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Abstract

Let K be a variety of (commutative, integral) residuated lattices. The
substructural logic usually associated with K is an algebraizable logic that
has K as its equivalent algebraic semantics, and is a logic that preserves
truth, i.e., 1 is the only truth value preserved by the inferences of the
logic. In this paper we introduce another logic associated with K, namely
the logic that preserves degrees of truth, in the sense that it preserves
lower bounds of truth values in inferences. We study this second logic
mainly from the point of view of abstract algebraic logic. We determine its
algebraic models and we classify it in the Leibniz and the Frege hierarchies:
we show that it is always fully selfextensional, that for most varieties K it
is non-protoalgebraic, and that it is algebraizable if and only K is a variety
of generalized Heyting algebras, in which case it coincides with the logic
that preserves truth. We also characterize the new logic in three ways:
by a Hilbert style axiomatic system, by a Gentzen style sequent calculus,
and by a set of conditions on its closure operator. Concerning the relation
between the two logics, we prove that the truth preserving logic is the
extension of the one that preserves degrees of truth with either the rule
of Modus Ponens or the rule of Adjunction for the fusion connective.

Key words and phrases: substructural logic, many-valued logic, degrees of truth,
residuated lattices, non-protoalgebraic logic, Gentzen system, Tarski style con-
dition.

2000 MSC: 03B47, 03B50, 03B22, 03G25, 06B99.

1 Introduction and outline of the paper

This paper concerns (many-valued) logics associated with varieties K of residu-
ated lattices that, for the sake of simplicity, we assume to be commutative and
integral (as usual the maximum of any algebra will be denoted by 1). These va-
rieties form a wide class of algebraic structures encompassing Heyting algebras,
FLew algebras, BL algebras, MV algebras, MTL algebras, product algebras,
etc. Most of the substructural and fuzzy logics studied in the literature in as-
sociation with these classes of algebras (see e.g. [40, 41, 44, 45]) are defined by
taking 1 as the only truth value to be preserved by inference (in the sense of
yielding true consequences from true premises for each interpretation) and they
are sometimes called assertional logics [28]. In the present paper they will be re-
ferred to as truth preserving logics and will be denoted by ⊢K . Truth preserving
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logics ⊢K are algebraizable in the sense of Blok and Pigozzi [8], and thus there
is a nice correspondence between varieties of residuated lattices and axiomatic
extensions of the truth preserving logic of residuated lattices.

The intended role played above by residuated lattices corresponds to truth-
value structures, but indeed truth preserving logics do not take full advantage
of being many-valued, as they focus on the truth value 1 (the truth) and not
on other intermediate truth values. A way to circumvent this possible weakness
while keeping the truth preserving framework is to introduce truth constants
into the language. This methodology goes back to Pavelka [55] where he built
a propositional many-valued logic which turned out to be equivalent to the
expansion of  Lukasiewicz logic by adding a truth constant r into the language
for each real r ∈ [0,1], together with a number of additional axioms. In this way
the expanded language allows one to have formulas of the kind r → ϕ which,
when evaluated to 1, express that the truth value of ϕ is greater or equal than r .
This logic was further developed by Nóvak [51] and Hájek [45]; more recently a
similar approach has been applied in [24, 27] to study the expansions with truth
constants of other fuzzy logics including Gödel, product, nilpotent minimum
logics as well as other continuous t-norm based logics. All these expansions, like
the truth preserving logics ⊢K , have been shown to be algebraizable.

In this paper we aim at going beyond the truth preserving framework in
order to exploit many-valuedness by focussing on the notion of inference |=6

K

that results from preserving lower bounds of truth values, and hence not only
preserving the value 1. In this setting the language remains the same as in
truth preserving logics ⊢K , and what changes is the inference relation. This
kind of inference corresponds to the so-called logics preserving degrees of truth
discussed at length in [28, 33, 52], and follows a very general pattern which
could be considered for any class of truth structures endowed with an ordering
relation. In particular, for a class K of ordered algebras this pattern would yield
the following definition:

Γ |=6
K ψ ⇐⇒ ∀A ∈ K , ∀v ∈ Hom(Fm,A) , ∀a ∈ A ,

if v(γ) > a for all γ ∈ Γ then v(ψ) > a.
(1)

For each variety K of residuated lattices, the logics |=6
K and ⊢K clearly have

the same theorems (i.e., the same consequences from the empty set). We show
that the two logics coincide precisely when K is a variety of generalized Heyting
algebras, in other words, when in the algebras of K the fusion ⋆ coincides with
the meet ∧ . Notice that this situation corresponds to the cases where the
logics might not be considered as properly substructural. Thus, the cases where
studying the logics preserving degrees of truth |=6

K seems to have a genuine
interest are the properly substructural ones. In these cases the results in the
paper show that the two logics have very different properties, extending the
study of  Lukasiewicz’s logic preserving degrees of truth done in [33].

These differences are apparent in the classification we obtain of the logic |=6
K

with respect to the two main hierarchies in abstract algebraic logic, the Frege
and Leibniz hierachies, which deal respectively with replacement properties and
with the behaviour of Leibniz operator.

Regarding the Frege hierarchy, while |=6
K is fully selfextensional for every

K , ⊢K is selfextensional if and only if K is a variety of generalized Heyting
algebras (that is, when ⊢K coincides with |=6

K ; hence it is fully selfextensional).
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Moreover, ⊢K is (fully) Fregean if and only if K is a variety of generalized
Heyting algebras, and these are also the only cases where |=6

K is (fully) Fregean.
As regards the Leibniz hierarchy, it is well known that ⊢K is always algebraizable
(and so protoalgebraic). We prove that |=6

K is algebraizable if and only if it
coincides with ⊢K . Thus, the logics preserving degrees of truth do not give new
examples of algebraizabillity. Moreover, we show that |=6

K is protoalgebraic if
and only if there is some n ∈ ω such that all algebras in K satisfy the equation

x ∧
(
(x→ y)n ⋆ (y→ x)n

)
4 y , (Protn)

and that these are precisely the cases where |=6
K is finitely equivalential. As

a consequence, we obtain some new protoalgebraic logics, but we also see that
most of the best-known varieties of residuated lattices, such as those mentioned
at the beginning, yield natural examples of non-protoalgebraic logics.

The paper also deals with Hilbert style axiomatizability. It is well known
that each ⊢K has an axiomatization with Modus Ponens as the only rule. We
show that |=6

K is axiomatized by using the same axioms as ⊢K , a restricted
form of Modus Ponens and the rule of Adjunction for ∧ . It is remarkable that
by either replacing ∧ by ⋆ in the rule of Adjunction or by using full Modus
Ponens, we obtain an axiomatization of ⊢K . As regards the problem of finding
axiomatizations exclusively given by Tarski style conditions (in the sense of the
term as coined by Wójcicki in [63, p. 107]), it is known that there is no Tarski
style axiomatization for ⊢K [10]. However, as a good approximation we show
(Corollary 5.10.3) that |=6

K can be axiomatized in a way which is very close
to a Tarski style axiomatization. To this end, we first give a description of the
algebras in the class K in terms of abstract properties of the closure operator
of filter generation (Theorem 5.1), and then use this to define a Gentzen style
calculus for |=6

K ; this calculus does not seem to be particularly interesting from
a proof-theoretic point of view, but the study of its algebraic models yields a
new way of relating the class K to the corresponding logic |=6

K . All this is done
explicitly for K = RL , and then we indicate how to extend the results to other
varieties K of residuated lattices.

The logics we study are related to substructural logics. These logics were ini-
tially characterized in connection with proof-theoretic issues [22], but in recent
years they have been extensively studied from an algebraic point of view [40].
Indeed, in his survey paper [53], Ono shows how the root of substructurality is
closely related to the interaction between fusion and implication in residuated
structures, and reaches the conclusion that “substructural logics are the logics
of residuated lattices”; of course he has in mind only the truth-preserving logics
⊢K . On the other hand, the results in the present paper establish deep relations
between each of the logics |=6

K and the corresponding class K of residuated
lattices. In a certain sense one could say that they are also logics “of” residu-
ated lattices, although in a different way, and one grcould go even further and
conclude that they might also be counted among substructural logics, even if
they are not those traditionally considered in the substructural logic literature.
This issue is discusssed more in depth in [31, 32]. It is also interesting to look
at the alternative definition of substructural logics suggested in [62]; we refer to
it in relation with some of our results at the end of Section 4.

The study of consequence relations associated with a class of ordered algebras
in the way our |=6

K are has been rare, but not without precedents, although
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those specific to the field of many-valued and substructural logics have been very
fragmentary or simply exploratory. In his well-known [60, 61], Scott suggests “to
replace many values by many valuations”, but a detailed analysis of his proposal
(see [32]) reveals that he is actually proposing an inference like our |=6

K , in
the particular cases corresponding to  Lukasiewicz’s finitely-valued logics. The
same cases where studied in Gil’s dissertation [42], with the tools of many-sided
sequent calculi. In the case of Gödel’s logic (where K is the variety of linear
Heyting algebras), Hájek proves in [45, Theorem 4.2.18] a completeness result
of ⊢K with respect to a semantics (called by him “partial truth”) that uses the
rational points in the real unit interval in a way very similar to (1). A more
explicit formulation is in Baaz, Preining and Zach’s [5] (see also [6]), again only
for Gödel’s logic and only for the semantics based on the real unit interval, but
this time for a first-order logic: In this paper the two semantical entailments
are explicitly defined and in their Proposition 13 they are proved to coincide
(and the remark is made that this does not happen for  Lukasiewicz logics). As
to the general theory, the term “logics preserving degrees of truth” is coined in
Nowak’s [52], and in the particular case where the ordered algebras are actually
semilattices Jansana’s [48] introduces and studies the so-called “semilattice-
based logics” with the tools of abstract algebraic logic; some of his results have
been applied in the present paper.

The paper is organized as follows. Section 2 presents the logic |=6
K , some of

its basic properties, relationships with ⊢K , and a Hilbert style axiomatization.
In Section 3 we determine its algebraic models, in particular we show that its
algebraic counterpart according to the two general criteria of abstract algebraic
logic is indeed K , and that |=6

K has Leibniz filters. In Section 4 we determine
the position of the logic |=6

K in the Leibniz and Frege hierarchies. In Section 5
we characterize the variety K in terms of Tarski style conditions (about the
closure operator of lattice filter generation) and in terms of Gentzen style rules.
Appendix A contains the detailed proofs of several technical lemmas used in the
proof of Theorem 5.1. Finally Appendix B exhibits the residuated lattices used
as examples and counterexamples in Section 4.

Acknowledgements. The collaborative work between the authors of this
paper was made possible by several research grants: MTM2008-01139 and
TIN2007-68005-C04 of the Spanish Ministry of Education and Science, including
feder funds of the European Union, and 2005SGR-00083 and 2005SGR-00093
of the Catalan Government. The authors also wish to thank some anonymous
referees for helpful comments.

2 Definitions, basic properties and axiomatiza-
tion

We fix the following propositional (algebraic) language L = 〈∧ ,∨, ⋆ ,→ , 1 , 0〉
with connectives of arity (2, 2, 2, 2, 0, 0). We consider only algebras of this simi-
larity type, thus expressions such as “for all algebras” or “an arbitrary algebra”
should be understood as restricted to this type. Operations interpreted in a
specific algebra will be denoted with the same symbol. All the algebras we will
consider have a maximum element, which will be denoted by 1, and will be the
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interpretation of the constant 1. By contrast, in the general case we do not
presuppose any property of the interpretation of the constant 0. Some more
bits of notation: Fm denotes the algebra of formulas (of this similarity type),
and Fm its universe. If A ,B are two algebras, Hom(A,B) denotes the set
of all homomorphisms from A to B . If A is an algebra, CoA denotes the set
of all congruences of A , and for each class K of algebras, CoKA denotes the
subset of CoA consisting of the congruences θ of A such that A/θ ∈ K .

The largest class of algebras we consider is the class RL of commutative,
integral residuated lattices, which we will call simply residuated lattices for
brevity. Thus, A = 〈A,∧ ,∨, ⋆ ,→ , 1 , 0〉 ∈ RL if and only if the reduct 〈A,∧,∨, 1〉
is a lattice with maximum 1 (its order is denoted by 6), the reduct 〈A, ⋆, 1〉
is a commutative monoid, and the fusion operation ⋆ (sometimes also called
the intensional conjunction or strong conjunction) is residuated, → being its
residual; that is, for all a, b, c ∈ A ,

a ⋆ b 6 c ⇐⇒ b 6 a→ c. (2)

It is well-known that the class RL is a variety; the following forms an equational
base for RL :

x ∧ y ≈ y ∧ x x ∨ y ≈ y ∨ x (3)
x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z (4)
x ∧ (x ∨ y) ≈ x x ∨ (x ∧ y) ≈ x (5)

x ∧ 1 ≈ x (6)
x ⋆ (y ⋆ z) ≈ (x ⋆ y) ⋆ z (7)

x ⋆ y ≈ y ⋆ x (8)
x ⋆ 1 ≈ x (9)

x ⋆ (y ∨ z) ≈ (x ⋆ y) ∨ (x ⋆ z) (10)
x ⋆ (x→ y) 4 y (11)

y 4 x→
(
(x ⋆ y) ∨ z

)
(12)

We use the symbol ≈ to represent formal equations, and the symbol 4 to rep-
resent formal ordering relations; this symbol is interpreted by the order relation
of the algebra. Since we deal with lattices, as equations (3)–(5) witness, the
expression ϕ4 ψ is actually equivalent to the equation ϕ ∧ ψ ≈ ϕ .

