ⊆ x and ϕ 6∈ x.
`D

S -closure of x (Corollary 4.14) then ensures that Γ 0D
S ϕ.

(2) follows from (1), since Γ |=S ϕ implies Γ |=αD

S ϕ by definition of |=S . �

Corollary 5.15 If D is any sound Lindenbaum T -deduction system, then in general

Γ |=S ϕ iff Γ |=αD

S ϕ iff Γ `D
S ϕ.

Consequently, ConseqT = { |=S | S ∈ Ing T} is the unique sound Lindenbaum T -deduction
system.

�
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Another way to express this is that there is no Lindenbaum deductive system that is a proper
subsystem of ConseqT . In making such comparisons between Ing T -indexed collections, we par-
tially order them by pointwise inclusion, writing

{YS | S ∈ Ing T} ≤ {ZS | S ∈ Ing T}

to mean that YS ⊆ ZS for all S. Soundness of D then just means that D ≤ ConseqT , while
completeness means ConseqT ≤ D.

An Ing T -indexed collection is the least one having a certain property if it is least in the
sense of this ordering ≤. Typically we deal with properties that are preserved by pointwise
intersection. In other words, if we are given, for each i ∈ I, a collection {Y i

S | S ∈ Ing T}
satisfying the property, then {

⋂
i∈IY

i
S | S ∈ Ing T} will also satisfy the property. This implies

that there is a ≤-least collection/system with the property, and indeed a least one that ≤-
extends any specified system. For example, there is a least T -deduction system, which we denote
Dλ

T = { `λ
S | S ∈ Ing T}.

It could be said that the characterisation of ConseqT in Corollary 5.15 is not purely proof-
theoretic, since it involves the semantic criterion of soundness, or reference to ConseqT itself. In
response, we could focus on Dλ

T , which is sound because Dλ
T ≤ ConseqT by definition of “least”.

Then we have that

Dλ
T is complete iff Dλ

T = ConseqT iff Dλ
T is Lindenbaum.

But it turns out that there are functors T for which Dλ
T is not Lindenbaum, even polynomial

ones not involving ∆. An example of such a functor over Set is given in [FG06], and this adapts
readily to one over Meas, as follows.

Let N be the constant functor given by the space ω of natural numbers with just ω and ∅
measurable, and let T be the exponential functor NR. Then Ing T looks like Id next

 T
evr N ,

with an edge evr for each real r ∈ R. For each r ∈ R and n ∈ ω, let (r 7→ n) be the formula
[next][evr]{n} of sort Id . A T -coalgebra (X, α) has a transition function α : X → ωR, with
α, x |=Id (r 7→ n) iff α(x)(r) = n. Let

ΓR = {(r 7→ n) → ¬(s 7→ n) | r, s ∈ R, r 6= s, n ∈ ω}.

Then ΓR is unsatisfiable, and hence is not included in any description set. For, if we had
α, x |=Id ΓR, then the function f : R → ω defined by f(r) = α(x)(r) would be injective in view
of the satisfaction of the members of ΓR. But of course no such injection exists.

Now in [FG06] a one-sorted deduction system for T was defined for which ΓR is consistent.
This adapts to an Ing T -sorted deduction system for which ΓR is `Id -consistent (see Section 8).
Consequently ΓR is `λ

Id -consistent.
Hence if Dλ

T were Lindenbaum, then ΓR would be included in some `λ
Id -maximal set x, and so

would be satisfiable at x in the canonical T -coalgebra for Dλ
T — which we just saw is impossible.

So this Dλ
T is not Lindenbaum, is not equal to ConseqT , and is not complete: ΓR |=Id ⊥ but

ΓR 6`λ
Id ⊥.

Finally then, to obtain a genuinely proof-theoretic characterisation of ConseqT , we consider
the preservation of the Lindenbaum property under pointwise intersection:

Lemma 5.16 If, for each i ∈ I, Di = {`i
S | S ∈ Ing T} is a Lindenbaum T -deduction system,

and D = { `D
S | S ∈ Ing T} is the pointwise intersection of {Di | i ∈ I}, then D is Lindenbaum.

