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Abstract

We prove that algebras of binary relations whose similarity type includes intersection,
composition, converse negation and the identity constant form a non-finitely axiomatizable
quasivariety and that the equational theory is not finitely based. We apply this result to the
problem of the completeness of relevant logic with respect to binary relations.

1 Introduction

Algebras of relations have been used to interpret logics, for instance, cylindric algebras provide
semantics for first-order logic, and algebras of binary relations have been proposed as semantics
for substructural logics. One of the main issues in the investigations of algebras is finite axiom-
atizability, i.e., to find out which versions have a finitely based (quasi)equational theory. One of
the motivations for such investigations is the correspondance between finite axiomatizability of
algebras and completeness of logics. As an example we mention the relational semantics of the
Lambek calculus, cf. [AM94], where a completeness result has been obtained by applying a finite
axiomatization of algebras of binary relations.

In this paper, we look at a class of algebras of binary relations whose similarity type has been
motivated by relevance logic. We prove non-finite axiomatizability results in Theorems 4.1 and
4.3, and apply these results to the logic R of relevant implication in Corollaries 4.2 and 4.4.

The paper is organized as follows. In the next section, we recall the basics of syntax and
semantics (both algebraic and relational) of relevance logic. After introducing relation algebras in
Section 3, we state and prove the main results of the paper in Section 4. Section 5 is devoted to
the proofs of the key lemmas of the algebraic results. We conclude with some open problems in
Section 6.

2 Relevance logic and algebraic semantics

We recall that the logic R of relevant implication is a finite Hilbert-style derivation system in the
language L(R) = {→,∧,∼} see, e.g., [RM73, AB75]. In R the connectives ∨ and • are defined as

ϕ ∨ ψ =∼ (∼ ϕ∧ ∼ ψ) and ϕ • ψ =∼ (ϕ →∼ ψ)
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In [AB75], R is defined by the following axioms

ϕ → ϕ

(ϕ → ψ) → ((ψ → η) → (ϕ → η))
ϕ → ((ϕ → ψ) → ψ)
(ϕ → (ϕ → ψ)) → (ϕ → ψ)
(ϕ ∧ ψ) → ϕ

(ϕ ∧ ψ) → ψ

((ϕ → ψ) ∧ (ϕ → η)) → (ϕ → (ψ ∧ η))
ϕ → (ϕ ∨ ψ)
ψ → (ϕ ∨ ψ)
((ϕ → η) ∧ (ψ → η)) → ((ϕ ∨ ψ) → η))
(ϕ ∧ (ψ ∨ η)) → ((ϕ ∧ ψ) ∨ η)
(ϕ →∼ ψ) → (ψ →∼ ϕ)
∼∼ ϕ → ϕ

and inference rules
ϕ,ψ ` ϕ ∧ ψ and ϕ,ϕ → ψ ` ψ

We will write R ` ϕ if ϕ is derivable from the axioms, i.e., if ϕ is a theorem of R.
The derivation systems RM has the additional mingle axiom

ϕ → (ϕ → ϕ)

The logic Rt is defined by expanding the language of R by a logical constant t: L(Rt) = L(R)∪
{t}, and adding the following two axioms to those of R:

t and t → (ϕ → ϕ)

For more details on relevance logic we refer the reader to the monographs [AB75, ABD92].

2.1 Relevance logic and De Morgan algebras

A sound and complete algebraic semantics for R is provided by the class of De Morgan monoids
introduced in [Du66], see also [Du01] and [AB75, §28].

Definition 2.1 Let A = (A,∧, •,∼, t) be an algebra of type (2, 2, 1, 0) and define

x ∨ y =∼ (∼ x∧ ∼ y) x → y =∼ (∼ x • y) x ≤ y iff x = x ∧ y

Then A is a De Morgan monoid if

1. (A,∧,∨) is a distributive lattice

2. (A, •, t) is a commutative monoid, i.e., • is associative and commutative, and t is a neutral
element for •:

x • t = x

3. • is additive:
x • (y ∨ z) = (x • y) ∨ (x • z)

4. → is the (right) residual of •:
x • y ≤ z iff y ≤ x → z
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5. ∼ is an involution:
∼∼ x = x

6. A is dense, or square-increasing:
x ≤ x • x

We denote the class of all De Morgan monoids by DMM.

In the presence of the other axioms, the requirement that → is the (right) residual of • can be
equivalently expressed by the equation

a• ∼ (a• ∼ b) ≤ b

whence DMM is an equationally definable class, i.e., a variety.

The semantics DMM of R De Morgan monoids provide a sound and complete semantics for
R, cf. [RM73, Section 12] and [AB75, §28.2]. Let A ∈ DMM. A valuation is a map v from the set
of propositional atoms into A that is extended to compound formulas by interpreting the logical
connectives by the corresponding algebraic operations. The truth of a relevance logic formula ϕ
in A ∈ DMM is defined as

A |= ϕ iff t ≤ v(ϕ) for every valuation v into A.