Notice that residuated lattices may be presented either with or without the
constant 0 in the type; in this we adhere to the practice of [40] (see the notes on
pages 95 and 97). Having a constant 0 in the type, even if nothing is postulated
about it, makes it formally possible to consider several well-known varieties
widely studied in substructural and fuzzy logic literature as subvarieties of our
RL , which in this setting coincides with the variety of FLei -algebras of [40].
Nevertheless, the most studied subvarieties of RL are in fact subvarieties of
FLew , which is the subvariety of RL obtained when we specify that 0 is the
minimum element. Some interesting subvarieties, which we will use later on,
are: MTL , the subvariety of FLew obtained by adding the prelinearity condition
(x→ y) ∨ (y → x) ≈ 1; BL , the subvariety of MTL obtained by adding the
divisibility condition x ⋆ (x → y) ≈ x ∧ y ; MV , the subvariety of BL obtained
by making the negation involutive (¬¬x ≈ x , where ¬x := x→ 0); Π , the
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variety of product algebras, which is the subvariety of BL obtained by adding
the cancellative property ¬¬x→

(
(x→x ⋆ y)→ (y ⋆¬¬y)

)
≈ 1; and the variety

G of Gödel or Dummett algebras, obtained from BL by adding idempotency of
fusion x⋆x ≈ x . The main sources of information concerning these varieties and
related ones, and the logics associated with them, are [12, 25, 40, 44, 45, 46, 53].

Following modern algebraic logic literature (see for instance [17, 38, 63]), in
this paper we identify a logic L with its consequence relation, which can be
denoted as ⊢L or similar symbols1. Since this is a relation ⊢L ⊆ P (Fm) ×
Fm , we can use the common relational notation and write Γ ⊢L ϕ instead of
〈Γ , ϕ〉 ∈ ⊢L ; this is to be interpreted as “ϕ follows from Γ in the logic L”.
The interderivability relation associated with L is the binary relation between
formulas ⊣⊢L defined as follows:

ϕ ⊣⊢L ψ ⇐⇒ ϕ ⊢L ψ and ψ ⊢L ϕ.

This relation is always an equivalence relation, but need not be a congruence of
the algebra of formulas. This depends on the replacement properties satisfied
by L . We will deal with this issue in Section 4.

Traditionally, the substructural logic associated in the literature with each
subvariety K of RL is the logic ⊢K that preserves truth with respect to
the class K (where truth is represented by the constant 1). This logic has
K as its algebraic counterpart; more precisely, ⊢K is a (finitely and regularly)
algebraizable logic having K as its equivalent algebraic semantics in the sense
of [8, 17], with defining equation x ≈ 1 and equivalence formula

x↔ y := (x→ y) ⋆ (y→ x).

From this it follows that ⊢K is the (finitary) logic determined by the two clauses

ϕ0, . . . , ϕn−1 ⊢K ψ ⇐⇒ K |= ϕ0 ≈ 1 & . . . & ϕn−1 ≈ 1 →→ ψ ≈ 1,

∅ ⊢K ψ ⇐⇒ K |= ψ ≈ 1,
(13)

where the symbol |= , when written without any sub- or superscript, stands
for first-order (or quasi-equational) validity, and & and →→ are the symbols
for conjunction and implication between first-order formulas; the first clause
amounts to saying that

ϕ0, . . . , ϕn−1 ⊢K ψ ⇐⇒ ∀A ∈ K , ∀v ∈ Hom(Fm,A) ,
if v(ϕi) = 1 for all i < n, then v(ψ) = 1.

(14)

A key property of ⊢K that will be used in the paper is the local deduction
theorem (LDT), that is, the property that for all Γ ∪ {ϕ, ψ} ⊆ Fm ,

Γ , ϕ ⊢K ψ ⇐⇒ ∃n < ω such that Γ ⊢K ϕ
n → ψ, (15)

where we have used the exponential to abbreviate iterated fusion; that is, we
define x0 := 1 and xn+1 := xn ⋆ x for all n < ω .

Following the discussion in the Introduction, we associate with each subva-
riety K of RL another logic. These logics will be our main object of study.

1Our usage of the symbols ⊢ and |=, with different sub- and super-scripts, to denote the
consequence relation of a sentential logic is only dictated by practical, even visual reasons.
In particular, we do not assign, as is often done in the literature, a “syntactical” meaning to
⊢ and a “semantical” meaning to |=. The only exception is when |= is used as the validity
relation of first-order logic, as in the right-hand sides of each of the equivalences in (13).
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Definition 2.1. Let K be a subvariety of RL . The logic |=6
K , which we call

the logic that preserves degrees of truth with respect to K , is defined as
follows, for all Γ ∪ {ψ} ⊆ Fm :
1. For a finite, non-empty Γ = {ϕ0, . . . , ϕn−1} ,

ϕ0, . . . , ϕn−1 |=6
K ψ ⇐⇒ ∀A ∈ K , ∀v ∈ Hom(Fm,A) , ∀a ∈ A ,

if v(ϕi) > a for all i < n then v(ψ) > a.

2. ∅ |=6
K ψ when for all A ∈ K , for all v ∈ Hom(Fm,A) , v(ψ) = 1 .

3. For an infinite Γ ⊆ Fm , Γ |=6
K ψ when there exist ϕ0, . . . , ϕn−1 ∈ Γ such

that ϕ0, . . . , ϕn−1 |=6
K ψ

It follows from clauses 3 and 1 that |=6
K really preserves degrees of truth with

respect to K , that is, that it satisfies, for all Γ ∪ {ψ} ⊆ Fm ,

Γ |=6
K ψ =⇒ ∀A ∈ K , ∀v ∈ Hom(Fm,A) , ∀a ∈ A ,

if v(γ) > a for all γ ∈ Γ then v(ψ) > a.

It is also easy, reasoning by cases, to see that Definition 2.1 actually yields a
(finitary) logic, that is, a finitary consequence relation on the set of formulas.

Lemma 2.2. For all {ϕ0, . . . , ϕn−1, ψ} ⊆ Fm with n > 0 ,

ϕ0, . . . , ϕn−1 |=6
K ψ ⇐⇒ ϕ0 ∧ · · · ∧ ϕn−1 |=6

K ψ

⇐⇒ K |= ϕ0 ∧ · · · ∧ ϕn−1 4 ψ

⇐⇒ |=6
K ϕ0 ∧ · · · ∧ ϕn−1 → ψ .

Proof. The first equivalence follows by applying to clause 1 of Definition 2.1 the
fact that, in a lattice, v(ϕi) > a for all i < n if and only if v(ϕ0)∧· · ·∧v(ϕn−1) >
a , if and only if v(ϕ0∧· · ·∧ϕn−1) > a . The second equivalence is just a rewriting,
taking again clause 1 into account. Finally, the third one follows from the fact
that in a integral residuated lattice, a 6 b is equivalent to a→ b = 1

The first equivalence in Lemma 2.2 is often paraphrased by saying that
the logic |=6

K is conjunctive, as it expresses that the connective ∧ has the
behaviour of a conjunction in the classical, extensional sense. Proposition 2.9
will give an algebraic version of this: the filters of this logic on an algebra A ∈ K
will coincide with the lattice filters of A . Note that the equivalence between the
first and the last expressions in Lemma 2.2 can be read as a kind of restricted
deduction theorem (called graded deduction theorem in [37, Definition 5.3]),
where the premisses have to be transferred collectively, in a single step, to the
right-hand side of the inference relation.

Now, the second equivalence in Lemma 2.2 together with clause 2 in Defini-
tion 2.1 make it clear that the logic |=6

K depends only on the equations satisfied
by the variety K . Thus, we can actually define it starting from any class K of
residuated lattices, even from a single algebra, using the expression in Lemma 2.2
instead of clause 1 of Definition 2.1, since the logic we obtain is the same as
that obtained for the variety generated by K ; this will be specially useful when
working with examples. For the general theory, however, it is best to work
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with varieties, hence unless we say otherwise, in the general results about an
unspecified class K , we implicitly assume that K is an arbitrary subvariety of
RL .

As a particular case of Lemma 2.2 we have that, for all ϕ, ψ ∈ Fm ,

ϕ |=6
K ψ ⇐⇒ K |= ϕ4 ψ . (16)

A direct consequence of this is the following interesting fact about the relation
=||=6

K of interderivability with respect the consequence |=6
K :

Corollary 2.3. For all ϕ, ψ ∈ Fm , ϕ =||=6
K ψ ⇐⇒ K |= ϕ ≈ ψ .

The logic |=6
K can be characterized in terms of matrices and generalized

matrices. By a matrix we understand a pair 〈A, F 〉 where A is an algebra
and F is a subset of A , and by a generalized matrix (g-matrix for short)
we understand a pair 〈A, C〉 where A is an algebra and C is a closed-set sys-
tem of subsets of A (that is, a family of subsets of A closed under arbitrary
intersections and containing A). The logic ⊢L defined by the matrix 〈A, F 〉 is
obtained by putting, for all Γ ∪ {ϕ} ⊆ Fm ,

Γ ⊢L ϕ ⇐⇒ ∀v ∈ Hom(Fm,A) ,
if v(γ) ∈ F ∀γ ∈ Γ , then v(ϕ) ∈ F. (17)

A matrix 〈A, F 〉 is a model of a logic L when the implication ⇒ in (17) is
satisfied; then F is called a filter of L or L -filter. For an algebra A we denote
by Fi⊢L(A) the family of all L -filters on A .

The logic ⊢L defined by the g-matrix 〈A, C〉 is obtained by putting

Γ ⊢L ϕ ⇐⇒ ∀v ∈ Hom(Fm,A) , ∀F ∈ C,
if v(γ) ∈ F ∀γ ∈ Γ , then v(ϕ) ∈ F. (18)

A g-matrix 〈A, C〉 is a generalized model (g-model for short) of L when the
implication ⇒ in (18) is satisfied.

The logic determined by a class of matrices is defined as the intersection of
the logics defined by all the matrices in the family; and similarly for g-matrices.
Then:

Proposition 2.4. |=6
K coincides with the logic defined by the class of matrices

{
〈A, F 〉 : A ∈ K and F is a lattice filter of A

}
, (19)

and also with the logic defined by the class of g-matrices
{〈

A,Fi∧(A)
〉

: A ∈ K
}
, (20)

where Fi∧(A) denotes the family of all the lattice filters of A .

Proof. The class of matrices (19) is the union of the bundles of matrices cor-
responding to the g-matrices in the class (20), therefore the two classes define
the same logic. Since K is a variety and the notion of a lattice filter is el-
ementary definable, the class of matrices (19) is closed under ultraproducts,
therefore such logic is finitary. Thus, we need only check that it coincides with
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|=6
K for finite sets of assumptions. This follows from the fact that in a lattice, if

Fi∧(a1, . . . , an) denotes the smallest lattice filter that contains a1, . . . , an , then
we have that b ∈ Fi∧(a1, . . . , an) if and only if a1 ∧ · · · ∧ an 6 b , and that
Fi∧(∅) = {1} since our lattices have a maximum 1.

We now study the relations between the logics |=6
K and ⊢K . Later on we

will need the following easy result, where, according to the previously introduced
notation, we denote by Fi|=6

K
(A) the set of |=6

K -filters on A :

Lemma 2.5. For any A ∈ K and every F ⊆ A , if F ∈ Fi|=6
K

(A) , then 1 ∈ F .

Proof. Clause 2 in Definition 2.1 implies that the constant 1 is a theorem of
the logic |=6

K , hence its interpretation in every algebra belongs to every filter of
the logic.

Comparing clause 2 of Definition 2.1 with (13) it is straightforward to see
that:

Lemma 2.6. For all ϕ ∈ Fm , ∅ |=6
K ϕ if and only if ∅ ⊢K ϕ .

Thus the two logics have the same theorems. This will be a key fact in finding
a Hilbert style presentation of |=6

K . Now we investigate the relation between
the consequence relations |=6

K and ⊢K for non-empty sets of assumptions. First,
from Lemmas 2.2 and 2.6 it follows:

Proposition 2.7. For all {ϕ0, . . . , ϕn−1} ∪ {ψ} ⊆ Fm ,

{ϕ0, . . . , ϕn−1} |=6
K ψ ⇐⇒ ∅ ⊢K ϕ0 ∧ · · · ∧ ϕn−1 → ψ.

Thus, |=6
K is determined by the theorems of ⊢K . Moreover, this equivalence

provides a polynomial reduction of the finitary relation of consequence of |=6
K

to the theoremhood of ⊢K ; thus, the complexity of finite theories of |=6
K is the

same as that of the theorems of ⊢K ; for certain fuzzy logics this complexity
is known, see [3]. It is also interesting to notice that the way in which this
reduction is effected coincides with the proposal put forward by Wójcicki [63,
Section 2.10] for a general way of associating a logic (a consequence operation)
with a set of logical formulas satisfying certain minimal conditions (what he
calls an “entailment system”). In addition we have:

Proposition 2.8. The logic ⊢K is an extension of the logic |=6
K .

Proof. By finitarity and Lemma 2.6, we only need to prove that for any finite
non-empty {ϕ0, . . . , ϕn−1} ⊆ Fm and any ψ ∈ Fm , if ϕ0, . . . , ϕn−1 |=6

K ψ
then ϕ0, . . . , ϕn−1 ⊢K ψ . This follows directly from clause 1 of Definition 2.1
and (13), given that 1 is the maximum of all algebras in K .

Now we are going to find the relations between the filters of the two logics.
First of all, by Proposition 2.8 it readily follows that for an arbitrary algebra
A ,

Fi⊢K
(A) ⊆ Fi|=6

K
(A). (21)
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If A ∈ K this relation can be made more precise, as we can characterize both
families of logical filters as certain kinds of algebraic filters. Recall that a subset
F of a residuated lattice is an implicative filter when 1 ∈ F and it is closed
under Modus Ponens (MP), that is, if a ∈ F and a→ b ∈ F then b ∈ F .
All implicative filters are lattice filters. It is well-known that the ⊢K -filters in
algebras of K , which are residuated lattices, coincide with the implicative filters.

Proposition 2.9. If A ∈ K then the filters of the logic |=6
K on A coincide

with the lattice filters of A .

Proof. By Proposition 2.4 all lattice filters are filters of the logic. The converse
also holds, that is, all filters of the logic will be lattice filters: The property (16)
implies that all the filters of the logic will be order filters (increasing subsets);
and Lemma 2.2 implies that they will be closed under conjunction.