Proof. If Γ is `D
S -consistent, then Γ 0D

S ⊥S , so for some i ∈ I, Γ 0i
S ⊥S . But Di is

Lindenbaum, so there is some negation-complete `i
S-consistent set Γ ′ : S extending Γ . But as

`D
S is included in `i

S , Γ ′ is also `D
S -consistent, and hence is `D

S -maximal. �

In particular, there exists a least Lindenbaum T -deduction system, the intersection of all Lin-
denbaum systems. But this is just ConseqT . To sum up:
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Theorem 5.17 For any measurable polynomial functor T ,

(1) The local semantic consequence systems Conseqα
T = { |=α

S | S ∈ Ing T} are exactly the
Lindenbaum T -deduction systems.

(2) The global consequence system ConseqT = { |=S | S ∈ Ing T} over the class of all T -coalgebras
is the least Lindenbaum T -deduction system.

Proof. (1): Each Conseqα
T is Lindenbaum by Theorem 4.17(3). Conversely, if D is Linden-

baum, then Theorem 5.14(1) states that D = ConseqαD
T .

(2): ConseqT is the intersection of all the semantic consequence systems Conseqα
T , hence by

(1) is the intersection of all Lindenbaum systems.
Alternatively, note that ConseqT is Lindenbaum by Theorem 4.17(4), while by the Com-

pleteness Theorem 5.14(2), ConseqT ≤ D whenever D is Lindenbaum. �

6 A Countable Language for [0, 1]

If T has an uncountable space X is an ingredient, then there are uncountably many formulas of
sort X, including all the singletons of X. But one might suspect that some separable uncountable
spaces can be handled by a countable syntax. We now show how this can be done for the unit
interval [0, 1].

Let Ig be the countable set of all subintervals [p, q] of [0, 1] that have rational end-points
p ≤ q, and let I be the space ([0, 1], σ(Ig)). The measurable sets of I are the Borel sets for the
usual topology on [0, 1]. If I is an ingredient of some measurable polynomial functor T , then as
formulas of sort I we take just the members [p, q] of Ig. The semantics of formulas is as usual,
so

α, x |=I [p, q] iff p 6 x 6 q.

We still have some singleton formulas, since {p} = [p, p], but not enough to formulate the
Constant Rule for `I of Definition 4.4. Instead we take the rules

(I−p ) {[q, 1] | q < p} `I [p, 1]

(I+p ) {[0, q] | p < q} `I [0, p]

for all p ∈ [0, 1]Q. In place of the group 2 axioms of Definition 4.1, we take the following for Ax I:

(I.1) [q, 1] → [p, 1] ∧ ¬[0, p] if p < q

(I.2) ¬[p, 1] → [0, q] if p < q

(I.3) [p, 1] ∧ [0, q] ↔ [p, q] if p 6 q.

In carrying out the analysis of the previous Section, the only new consideration arises in Lemma
5.7, where we must now define a measurable function rI : XI → I such that for all formulas ϕ : I
we get r−1

I ‖ϕ‖I = |ϕ|I. For this we put

rI(x) = sup{q ∈ [0, 1]Q | [q, 1] ∈ x}.

Letting p = 0 in rule (I−p ) shows `I [0, 1], hence for any x ∈ XI we have [0, 1] ∈ x and therefore
rI(x) is defined.

Lemma 6.1
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(1) rI(x) > p iff [p, 1] ∈ x.

(2) rI(x) 6 p iff [0, p] ∈ x.

Proof.

(1) From right to left holds by definition of rI. For the converse: if rI(x) > p, then for each q < p
there must be some rational r > q with [r, 1] ∈ x, hence [q, 1] ∈ x using `I [r, 1] → [q, 1] by
axiom (I.1). Therefore [p, 1] ∈ x by rule (I−p ) and the `I-closure of x.

(2) Let [0, p] ∈ x. If we had rI(x) 66 p, we could take a rational q with p < q 6 rI(x) and get
[q, 1] ∈ x by part (1). But ¬[0, p] 6∈ x, from which by axiom (I.1) and properties of maximal
sets we get the contradictory [q, 1] 6∈ x. Hence rI(x) 6 p.

