
HAL Id: hal-03187851
https://hal.science/hal-03187851

Submitted on 1 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Effects of Bounding Syntactic Resources on
Presburger LTL

Stéphane Demri, Régis Gascon

To cite this version:
Stéphane Demri, Régis Gascon. The Effects of Bounding Syntactic Resources on Presburger LTL.
Journal of Logic and Computation, 2009, 19 (6), pp.1541-1575. �10.1093/logcom/exp037�. �hal-
03187851�

https://hal.science/hal-03187851
https://hal.archives-ouvertes.fr


The Effects of Bounding Syntactic Resources on

Presburger LTL ∗

Stéphane Demri & Régis Gascon
LSV, ENS Cachan INRIA, I3S, CNRS

CNRS, INRIA Saclay Univ. Nice Sophia Antipolis
demri@lsv.ens-cachan.fr rgascon@sophia.inria.fr

Abstract

LTL over Presburger constraints is the extension of LTL where the atomic
formulae are quantifier-free Presburger formulae having as free variables
the counters at different states of the model. This logic is known to ad-
mit undecidable satisfiability and model-checking problems. We study
decidability and complexity issues for fragments of LTL with Presburger
constraints obtained by restricting the syntactic resources of the formulae
(the number of variables, the maximal distance between two states for
which counters can be compared and, to a smaller extent, the set of Pres-
burger constraints) while preserving the strength of the logical operators.
We provide a complete picture refining known results from the literature.
We show that model-checking and satisfiability problems for the fragments
of LTL with difference constraints restricted to two variables and distance
one and to one variable and distance two are highly undecidable, enlarging
significantly the class of known undecidable fragments. On the positive
side, we prove that the fragment restricted to one variable and to distance
one augmented with propositional variables is pspace-complete. Since
the atomic formulae can state quantitative properties on the counters,
this extends some results about model-checking pushdown systems and
one-counter automata. In order to establish the pspace upper bound, we
show that the nonemptiness problem for Büchi one-counter automata tak-
ing values in Z and allowing zero tests and sign tests, is only nlogspace-
complete. Finally, we establish that model-checking one-counter automata
with complete quantifier-free Presburger LTL restricted to one variable is
also pspace-complete whereas the satisfiability problem is undecidable.

1 Introduction

Verification of infinite-state systems. Model-checking is a well-known ap-
proach to verifying behavioral properties of computing systems that has been

∗Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001

1



very successful in the verification of finite-state systems, see e.g. [CGP00]. The
situation is different for infinite-state systems. Despite that numerous symbolic
representations have been proposed to deal with such systems (see e.g. timed
automata or counter automata), their formal verification remains a difficult
problem. Many general formalisms referring to infinite-state systems have an
undecidable model-checking problem. Sometimes, decidability can be regained
by considering subproblems of the general problem, for example by restricting
the number of counters/clocks/variables or by constraining their occurrences.

Counter systems. The class of counter automata is an example of such
a formalism. Counter automata have many applications in formal verifica-
tion. Their ubiquity stems from their use as operational models of numer-
ous infinite-state systems, including for instance broadcast protocols [FL02]
and programs with pointer variables (see [BFLS06, BBH+06]). Even the case
of a single counter has found some applications in the verification of crypto-
graphic protocols [LLT05] and the validation of XML streams [CR04] (see also
the context-free languages defined by one-counter automata in [BB90]). How-
ever, numerous model-checking problems for counter automata, such as reach-
ability, are known to be undecidable. This does not end the story since many
subclasses of counter automata admit a decidable reachability problem such
as reversal-bounded multicounter machines [Iba78, ISD+00] and flat counter
systems [Boi98, CJ98, FL02]. These two classes of systems admit reachability
sets effectively definable in Presburger arithmetic (assuming some additional
conditions, unspecified herein).

Motivations. Extending the linear-time temporal logic LTL with Presburger
constraints allows to specify quantitative properties of counter systems that
go beyond simple reachability. Because this language is expressive enough to
simulate Minsky machines [Min67], this extension is undecidable. Attempts to
identify decidable fragments have already been made in [BEH95, CC00] by re-
stricting the use of the temporal operators (see also [BH96]). In this paper, we
are interested in the decidability and complexity of fragments of Presburger LTL
obtained by restricting the following syntactic resources of the formulae: the set
of Presburger constraints, the number of counters and the maximal distance be-
tween two states for which these counters can be compared. We do not restrict
the use of the logical operators. Our investigation is based on the standard
assumption that restricting the number of variables is a means of identifying
decidable fragments of undecidable logics or to design counter/clock automata
with decidable reachability problems (see examples for modal logics in [Hal95]
or for alternating timed automata in [OW05, LW05]). Furthermore this kind of
analysis helps to understand the complexity gaps between decidable problems,
see complexity results for model-checking subproblems in [DS02, LMS04]. Our
goal is therefore to identify decidable and undecidable fragments of Presburger
LTL (both for model-checking and satisfiability problems) refining existing re-
sults from [CC00, DG08].