Lemma 2.10. Let A ∈ K , and let F ⊆ A be a non-empty order filter (or
increasing subset). Then the following conditions are equivalent:
1. F is an implicative filter.

2. F is closed under ⋆ , that is, if a, b ∈ F then a ⋆ b ∈ F , for all a, b ∈ A .

3. F is a lattice filter such that for all a ∈ A , if a ∈ F then a2 = a ⋆ a ∈ F .

Proof. (1 ⇒ 2) because a→ (b→ a ⋆ b)) = 1. (2 ⇒ 1) since from a ⋆ b 6 a ∧ b
and a ⋆ (a→ b) 6 b , we have that F is a lattice filter closed under MP. (2 ⇒ 3)
since from a ⋆ b 6 a∧ b we obtain that F is a lattice filter and obviously a ∈ F
implies a2 ∈ F . (3 ⇒ 2) because (a ∧ b)2 6 a ⋆ b .

Since both logics are defined from the class K , they are characterized by
their filters on the algebras in K . Therefore:

Corollary 2.11. ⊢K is the extension of |=6
K obtained by adding to it any one

of the following rules:
(MP) ϕ ,ϕ→ ψ ⊢ ψ .

(Adj⋆) ϕ , ψ ⊢ ϕ ⋆ ψ .

(square-closing) ϕ ⊢ ϕ2 .

In this statement, by “extension of a logic by adding a rule” we mean the
weakest logic containing the given one and satisfying the stated rule. This
expression is more clear in the context of Hilbert-style presentations of the
logics. We finish the section by finding one for |=6

K .
For each variety K of residuated lattices, we denote by Thm(K) the set

of theorems of ⊢K , which by Lemma 2.6 is also the set of theorems of |=6
K .

This set of formulas is semantically determined, because it corresponds to the
equations of the form ϕ ≈ 1 true in K , and does not depend on any particular
axiomatization of ⊢K . Actually, it is known that ⊢K can be axiomatized by
taking all the formulas in Thm(K) as axioms and the rule of Modus Ponens.

Formally, we take an inference rule to be any set of pairs 〈Γ , ϕ〉 where
Γ is a finite set of formulas (if the set can be described by a single scheme

then it is commonly written as Γ ⊢ ϕ or in fraction form as
Γ

ϕ
). To find an

axiomatization of the logic |=6
K we consider the following two rules of inference:

10



(Adj-∧)
{〈
{ϕ, ψ} , ϕ ∧ ψ

〉
: ϕ, ψ ∈ Fm

}
.

(MP-r)
{〈
{ϕ,ϕ→ ψ} , ψ

〉
: ϕ, ψ ∈ Fm and ϕ→ ψ ∈ Thm(K)

}
.

Notice that the rule (MP-r), a restricted form of Modus Ponens, can be applied
only when the premise of the form ϕ→ ψ belongs to Thm(K).

Theorem 2.12 (Completeness). The logic |=6
K is axiomatized by taking all the

formulas in Thm(K) as axioms, and the rules (Adj-∧) and (MP-r) as rules of
inference.

Proof. Let us first see that each axiom and rule is satisfied by |=6
K :

– If ϕ ∈ Thm(K), then by Lemma 2.6 ∅ |=6
K ϕ .

– The rule (Adj-∧): Lemma 2.2 in particular implies that ϕ, ψ |=6
K ϕ ∧ ψ .

– The rule (MP-r): If ϕ → ψ ∈ Thm(K) and v ∈ Hom(Fm,A) for some
A ∈ K , then v(ϕ → ψ) = v(ϕ) → v(ψ) = 1, so v(ϕ) 6 v(ψ) and then
v(ϕ) ∧ v(ϕ → ψ) = v(ϕ) 6 v(ψ). By Lemma 2.2 again, this means that
{ϕ,ϕ→ ψ} |=6

K ψ .
Now, proceeding by induction on the length of the proof it is easy to see that,
if there is a proof of ψ from a set of assumption ϕ0, . . . , ϕn−1 in the axiomatic
system, then ϕ0, . . . , ϕn−1 |=6

K ψ .

Conversely, assume now that ϕ0, . . . , ϕn−1 |=6
K ψ ; by Proposition 2.7 this means

that ∅ ⊢K (ϕ0 ∧ · · · ∧ ϕn−1) → ψ , so (ϕ0 ∧ · · · ∧ ϕn−1) → ψ ∈ Thm(K) is an
axiom of the system. Therefore, n−1 applications of the rule (Adj-∧) followed
by one application of the rule (MP-r) yield a proof of ψ from {ϕ0, . . . , ϕn−1}
in the axiomatic system. This ends the completeness proof.

If, as it happens in most of the examples studied in the literature, one has
an axiomatic presentation for ⊢K that uses a set of axioms AX(K) and only
the ordinary rule of Modus Ponens, then the set AX(K) can replace the set
Thm(K) in the presentation given in Theorem 2.12. This is so because each
application of Modus Ponens in a proof of a theorem of ⊢K will in fact be an
application of (MP-r), therefore the same proof will be a proof in |=6

K .
The algebraizability of ⊢K implies that, from any equational presentation

of the variety K , an axiomatic presentation of the logic ⊢K can be obtained,
see [9, Theorem 8.0.9]. This presentation has Modus Ponens among its rules,
but has other inference rules besides the axioms (basically, the rules expressing
congruence of the equivalence formulas). To find an axiomatic presentation of
⊢K using only Modus Ponens as rule, which would yield an axiomatic presenta-
tion of |=6

K , one can use the local deduction theorem (15) and this will turn all
these rules into theorems, which can then be taken as axioms.

When the set of theorems of ⊢K is decidable, both the set of axioms and
the set of rules of our axiomatization of |=6

K will be decidable, and in this case
the given axiomatic presentation could be called “in the Hilbert style” in full
sense of the term. Clearly, this will happen when the equational theory of K is
decidable. Notice that, even when the set of theorems of ⊢K is not decidable
but recursively enumerable, using Craig’s technique [16] it is not hard to replace
our proposed axioms and rules for |=6

K by other ones that are decidable.
After Theorem 2.12, Corollary 2.11 can be read, more or less informally, as

saying that |=6
K is obtained from ⊢K by weakening the rules of Modus Ponens
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and Adjunction, namely, restricting the rule of Modus Ponens to (MP-r) and
replacing Adjunction for ⋆ by Adjunction for ∧ .

3 Algebras and models

As we already pointed out, the variety K is the equivalent algebraic semantics of
the logic ⊢K . This means that K is the algebraic counterpart of ⊢K according to
a well established general paradigm of the algebraization of a logic, namely the
theory of algebraizable logics initiated by Blok and Pigozzi in [8] (see also [17]).
As to the relation between K and the logic |=6

K , it goes beyond the completeness
result contained implicitly in its definition, but its description needs a more
general framework because, as we will show in Section 4, in general the logic
|=6

K is not algebraizable.
We are going to consider two general, abstract theories of the algebraization

of a logic. Both define the algebraic counterpart of a logic starting from the
notion of a reduced model, which is defined in terms of the Leibniz congruence.
If 〈A, F 〉 is an arbitrary matrix, its Leibniz congruence ΩAF is the largest
of all congruences of A that are compatible with F in the sense that they do
not relate elements inside F with elements outside F ; that is,

ΩAF = max
{
θ ∈ CoA : if 〈a, b〉 ∈ θ and a ∈ F then b ∈ F

}
.

It can be shown that such a congruence always exists and can be characterized
syntactically. A matrix is reduced when ΩAF is the identity; this means that
the identity relation is the only congruence of the algebra that is compatible with
F . Notice that these notions are purely algebraic ones, and are not influenced
by the fact that the matrix is or is not a model of some logic.

The first abstract theory we consider is the general theory of matrices [63],
which forms the oldest part of abstract algebraic logic. This theory takes as
algebraic conterpart of a logic L the class Alg∗(L) of algebra reducts of the
reduced models of L :

Alg∗(L) =
{
A : ∃F ⊆ A , 〈A, F 〉 is a model of L and ΩAF = Id

}
.

If L is algebraizable, then Alg∗(L) coincides with its equivalent algebraic seman-
tics. This is also the class considered by Rasiowa for the so-called implicative
logics treated in [59].

A more general theory is introduced in [35], it is proposed to take generalized
models as the tool to associate a class of algebras with a logic. If 〈A, C〉 is a
g-matrix, then its Tarski congruence is the largest congruence of A that is
compatible with all the members of C ; it can be seen equal to

∼
ΩAC =

⋂

F∈C
ΩAF.

A g-matrix is reduced when its Tarski congruence is the identity, and then the
class of L-algebras Alg(L) is defined as the class of algebra reducts of the
reduced g-models of L , that is,

Alg(L) =
{
A : ∃ C ⊆ P (A) , 〈A, C〉 is a g-model of L and

∼
ΩAC = Id

}
.
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It is easy to see that Alg(L) is the class of subdirect products of algebras in
Alg∗(L), so in general Alg∗(L) ⊆ Alg(L). The empirical study of examples
and the theoretical work developed in [35] and subsequent papers (see [29, 38])
supports the adoption of the class Alg(L) as a better definition of the algebraic
counterpart of a logic L in the most general case.

The two theories agree in a large class of logics, first considered by Blok and
Pigozzi in [7]: the class of protoalgebraic logics, which are those where the be-
haviour of matrix semantics and of the Leibniz operator is good enough to obtain
a smooth transfer between logical and algebraic properties. In [35, Proposition
3.2] it is shown that for a protoalgebraic logic L , Alg∗(L) = Alg(L), but in
general these two classes can be different. Since, as we show in Section 4, most
of the logics |=6

K are not protoalgebraic, we should identify the class Alg(|=6
K )

in order to determine the algebraic counterpart of |=6
K .

To this end, notice that by Lemma 2.2, |=6
K is semilattice based with

respect to K in the sense of [48, p. 76]. This enables us to draw a number
of consequences. To begin with, for a semilattice based logic L , Proposition
3.1 of [48] contains a practical characterization of the class Alg(L): If L is an
arbitrary semilattice based logic with respect to K then Alg(L) is the so-called
intrinsic variety of L , that is, the class of algebras (variety) defined by the
equations ϕ ≈ ψ such that ϕ and ψ are interderivable with respect to L , that
is, such that ϕ ⊣⊢L ψ . In our case, where L is |=6

K , Alg(|=6
K ) is determined

by =||=6
K , and then Corollary 2.3 yields:

Proposition 3.1. Alg(|=6
K ) = K .

In the theory of [35], among the g-models of a logic a prominent role is played
by the so-called full g-models, i.e., the g-models 〈A, C〉 of a logic L that are
of the form C = {h−1[F ] : F ∈ Fi⊢L(B)} for certain homomorphism h from
A onto B . In Corollary 2.12 of [35] it is shown that Alg(L) is also the class of
algebra reducts of the reduced full g-models of L ; in our case these models can
be characterized in a very precise way:

Proposition 3.2. Let 〈A, C〉 be an arbitrary g-matrix. Then 〈A, C〉 is a re-
duced full g-model of |=6

K if and only if A ∈ K and C = Fi∧(A) .

Proof. If 〈A, C〉 is a reduced full g-model of |=6
K , in particular it is a reduced g-

model, and by the general definition of Alg(L) mentioned above, A ∈ Alg(|=6
K ),

that is, A ∈ K by Proposition 3.1. Now we can apply Theorem 2.30 of [35],
which implies that on each algebra there is a unique reduced full g-model of a
logic. Since by definition the g-matrix

〈
A,Fi|=6

K
(A)

〉
is always a full g-model,

together with Proposition 2.9 this implies that C = Fi∧(A). This also proves
the converse.

In turn, this yields a characterization of the class K :

Corollary 3.3. Let A be any algebra. Then A ∈ K if and only if there is a
family C of filters of the logic |=6

K such that the g-matrix 〈A, C〉 is reduced.

Proposition 3.2 shows that we can always take the family of all lattice filters
of the algebra A as the family C .
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The general study of semilattice based logics in [48] does not determine
Alg∗(L) in general; but here we can determine it by an ad-hoc argument:

Proposition 3.4. Alg∗(|=6
K ) = K .

Proof. Since Alg∗(|=6
K ) ⊆ Alg(|=6

K ) is valid in general, by Proposition 3.1 we
have that Alg∗(|=6

K ) ⊆ K . To prove the converse inclusion, take any A ∈ K .
Then by the algebraizability of ⊢K with defining equation x ≈ 1, the matrix〈
A, {1}

〉
is a reduced model of ⊢K , and by Proposition 2.8 every model of ⊢K

is also a model of |=6
K . Therefore

〈
A, {1}

〉
is a reduced model of |=6

K , and by
the definition of Alg∗(L), this implies that A ∈ Alg∗(|=6

K ).

Note that Propositions 3.1 and 3.4 show that K is the algebraic counterpart
of |=6

K in a very strong sense, as the two general theories coincide in this case.
The particular case of this result for K = MV , the variety of MV-algebras,

is stated in Corollary 3.5 of [33]. Unfortunately, the proof given there is flawed,
but we have now proved it more in general.

We end the section with a technical result which will be needed in the next
section and which will allow us to obtain a characterization of the reduced
models of |=6

K , something that can not be obtained from the general theory:

Proposition 3.5. For all A and all F ∈ Fi|=6
K

(A) , there exists the set

F+ = min{G ∈ Fi|=6
K

(A) : ΩAG = ΩAF}. (22)

This set F+ satisfies the following properties:
1. F+ is a ⊢K -filter.