Conversely, suppose rI(x) 6 p. To show [0, p] ∈ x, it is enough by rule (I+p ) to show that
[0, q] ∈ x for all p < q. But if p < q, take a rational r with p < r < q. Since rI(x) 6> r,
part (1) gives [r, 1] 6∈ x, so ¬[r, 1] ∈ x. Since `I ¬[r, 1] → [0, q] by axiom (I.2), this yields
[0, q] ∈ x as desired.

�

Corollary 6.2 rI(x) ∈ [p, q] iff [p, q] ∈ x.

Proof. Using the Lemma, rI(x) ∈ [p, q] iff [p, 1], [0, q] ∈ x, which is equivalent to [p, 1]∧[0, q] ∈ x,
which in turn is equivalent to [p, q] ∈ x by axiom (I.3). �

Since ‖[p, q]‖I = [p, q], this Corollary ensures that r−1
I ‖A‖I = |A|I for all A ∈ Ig, which is enough

to guarantee the measurability of rI and complete Lemma 5.7 for this case.

7 Kripke Polynomial Functors

A polynomial functor T : Set → Set is any functor that can be constructed in finitely many
steps from constant functors and/or the identity functor by forming products, coproducts and
exponentials. A Kripke polynomial functor (KPF) is one whose formation permits also com-
position PT = P ◦ T with the covariant powerset functor P. The papers [Röß00, Jac01] give
deduction systems for the logic of coalgebras for KPF’s whose constant ingredients X have a
finite set X as constant value. The methodology of this paper adapts to KPF’s with infinite
constant sets, as follows.

The syntax for products, coproducts and exponentials remains the same. In the definition
of Ing T , ∆ is replaced by P. Instead of the probabilistic constructors >p we have the single
constructor P, with edges in Ing T of the form PS P

 S, whereby for each formula ϕ : S there
is a formula [P]ϕ : PS. This has semantics

[[ [P]ϕ]]αPS = P([[ϕ]]αS),

or equivalently
α, x |=PS [P]ϕ iff y ∈ x implies α, y |=S ϕ.

In the definition of axioms and T -deduction systems, the group 7 axioms for the probabilistic
modalities are deleted along with the the Archimedean and Countable Additivity Rules, and
the Definite Box Rule just becomes the Box Rule stated for every edge κ

 . Then as in Lemma
4.6(4) we can derive

`PS [P](ϕ→ ψ) → ([P]ϕ→ [P]ψ). (7.1)
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In fact no axioms of sort PS are needed.
In working with canonical sets XD

S for a deductive system D for a Lindenbaum functor T ,
we use the functions ρS as given in Lemma 5.6, except that there is no longer a reference to
measurability, and in place of ρ∆S we require a function

XPS
ρPS−→ P(XS)

satisfying
ρ−1
PS(P|ϕ|S) = |[P]ϕ|PS . (7.2)

For this we define, as in classical modal logic,

ρPS(x) = {y ∈ XS | [P]−x ⊆ y},

where [P]−x = {ϕ : S | [P]ϕ ∈ x} as usual. Equivalently,

ρPS(x) =
⋂
{|ϕ|S | [P]ϕ ∈ x},

from which it is immediate that x ∈ |[P]ϕ|PS implies ρPS(x) ⊆ |ϕ|S , as required for one direction
of (7.2). Conversely, if ρPS(x) ⊆ |ϕ|S , then [P]−x `S ϕ, or else [P]−x ∪ {¬ϕ} would be `S-
consistent, hence extendable by the Lindenbaum property to a y ∈ ρPS(x) − |ϕ|S . But from
[P]−x `S ϕ we obtain {[P]ψ | [P]ψ ∈ x} `PS [P]ϕ by the Box Rule, hence x `PS [P]ϕ by
Monotonicity (Lemma 4.5), then [P]ϕ ∈ x by `S-closure of x (Corollary 4.14). This gives
x ∈ |[P]ϕ|PS to complete the proof of (7.2).