The formula ϕ is valid in DMM, in symbols DMM |= ϕ, iff A |= ϕ for every A ∈ DMM. Then the
completeness result is

R ` ϕ iff DMM |= ϕ

In [AB75], this result is shown by establishing that

1. both R and Rt are sound with repsect to DMM, [AB75, §28.2.3 Theorem 2],

2. Rt is a conservative extension of R, [AB75, §28.2.2 Theorem 2],

3. the Lindenbaum–Tarski algebra of Rt is in DMM, [AB75, §28.2.3 Theorem 3].

The reader may be more familiar with another semantics, viz. the Routley–Meyer semantics
[RM73, MR74], of R. Let us recall this semantics from [ABD92, §48] and describe the connection
to De Morgan monoids. This will shed some more light on the above completeness result as well.

Definition 2.2 A relevant model structure is M = (K, R, 0, ∗) where 0 ∈ K, R ⊆ K ×K ×K
and ∗ : K → K such that, for all a, b, c, d ∈ K,

Identity R0aa

Commutativity Rabc implies Rbac

Associativity ∃x(Rabx, Rxcd) implies ∃y(Rbcy, Rayd)
Idempotence Raaa

Inversion Rabc implies Rc∗ab∗

Involution a∗∗ = a

Monotonicity R0ba, Racd imply Rbcd

A valuation v is a map from atomic propositions to K that satisfies

a ∈ v(p), R0ab imply b ∈ v(p)
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for all atomic formulas p. Formulas are interpreted as follows:

a |= p iff a ∈ v(p)
a |= ϕ ∧ ψ iff a |= ϕ and a |= ψ

a |=∼ ϕ iff a∗ 6|= ϕ

a |= ϕ → ψ iff b |= ϕ implies c |= ψ for all b, c such that Rabc

Define
M |= ϕ iff 0 |= ϕ for all valuations

The completeness of R with respect to the Routley–Meyer semantics is, cf. [RM73, Theorem 3]
and [ABD92, §48.3],

R ` ϕ iff M |= ϕ for every relevant model structure M.

Routley and Meyer [RM73, Section 12] define the algebra of propositions, AM = (A,∧, •,∼, t),
determined by a relevant model structure M = (K, R, 0, ∗) as follows. We say that J ⊆ K is
upward closed if

x ∈ J, R0xy imply y ∈ J

Then A is the set of all upward closed susbsets of K, ∧ is intersection, t = {x ∈ K : R00x} and,
for all X,Y ∈ A,

X • Y = {z ∈ K : (∃x ∈ X)(∃y ∈ Y )Rxyz}
∼ X = {x∗ ∈ K : x /∈ X}

It is routine to check that AM is a De Morgan monoid and that M |= ϕ iff AM |= ϕ for every ϕ.
Furthermore, every De Morgan monoid can be embedded into an algebra of propositions, [RM73,
Corollary 9.2]. Thus, De Morgan monoids “algebraize” R.

2.2 Representable De Morgan algebras

In the previous section, we have seen that De Morgan monoids are “complex algebras” of relational
structures. Several restrictions on relevant model structures exist in the relevance logic literature,
e.g., [RM73] defines normal relevant model structures, where 0 = 0∗, and [MR74] defines the class
CR∗ model structures, where Identity in Definition 2.2 is replaced by

R0ab iff a = b

These correspond to subclasses of DMM, we refer the reader to [MR74] for details.
Next we define another subclass of DMM by requiring that the elements are binary relations

and the operations are interpreted as intersection, relation composition, converse negation and the
identity relation, respectively. Here comes the formal definition.

Definition 2.3 A set De Morgan monoid1 is an algebra A = (A,∧, •,∼, t) such that A ⊆ P(W )
for some set W of the form U × U , ∧ is intersection, • is interpreted as composition of relations:

x • y = {(u, v) ∈ W : ∃w((u,w) ∈ x and (w, v) ∈ y)}

∼ coincides with converse negation:

∼ x = {(u, v) ∈ W : (v, u) /∈ x}

t is the identity:
t = {(u, v) ∈ W : u = v}

1Note that this concept is different from DeMorgan set monoid defined in [MR74].
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and, furthermore, A is commutative:
x • y = y • x

and dense:
x ⊆ x • x

for every x, y ∈ A. We call the set U the base of A.
The class RDMM of representable De Morgan monoids is the SP-closure of the class of set De

Morgan monoids, i.e., we close the class of set De Morgan monoids under products and (isomorphic
copies of) subalgebras. We say that an A ∈ DMM is representable if it is isomorphic to a B ∈
RDMM.