2. F+ ⊆ F .

3. F+ is the only ⊢K -filter having ΩAF as its Leibniz congruence.

4. F+ = 1/ΩAF .

Proof. From the general definitions it follows that if F ∈ Fi|=6
K

(A) then ΩAF ∈
Co

Alg∗(|=6
K )

A , that is, ΩAF is a congruence of A such that the quotient

A/ΩAF is in Alg∗(|=6
K ). By Proposition 3.4, Alg∗(|=6

K ) = K , thus ΩAF ∈
CoKA . On the other hand, since the stronger logic ⊢K is algebraizable with
equivalent algebraic semantics K , the mapping ΩA is an isomorphism between
the lattices Fi⊢K

(A) and CoKA (see [38, Theorem 3.13] for instance); thus,
there exists a unique F+ ∈ Fi⊢K

(A) such that ΩAF
+ = ΩAF . Since the equa-

tion defining the algebraizability of ⊢K is x ≈ 1, F+ = 1/ΩAF
+ = 1/ΩAF

(which shows 4). We prove that F+ ⊆ F : if a ∈ F+ then 〈a, 1〉 ∈ ΩAF , but
by Lemma 2.5, we have that 1 ∈ F and by the compatibility of ΩAF with
F , a ∈ F . This shows 2, and the points 1 and 3 are true by construction.
By (21), F+ ∈ Fi|=6

K
(A), therefore F+ ∈ {G ∈ Fi|=6

K
: ΩAG = ΩAF} and we

have to prove that it is its minimum: take any G ∈ {G ∈ Fi|=6
K

(A) : ΩAG =
ΩAF} and consider the set G+ constructed in the same way as F+ : We already
know that G+ ⊆ G , that G+ ∈ Fi⊢K

(A), and that ΩAG
+ = ΩAG . Therefore,

ΩAG
+ = ΩAG = ΩAF = ΩAF

+ . By the mentioned isomorphism, this implies
F+ = G+ , so F+ ⊆ G .
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The filters with the property (22) were introduced and studied in depth
in [36], where they are called Leibniz filters. There it is shown that they exist
for every protoalgebraic logic, but their existence for non-protoalgebraic logics
is unknown in general. This gives an independent interest to Proposition 3.5.
Moreover, it is easy to use it to obtain the following characterization of the
reduced models of |=6

K .

Corollary 3.6. A matrix 〈A, F 〉 is a reduced model of |=6
K if and only if A ∈ K

and F is a lattice filter of A such that F+ = {1} .

Proof. If 〈A, F 〉 is a reduced model of |=6
K , by Proposition 3.4 A ∈ K and

by Proposition 2.9 F is a lattice filter of A . By algebraizability, {1} is the
only filter of ⊢K on A having the identity as its Leibniz congruence. Hence
F+ = {1} . The converse is also obvious given that ΩAF = ΩAF

+ .

There are several ways to rephrase the condition that F+ = {1} . For
instance, by part 3 of Proposition 3.5, F+ = {1} is equivalent to saying that
{1} is the only filter G of ⊢K whose Leibniz congruence ΩAG is compatible
with F . Or, by part 4 of Proposition 3.5, this is to say that if 〈a, 1〉 ∈ ΩAF
then a = 1. However, we do not have a working characterization of ΩAF when
F ∈ Fi|=6

K
(A) for an arbitrary A ; thus the characterization of the reduced

matrices in Corollary 3.6 is of little use in general. However, in the next section
we will find better ones in case the logic is protoalgebraic, and indeed some of
them will be shown to be equivalent to the property of being so.

4 Classification in the hierarchies of abstract al-

gebraic logic

In this section we investigate the location of the logic |=6
K inside the two general

hierarchies of logics considered in abstract algebraic logic: the Leibniz hierarchy
and the Frege hierarchy; see [17, 30, 38] for more details on the hierarchies
and on abstract algebraic logic in general. The Leibniz hierarchy is organized
around properties of the Leibniz operator on the filters of the logics; we deal
with it later. Let us begin with the Frege hierarchy, which is organized, so to
speak, around the kind of replacement properties of the logic. The basic, largest
class in this hierarchy is that of selfextensional logics, which are the logics L
whose interderivability relation ⊣⊢L is a congruence of the algebra of formulas.
This means that L satisfies the following weak form of the replacement property:
For any α, β, ϕ(x, ~y) ∈ Fm ,

if α ⊣⊢L β then ϕ(α, ~y) ⊣⊢L ϕ(β, ~y). (23)

We see that all our logics belong to this class:

Proposition 4.1. For each variety K of residuated lattices, the consequence
relation |=6

K is selfextensional.

Proof. We have seen in Corollary 2.3 that ϕ =||=6
K ψ holds if and only if K |=

ϕ ≈ ψ . This last relation is always a congruence relation.
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The next class in the hierarchy is that of fully selfextensional logics, which
are the logics whose full g-models inherit the property of replacement (23); for
this it is enough to postulate that for each algebra A ∈ Alg(L), the interderiv-
ability relation of the “basic” full g-model on A , which is 〈A ,Fi⊢LA〉 , is a
congruence of A . Then:

Corollary 4.2. For each variety K of residuated lattices, the consequence re-
lation |=6

K is fully selfextensional.

Proof. By Proposition 3.1, for each K we have that Alg(|=6
K ) = K and by

Proposition 2.9, if A ∈ K the filters of |=6
K on A are the lattice filters of

A . It is well-kown that in a lattice, if two elements generate the same filter
then they are equal. Thus the interderivability relation associated with the g-
matrix

〈
A,Fi|=6

K
(A)

〉
is the identity, which is trivially a congruence. Since by

Proposition 3.2 the g-matrices of this form are the reduced full g-models of |=6
K ,

this establishes that this logic is fully selfextensional.

Fully selfextensional logics form a smaller class than that of selfextensional
logics in the Frege hierarchy, and they have better properties. The other two
classes in the Frege hierarchy are those of Fregean logics and of fully Fregean
ones. They are defined similarly to the preceding ones, but requiring the postu-
lated replacement properties to hold relatively to every theory of the logic (and
of the full g-models, respectively). Thus, a logic L is Fregean when for each
theory T of L , the interderivability relation of L modulo T is a congruence of
Fm . This corresponds to the following strong form of the replacement property:
For any theory T of L , any α, β, ϕ(x, ~y) ∈ Fm ,

if T, α ⊢L β and T, β ⊢L α then T, ϕ(α, ~y) ⊢L ϕ(β, ~y). (24)

Fregean logics were introduced in [35, 56], and have been extensively studied
in the context of protoalgebraic logics in [19, 20], see also [17]. Fully Fregean
logics are those that inherit the Fregean character for all their full g-models,
and form the smallest and best behaved class in the hierarchy. Next we see that
among our logics only those corresponding to varieties of generalized Heyting
algebras belong to this class, and that they coincide with those that are Fregean.
Generalized Heyting algebras can be informally described as Heyting alge-
bras possibily without minimum; relatively to the variety RL they are defined
by the equation

x ⋆ y ≈ x ∧ y. (25)

These algebras are called relatively pseudo-complemented lattices in [59], and
Brouwerian algebras2 in [40] and other works. Had we developed our theory
in the restricted case of subvarieties of FLew , then “Heyting algebras” should
replace “generalized Heyting algebras” everywhere in the paper.

Proposition 4.3. Let K be a variety of residuated lattices. Then the following
conditions are equivalent:
1. The logic |=6

K is fully Fregean.

2Notice that the name “Brouwerian algebras” has also been used in the literature to denote
the duals of Heyting algebras.
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2. The logic |=6
K is Fregean.

3. K is a variety of generalized Heyting algebras.

Proof. (1 ⇒ 2) is trivial.
(2 ⇒ 3) Let us note that each variable x is interderivable with 1 modulo the
theory generated by x , that is, {x, x} |=6

K 1 and {x , 1} |=6
K x . From the

assumption that |=6
K is Fregean we infer that x ⋆ x and 1 ⋆ 1 are interderivable

modulo the same theory. In particular, {x , 1 ⋆ 1} |=6
K x⋆x , that is, x |=6

K x⋆x .
Since the converse inference always holds, we conclude that x ≈ x2 holds in
K , which, as is well known, implies that all the members of K are generalized
Heyting algebras.
(3 ⇒ 1) If A ∈ K then by Proposition 2.9 Fi|=6

K
(A) = Fi∧(A), and it is

well known that in a generalized Heyting algebra, for each lattice filter F , the
relation a ≡ b ⇐⇒ Fi∧(F, a) = Fi∧(F, b) is a congruence. This tells us that
|=6

K is fully Fregean.

Summarizing, our class of logics is divided into two groups as far as the
Frege hierarchy is concerned: Those generated by a class of generalized Heyting
algebras are not properly substructural because they satisfy (25), and are fully
Fregean; the rest are fully selfextensional but not Fregean. We are going to find
the same division later on in this section.

Now we start the study of the classification of our logics in the Leibniz hierar-
chy. This hierarchy is much richer and more complicated than the Fregean one,
and most of its classes can be defined or characterized in several ways, although
the majority of them concern several properties of the Leibniz operator ; this
is the mapping

F 7−→ ΩAF

restricted to the set of all L -filters on a fixed algebra A .
The largest class in the Leibniz hierarchy is that of protoalgebraic logics.

They can be defined in a number of equivalent ways. We first consider them as
the logics such that the monotonicity condition

if G ⊆ F then ΩAG ⊆ ΩAF (M)

holds for every algebra A and every pair of filters F,G of the logic over A .
One can also consider the following particular case of condition (M):

if G ⊆ F and ΩAF = Id then ΩAG = Id (M’)

It is not difficult to see that condition (M’) is strictly weaker than (M) and
is not sufficient to guarantee protoalgebraicity; one example is the fragment of
classical propositional logic with only ∧ , ∨ and 1, see [34], and the reason
is that the filters of the reduced models of this logic have exactly one point.
Next we prove, among other facts, that in our case this restriction is indeed
sufficient. In the proof we use the well known fact that if F is a ⊢K -filter then
ΩAF = {〈a, b〉 ∈ A×A : a↔ b ∈ F} .

Theorem 4.4. Let K be a variety of residuated lattices. Then the following
conditions are equivalent:
1. The logic |=6

K is protoalgebraic.
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2. For all A and all F ∈ Fi|=6
K

(A) , F+ = max{G ∈ Fi⊢K
(A) : G ⊆ F} .

3. A matrix 〈A, F 〉 is a reduced model of |=6
K if and only if A ∈ K and F is a

lattice filter of A such that {1} is the only implicative filter of A contained
in F .

4. For every A ∈ K and every F,G ∈ Fi|=6
K

(A) , if G ⊆ F and ΩAF = Id

then ΩAG = Id .

Proof. (1 ⇒ 2) If G is a ⊢K -filter such that G ⊆ F , then it is also a |=6
K -

filter so, if |=6
K is protoalgebraic, ΩAG ⊆ ΩAF = ΩAF

+ . But G and F+ are
also ⊢K -filters, thus by the algebraizability of ⊢K , the mapping ΩA is an order
isomorphism on the lattice of ⊢K -filters, therefore G ⊆ F+ .
(2 ⇒ 3) If A ∈ K then {1} is certainly the smallest implicative filter contained
in a given lattice filter. The result then follows from Corollary 3.6, taking
Propositions 3.4 and 2.9 into account.
(3 ⇒ 4) If 〈A, F 〉 is a reduced model of |=6

K then the characterization in 3
implies that 〈A, G〉 will also be a reduced model whenever G ⊆ F .
(4 ⇒ 1) Let A be an arbitrary algebra and F,G ∈ Fi|=6

K
(A) with G ⊆ F . We

are going to prove that ΩAG ⊆ ΩAF . By Proposition 3.5 we can replace G with
G+ , and therefore without loss of generality we can assume that G ∈ Fi⊢K

(A).
Let us denote by G ∨ F+ the smallest ⊢K -filter including G ∪ F+ . It is clear
that F+ ⊆ G ∪ F+ ⊆ G ∨ F+ . Next we prove that G ∨ F+ ⊆ F . Since G and
F+ are ⊢K -filters and F is an |=6

K -filter, in order to prove that G∨F+ ⊆ F it
is enough by Lemma 2.10 to take a ∈ G and b ∈ F+ and show that a ⋆ b ∈ F .
Using that b 6 a ↔ (a ⋆ b) it follows that a ↔ (a ⋆ b) ∈ F+ . Therefore,
〈a, a ⋆ b〉 ∈ ΩAF

+ = ΩAF . Finally, from the previous fact together with that
a ∈ G ⊆ F we get that a ⋆ b ∈ F .

Thus, we know that F+ ⊆ G∨F+ ⊆ F . Now we define Ã = A/ΩAF
+ , G̃ =

(G∨F+)/ΩAF
+ and F̃ = F/ΩAF

+ . By Proposition 3.4 we know that Ã ∈ K .
And since ΩAF = ΩAF

+ we know that ΩeAF̃ = Id . Using the assumption
it follows that ΩeAG̃ = Id . Thus, ΩAF

+ = ΩA(G ∨ F+). Using that ΩA

is an isomorphism between Fi⊢K
(A) and CoKA (because ⊢K is algebraizable)

we obtain that F+ = G ∨ F+ , i.e., G ⊆ F+ . Using again the isomorphism
we get that ΩAG ⊆ ΩAF

+ . Hence, since ΩAF = ΩAF
+ it follows that

ΩAG ⊆ ΩAF .

Notice that the statement in part 2 of Theorem 4.4 contains two different
facts: it says that for a given filter F of |=6

K there exists the largest filter
of ⊢K contained in it, and it says that this largest filter coincides with F+ .
It is interesting to observe that in general this maximum need not exist, as
shown in Example 1 in Appendix B. But notice that a weaker property always
holds: by a typical application of Zorn’s Lemma, if G is a filter of ⊢K and
G ⊆ F for a filter F of |=6

K , then G can be extended to a filter of ⊢K that
is maximal among those contained in F . Even more, the mentioned maximum
may exist in non-protoalgebraic logics without being equal to F+ . One example
where this happens is the class of MTL algebras. The maximum exists in each
algebra in this class because if A ∈ MTL and F is a lattice filter of A , then
the set {a ∈ A : an ∈ F for every n < ω} is an implicative filter (because
a2n ∧ b2n = (a ∧ b)2n = (a ∧ b)n ⋆ (a ∧ b)n 6 an ⋆ bn = (a ⋆ b)n ) and it is indeed
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the maximum implicative filter inside F . On the other hand, as it will be shown
later on, the logic |=6

MTL is not protoalgebraic (see item 1 after Theorem 4.9).
Therefore, Theorem 4.4 implies that there must exist a MTL algebra (e.g.,
Example 2 in Appendix B) with a filter F of |=6

MTL where the largest filter of
⊢MTL inside F exists without being equal to F+ .