Lemma 5.7 now becomes the result that there are functions rS : XS → S(XId ) with
r−1
S ‖ϕ‖S = |ϕ|S . The new case of PS ∈ Ing T requires us to define

‖[P]ϕ‖PS = P‖ϕ‖S ⊆ PS(XId ),

and put rPS = PrS ◦ ρPS :
XPS

ρPS−→ P(XS) PrS−→ PS(XId ),

where PrS(Y ) is the rS-image rS [Y ] of any Y ⊆ XS .
Now assuming that r−1

S ‖ϕ‖S = |ϕ|S , then for each Y ⊆ XS ,

rS [Y ] ⊆ ‖ϕ‖S iff Y ⊆ r−1
S ‖ϕ‖S = |ϕ|S ,

so (PrS)−1(P‖ϕ‖S) = {Y ⊆ XS | rS [Y ] ⊆ ‖ϕ‖S} = P|ϕ|S , hence

r−1
PS‖[P]ϕ‖PS = ρ−1

PS

(
(PrS)−1(P‖ϕ‖S)

)
= ρ−1

PS(P|ϕ|S),

from which by (7.2) we get r−1
PS‖[P]ϕ‖PS = |[P]ϕ|PS as desired.

The rest of the theory then goes through unchanged, to construct a canonical T -coalgebra
(XD, αD) for any deduction system D for a Lindenbaum KPF T . This satisfies the Truth
Lemma 5.9, and leads to a proof that D is complete, and hence that ConseqT is the only sound
Lindenbaum T -deduction system.

8 A Specific Deduction System

For each Kripke polynomial functor T a particular deduction system D+
T = { `+

S | S ∈ Ing T}
can be defined that is sound, and is also Lindenbaum when the set of all formulas is countable.
In the latter case, D+

T must be identical to ConseqT . For polynomial functors, this theory was
worked out in [FG06] using a one-sorted language (essentially the Id -formulas). Here we describe
a many-sorted version for KPF’s.
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Working with an infinitary Hilbert-style proof system would require the use of transfinite
proof-sequences or infinitely-branching proof trees. We prefer instead a more basic set-theoretic
approach that comes from the general theory of inductive definitions [Acz77].

The essential idea is to introduce a new notion of anRS-theory, a set of formulas closed under
axioms and rules of inference to be specified below. Then the set {ϕ | Γ `+

S ϕ} of formulas that
are `+

S -deducible from Γ is defined to be the RS-theory generated by Γ . The theories are the
fixed points of the monotonic operator that takes each set of formulas to its closure under the
axioms and inference rules. Then {ϕ | Γ `+

S ϕ} is inductively characterised as the least fixed
point/theory extending Γ . For more discussion of this approach, see [FG06, Section 4].

The first step we take is to modify the definition of AxS , to put

[κ](ϕ→ ψ) → ([κ]ϕ→ [κ]ψ) ∈ AxS (8.1)

for each edge S κ
 S′ in Ing T and all ϕ,ψ : S′. Previously we were able to derive this principle

from the Box Rule as in Lemma 4.6(4) and (7.1). But now we need it as an axiom in order to
derive the Box Rule for D+

T (see the proof of Lemma 8.6).

Definition 8.1

(1) An inference rule, or just rule, is a pair 〈Σ,ϕ〉, where Σ is a set of formulas, which may be
thought of as a set of premisses, and ϕ is a formula, thought of as a conclusion. If Σ = {ψ},
we may write the rule as 〈ψ,ϕ〉.

(2) Γ is closed under the rule 〈Σ,ϕ〉 if Σ ⊆ Γ implies ϕ ∈ Γ , i.e. if Σ * Γ or ϕ ∈ Γ .

(3) If R is a set of rules, then Γ is R-closed if it is closed under every rule belonging to R.

(4) {RS | S ∈ Ing T } is the smallest system of relations RS ⊆ P(FormS) × FormS that has the
following closure properties:

(a) 〈{¬{c} | c ∈ X},⊥X〉 ∈ RX whenever X ∈ Ing T ;

(b) 〈Γ, ψ〉 ∈ RS′ implies 〈[κ]Γ, [κ]ψ〉 ∈ RS for each edge S κ
 S′ in Ing T ;

(c) 〈Γ, ψ〉 ∈ RS implies 〈ϕ→ Γ, ϕ→ ψ〉 ∈ RS for every S ∈ Ing T and ϕ : S.