It is easy to check that representable De Morgan monoids are in fact De Morgan monoids:

RDMM ⊆ DMM

In passing we note that RDMM is a quasivariety (set De Morgan algebras are pseudo-axiomatizable
using first-order logic, whence are closed under ultraproducts). By definition, every representable
De Morgan monoid A is isomorphic to a subalgebra of products of set De Morgan monoids Bi

(for i ∈ I). Let us denote the base of Bi by Ui and let W be the disjoint union of Ui × Ui (for
i ∈ I). Then there is an isomorphism from A into an algebra whose elements are subsets of W
and whose operations are intersection, composition, converse negation, and the identity relation
(with respect to W ):

Id = {(u, v) ∈ W : u = v}
Hence we will say that A is represented on W .

The semantics RDMM We can define the interpretation of relevance logic formulas in repre-
sentable De Morgan algebras similarly to the general case: for A ∈ RDMM,

A |= ϕ iff Id ⊆ v(ϕ) for every valuation v.

As before, we define validity of ϕ in RDMM by requiring that A |= ϕ, for every A ∈ RDMM. This
is a sound semantics for R:

R ` ϕ implies RDMM |= ϕ

since RDMM ⊆ DMM. The question arises whether this semantics is complete as well. Indeed,
Maddux [Ma07] poses the following problem.

Problem 2.4 Does RDMM |= ϕ imply R ` ϕ?

Below, Corollary 4.2, we will answer this question negatively. We will also show a stronger result
in Corollary 4.4:

the logic of {ϕ : RDMM |= ϕ} cannot be axiomatized by finitely many axioms and standard
derivation rules.

(We call a derivation rule standard if the consequent is true in every algebra in which the antecedent
is true.)

The proof of the incompleteness of R with respect to RDMM is algebraic: we show that the
free DMM is not representable and that this fact is witnessed by a formula ϕ in the language
L(R) such that DMM 6|= ϕ but RDMM |= ϕ, see Theorem 4.1. We note that the representability
problem for De Morgan algebras is implicit in the relevance logic literature. Dunn [Du82] proves
a representation theorem for De Morgan lattices; these are distributive lattices with an involution
∼. Even more revealing is an e-mail by Dunn written to the linear logic community [Du92] (below
−(R−1) is the relation algebraic definition of converse negation, and ‘relative product’ refers to •):
“In my [Du82], I fulfilled “half of a dream of a lifetime” by showing that every de Morgan lattice
(=quasi-Boolean algebra) can be represented as a collection of relations, where meet and join are
intersection and union, and de Morgan complement is defined so ∼ R = −(R−1). The other half
would have been to represent relative product as well, and of course to do so in such a way as to
represent de Morgan monoids.” In contrast, we will show in Theorem 4.3 that
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the first-order and equational theories of RDMM are not finitely based.

We will establish these results using relation algebraic techniques.

3 Relation algebras

Let us recall the basic definitions about relation algebras.

Definition 3.1 1. A relation algebra, an RA, is an algebra

A = (A, 0, 1, · ,+,−, ;, ^, 1′)

such that (A, 0, 1, · , +,−) is a Boolean algebra, and the following equations hold, for every
x, y, z ∈ A:

(R1) x ; (y ; z) = (x ; y) ; z

(R2) (x + y) ; z = (x ; z) + (y ; z)
(R3) x ; 1′ = x

(R4) x^^ = x

(R5) (x + y)^ = x^ + y^

(R6) (x ; y)^ = y^ ; x^

(R7) x^ ; (−(x ; y)) ≤ −y

We denote the class of all relation algebras by RA. We call a relation algebra A integral if 1′

is an atom (minimal non-zero element) in A, and symmetric if every element is self converse
(x = x^).

2. By a relation set algebra, an Rs, we mean an algebra A = (A, 0, 1, · ,+,−, ;, ^, 1′) such that
A ⊆ P(W ) (the power set of W ) for some set W of the form U × U , 0 = ∅, 1 = W , · is
intersection, + is union, − is complement w.r.t. W , ; is relation composition, ^ is relation
converse, and 1′ is the identity relation on U . More formally, for all elements x, y ∈ A,

x ; y = {(u, v) ∈ W : (u,w) ∈ x and (w, v) ∈ y for some w}
x^ = {(u, v) ∈ W : (v, u) ∈ x}
1′ = {(u, v) ∈ W : u = v}

We denote the class of relation set algebras by Rs. Given an A ∈ Rs, W and U as above, we
call W the unit of A and U the base of A.

The class RRA of representable relation algebras is defined as

RRA = SPRs

— i.e., we close the class Rs under products and isomorphic copies of subalgebras.

We will need the concept of (generalized sub)reducts of (classes of) algebras.