Let MV denote the class of MV algebras, which are the algebraic counterpart
of  Lukasiewicz’s infinite-valued logic. In [33, Theorem 3.11] it was shown that
|=6

MV is non-protoalgebraic. In Example 2 in Appendix B a much simpler proof
is given, by considering Chang’s algebra. Another interesting algebra where (M)
fails is the product algebra given in Example 3 of Appendix B; this proves that
|=6

Π is non-protoalgebraic, where Π is the class of product algebras.
It is obvious that non-protoalgebraic logics must always yield instances of

algebras and filters where (M) fails. However, this seems not the best strategy
to prove non-protoalgebraicity. The difficulty is that there are varieties (e. g.,
MV and Π) where the Leibniz operator is monotonic over lattice filters in a
generator of the variety (e. g., when the generator is a simple algebra) while
there are other algebras in the variety where the monotonicity fails. Hence,
providing an equational characterization of protoalgebraicity has the advantage
over the previous one that it is enough to check it in the algebras generating
the variety.

The proof is based on another characterization of protoalgebraicity of |=6
K :

the existence of a set of formulas ∆(x, y) in two variables such that

∅ |=6
K ∆(x, x) and x ,∆(x, y) |=6

K y (P)

Since |=6
K is finitary and conjunctive (2.2), the set ∆(x, y) can actually be

reduced to just one formula δ(x, y). We are going to see that we can always
take (x→y)n ⋆ (y→x)n , for some n < ω , as the formula δ(x, y). Notice that in
general there is no uniqueness, up to equivalence in |=6

K , of the formula δ(x, y)
satisfying (P); for instance, for classical propositional logic we can consider
either the formula x→y or the formula x↔ y , which are not equivalent in this
logic.

Consider, for any natural number n , the variety Protn ⊆ RL of the residuated
lattices that satisfy the following equation:

x ∧
(
(x→ y)n ⋆ (y→ x)n

)
4 y (Protn)

Note that, by commutativity and associativity of ⋆ , this is actually the same as
x ∧ (x↔ y)n 4 y . This variety can be alternatively defined by other equations
with logical significance:

Theorem 4.5. Let n > 1 . Any of the following equations can replace (Protn )
in the definition of the variety Protn relatively to the variety RL :

x ∧ yn ≈ x ⋆ yn (SCn)

x ∧ (x→ y)n 4 y (MPn)

x ∧ (x→ y)n ∧ (y→ x)n 4 y (SMPn)

Proof. Let us denote provisionally3 by SCn,MPn, SMPn the varieties defined by
the respective equations. It is straightforward that SCn ⊆ MPn ⊆ SMPn ⊆

3The names have been chosen so as to follow the associations SC: “Strong Contraction”,
MP: “Modus Ponens” and SMP: “Symmetric Modus Ponens”.
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Protn , so we have only to show that Protn ⊆ SCn in order to establish the
statement. First we show that if A ∈ Protn then

A |= xn ≈ xn+1. (26)

If a ∈ A , by residuation a 6 an→an+1 = an↔an+1 . Hence, an 6 (an↔an+1)n ,
i.e., an = an∧(an↔an+1)n . Using (Protn) this implies that an 6 an+1 . Thus,
an = an+1 , which shows (26).

Now, in order to prove that Protn ⊆ SCn , let A ∈ Protn and let a, b ∈ A .
It is enough to prove that a ∧ bn 6 a ⋆ bn , but by (26) it is enough to check
that a ∧ bn·n 6 a ⋆ bn . By residuation bn 6 a→ (a ⋆ bn) = a↔ (a ⋆ bn). Hence,
a∧bn·n 6 a∧

(
(a↔ (a⋆bn))n . Using (Protn) this implies that a∧bn·n 6 a⋆bn .

This completes the proof that SCn = MPn = SMPn = Protn .

The simplest and more workable among the four equivalent equations defin-
ing the class Protn seems to be condition (SCn ), as it uses only the operations ∧
and ⋆ . Recall that the operation ⋆ is used to defined the exponential notation,
so that the other conditions use the three operations ∧ , ⋆ and → .

The significance of the family of classes Protn , as well as the justification for
its name, lies in the following important result:

Theorem 4.6. Let K be a variety of residuated lattices. Then the following
conditions are equivalent:
1. The logic |=6

K is protoalgebraic.

2. There is an n < ω such that K |= x ∧
(
(x→ y)n ⋆ (y→ x)n

)
4 y , that is,

such that K ⊆ Protn .

Proof. (2 ⇒ 1) If we take δ(x, y) := (x→y)n ⋆ (y→x)n then the first condition
in (P) holds trivially, and the second one is equivalent to the assumption.
(1 ⇒ 2) Consider the algebra of formulas Fm and the set

θ :=
{
〈ϕ, ψ〉 ∈ Fm× Fm : (x→ y) ⋆ (y→ x) ⊢K (ϕ→ ψ) ⋆ (ψ→ ϕ)

}
.

It is well known that θ is a congruence of Fm (it is actually the Leibniz
congruence of the ⊢K -theory generated by (x→ y) ⋆ (y → x)), and obviously
〈x, y〉 ∈ θ (indeed, it is the smallest one with this property). By the Local
Deduction Theorem (15) for ⊢K it is easy to see that θ is compatible with the
theory T of |=6

K generated by the set
{

(x→ y)n ⋆ (y→ x)n : n < ω
}

. Hence,
θ ⊆ ΩF mT . Let T ′ be the theory of |=6

K generated by T ∪ {x} . By the
monotonicity given by the protoalgebraicity assumption, θ ⊆ ΩF mT ′ , i.e., θ is
compatible with T ′ . Since 〈x, y〉 ∈ θ and x ∈ T ′ , we conclude that y ∈ T ′ ,
that is,

{x} ∪
{

(x→ y)n ⋆ (y→ x)n : n < ω
}
|=6

K y

Since |=6
K is finitary, there is an n < ω such that

∅ |=6
K

(
x ∧

(
(x→ y)n ⋆ (y→ x)n)

)
→ y,

which is equivalent to the statement in 2.
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Conditions (26) also define an interesting family of subvarieties, as do other
equations which will be of interest for our research. Let us formally introduce
them. Consider the equations

x ∨ (xn → y) ≈ 1 (EMn)

xn ∧ yn ≈ xn ⋆ yn (IMCn)

xn ≈ xn+1 (En)

The varieties of residuated lattices given by these equations will be denoted,
respectively, by EMn , IMCn and En . The varieties EMn and En have been widely
considered in the literature under the same names, see [40, pp. 96 and 463],
and they correspond, respectively, to the variety generated by the simple n-
contractive residuated lattices and to the variety of the n-contractive residuated
lattices. As for IMCn , the name relates to the property called “Idempotent Meet
Contraction” (cf. Lemma 4.7).

It is straightforward to check that for every K ∈ {EM,Prot, IMC,E} , if 1 6
n 6 m then Kn ⊆ Km . Indeed, using the MV chain with n + 2 points we
get that if 1 6 n < m then Kn ( Km . Moreover, the cases n = 0 and
n = 1 yield well-known varieties: For n = 0 all the previously defined varieties
coincide with the trivial variety, except in the cases of SC and IMC , where
SC0 = RL = IMC0 . For n = 1 it is not difficult to show that EM1 is the class of
generalized Boolean algebras while Prot1 = IMC1 = E1 is the class of generalized
Heyting algebras. In case we add the condition that 0 is the minimum then
we obtain the usual classes of Boolean and Heyting algebras, respectively (and
FLew -algebras instead of RL).

It is well known that in every residuated lattice the set of idempotent ele-
ments is closed under join, and that in general this is not the case for meet, as
Example 1 in Appendix B shows. However, it is a simple exercise to show:

Lemma 4.7. Let n > 1 . If A ∈ En , then the following conditions are equiva-
lent:
1. A |= xn ∧ yn ≈ xn ⋆ yn .

2. A |= xn ∧ yn ≈ (x ∧ y)n .

3. The set of idempotent elements of A is closed under meet.

It is not difficult to realize (see Lemma 4.8) that we can replace the equation
(IMCn) by the equation (EMn) plus any of the properties in the previous
lemma. It is obvious that in all MTL algebras idempotent elements are closed
under meet, but notice that the class of residuated lattices where idempotent
elements are closed under meet is strictly bigger than MTL , as witnessed for
instance by Example 4 in Appendix B.

In the proof of Theorem 4.5 we have shown that Protn ⊆ En . However we
can do better:

Lemma 4.8. Let n > 1 . Then, EMn ⊆ Protn ⊆ IMCn ⊆ En .

Proof. Let us start with EMn ⊆ Protn . It is well known that EMn is the variety
generated by simple n-contractive algebras (see [40, Chapter 11]). Now suppose
that A |= (EMn) and A is a simple n-contractive residuated latice. Then, for
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every pair of elements a, b ∈ A it holds that either b = 1 or bn = 0. Thus, in
both cases, a ∧ bn = a ⋆ bn . Therefore, A |= (SCn ) . After Theorem 4.5, this
establishes that EMn ⊆ Protn . The other two inclusions are straightforward.

In the next result we establish, among several things, that the inclusions are
proper. We notice that in the literature there are at least two different ways
to consider an ordinal sum of a family of residuated lattices: one way [50, 45]
identifies the maximum 1 of one algebra with the minimum of the next algebra
(this applies only to bounded algebras and when the family is ordered, usually
well-ordered), and the other way [2] identifies the maximum 1 of all the algebras
in the family. In this paper we always use the term “ordinal sum” in this last
sense, which indeed is the standard approach of ordinal sums in the case of
hoops and semihoops.

Theorem 4.9. Let n > 2 . Then:
1. The equations (Protn), (IMCn) and (En) , and their equivalents, are pre-

served under the operation of ordinal sums, while (EMn) is not.

2. EMn  Protn  IMCn  En .

3. MTL ∩ EMn  MTL ∩ Protn  MTL ∩ IMCn = MTL ∩ En .

4. MV ∩ EMn = BL ∩ EMn  BL ∩ Protn = BL ∩ En .

5. If A is an MTL chain, then A ∈ Protn if and only if A is an ordinal sum
of simple n-contractive MTL chains.

Proof. 1. The negative part follows from the fact that the ordinal sum of the
 Lukasiewicz chain of n + 1-values with itself does not satisfy (EMn). For the
positive part (which also works for n > 0) we only need to take care about the
case where the two elements involved in the equations are in different compo-
nents, and this can be straightforwardly checked by the reader.
2. The fact that EMn  Protn is witnessed by the ordinal sum of the  Lukasiewicz
chain of n+ 1-values with itself; indeed, it shows that BL ∩ EMn  BL ∩ Protn ,
and hence a fortiori that BL ∩ Protn * EMn . The strict inclusion Protn  IMCn

is witnessed by Example 5 in Appendix B; actually, it shows that MTL∩Protn  
MTL ∩ IMCn . Finally, IMCn  En is witnessed by Example 1 in Appendix B.
3. The same counterexamples that were given in part 2 work here. And
the only new inclusion is that MTL ∩ En ⊆ IMCn . Let A ∈ MTL ∩ En .
We want to prove that A |= xn ∧ yn ≈ xn ⋆ yn . Since we are consider-
ing MTL algebras we can suppose that A is a chain. Let a, b ∈ A . Then,
an ∧ bn = (a∧ b)n = (a∧ b)n ⋆ (a∧ b)n 6 an ⋆ bn 6 an ∧ bn . Therefore, all these
inequalities are equalities.
4. The first equality follows from [40, Theorem 11.19], [14, Theorem 1.7] and [15,
Proposition 3.1]. For the inequality, the same counterexamples that were used
in part 2 work here again. Finally, we have to show that BL ∩ En ⊆ Protn . We
remind the reader that BL |= x ∧ y ≈ y ⋆ (y → x). Take any A ∈ BL ∩ En and
any a, b ∈ A . Then a∧ bn = bn ⋆ (bn→a) = bn ⋆ bn ⋆ (bn→a) 6 bn ⋆ a 6 a∧ bn .
Therefore, a ∧ bn = a ⋆ bn and so A |= (SCn ) , that is, A ∈ Protn .
5. By 1 it is trivial that if A is an ordinal sum of simple n-contractive MTL
chains then A |= (Protn). Let us assume now that A |= (Protn). Then
we know that A |= (En). Hence, two elements a, b ∈ A are in the same
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Archimedean component iff an = bn . It is obvious that every Archimedean
component is a simple n-contractive MTL chain. We only need to check that
A is the ordinal sum of its Archimedean components. In other words, we have
to check that if a, b are two elements in different components then a⋆ b = a∧ b .
Let us assume that a, b are in different components and that a < b (remember
that we are in a chain). Since they are in different components it holds that
a < bn . Thus, a = a ∧ bn 6 a ∧

(
a→ (a ⋆ b)

)n 6 (a ⋆ b)n 6 a ⋆ b 6 a ∧ b 6 a .
Therefore, all these inequalities are equalities.

We note that MTL chains coincide with FLew chains, and in this setting
the restriction to chains in part 5 of Theorem 4.9 is unavoidable; this necessity
is witnessed for instance by Example 4 in Appendix B.

As a consequence of Theorem 4.9 we have the following facts:
1. If K is a variety of residuated lattices such that |=6

K is protoalgebraic then
there exists an n < ω such that all algebras of K are n-contractive (i.e., K ⊆
En ). In particular, it follows that if K is any of the varieties RL,MV,Π,BL,MTL

or FLew then |=6
K is non-protoalgebraic.