(5) {Ax+
S | S ∈ Ing T } is the smallest system of sets Ax+

S ⊆ FormS such that

• AxS ⊆ Ax+
S ;

• For each edge S κ
 S′, ϕ ∈ Ax+

S′ implies [κ]ϕ ∈ Ax+
S .

(6) Γ : S is an RS-theory if it is RS-closed, closed under Detachment and has Ax+
S ⊆ Γ (hence

is an S-theory).

Theorem 8.2

(1) If ϕ ∈ Ax+
S , then ϕ is valid in all T -coalgebras.

(2) 〈Σ,ϕ〉 ∈ RS implies Σ |=S ϕ.

Proof.

(1) For any T -coalgebra α, let ValαS = {ϕ | α |=S ϕ} be the set of all S-formulas valid in α. Then
AxS ⊆ ValαS by Theorem 4.2. Now for each edge S κ

 S′, α |=S′ ϕ implies α |=S [κ]ϕ, as is
readily checked, so the system {ValαS | S ∈ Ing T} satisfies the closure conditions of Definition
8.1(5). Since {Ax+

S | S ∈ Ing T} is defined to be the least such system, Ax+
S ⊆ ValαS for all

S as required.
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(2) The system { |=S | S ∈ Ing T} is a T -deduction system (cf. Theorem 4.8), so it satisfies all
the closure properties in Definition 8.1(4). Since {RS | S ∈ Ing T } is the least system with
these properties, the result follows.

�

Corollary 8.3 Every S-description set is an RS-theory.

Proof. If Γ = desα
S(x) for some state x of a T -coalgebra α, and Σ ⊆ Γ with 〈Σ,ϕ〉 ∈ RS ,

then α, x |=S Σ and Σ |=S ϕ, so α, x |=S ϕ and hence ϕ ∈ Γ . Thus Γ is RS-closed. Γ includes
Ax+

S by Theorem 8.2(1), and is closed under Detachment by the semantics of implication. �

Definition 8.4 (The System D+
T )

Define Γ `+
S ϕ to mean that ϕ ∈

⋂
{Σ | Γ ⊆ Σ and Σ is an RS-theory}, i.e. ϕ belongs to

every RS-theory extending Γ . In particular, `+
S ϕ means that ϕ belongs to every RS-theory.

It is immediate from this definition and the RS-closure of RS-theories that

〈Σ,ϕ〉 ∈ RS implies Σ `+
S ϕ. (8.2)

Note that the intersection of RS-theories is an RS-theory. Hence {ϕ | Γ `+
S ϕ} is the smallest

RS-theory including Γ .

Theorem 8.5 (Soundness) If Γ `+
S ϕ then Γ |=S ϕ.

Proof. Suppose Γ `+
S ϕ and α, x |=S Γ . We need to show α, x |=S ϕ. Since desα

S(x) is an
RS-theory by Corollary 8.3, and Γ ⊆ desα

S(x), from Γ `+
S ϕ we get ϕ ∈ desα

S(x) as required.
�

We now wish to verify that D+
T = { `+

S | S ∈ Ing T} is a T -deduction system. To begin
with, the verification that the relations `+

S satisfy the Assumption, Modus Ponens, Cut and
Deduction Rules of Definition 4.4 proceeds along the lines of [Gol93, Theorem 9.3.3]. In fact
the Assumption Rule holds in the stronger form

ϕ ∈ Γ ∪Ax+
S implies Γ `S ϕ,

because of the inclusion of Ax+
S in every RS-theory.

The implication rules 〈ϕ → Γ, ϕ → ψ〉 were built into the definition of RS , and hence of
`+

S , because they are needed to establish that `+
S satisfies the Deduction Rule. Also, all of the

results of Lemma 4.5 hold with `+
S in place of `S . Thus we can already do a good deal of

Boolean reasoning with D+
T .