Definition 3.2 Let A = (A, o)o∈σ be an algebra of the similarity type σ. Let τ be a set of
operations whose elements are definable by fixed terms in σ. By the τ -reduct of A we mean the
algebra RdτA = (A, o)o∈τ . We call RdτA a generalized reduct of A, since τ may not be a subset
of σ.

If K is a class of algebras of the same similarity type, RdτK denotes the class of τ -reducts of
elements of K. The τ -subreduct of K is defined as SRdτK: i.e., we close RdτK under (isomorphic
copies of) subalgebras. Again, we call SRdτK a generalized subreduct of K.

6



It is well known that RRA is a variety, and hence a quasivariety. It follows that any generalized
subreduct of RRA is closed under S, P and Up, hence a quasivariety:

SRdτRRA = SRdτPUpRRA = SPUpRdτRRA

Similarly to representable De Morgan algebras, every RRA can be represented on some equivalence
relation.

We define ∼ x as −x^ in RA. For a class K of algebras (where ; and a partial order ≤ are
definable), let Kcd denote that subclass of K where commutativity (x ; y = y ; x) and density
(x ≤ x ; x) are valid. Since the axioms of De Morgan monoids are valid in RAcd, the {· , ;,∼, 1′}-
reduct of an A ∈ RAcd is in DMM. Furthermore, it is easy to check that

RDMM = SRd{· ,;,∼,1′}RRAcd

4 Main results

The results below concern the variety and the quasivariety generated by generalized subreducts
of RRA in which intersection, composition, converse negation and identity are term definable.
In particular, we will consider axiomatizability of the first-order and equational theories. As
corollaries we obtain incompleteness results for relevance logic.

Theorem 4.1 Let τ be a signature and K = SRdτRRA be a generalized subreduct such that
intersection, relation composition, converse negation and the identity constant are term definable
in K. For every natural number n ≥ 2, there is an algebra An ∈ RA and a term tn such that tn
contains only the operations · , ; and ∼ such that

1. the τ -reduct Bn of An is not representable: Bn /∈ K

2. Bn 6|= 1′ ≤ tn

3. K |= 1′ ≤ tn

The above also holds if we replace RRA and RA by RRAcd and RAcd, respectively.

Proof: We will define finite, dense and commutative relation algebras An ∈ RAcd (n ∈ ω) and
show that their {· , ;, 1′,∼}-reducts, Bn, are not representable whenever n ≥ 2 (Lemma 5.1). Items
2 and 3 will follow from Lemma 5.2 where we explicitly define such a term tn.

Corollary 4.2 1. There are non-representable De Morgan monoids: DMM 6⊆ RDMM.

2. The equational theories of DMM and RDMM are different.

3. The relevance logic R is not complete with respect to RDMM.

Proof: Let τ = {· , ;,∼, 1′}. Then RDMM = SRdτRRAcd = K satisfies the conditions of Theo-
rem 4.1. Let An ∈ RAcd and tn be as in Theorem 4.1.

1. The τ -reduct Bn of An is in DMM but not in RDMM.
2. The equation 1′ ≤ tn is the required witness.
3. First note that the equation tn is a translation of a relevance logic formula ϕ (just substitute

the logical connectives by the corresponding algebraic operations). Since R is complete with
respect to DMM we have that ϕ is not a theorem of R, while RDMM |= ϕ by RDMM |= 1′ ≤ tn.

The following is a strengthening of Theorem 4.1.

Theorem 4.3 Let K be as in Theorem 4.1, e.g., K = RDMM. Then

1. K is not axiomatizable by any finite set of first-order sentences and
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2. the equational theory of K, and in particular, the set

{1′ ≤ s : K |= 1′ ≤ s, s is an 1′-free term}

are not finitely based.

Proof: 1. In Lemma 5.1, we show that the {· , ;, 1′,∼}-reducts, Bn, of An (n ∈ ω) are not
representable. On the other hand, by Lemma 5.3, a non-trivial ultraproduct of Bn (n ∈ ω) is
representable. By ÃLoś’ theorem [Ho93, Theorem 9.5.1], this is enough to show that K is not finitely
axiomatizable in first-order logic.

2. In Lemma 5.2, we will show that, for every n ≥ 2, there is an equation en of the form
1′ ≤ tn with 1′ not occurring in tn such that en fails in Bn, while en is valid in K, hence true in
the ultraproduct. Using ÃLoś’ theorem again, we get the required result.

Corollary 4.4 The logic {ϕ : RDMM |= ϕ} is not finitely axiomatizable by standard derivation
rules and axioms.

Proof: Assume for a contradiction that there would be a finite set of formulas and standard
derivation rules axiomatizing all the formulas of L(R) that are valid in RDMM. Translating
these to equations and quasiequations, we would have a finite axiomatization of the RDMM-valid
equations of the form 1′ ≤ s with 1′ not occurring in s, a contradiction.