2. If K is a variety of residuated lattices such that |=6
K is protoalgebraic then in

all algebras of K the meet of idempotent elements is always an idempotent
element.

3. If K ⊆ MTL , then the logic |=6
K is protoalgebraic if and only if there exists a

natural n such that all chains in K are ordinal sums of simple n-contractive
MTL chains. We point out that there are finite MTL chains not defining a
protoalgebraic logic, for instance Example 5 in Appendix B.

4. If K ⊆ BL , then the logic |=6
K is protoalgebraic if and only if there exists

a natural n such that K ⊆ En . In particular any finite BL chain defines a
protoalgebraic logic.

5. If K is the variety generated by a family of continuous t-norms (over the
real unit interval), then K defines a protoalgebraic logic if and only if K is
the variety of Gödel algebras. This is a consequence of the fact that the
standard Gödel t-norm is the only continuous t-norm that is n-contractive
for some n > 2; and indeed it is n-contractive for every n ∈ ω . In fact,
the logic preserving the degrees of truth over Gödel algebras is not only
protoalgebraic but algebraizable, as we show below.

6. The equation (Protn) (and its equivalents) gives a characterization of or-
dinal sums of simple n-contractive MTL chains that is alternative (possi-
bly simpler) than the one stated in [47, Prop. 4.24]. In this paper these
ordinal sums were characterized using (both) equations xn ≈ xn+1 and
(yn → x) ∨

(
x→ (x ⋆ y)

)
≈ 1.

Now we investigate when the logics preserving degrees of truth are equiv-
alential. By definition |=6

K is equivalential when there is a set of formulas
∆(x, y) in two variables satisfying the condition (P) and the condition

∆(x, y) ∪∆(z, w) |=6
K ∆(x ◦ z, y ◦ w) where ◦ ∈ {⋆,∧,∨,→}. (E)

The formulas in the set ∆(x, y) are called equivalence formulas. By defini-
tion, every equivalential logic is protoalgebraic, but notice that for an equivalen-
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tial logic, it is not true that any set ∆(x, y) satisfying (P), and hence witness-
ing protoalgebraicity, also satisfies (E). Moreover, in equivalential logics the set
∆(x, y) involved in the definition is unique up to interderivability in the logic,
something not true for protoalgebraic logics. A logic is finitely equivalential
when it is equivalential and has a finite set of equivalence formulas. In our case,
since |=6

K is finitary and conjunctive, when |=6
K is finitely equivalential we can

assume that ∆(x, y) reduces to just one formula δ(x, y).

Theorem 4.10. Let K be a variety of residuated lattices and let n > 1 . Then
the following conditions are equivalent:
1. K ⊆ Protn .

2. For every algebra A and every F ∈ Fi|=6
K

(A) , F+ = {a ∈ A : an ∈ F} .

3. For every algebra A and every F ∈ Fi|=6
K

(A) , ΩAF =
{
〈a, b〉 ∈ A × A :

(a↔ b)n ∈ F
}
.

4. The logic |=6
K is finitely equivalential, with ∆(x, y) :=

{
(x↔ y)n

}
as set of

equivalence formulas.

Proof. (1 ⇒ 2) Assume that K ⊆ Protn and that F ∈ Fi|=6
K

(A), and let G be
{a ∈ A : an ∈ F} . Since Protn ⊆ IMCn it is clear that G is closed under ⋆ .
Thus, G is a ⊢K -filter of A . Indeed, G is the largest ⊢K -filter inside F . We
obtain that F+ = G by Theorems 4.4 and 4.6.
(2 ⇒ 3) is a consequence of the algebraizability of ⊢K .
(3 ⇒ 4) is a general fact in abstract algebraic logic, related to another of the
characterizations of equivalential logics: the definability of the Leibniz congru-
ence in the filters of the logic.
(4 ⇒ 1) follows from the facts that in general, in an equivalential logic every
set ∆(x, y) of equivalence formulas also satisfies (P), and that for the logic |=6

K

and the set ∆(x, y) :=
{

(x ↔ y)n
}

the second property in P amounts to the
condition (Protn ).

If we take the fact that Protn ⊆ En into account, then Theorem 4.10 yields:

Corollary 4.11. Let K be a variety of residuated lattices. Then the following
conditions are equivalent:
1. The logic |=6

K is protoalgebraic.

2. The logic |=6
K is finitely equivalential.

3. For every algebra A and F ∈ Fi|=6
K

(A) it holds that F+ = {a ∈ A : an ∈
F for every n < ω} .

4. For every algebra A and F ∈ Fi|=6
K

(A) it holds that ΩAF = {〈a, b〉 ∈
A×A : (a↔ b)n ∈ F for every n < ω} .

5. The logic |=6
K is equivalential.

Finally, we analyse the issue of the algebraizability of the logics preserving
degres of truth. The following fact is interesting to notice: We already know
that all logics |=6

K preserving degrees of truth are selfextensional, and that all
logics ⊢K preserving truth are algebraizable. One reading of the next result is
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that these properties so-to-speak separate the two groups, in the sense that a
logic in one group cannot have the characteristic property of the other group
unless it actually belongs to it (because the two logics concide), and that this
happens if and only if the class K is a variety of generalized Heyting algebras.

Theorem 4.12. Let K be a variety of residuated lattices. Then the following
conditions are equivalent:
1. The logic |=6

K is algebraizable.

2. |=6
K = ⊢K .

3. The logic ⊢K is selfextensional.

4. K is a variety of generalized Heyting algebras (i.e., K ⊆ Prot1 ).

Proof. (1⇒2) Assume |=6
K is algebraizable and let A ∈ K ; we are going to

prove that Fi|=6
K

(A) = Fi⊢K
(A). By (21), in general Fi|=6

K
(A) ⊇ Fi⊢K

(A).
Now take any F ∈ Fi|=6

K
(A). In Proposition 3.5 we defined F+ as min{G ∈

Fi|=6
K

(A) : ΩAG = ΩAF} . Since the Leibniz operator is injective over the
filters of an algebraizable logic on an arbitrary algebra, in particular it will be
injective over Fi|=6

K
(A) and hence F+ = F . By Proposition 3.5.1 we conclude

that F ∈ Fi⊢K
(A). Since Alg(|=6

K ) = Alg(⊢K) = K , the equality Fi|=6
K

(A) =

Fi⊢K
(A) in all A ∈ K implies that |=6

K = ⊢K .

(2⇒3) because |=6
K is selfextensional by Proposition 4.1.

(3⇒4) In a residuated lattice a ⋆ b = 1 if and only if a ∧ b = 1. Therefore,
x ⋆ y ⊣⊢K x ∧ y for all K . If we assume that ⊢K is selfextensional, this means
that K |= x ⋆ y ≈ x ∧ y , and this amounts to saying that K is a variety of
generalized Heyting algebras.
(4⇒2) It is well known that if K is a variety of generalized Heyting algebras then
⊢K satisfies the deduction theorem. Applying it to Proposition 2.7 we obtain
that ⊢K and |=6

K coincide on finite, non-empty sets of assumptions. Since both
logics are finitary and by Lemma 2.6 they have the same theorems, they are
equal.
(2⇒1) because ⊢K is always algebraizable.

The reader may have noticed that the only property of algebraizable logics
used in the proof of the step 1⇒2 is the injectivity of the Leibniz operator.
Thus, this property alone might be listed among the equivalent properties in
Theorem 4.12. Moreover, that |=6

K belongs to any class of logics containing
the algebraizable ones and where the Leibniz operator is injective will also be
equivalent to any of these properties. The most notable of these, yet not well-
known, are the class of weakly algebraizable logics [18, 35] and the class of truth-
equational logics [58]; they are defined, respectively, by the property that the
Leibniz operator is both monotone and injective, and by the property that it is
completely order-reflecting, a condition which implies injectivity but not mono-
tonicity. It has been proved that algebraizable logics are weakly algebraizable,
and that these are truth-equational.

Recall that, by Proposition 4.3, two other properties are also equivalent
to those in Theorem 4.12: that the logic |=6

K is Fregean, and that it is fully
Fregean. Since being Fregean implies being selfextensional, from the merging of
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both results we infer that the algebraizable logic ⊢K is Fregean if and only if K
is a variety of generalized Heyting algebras. This matches well with Theorem
3.1 in [62], where it is shown that an extension of the logic FL related to the
Full Lambek’s calculus is Fregean if and only if it is an axiomatic extension of
FLeci , which is precisely the logic corresponding to the variety of generalized
Heyting algebras. It is interesting to notice that the authors of [62] propose
a definition of a substructural logic as a non-Fregean extension of FL ; we
do not inted to discuss this proposal, but notice that in such a context our
results would characterize the logics |=6

K for K a variety of generalized Heyting
algebras as non-substructural, or, as we say in the Introduction, as not properly
substructural.

The weakest among all logics falling under Theorem 4.12 is (definitionally
equivalent to) Johansson’s minimal logic. If we add the condition that the
constant 0 is an inconsistent formula (i.e., one that entails all other formulas;
this corresponds to all algebras in K having 0 as a least element) then we find
one of the best known non-classical logics, namely intuitionistic logic. Thus this
result yields several characterizations of intuitionistic logic: Among all logics
preserving degrees of truth with respect to a variety of bounded residuated
lattices, it is the weakest algebraizable one; and among all those preserving
truth with respect to a variety of bounded residuated lattices, it is the weakest
selfextensional one.

One of the logics that fall under the scope of Theorem 4.12 is the logic corre-
sponding to linear Heyting algebras, known in the literature as either Dummett’s
logic [23] or as Gödel’s logic [45]. Thus in this case ⊢K and |=6

K will coincide.
This is a strengthening of Theorem 4.2.18 of [45] and of Proposition 13 of [5],
which state a similar fact in the case where K consists of the single algebra on
the real unit interval (and, indeed, in the case of [45], its |=6

K actually uses (1)
but only with the rational points, while the model is still the whole real unit
interval).

For another family of logics falling under the scope of the previous results,
consider the case where K is the variety generated by a finite subalgebra of the
standard real unit interval [0,1]; this corresponds to some of the most popu-
lar many-valued logics, namely  Lukasiewicz’s finitely-valued logics. These were
analyzed in [42] by means of many-sided sequent calculi, but the associated sen-
tential logics were also considered, and it was proved (with different terminology
and notation) that the corresponding logics preserving degrees of truth |=6

K are
finitely equivalential, and non-algebraizable for n > 2.

5 Tarski and Gentzen style characterizations

In this section we begin by giving (Theorem 5.1) what can be called a Tarski
style characterization of the variety RL of residuated lattices. This term orig-
inate with Wójcicki, who in [63] calls Tarski style condition any property of a
closure operator where only one logical connective or operation appears. By
relaxing somehow this definition, i. e., by allowing more than one operation to
appear in each condition, and by appying it to closure operators on arbitrary
algebras (Wójcicki works only on the set of formulas), we can start by giving a
characterization of residuated lattices in terms of Tarski style conditions (notice
that actually only one condition is of the “relaxed” kind, namely condition T6
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below corresponding to residuation).
The Tarski style conditions will determine a sequent calculus whose reduced

models are the operators of lattice filter generation in residuated lattices. From
this, we obtain both a Tarski style and a Gentzen style characterization of the
logic |=6

RL , which is the weakest case of those treated in a unified form up to
now. As we have already noted, its associated substructural logic is the logic
denoted as FLei in [40]. Since all other logics correspond to subvarieties of RL ,
they are axiomatic extensions of FLei and admit a similar treatment. At the
end of the section we show how this can be done.

Recall from Section 2 that a generalized matrix (g-matrix for short) is a pair
〈A, C〉 where A is an algebra and C is a closure system on its carrier A . With
each closure system we associate a mapping C : P(A) → P(A), the closure
operator defined by X ⊆ A 7→ C(X) =

⋂{T ∈ C : X ⊆ T } . Then C is the
family of C -closed subsets of A , that is, for each T ⊆ A , T ∈ C if and only if
C(T ) = T . If a, ai ∈ A , we write C(a) instead of C

(
{a}

)
, and C(a1, . . . , an)

instead of C
(
{a1, . . . , an}

)
. It is clear that the relation a ≡C b defined by

C(a) = C(b) is an equivalence relation on A .

Theorem 5.1. A ∈ RL if and only if there exists a finitary closure operator C
on A satisfying the following properties, for all a, b, c ∈ A :
T0 (Reducedness) C(a) = C(b) implies a = b .

T1 (Identity) a→ a ∈ C(∅) and

(Maximum) 1 ∈ C(∅) .
T2 (Order) if a→ b ∈ C(∅) then b ∈ C(a) .

T3 (Conjunction) C(a ∧ b) = C(a, b) .

T4 (Disjunction) C(a ∨ b) = C(a) ∩ C(b) .

T6 (Residuation) c ∈ C(a ⋆ b) iff b→ c ∈ C(a) .

T7 (Premise permutation) C
(
a→ (b→ c)

)
⊆ C

(
b→ (a→ c)

)
.

Proof. The proof uses a number of technical lemmas that will be proven in
Appendix A. If A ∈ RL and C is the operator of lattice filter generation, then
it is well known (as in every lattice) that it is a finitary closure operator on A
satisfying T2, T3 and T4. The other properties reflect some of the fundamental
properties of residuated lattices. Conversely, if C is a finitary closure operator
satisfying T0–T7, then by T0 the equivalence ≡C is the identity, thus the results
of the lemmas in Appendix A on A/≡C apply directly to A . In particular,
from item 6 in Lemma A.3 it follows that A ∈ RL , as was to be proven.

As we will see, property T0 will be treated somehow apart from properties
T1–T7: The technical lemmas in Appendix A will not require T0, thus being of
a wider applicability.

Some straightforward consequences of some properties among T1–T7, which
follow just by using that C is a closure operator, are:
1. a ∈ C(b) if and only if C(a) ⊆ C(b).