The Constant Rule {¬{c} | c ∈ X} `+
X ⊥X holds by (8.2) and part (4a) of Definition 8.1.

Lemma 8.6 For any edge S κ
 S′ in Ing T , if Σ is an RS-theory, then [κ]−Σ is an RS′-theory.

Proof. First, [κ]−Σ is closed under Detachment, for if ϕ,ϕ → ψ ∈ [κ]−Σ, then [κ]ϕ, [κ](ϕ →
ψ) ∈ Σ. But [κ](ϕ→ ψ) → ([κ]ϕ→ [κ]ψ) is in Σ by (8.1). But Σ is closed under Detachment,
so ψ ∈ [κ]−Σ.

Next we show Ax+
S′ ⊆ [κ]−Σ. If ϕ ∈ Ax+

S′ , then [κ]ϕ ∈ Ax+
S by Definition 8.1(5), so [κ]ϕ ∈ Σ

as Σ is an RS-theory. Hence ϕ ∈ [κ]−Σ.
Finally we have to show that [κ]−Σ is RS′-closed. Suppose 〈Γ, ψ〉 ∈ RS′ and Γ ⊆ [κ]−Σ.

Then [κ]Γ ⊆ Σ. But 〈[κ]Γ, [κ]ψ〉 ∈ RS by (4b) of Definition 8.1. Hence [κ]ψ ∈ Σ and thus
ψ ∈ [κ]−Σ. �
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Corollary 8.7 The Box Rule is satisfied by D+
T .

Proof. Let S κ
 S′ be an edge, and Γ `+

S′ ψ. To show [κ]Γ `+
S [κ]ψ, let Σ be any RS-theory

with [κ]Γ ⊆ Σ. Then Γ ⊆ [κ]−Σ, and [κ]−Σ is an RS′-theory by the Lemma, so ψ ∈ [κ]−Σ as
Γ `+

S′ ψ, implying [κ]ψ ∈ Σ. �

This completes the proof that D+
T is a T -deduction system. To consider the Lindenbaum

property we need

Lemma 8.8

(1) Every RS-theory is `+
S -closed.

(2) If a set Γ : S of formulas is maximally finitely `+
S -consistent and RS-closed, then Γ is

`+
S -maximal.

Proof.

(1) If Γ is an RS-theory and Γ `+
S ϕ, then as Γ is an RS-theory extending Γ , the definition of

`+
S immediately gives ϕ ∈ Γ .

(2) If Γ is maximally finitely `+
S -consistent, then by (4) and (3) of Lemma 4.13 it is negation

complete and closed under Detachment. Moreover, if ϕ ∈ Ax+
S then `+

S ϕ, so by Lemma
4.5(5) {¬ϕ} is not `+

S -consistent, hence {¬ϕ} * Γ , and therefore ϕ ∈ Γ . Thus if Γ is also
RS–closed, then it is an RS-theory, hence is `+

S -closed by part (1). So if Γ `+
S ⊥S then

⊥S ∈ Γ , contrary to the finite `+
S -consistency of Γ . Thus Γ is `+

S -consistent and negation
complete as required.

�

Theorem 8.9 For any Kripke polynomial functor T , if every rule-set RS is countable, then D+
T

is Lindenbaum and equal to ConseqT .

Proof. Let 〈Σ0, ϕ0〉 , 〈Σ1, ϕ1〉 , . . . , 〈Σn, ϕn〉 , . . . be an enumeration of RS . We will use the
fact that Σn `+

S ϕn for all n, by (8.2).
Suppose Γ : S is `+

S -consistent. Let Γ0 = Γ . Now assume inductively that Γn : S is defined
and `+

S -consistent. If Γn `+
S ϕn, then let

Γn+1 = Γn ∪ {ϕn},

which is `+
S -consistent because Γn is, by Lemma 4.5(4). Alternatively, Γn 6`+

S ϕn. But Σn `+
S ϕn,

so in that case by the Cut Rule there must exist a ψ ∈ Σn such that Γn 6`+
S ψ. Let

Γn+1 = Γn ∪ {¬ψ},

which is `+
S -consistent by Lemma 4.5(5).