Remark 4.5 We define

x → y = −(x^ ;−y) and x ← y = −(−x ; y^)

in RA. In [AM94], we showed that for τ = {· ,→,←, ;} the generalized subreduct SRdτRRA
is finitely axiomatizable. If we add density and commutativity as additional axioms, then the
step-by-step representation proof of [AM94, Theorem 3.2] goes through without any additional
difficulty. Hence we get an axiomatization of SRdτRRAcd (where → and ← coincide). The axioms
and rules have the form

σ1 ≤ τ1 & . . . & σn ≤ τn ⇒ σ0 ≤ τ0

which can be rewritten as

1′ ≤ σ1 → τ1 & . . . & 1′ ≤ σn → τn ⇒ 1′ ≤ σ0 → τ0

where 1′ does not occur in any of the σi and τi (note that although 1′ is not in the signature,
1′ ≤ π can be interpreted as Id ⊆ {(y, z) : (y, z) ∈ π}). Thus we can translate these quasiequations
to formulas and derivation rules in the language {∧,→, •}. Thus we get (strong) completeness of
this version of relevance logic with respect to binary relational semantics.

Including ∨ into the language seems problematic. Strong completeness is not possible [AM94,
Theorem 2.5], and weak completeness is an open problem, see Problem 6.4 below.

5 Non-finite axiomatizability

This section is devoted to making the proof of Theorem 4.1 complete. We note that the al-
gebras An below are the “dense versions” of the “rainbow algebras” from [HM00]. Showing
non-representability and, especially, that the non-representability is witnessed by equations have
become more complex.
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The rainbow construction We define relation algebras An (n ∈ ω). Let n be any natural
number. We define An to be the finite relation algebra (in RA) with the following atoms AtAn:

• identity: 1′,

• greens: gi (0 ≤ i ≤ 2n),

• whites: w, wij (0 ≤ i ≤ j ≤ 2n),

• yellow: y,

• black: b,

• reds: ri (0 < i < 2n).

All the atoms are self converse. Given this, a triple (x, y, z) of atoms is said to be an inconsistent
triangle if x · (y ; z) = y · (z ; x) = z · (x ; y) = 0. Conversely, using additivity, composition is
determined by the set of inconsistent triangles. We will define composition by specifying that the
inconsistent triangles are precisely the following:

(green,green,yellow)
(yellow,yellow,green)
(green,green,white)
(yellow,yellow,black)
(ri,rj ,rk) unless i = j = k or i + j = k or i + k = j or j + k = i
(gi,gi+1,rj) unless j = 1
(gi,gj ,rk) unless |i− j| ≡ k (mod 3)
(gi,y,wjk) unless i ∈ {j, k}

where, e.g., (green,green,white) stands for: g ; g′ · w = g ; w · g′ = w ; g · g′ = 0 for all green atoms
g, g′ and any white atom w. We also require that (x, y, 1′) is inconsistent for all distinct atoms
x, y.

Note that An is a dense, commutative, integral and symmetric algebra. It is not difficult to
check that An is indeed a relation algebra. All the axioms but (R1) are straightforward to check.
Below we sketch why (R1) holds. It suffices to show that whenever we have atoms a, x, y, z such
that a ≤ (x ; y) ; z, then there is an atom b such that a ≤ x ; b and b ≤ y ; z. If x = a and y = z,
then we can choose b = 1′. Otherwise we can try to use a white atom or the black atom for b.
The only case when this does not work is when both x and a are green and y and z are yellow (or
the other way round), say x = gi, a = gj and y = z = y. In this case we can choose b = rk with
k = |i− j|.

Next we show that the {· , ;, 1′,∼}-reduct Bn of An is not representable as a set algebra of
binary relations.

Lemma 5.1 For any 2 ≤ n ∈ ω, An is not in RRA. In fact, the {· , ;, 1′,∼}-reduct Bn of An is
not representable either.

Proof: Towards a contradiction, let us assume that there is an isomorphism h from Bn to an
algebra of binary relations of similarity type {· , ;, 1′,∼}. We define

0 = 1′· ∼ 1′ and x + y =∼ (∼ x· ∼ y)

It is easy to check that 0 and + coincide with the empty set and union, respectively, in representable
algebras. See Figure 1 for a sketch of the argument below.