2. The relation a ≡C b is an equivalence relation.

3. C(∅) = C(1) 6= ∅ . This follows from T1.
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4. C(∅) =
⋂

a∈AC(a). This is a consequence of 3.

5. Any finitely generated closed set is principal: C(a1, . . . , an) = C(a1∧· · ·∧an)
is a generalized form of of T3.

6. C
(
a→ (b→ c)

)
= C

(
b→ (a→ c)

)
. This follows from T7, by symmetry.

It is worth highlighting here some of the results obtained in Appendix A.
For instance, in Lemma A.3 we see:

Corollary 5.2. If a closure operator C on an arbitrary algebra A satisfies
properties T1–T7, then the equivalence relation ≡C is a congruence of A and
the quotient A/≡C is a residuated lattice.

Corollary 5.3. If A is a residuated lattice, then the only finitary closure op-
erator C satisfying properties T0–T7 in Theorem 5.1 is the one corresponding
to the closure system C = Fi∧(A) .

Proof. It is well known that the closure operation of lattice filter generation in a
residuated lattice satisfies the stated properties. Conversely, property T0 means
that the relation ≡C is the identity, so that A can be identified with A/≡C ;
then from Lemma A.4 it follows that if C is finitary and satisfies T1–T7, then
C = Fi∧(A).

Next we introduce a Gentzen system for the variety RL . Here a sequent
will be a pair 〈Γ, ϕ〉 where Γ is a finite, possibly empty set of formulas, and ϕ
a formula; we will denote it by Γ � ϕ in order to avoid any potential misun-
derstanding with other symbols that are sometimes used as sequent separator,
such as ⊢ ,→ or ⇒ .

Definition 5.4. The Gentzen system GRL is the one defined by the following
axioms and rules (where ϕ, ψ, ξ range over arbitrary formulas):
1. All the structural axioms and rules, i.e., the initial axiom ϕ � ϕ plus the

rules of weakening and cut.

2. Logical axioms: ∅ � ϕ→ ϕ (Identity)

∅ � 1 (Maximum)

ϕ , ψ � ϕ ∧ ψ (Conjunction 1)

ϕ ∧ ψ � ϕ (Conjunction 2)

ϕ ∧ ψ � ψ (Conjunction 3)

ψ→ (ϕ→ ξ) � ϕ→ (ψ→ ξ) (Premise permutation)

3. Logical rules:

∅ � ϕ→ ψ

ϕ � ψ
(Order)

ϕ ∨ ψ � ξ

ϕ � ξ
(Disjunction 1)

ϕ ∨ ψ � ξ

ψ � ξ
(Disjunction 2)

ϕ � ξ ψ � ξ

ϕ ∨ ψ � ξ
(Disjunction 3)

ϕ ⋆ ψ � ξ

ϕ � ψ→ ξ
(Residuation 1)

ϕ � ψ→ ξ

ϕ ⋆ ψ � ξ
(Residuation 2)
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Since the left-hand side of our sequents is a (finite) set of formulas, rather
than a multiset or a sequence, it is not necessary to include the structural rules
of contraction and exchange, as they are so-to-speak built-in in the formalism.

Definition 5.5. A generalized matrix 〈A, C〉 with corresponding closure oper-
ator C is a model of a Gentzen system when it is a model of all its rules,
in the following sense: Let

Γ0 � ϕ0 . . . Γn−1 � ϕn−1

Γn � ϕn

(27)

be the general form of a Gentzen style rule. 〈A, C〉 is a model of the rule (27)
when for any v ∈ Hom(Fm,A) , if v(ϕi) ∈ C

(
v[Γi]

)
for all i < n , then

v(ϕn) ∈ C
(
v[Γn]

)
.

Obviously, axioms (initial sequents) are treated as rules with no premises,
in which case the above definition yields that 〈A, C〉 is a model of an axiom
Γ � ψ when v(ψ) ∈ C

(
v[Γ ]

)
for all v ∈ Hom(Fm,A). Notice that any closure

operator is a model of the structural rules. If L is a logic then we will say that
L satisfies the rule (27) when 〈Fm,⊢L〉 is a model of the rule.

The rules of our Gentzen system have been chosen (and labelled) so as to
make the proof of the following result simply trivial:

Theorem 5.6. Let A be an algebra, and C a closure operator on A . Then
the associated g-matrix 〈A, C〉 is a model of GRL if and only if C satisfies the
properties T1–T7 of Theorem 5.1.

Proposition 5.7. If A is an algebra and C is a finitary closure operator on
A , then the associated g-matrix 〈A, C〉 is a reduced model of GRL if and only if
A ∈ RL and C = Fi∧(A) .

Proof. If A ∈ RL and C = Fi∧(A) then Corollary 5.3 plus Theorem 5.6 imply
that 〈A, C〉 is a model of GRL , and moreover it is reduced by condition T0.
Conversely, if 〈A, C〉 is a model of GRL then by Theorem 5.6 C satisfies prop-
erties T1–T7. Then by Corollary 5.2 ≡C is a congruence. Now the assumption
of being reduced means that ≡C is the identity, thus C satisfies T0, and then
Corollary 5.3 finishes the proof.

Since the algebraic counterpart of a Gentzen system is defined, as for de-
ductive systems, as the class of algebra reducts of its reduced models, we have:

Corollary 5.8. Alg(GRL) = RL and hence also Alg(GRL) = Alg(|=6
RL) .

From the preceding results a very compact description of the relation be-
tween the Gentzen system GRL and the logic |=6

RL can be obtained. The notion
of a Gentzen system being fully adequate for a sentential logic, introduced
in [35, Definition 4.10], has a deep significance in some recent works in abstract
algebraic logic, see [37, 39]. When the logic has theorems (which is the case
here), then it can be defined by saying that the full g-models of the logic co-
incide with the models of the Genten system. It is important to stress that
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this means that the Gentzen system characterizes not only all the rules satis-
fied by the logic, but also those inherited by the operator of filter generation in
arbitrary algebras.

Theorem 5.9. The Gentzen system GRL is fully adequate for |=6
RL .

Proof. In Corollary 5.8 we have proved that GRL and |=6
RL have the same alge-

braic counterpart. Since in A ∈ RL , by Proposition 2.9, Fi∧(A) = Fi|=6
RL(A)

,
Corollary 5.3 and Theorem 5.1 put together show that on residuated lattices
the only reduced model of GRL corresponds to the closure system of all filters of
|=6

RL . This is exactly the characterization obtained in Proposition 4.12 of [35]
of the notion of a Gentzen system being fully adequate for a deductive system,
in the case where the latter has theorems, which is the case here.

Other consequences that follow immediately from Theorem 5.9 are:

Corollary 5.10.
1. |=6

RL is the internal deductive system associated with GRL in the following
sense: if {ϕ0, . . . , ϕn} ⊆ Fm , then

ϕ0, . . . , ϕn−1 |=6
RL ϕn ⇐⇒ ϕ0, . . . , ϕn−1 � ϕn is derivable in GRL.

2. |=6
RL is the weakest deductive system that satisfies all the axioms and rules

of GRL .

3. |=6
RL is the weakest deductive system that satisfies properties T1–T7 of The-

orem 5.1.

4. GRL is algebraizable with respect to RL with transformers

∅ � ψ 7−→ ψ ≈ 1

ϕ0, . . . , ϕn−1 � ϕn 7−→ ϕ0 ∧ · · · ∧ ϕn−1 ∧ ϕn ≈ ϕ0 ∧ · · · ∧ ϕn−1

ϕ ≈ ψ 7−→ {ϕ � ψ , ψ � ϕ}.

5. ⊢RL is the external deductive system associated with GRL in the following
sense: if {ϕ0, . . . , ϕn} ⊆ Fm , then ϕ0, . . . , ϕn−1 ⊢RL ϕn if and only if the
sequent ∅ � ϕn is derivable in GRL from the sequents ∅ � ϕ0, . . . , ∅ �

ϕn−1 .

The terms “internal” and “external” are taken from [4]. Part 2 is what can
be called a Gentzen style characterization of |=6

RL , while part 3 is the (almost)
Tarski style characterization of |=6

RL . Part 5 can be paraphrased as saying
that ⊢RL is the Hilbert subrelation of the Gentzen system GRL in the sense
of [57]; moreover, since both the logic ⊢RL and the Gentzen system GRL are
algebraizable and the variety RL is their common equivalent algebraic semantics,
it follows that ⊢RL and GRL are deductively equivalent, and that GRL is simply
Hilbertizable, again using the terminology of [57]. It is interesting to notice the
twofold relationship between the variety RL and the logical systems analysed in
this paper. While by definition the variety RL gives raise to the two sentential
logics ⊢RL and |=6

RL in a semantic way, it also defines the Gentzen system GRL ,
which in turn also happens to determine syntactically the two logics as shown
above.
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There is another Gentzen system having a further interest for ⊢RL , namely
the substructural system originating in [54] and algebraically studied in [1],
which is a variant of the one called FLew in the literature; it is shown that this
Gentzen system is also algebraizable, having FLew as its equivalent algebraic
semantics, and is also deductively equivalent to ⊢FLew and to GFLew . By elim-
inating the axiom concerning the constant 0 we obtain its analogues for RL ,
with parallel properties.

Finally, let K be a subvariety of RL . In some cases, an equational presen-
tation of K relatively to RL is known. Besides the cases already mentioned
in Section 2, other examples are all the varieties of BL-algebras generated by
a finite number of continuous t-norms4, which together with other varieties of
BL-algebras have been axiomatized in [21, 26, 49]; all the varieties of nilpotent
minimum algebras have been axiomatized in [43]. In all these cases, all the
results found in this section for |=6

RL can be extended to |=6
K . It suffices to add

the condition C(ϕ) = C(ψ) for each equation ϕ ≈ ψ of the said presentation
to the conditions in Theorem 5.1, and we obtain a Tarski style characteriza-
tion of the variety K . And by adding the two sequential axioms ϕ � ψ and
ψ � ϕ to Definition 5.4 we obtain a Gentzen system GK for which all the re-
maining results hold, mutatis mutandis. Thus, we obtain a Tarski style and a
Gentzen style characterizations of |=6

K . For instance, to treat the cases where
0 is the minimum of the algebra we should add the condition “C(0) = A” to
Theorem 5.1, and the logical axiom “0 � ϕ” to Definition 5.4. Let us mention
that this is not the only possible way of carrying out this investigation, and for
particular cases other ad hoc presentations can be found; this was for instance
the case of  Lukasiewicz’s infinite-valued logic as treated in [33].

If no equational presentation of K over RL is known, one can still do the
same for each equation ϕ ≈ ψ that holds in K and not in RL , but this will then
yield an infinite, and perhaps non-recursive, family of conditions and axioms.

A Proof of some lemmas

In this appendix we give the proofs of the technical lemmas necessary for the
proof of Theorem 5.1 and its corollaries. These lemmas do not need condition
T0. The first one concerns only the operations of implication and fusion.

Lemma A.1. If C satisfies properties T1, T2, T6, T7 then for any a, b, c ∈ A :
1. if {a, a → b} ⊆ C(∅) then b ∈ C(∅) , i.e., C(∅) is closed under Modus

Ponens.

2. a ∈ C(b ⋆ a) .

3. if c ∈ C(∅) then a→ c ∈ C(∅) .
4. if C(a) ⊆ C(b) then C(a ⋆ c) ⊆ C(b ⋆ c) and C(c→ a) ⊆ C(c→ b) .

5. b ∈ C(a) iff a→ b ∈ C(∅) .
6. C(a) = C(b) iff {a→ b, b→ a} ⊆ C(∅) .
7. C(a ⋆ b) = C(b ⋆ a) .

4That is, algebras whose universe is the real interval [0, 1] , the lattice operations are those
corresponding to the natural order, ⋆ is given by a (continuous) t-norm, and → by its residual.
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8. if C(a) ⊆ C(b) then C(b→ c) ⊆ C(a→ c) .

9. a→ (b→ c) ∈ C(∅) iff (a ⋆ b) → c ∈ C(∅) .
10. C((a ⋆ b) → c) = C(a→ (b→ c)) .

11. C(a ⋆ (b ⋆ c)) = C((a ⋆ b) ⋆ c) .

12. C((a→ a) → b) = C(b) .

Proof. 1. By T2 and the hypotheses, a→ b ∈ C(∅) implies b ∈ C(a) ⊆ C(∅).

2. By T1 and T6, a→ a ∈ C(∅) ⊆ C(b) implies a ∈ C(b ⋆ a).

3. If c ∈ C(∅) ⊆ C(c ⋆ a), then by T6 a→ c ∈ C(c) = C(∅).

4. By T6, d ∈ C(a ⋆ c), and so c → d ∈ C(a) ⊆ C(b); hence d ∈ C(b ⋆ c).
So C(a ⋆ c) ⊆ C(b ⋆ c). For the other inclusion, note that by T6 it holds
that c → b ∈ C(c → b). Hence a ∈ C(b) ⊆ C((c → b) ⋆ c). Therefore,
c→ a ∈ C(c→ b).

5. (⇐) is T2. (⇒) If a ∈ C(b) then C(a) ⊆ C(b), so by 4 C(b→ a) ⊆ C(b→
b) = C(∅).

6. It is a consequence of 5.

7. Since a ⋆ b ∈ C(a ⋆ b), by T6 and 5, a → (b → (a ⋆ b)) ∈ C(∅). Now by
T7 b→ (a → (a ⋆ b)) ∈ C(∅). Finally, by 5 and T6 again, a ⋆ b ∈ C(b ⋆ a).
Symmetrically, b ⋆ a ∈ C(a ⋆ b) and hence C(a ⋆ b) = C(b ⋆ a).

8. The proof is similar to the one given in the second part of 4. By T6, 7, 4
and T6 again we have that a→ c ∈ C(a→ c). Thus, c ∈ C((a→ c) ⋆ a) ⊆
C((a→ c) ⋆ b), and hence b→ c ∈ C(a→ c), so C(b→ c) ⊆ C(a→ c).