Next, let Γω =
⋃

n>0 Γn. By construction, for all n, if ϕn 6∈ Γω then ¬ψ ∈ Γω for some
ψ ∈ Σn.

Γω is finitely `+
S -consistent — any finite subset of Γω is a subset of some Γn, which is `+

S -
consistent. Since the union of any chain of finitely `+

S -consistent sets is finitely `+
S -consistent,

Zorn’s Lemma then applies to the ⊆-ordered set

{Γ ′ : S | Γω ⊆ Γ ′ and Γ ′ is finitely `+
S -consistent}
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to provide an extension Γ ′ of Γω that is maximally finitely `+
S -consistent. (Alternatively, by a

standard argument, we could enumerate FormS and use Lemma 4.13(2) to proceed inductively
along this (possibly transfinite) enumeration to build Γ ′ as a negation complete finitely `+

S -
consistent extension of Γω.)

Now for each n, if ϕn 6∈ Γ ′ then ϕn 6∈ Γω so by construction there exists ψ ∈ Σn with
¬ψ ∈ Γω ⊆ Γ ′, hence ψ 6∈ Γ ′ or else {¬ψ,ψ} would contradict Γ ′ being finitely `+

S -consistent.
This shows that Γ ′ is closed under the rule 〈Σn, ϕn〉 for all n, so is RS-closed. By Lemma 8.8(2)
it follows that the extension Γ ′ of Γ is `+

S -maximal.
This proves that for any S ∈ Ing T , every `+

S -consistent set of S-formulas is included in some
`+

S -maximal set, i.e. D+
T is Lindenbaum. Since it is sound, its equality with the unique sound

Lindenbaum system ConseqT follows. �

The proof just given makes it plain as to why the countability of RS is needed. As soon as Γω

is formed, we lose the `+
S -consistency of the Γn’s, and retain only finite `+

S -consistency, so the
construction could not be continued into the transfinite.

Corollary 8.10 If FormS is countable for all S ∈ Ing T , then D+
T is Lindenbaum and equal to

ConseqT .

Proof. It suffices to show that every rule-set RS is countable.
The reader can confirm that an inference rule belongs to RS iff it can be obtained from

some constant rule of the type of Lemma 8.1(4a) by finitely many operations of the (4b) type
〈Γ, ψ〉 7→ 〈[κ]Γ, [κ]ψ〉 and/or the (4c) type 〈Γ, ψ〉 7→ 〈ϕ→ Γ, ϕ→ ψ〉. Note that although there
are finitely many ingredients of T , these constructions could be repeatable ad infinitum if there
are cycles in the multigraph of Ing T .

But if there are only countably many formulas altogether, then for any exponential ingredient
SE there are only countably many formulas of type [eve]ϕ, hence E must be countable. Therefore
there are countably many constructor symbols pr1, pr2, in1, in2, eve, next, P; so countably many
box modalities [κ]. Also there are countably many formulas ϕ that can be used to form a
(4c) type rule 〈ϕ → Γ, ϕ → ψ〉. Thus there are countably many ways to form new rules, and
finitely many constant rules to start from (one for each constant ingredient), so each RS must
be countable. �

9 Conclusion and Further Questions

We have seen that a general theory of deduction systems can be developed for the logic of
measurable and Kripke polynomial functors, and that this can be used to give a proof-theoretic
construction of canonical coalgebras, leading to completeness theorems. The result is a char-
acterisation of the logic determined by any functor as the least one satisfying the Lindenbaum
property, and the only Lindenbaum one that is sound. In the case of KPF’s we also saw that a
particular system D+

T can be defined that can be proven to be Lindenbaum when the language
is countable.

Arising from this is the question of whether a version of D+
T can be defined for measurable

polynomial functors. This would require suitable closure conditions on R∆S , but even so there
is an obstacle to proving the Countable Additivity Rule for `+

∆S by an argument similar to that
for the Box Rule in Lemma 8.6 and Corollary 8.7. Closure of a set Σ : ∆S under Detachment
does not imply closure of [>p]−Σ under Detachment, since the schema (8.1) is not valid when
κ is >p with 0 < p < 1, and so will not be included in Ax∆S . This matter requires further
investigation.