Let (v, v) ∈ h(1′). By 1′ ≤ w ; w, we have (v, u), (u, v) ∈ h(w) for some u. Because w ≤ gi ; y,
we see that, for every 0 ≤ i ≤ 2n, there exists ui such that (u, ui) ∈ h(gi) and (ui, v) ∈ h(y). Note
that (ui, u) ∈ h(y ; w), for every 0 ≤ i ≤ 2n. Since Bn is a finite algebra, y ; w is a finite sum
of atoms (note that + is definable in Bn). Hence there is an atom xi such that (ui, u) ∈ h(xi).
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Figure 1: The reason for non-representability

Thus (u, u) ∈ h(gi ; xi). Since (1′, gi, xi) is inconsistent for every xi 6= gi, it follows that xi = gi

(otherwise we would have (u, u) ∈ h(0)). By a similar argument, using (v, v) ∈ h(1′), we get that
(v, ui) ∈ h(y).

Now (ui, ui+1) ∈ h(gi ;gi+1 · y;y) = h(r1) for every 0 ≤ i < 2n. Note that gi ;gi+2 · y;y· r1 ;r1 = r2,
for every i < 2n−2, since gi;gi+2· y;y is a sum of red atoms rk with indices k such that k ≡ 2 (mod 3)
and r1 ; r1 · rk = 0 unless k ∈ {1, 2}. Hence (ui, ui+2) ∈ h(r2). In particular, (u0, u2) ∈ h(r2). By
induction, we get that (u0, ui) ∈ h(ri). Indeed, (u0, ui+1) ∈ h(g0 ; gi+1 · y ; y · ri ; r1) = h(ri+1),
since i + 1 6≡ i − 1 (mod 3). Then we have (u0, u2n) ∈ h(g0 ; g2n · y ; y · r2n−1 ; r1) = h(0), since
2n 6≡ 2n − 2 (mod 3). We have our contradiction.

Next we show that the non-representability of Bn is witnessed by an equation en.

Lemma 5.2 For every 2 ≤ n ∈ ω, there is an equation en of the form 1′ ≤ tn with 1′ not occurring
in tn such that

1. en fails in Bn

2. en is valid in representable algebras.

Proof: To establish item 1 we need an equation en and an assignment ι of the variables occurring
in en such that en fails in Bn under this assignment.

For 0 ≤ i ≤ 2n, let Gi, Y , W and X be distinct variables, We define the valuation ι:

ι(Gi) = gi ι(Y ) = y ι(W ) = w ι(X) =
∑

{x ∈ AtBn : x /∈ {gi, y,w : 0 ≤ i ≤ 2n}}

Let ρi,j stand for Gi ; Gj · Y ; Y . We define ρ(k, k + l), for each 0 ≤ k < k + l ≤ 2n, by induction
on l:

ρ(k, k + 1) = ρk,k+1

ρ(k, k + l + 1) = ρ(k, k + l) ; ρ(k + l, k + l + 1) · ρk,k+l+1

Recall that gi ; gj · y ; y is a sum of red atoms in Bn, whence it is easy to see that

ι(ρ(k, k + 1)) = r1 and ι(ρ(k, k + l)) = rl

for any 0 ≤ k ≤ k + l ≤ 2n such that l < 2n, and that

ι(ρ(0, 2n)) = 0

10



Let, for every 0 ≤ j ≤ 2n,
τn = W ; (W · G0 ; ρ(0, 2n) ; Y )

Obviously,
ι(τn) = 0 (1)

We define

At =
∑

{Gi : 0 ≤ i ≤ 2n}+ Y + W + X

AtGj
=

∑
{Gi : 0 ≤ i ≤ 2n, i 6= j}+ Y + W + X

AtY =
∑

{Gi : 0 ≤ i ≤ 2n}+ W + X

Then

ι(At) =
∑

AtBn

ι(AtGj
) =

∑
{x : x ∈ AtBn, x 6= gj}

ι(AtY ) =
∑

{x : x ∈ AtBn, x 6= y}

Recall that we defined x → y as −(x^ ;−y) in RA. Hence x → y =∼ (∼ y ; x) in Bn. Let

λn =∼ (AtY ; Y )

µn = (W · (Y → At)) ; (W ·
∏
{(Gi · (W → At)) ; Y : 0 ≤ i ≤ 2n})

νn =
∏
{∼ (W ; ((W → W ) · (Gi ; AtGi)) ; W ) : 0 ≤ i ≤ 2n}

and
σn = λn · µn · νn

Note that in Bn,
∑

AtBn = ι(Y → At) = ι(W → At) 1′ = ι(W → W )

by the definition of →, and

1′ ≤ ι(∼ (AtY ; Y )) 1′ ≤ ι(∼ (Gi ; AtGi))

since every atom is self converse. Hence 1′ ≤ ι(λn). Recall that 1′ ≤ w ; w. Then, by w ≤ gi ; y,
we get 1′ ≤ ι(µn). Finally, 1′ ≤ w ; 1′ ; w and 1′ ≤ gi ; gi imply that 1′ ≤ ι(νn). Thus we have that

1′ ≤ ι(σn) (2)

Then, by 1 and 2, we have that
1′ · σn ≤ τn fails in Bn

Note that the above equation can be equivalently rewritten as 1′ ≤∼ σn + τn. Let σ′n and τ ′n be
the terms resulting by replacing each occurrence of + and → by their definitions (using · , ; and
∼). Note that 1′ does not occur in σ′n and τ ′n. Then the above equation can be written as

1′ ≤∼ (σ′n· ∼ τ ′n)

We define tn as the term ∼ (σ′n· ∼ τ ′n) and en as the equation 1′ ≤ tn. Summing up, we get that

Bn 6|= en

finishing the proof of item 1.