9. By 5, T6 and 5 again, a→ (b→ c) ∈ C(∅) iff b→ c ∈ C(a) iff c ∈ C(a ⋆ b)
iff (a ⋆ b) → c ∈ C(∅).

10. Note that

C((a→ (b→ c)) → ((a ⋆ b) → c)) ∈ C(∅) iff by T7
C((a ⋆ b) → ((a→ (b→ c)) → c)) ∈ C(∅) iff by 9
C(a→ (b→ ((a→ (b→ c)) → c))) ∈ C(∅) iff by T7 and 4
C(a→ ((a→ (b→ c)) → (b→ c))) ∈ C(∅) iff by T7
C((a→ (b→ c)) → (a→ (b→ c))) ∈ C(∅) by T1,

and that

((a ⋆ b) → c) → (a→ (b→ c)) ∈ C(∅) iff by T7
a→ (((a ⋆ b) → c) → (b→ c)) ∈ C(∅) iff by 5

((a ⋆ b) → c) → (b→ c) ∈ C(a) iff by T7
b→ (((a ⋆ b) → c) → c) ∈ C(a) iff by 5

a→ (b→ (((a ⋆ b) → c) → c)) ∈ C(∅) iff by 10
(a ⋆ b) → (((a ⋆ b) → c) → c)) ∈ C(∅) iff by T7
((a ⋆ b) → c) → ((a ⋆ b) → c)) ∈ C(∅) by T1.

Applying 6 to the two previously proven facts, we obtain that
C(a→ (b→ c)) = C((a ⋆ b) → c).
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11. Note that

C(((a ⋆ b) ⋆ c) → (a ⋆ (b ⋆ c))) = by 10
C(a ⋆ b→ (c→ (a ⋆ (b ⋆ c)))) = by 10

C(a→ (b→ (c→ (a ⋆ (b ⋆ c))))) = by 10 and 4
C(a→ ((b ⋆ c) → (a ⋆ (b ⋆ c)))) = by 10
C((a ⋆ (b ⋆ c)) → (a ⋆ (b ⋆ c))) = C(∅) by T1.

so by T2 a ⋆ (b ⋆ c) ∈ C((a ⋆ b) ⋆ c)); to prove (a ⋆ b) ⋆ c) ∈ C((a ⋆ (b ⋆ c)) we
proceed in a similar way.

12. By T1, T6, 7 and T6, we have b→ b ∈ C(a→ a), so b ∈ C((a → a) ⋆ b) =
C(b ⋆ (a → a)), and then (a → a) → b ∈ C(b) by T6. The proof of
b ∈ C(a→ a) → b) is similar.

Remark that property 5 establishes the converse of the implication in T2,
hence the equivalence. Thus, the relation “a → b ∈ C(∅)” is a quasi-order.
This relation can also be expressed in terms of the lattice-like operations:

Lemma A.2. If C satisfies T1–T7 then for all a, b ∈ A ,

a→ b ∈ C(∅) iff C(a) = C(a ∧ b) iff C(b) = C(a ∨ b).

Proof. By 5 and T3, a → b ∈ C(∅) iff b ∈ C(a) iff C(a) = C(a, b) = C(a ∧ b).
For the second equivalence, note that by 5 and T4, a → b ∈ C(∅) iff b ∈
C(a) iff C(b) ⊆ C(a) iff C(b) = C(a) ∩C(b) = C(a ∨ b).

Recall that the relation ≡C is always an equivalence relation. Now we prove
that with our properties it is a congruence relation, and see what happens in
the quotient:

Lemma A.3. If C satisfies T1–T7 then:
1. a ≡C b if and only if a→ b ∈ C(∅) and b→ a ∈ C(∅) .
2. ≡C has the substitution property relative to → and ⋆ .

3. For any a ∈ A , (a→ a)/≡C = 1/≡C = C(∅) .
4. The relation a/≡C 6 b/≡C ⇐⇒ C(b) ⊆ C(a) ⇐⇒ a/≡C → b/≡C =

1/≡C is a partial order in A/≡C , and 1/≡C is its maximum, which is
denoted equally by 1.

5. ≡C ∈ CoA (it is a congruence of the algebra A).

6. A/≡C is a residuated lattice.

Proof. 1. This is another expression of property 6 in Lemma A.1.

2. This follows from properties 4, 7 and 8 in Lemma A.1.

3. This is a consequence of T1 and the (general) fact that all elements in C(∅)
are equivalent.

4. The first equivalence and that this relation is a partial order in A/≡C are
also general facts of the theory of closure operators. The second equivalence
follows from property 5 in Lemma A.1, given that by T1, C(∅) = C(1). That
1/≡C is the maximum of A/≡C follows from property 3 in Lemma A.1.
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5. The substitution property relative to → and ⋆ has already been established,
and it is well known that the substitution properties relative to ∧ and ∨ are
a consequence of T3 and T4, respectively.

6. Properties T3 and T4 imply that A/≡C is a lattice, and we have just es-
tablished (part 4) that 1 is its maximum. Property T6 says, modulo part
4, that ⋆ is residuated and → is its residual. Concerning ⋆ , properties 11
and 7 in Lemma A.1, modulo part 5, show that it is a commutative semi-
group. Finally, to show that it is a monoid we have to show that 1 is
the unit, and by part 5 it is enough to show that C(a ⋆ 1) = C(a): By
properties 2 and 7 in Lemma A.1, C(a) ⊆ C(a ⋆ 1). On the other hand,
by T1, (a ⋆ 1) → (a ⋆ 1) ∈ C(∅), so by parts 7 and 9 of Lemma A.1,
1 → (a→ (a⋆1)) ∈ C(∅), and this, after using property 5 of the same lemma
twice together with the fact that C(1) = C(∅) by T1, gives a ⋆ 1 ∈ C(a),
that is, C(a ⋆ 1) ⊆ C(a).

Given T ⊆ A , we define T/≡C = {a/≡C : a ∈ T } . Then:

Lemma A.4. If C satisfies T1–T7 then:
1. If T ∈ C then T =

⋃
T/≡C .

2. C(a)/≡C = {b/≡C : a/≡C 6 b/≡C} .
3. If moreover C is finitary, then the map T 7→ T/≡C is an order isomorphism

from the family of closed sets of C onto the family of lattice filters of A/≡C ,
both ordered by inclusion.

Proof. 1. In general, if a ∈ T then a ∈ ⋃
T/≡C because a ∈ a/≡C . Con-

versely, assume that T ∈ C , that is, T = C(T ). If a ∈ ⋃
T/≡C , this

means that a ∈ b/≡C for some b ∈ T , so C(b) ⊆ T and a ≡C b , that is,
C(a) = C(b) and then a ∈ T .

2. This follows from property 4 in Lemma A.3.

3. If T ∈ C then from T3 it follows that T/≡C is a lattice filter. Moreover, by 1,
T/≡C ⊆ T ′/≡C if and only if T ⊆ T ′ . This also implies that the mapping is
one-to-one. Now let F be a lattice filter of A/≡C and put TF = C

(⋃
F

)
.

Then, if a ∈ TF there exist a1, . . . , an ∈
⋃
F such that a ∈ C(a1, . . . , an) =

C(a1 ∧ · · · ∧an), so a/≡C > (a1 ∧ · · · ∧an)/≡C = a1/≡C ∧ · · · ∧an/≡C ∈ F ,
which implies that a ∈ ⋃

F because F is a lattice filter. Thus TF =
⋃
F .

This shows that the map is onto and completes the proof.

B Some examples

In this appendix we present five residuated lattices that have been used in
the paper as counterexamples to several statements. The underlying lattice
structures are indicated by the Hasse diagrams in Figure 1, while the remaining
operations (i.e., fusion and implication) are introduced in each case.
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(a) A1 and A4 (b) A2 (c) A3 (d) A5

Figure 1: Underlying lattices of the examples in Appendix B.

Example 1

The residuated lattice A1 has a 6-element universe {0, u, a, b, v, 1} and the
lattice structure depicted in Figure 1(a). The fusion and implication operations
are given by the following tables:

⋆ 0 u a b v 1
0 0 0 0 0 0 0
u 0 0 0 0 0 u

a 0 0 a 0 a a

b 0 0 0 b b b

v 0 0 a b v v

1 0 u a b v 1

→ 0 u a b v 1
0 1 1 1 1 1 1
u v 1 1 1 1 1
a b b 1 b 1 1
b a a a 1 1 1
v u u a b 1 1
1 0 u a b v 1

This algebra is used in the paper for two different purposes. First, because the
lattice filter generated by u (i.e., {u, a, b, v, 1}) does not contain a maximum
implicative filter (cf. Theorem 4.4). Second, because A1 witnesses that IMCn

is strictly included into En (Theorem 4.9, part 2), since a and b are idempotent
elements while a ∧ b is not (cf. Lemma 4.7).

Example 2

This residuated lattice corresponds to the MV-algebra known as “Chang’s al-
gebra” in the literature, see [11, pag. 481] for instance. The universe of the
algebra A2 is {

(0, x) : x ∈ Z+
}
∪

{
(1, x) : x ∈ Z−

}
.
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where Z+ denotes the set of positive integers, including 0, while Z− denotes
the negative ones, also including 0. These elements are ordered as shown in
Figure 1(b). The fusion ⋆ is defined by

(i, x) ⋆ (j, y) :=





(0, 0) if i = j = 0
(1, x+ y) if i = j = 1
(0,max{0, x+ y}) otherwise

and the implication → is defined by

(i, x) → (j, y) :=





(1, 1) if i = 0 and j = 1
(0,−x+ y) if i = 1 and j = 0
(1,min{0,−x+ y}) otherwise

As an MV-algebra A2 is the one obtained through Mundici’s “Gamma” functor
from the lattice-ordered abelian group Z ×ℓ Z , where ×ℓ is lexicographical
product, taking (1, 0) as unit, see [12, Section 2.1]. Chang’s algebra gives
us an example of an MV-algebra where the Leibniz operator is not monotone
over lattice filters, i.e., condition (M) fails, thus showing that the logic |=6

MV

is non-protoalgebraic. To see this, it is enough to consider the lattice filters
F =

{
(1, x) : x ∈ Z−

}
and G = F ∪

{
(0, x) : x > 1

}
. Since F is an implicative

filter, we know that ΩA2F is the congruence associated with F , and an easy
examination shows that ΩA2G is the congruence associated with the implicative
filter

{
(1, 0)

}
. Therefore,

〈
(0, 0) , (0, 1)

〉
∈ ΩA2F while

〈
(0, 0) , (0, 1)

〉
/∈ ΩA2G .

Thus, F ⊆ G but ΩA2F * ΩA2G .

Example 3

The universe of the algebra A3 is
{

(0, x) : x ∈ Z−
}
∪

{
(y, x) : y ∈ Z− r {0}, x ∈ Z

}
∪

{
0
}
,

and its lattice structure is given in Figure 1(c). Its fusion ⋆ is defined by

(i, x) ⋆ (j, y) := (i+ j , x+ y) and z ⋆ 0 = 0 ⋆ z = 0

while its implication → is given by

(i, x)→ 0 := 0

0→ (j, y) := (0, 0)

(i, x)→ (j, y) :=

{ (
0,min{0, y − x}

)
if i 6 j

(j − i , y − x) if j < i

This is a product algebra, namely the one associated in [13] with the negative
cone of the linearly ordered abelian group Z×ℓZ . The algebra A3 is an example
of a product algebra where the Leibniz operator is not monotone over lattice
filters. The reasoning is similar to that in Example 2, now using the implicative
filter F =

{
(0, x) : x ∈ Z−

}
and the lattice filter G = F∪

{
(−1, x) : x > 0

}
. It is

not difficult to check that
〈
(−1, 0) , (−1, 1)

〉
∈ ΩA3F while

〈
(−1, 0) , (−1, 1)

〉
/∈

ΩA3G .
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Example 4

The residuated lattice A4 has the same universe and lattice structure as that
of Example 1, shown in Figure 1(a). The fusion and implication are given by
the following tables:

⋆ 0 u a b v 1
0 0 0 0 0 0 0
u 0 u u u u u

a 0 u a u a a

b 0 u u u u b

v 0 u a u a v

1 0 u a b v 1

→ 0 u a b v 1
0 1 1 1 1 1 1
u 0 1 1 1 1 1
a 0 b 1 b 1 1
b 0 v v 1 1 1
v 0 b v b 1 1
1 0 u a b v 1

This algebra is an example of a residuated lattice (more precisely, a FLew al-
gebra) where the set of idempotent elements, here {0, u, a, 1} , is closed under
meet, while it is not an MTL algebra; this is so because (a→ b)∨ (b→ a) 6= 1.
Moreover, A4 ∈ Prot2 , but A4 is not an ordinal sum of simple n-contractive al-
gebras; this can be seen by using that in simple algebras there are no non-trivial
idempotent elements, analysing all possibilities.

Example 5

The universe of A5 is the 4-element set
{

0 , 1
3 ,

2
3 , 1

}
, with the lattice structure

given by the natural linear ordering, as shown in Figure 1(d). The fusion and
implication in A5 are the operations given by

⋆ 0 1
3

2
3 1

0 0 0 0 0
1
3 0 0 0 1

3
2
3 0 0 2

3
2
3

1 0 1
3

2
3 1

→ 0 1
3

2
3 1

0 1 1 1 1
1
3

2
3 1 1 1

2
3

1
3

1
3 1 1

1 0 1
3

2
3 1

This algebra is a subalgebra of the algebra given by the nilpotent minimum
t-norm (see [25, 43]). It holds that A5 ∈ MTL ∩ IMC2 ⊆ MTL ∩ IMCn while
A5 /∈ Protn because 1

3 ∧
(
(1
3 → 0)n ⋆ (0 → 1

3 )n
)

 0.
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logics. Mathematical Logic Quarterly 53 (2007), 268–288.

[48] Jansana, R. Selfextensional logics with a conjunction. Studia Logica 84
(2006), 63–104.

[49] Montagna, F., Noguera, C., and Horč́ık, R. On weakly cancellative
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