A finitary KPF is a functor on Set that is built from the polynomial operations and the
finitary powerset functor Pω, where PωX = {Y | Y ⊆ω X}. In [MV06] every finitary KPF
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is shown to have a final coalgebra whose “states” are the description sets of sort Id . A nat-
ural question here is whether there is a proof-theoretic version of this construction: can the
description sets of coalgebras for a finitary KPF be characterised as the maximally consistent
sets for some deduction system? Reflection on Pω itself indicates that this is problematic. A
Pω-coalgebra can be viewed as a Kripke frame (X,R) that is image-finite, meaning that the
point-image Rx = {y ∈ X | xRy} of any point x ∈ X is finite. The logic of Pω-coalgebras
can be handled by the variable-free one-sorted modal language of a single modality � (here
IngPω looks like Id next

 Pω
P
 Id , and � corresponds to [next][P]). The logic determined by

the Pω-coalgebras (i.e. the set of formulas valid in these coalgebras) is just the minimal normal
�-logic K in this language, since K is determined by the class of frames that are finite, hence
image-finite. But the canonical frame FK = (XK, RK) for K is not the final Pω-coalgebra, since
the description sets of image-finite frames form a proper subset Xω of XK that is RK-closed,
i.e. x ∈ Xω implies Rx

K ⊆ Xω, and is itself image-finite. This can also be seen from an earlier
characterisation of the final Pω-algebra by Rutten [Rut95, p. 245]: it is given by the subset of
XK that is the union of the images of all bounded morphisms from image-finite frames to FK .

Now for each n < ω, let Altn be the set of all formulas of the form

�ϕ0 ∨�(ϕ0 → ϕ1) ∨ · · · ∨�(ϕ0 ∧ · · · ∧ ϕn−1 → ϕn)

[Seg71, page 52]. Let Kn be the smallest normal logic including Altn, and XKn the set of all
Kn-maximal sets of formulas. In any frame, Altn will be satisfied at any x for which Rx is of
size at most n, and the canonical Kn frame has the size of all its point-images bounded by n.
The XKn’s form an increasing sequence

XK0 ⊆ XK1 ⊆ · · · ⊆ XKn ⊆ · · · · · · ⊆ Xω.

But
⋃

nXKn 6= Xω, as can be seen by considering descriptions sets of points in a suitable frame
whose point-images are finite but unbounded in size.

Putting Xn = {x ∈ XK | Altn ⊆ x}, gives another increasing sequence X0 ⊆ X1 ⊆ · · · which
covers Xω, i.e. Xω ⊆

⋃
nXn. For each n we have Xω * Xn, as can be seen from image-finite

frames with point-images larger than n. Moreover X1 * Xω, as can be seen from a suitable
frame with an x having Rx = {y} and Ry infinite. Hence Xω 6=

⋃
nXn.

These observations cast some doubt on whether there is a natural set of syntactic closure
conditions that characterises the image-finiteness of the members of Xω.

A similar issue arises with the discrete probability measure functor D : Set → Set, where
DX is the set of all functions µ : X → [0, 1] whose support {x ∈ X | µ(x) > 0} is finite,
and

∑
x∈X µ(x) = 1. [MV06] shows that there is a final coalgebra for every functor built from

the polynomial operations, Pω and D. It is not clear what syntactic closure conditions might
capture the finiteness of support of a discrete probability measure.

There has been recent interest [ED06] in modal logic for systems associated with the sub-
category of Meas comprising the analytic spaces, those that are continuous images of Polish
spaces. The functor ∆ is replaced by the subprobability functor S, where SX is the space of
measures on X having µ(X) 6 1. It would be of interest to investigate deduction systems and
canonical models in this setting.

Finally, since σ-algebras are closed under countable unions and intersections, it would be
possible to work with modal languages that are closed under countable disjunctions and con-
junctions. Completeness theorems for such infinitary languages typically work with countable
fragments of the set of formulas. This may provide a setting for a coalgebraic application of the
Loeb measure construction from nonstandard analysis, as in [Hoo78].
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