11



ui

Gi

At,−AtGi

ww

Y

¶¶
u

Gi· (W→At)

77

W · (Gi· (W→At));Y

,,∼((W→W )· (Gi;AtGi
)) 99 v

Y

At,−AtY

SS

W · (Y→At)

ll ∼(AtY ;Y )dd

Figure 2: The validity of en

It remains to show item 2, i.e., that the equation en is valid in representable algebras. To
this end let C be a subalgebra of the {· , ;, 1′,∼}-reduct of an RRA that is represented on some
equivalence relation on a set U . Let us fix an assignment h of the variables occurring in en. We
have to show that every element of U × U that is in h(1′ · σn) is also in h(τn). See Figure 2 for
an illustration of the argument below.

Let v ∈ U such that (v, v) ∈ h(σn). By

σn ≤ µn = (W · (Y → At)) ; (W ·
∏
{(Gi · (W → At)) ; Y : 0 ≤ i ≤ 2n})

we have u ∈ U such that

(v, u) ∈ h(W · (Y → At))

(u, v) ∈ h(W ·
∏
{(Gi · (W → At)) ; Y : 0 ≤ i ≤ 2n})

Thus (v, u), (u, v) ∈ h(W ). By

(u, v) ∈ h(
∏
{(Gi · (W → At)) ; Y : 0 ≤ i ≤ 2n})

we have, for each 0 ≤ i ≤ 2n, ui ∈ U such that (u, ui) ∈ h(Gi · (W → At)) and (ui, v) ∈ h(Y ).
Note that

x ⇒ y = {(u, v) : ∀w((w, u) ∈ x implies (w, v) ∈ y)}
in representable algebras. Since (v, u) ∈ h(Y → At), we get (ui, u) ∈ h(At). By (u, ui) ∈ h(W →
At) and (v, u) ∈ h(W ), we have (v, ui) ∈ h(At). Note that (v, v) ∈ h(λn) = h(∼ (AtY ; Y )) as
well. Since (ui, v) ∈ h(Y ), we get that (v, ui) /∈ (AtY ). By At = AtY + Y , we have (v, ui) ∈ h(Y ).

Recall that

(v, v) ∈ h(νn) = h(
∏
{∼ (W ; ((W → W ) · (Gi ; AtGi)) ; W ) : 0 ≤ i ≤ 2n})

as well. Since (v, u), (u, v) ∈ h(W ), we have (u, u) /∈ h((W → W )· (Gi ;AtGi)) for every 0 ≤ i ≤ 2n.
Note that (u, u) ∈ h(W → W ) and (u, ui) ∈ h(Gi). Hence (ui, u) /∈ h(AtGi). Recall that
(ui, u) ∈ h(At). Since At = AtGi + Gi, we have (ui, u) ∈ h(Gi).

So far we have got that, for every 0 ≤ i ≤ 2n, (ui, u), (u, ui) ∈ h(Gi) and (ui, v), (v, ui) ∈ h(Y ).
Thus (uk, uk+l) ∈ h(ρk,k+l), for each 0 ≤ k < k + l ≤ 2n. By induction on l: (uk, uk+l) ∈
h(ρ(k, k + l)). In particular, (u0, u2n) ∈ h(ρ(0, 2n)). Since (u, u0) ∈ h(G0) and (u2n , v) ∈ h(Y ),
we have (u, v) ∈ h(G0 ; ρ(0, 2n) ; Y ). By (v, u), (u, v) ∈ h(W ), we get

(v, v) ∈ h(τn) = h(W ; (W · G0 ; ρ(0, 2n) ; Y ))
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finishing the proof of Lemma 5.2.

To complete the proof of Theorem 4.3 it remains to show the following lemma.

Lemma 5.3 Any non-trivial ultraproduct A of An (n ∈ ω) over ω is in RRA. Hence the ultra-
product of the reducts Bn (n ∈ ω) is representable as well.

Proof: The proof of this lemma is almost identical to that of [HM00, Lemma 3.4]. We refer
the reader to [HM00], and we only indicate the required modification. The important difference
between the current algebras and those in [HM00] is that the use of red atoms is more restricted
in the current setting. To deal with this problem one has to be more careful with the induction
hypothesis in [HM00, Claim 3.5]. Here is the variant which works in our case.

Induction hypothesis: For every red block (u, v, w1, . . . , wq) of Np, and for every 1 ≤ i < j ≤
k ≤ q,

1. `Np
(wi, wj) = rf(j)−f(i) if f(j)− f(i) ≤ 2l−p,

2. `Np
(wi, wj) = rt for some t ≤ 2l−1 + · · ·+ 2l−p + 2p,

3. `Np(wi, wj) = rt and `Np(wj , wk) = rs imply `Np(wi, wk) = rt+s

4. `Np(wi, wj) = rt implies rt ≡ f(j)− f(i) (mod 3).

The interested reader should not have any difficulty in adjusting the proof.

6 Conclusion

We conclude the paper with some open problems.
The logic RM is complete with respect to the class of idempotent De Morgan monoids, cf.

[AB75, §29.4]. The semantics is the same as for R, the only difference is that we require idempo-
tence:

x • x = x (3)

for all x, in addition to the axioms of DMM in Definition 2.1. Similarly to the case of de Morgan
monoids, we can define representable idempotent De Morgan monoids, by requiring idempotence
3 in addition to the conditions of RDMM in Definition 2.3, and a (sound) semantics for RM.

Conjecture 6.1 RM is not complete with respect to representable idempotent De Morgan
monoids.

Note that the relation algebras An from Section 5 do not satisfy idempotence, but they might
have a transitive variant (where x ; x ≤ x holds) which could be used to prove incompleteness.

While we are at relation algebras we recall that the {· , ;,∼, 1′}-reducts of RAcd are De Morgan
monoids, hence R is sound with respect to SRd{· ,;,∼,1′}RAcd.

Problem 6.2 Is R complete with respect to SRd{· ,;,∼,1′}RAcd?

One might try to solve this problem by embedding every De Morgan monoid into the reduct of a
relation algebra. Meyer and Routley [MR74, Section IV] show that every De Morgan monoid can
be embedded into a relation-type algebra, that they call DeMorgan set monoid, with a boolean
reduct and where the axioms (R1)–(R5) are explicitly satisfied. But it is not clear how to achieve
axioms (R6) and (R7). Concerning a similar problem for Rt, we mention that Kowalski [Ko07]
notes that Rt is not complete with respect to SRd{· ,;,∼,1′}RRAcd, or SRd{· ,;,∼,1′}RAcd for that
matter. The witnessing formula is ϕ → (t∨ ∼ t) which is valid in RA-reducts but not derivable in
Rt (even with the additional mingle axiom).

Recall from [RM73] that the positive fragment R+ of R is a logic in the language {∧,∨,→}
defined by the ∼-free axioms and the two derivation rules of R.

13



Problem 6.3 Is R+ complete with respect to SRd{· ,+,→}RRAcd?

The following problem is related to the (weak) completeness of extensions of the Lambek
calculus and reducts of relevance logic with respect to binary relations.

Problem 6.4 The {· , +, ;,→,←}-subreduct of RRA is not finitely axiomatizable, [An91]. Is there
a finite axiomatization of its equational theory? The same problem applies to the dense and
commutative version.

We can formulate the above problem in a more general setting. Below Eq denotes equational
theory.

Problem 6.5 For which generalized subreduct K of RRA is there a finitely axiomatizable quasi-
variety Q such that Eq(Q) = Eq(K)?

Finally we mention a corollary about relational algebras with n-dimensional bases.

Remark 6.6 The classes RAn (n ≥ 2) are defined in [Ma83], and it is shown in [HH02] that they
are not finitely axiomatizable whenever n > 4 (we note that RA = RA4 ⊃ · · · ⊃ RAn ⊃ · · · ⊃ RRA).

Corollary 6.7 The {· , ;, ^}-subreduct of RAn for n ≥ 5 is not finitely axiomatizable.

We just give a sketch of the proof. [HH02, Section 12.4] characterizes representability as an RAn

by a n-pebble game. It is not difficult to see that the universal player (whose task is to show non-
representability) has a winning strategy in the game played on the reduct of An by (re)using only
5 nodes (see the proof of Lemma 5.1 and realize that we need only the pebbles u, v, ui, ui+j , ui+j+k

to determine the color of (ui, ui+j+k) provided that the colors of the other edges are given; also
note that the color of every edge is the same as the color of the inverse edge, since each element
is self converse). Hence this algebra is not a subreduct of an RA5. As before, the ultraproduct is
representable, whence it is in (the subreduct of) RRA ⊆ RA5.

Acknowledgements Thanks are due to Roger Maddux for drawing my attention to this prob-
lem and to Ian Hodkinson, Robin Hirsch, Roger Maddux for valuable comments.
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