2



Our contribution. We define CLTL(DL) as a fragment of Presburger LTL
where atomic formulae are difference constraints from quantifier-free Presburger
arithmetic. Unlike the version of Presburger LTL defined in [BEH95], the models
are ω-sequences of counter valuations. The underlying fragment of Presburger
arithmetic in CLTL(DL) is identical to the one in the logic Lp from [CC00].
However, it is possible in CLTL(DL) to state constraints between counters at
two non-consecutive states. For instance, “XXx = y” means that the value of
y at the current state is equal to the value of x two states further. We call
X-length the maximal number of X operators prefixing a counter. The two main
undecidability results shown in this paper are the following:

• satisfiability and model-checking for CLTL(DL) restricted to formulae of
X-length two with at most one counter are Σ1

1-complete (an exposition of
the analytical hierarchy can be found in [Rog67]),

• satisfiability and model-checking for CLTL(DL) restricted to formulae of
X-length one with at most two counters are Σ1

1-complete.

The logic CLTL(DL) was already known to be undecidable since it has been
shown in [CC00] that CLTL(DL) restricted to formulae of X-length one with
at most three counters is undecidable. Similarly, undecidability of CLTL(DL)
restricted to formulae with at most two counters has been shown in [DD07].
Hence, we push forward the decidability limits established by these results.

Then, we prove that model-checking and satisfiability problems for CLTL(DL)
are pspace-complete when restricted to X-length one and to one counter. This
result completes our classification of CLTL(DL) fragments restricting the num-
ber of counters and the X-length of the formulae. Actually, we establish this
pspace-completeness result for an extension of CLTL(DL) including proposi-
tional variables and periodicity constraints of the form x ≡k y + c (but still
restricted to X-length one and to one counter). The addition of propositional
variables allows to reduce the model-checking problem to the satisfiability prob-
lem, more precisely to encode control states in a formula, whereas the addition
of periodicity constraints is performed to get as rich an underlying quantifier-
free fragment of Presburger arithmetic as possible. Several problems involving
one-counter automata can be encoded in these decidable fragments. These prob-
lems are related to different applications such as verification of cryptographic
protocols [LLT05], validation of XML streams (string representations of XML
documents) [CR04], or resolution of the identification problem [WTT04]. These
results complete our precise taxonomy of CLTL(DL) fragments with respect to
decidability.

Our decidability results about CLTL(DL) fragments restricting the syntactic
ressources of formulas are optimal with respect to the constraints used. Satis-
fiability for LTL with quantifier-free Presburger constraints (properly including
difference constraints) is undecidable even if restricted to X-length one and to
one counter. However, we show that one can regain decidability by restricting
the class of models. We prove that the model checking problem for the one
variable fragment of this logic is pspace-complete when the class of models is

3



one-counter automata (with updates in Z).

To prove all our decidability and complexity results, we follow a standard
automata-based approach [VW94, KVW00] but we introduce an original sym-
bolic representation of models that can be recognized by a fine-tuned class of
one-counter automata (instead of standard Büchi automata). A nice property of
this method is that it can be generalized to various LTL extensions that define
ω-regular classes of models. The class of automata that we use have integer
counters which are updated by adding −1, 0 or 1, zero-tests and sign-tests, and
accept regular ω-languages. We show that the nonemptiness problem for such
automata is nlogspace-complete. This extends what is known about Büchi
automata and variants of one-counter automata [VW94, LLT05].

Related work. Decidability and complexity issues for LTL variants with
Presburger constraints can be found in [BEH95, BH96, CC00]. This type of
logical formalisms has been also considered in Artificial Intelligence (AI) and
Knowledge Represention (KR), for instance in description logics with concrete
domains in [Lut04] and in logics of space and time in [BC02]. Unlike these
works, we study systematically the effects of restricting the number of vari-
ables, the X-length and, in a less systematic way, the set of constraints. In the
fragments we consider, we preserve the logical operators but we put restrictions
on the form of atomic formulae. This is in sharp contrast, for instance, with
the flat fragment shown decidable in [CC00]. The complexity bound we obtain
contrasts with the bound established in [CC00] which is obtained by reduction
to satisfiability of Presburger arithmetic and is therefore rather high.

One-counter automata are interesting operational models. Unlike multi-
counter automata, they have nice computational properties, see for instance
complexity results about behavioural equivalences in [Kuč00, JKMS04] (see
also [BHM03]). Moreover, one-counter automata are equivalent to pushdown
systems with a singleton stack alphabet. Therefore the results on these sys-
tems can help to refine some results about pushdown systems. For instance, the
model-checking problem for one-counter automata with the modal µ-calculus
has been shown to be in pspace [Ser06] whereas the model-checking problems
for pushdown automata over the modal µ-calculus and the linear µ-calculus are
in exptime (see [Wal01] and [BEM97], respectively). It is worth mentioning
that in these logics the atomic formulae can only speak about the control states
and not about the content of the counter. This is a major difference with our
formalism. We refine these results by showing that model-checking one-counter
automata over linear µ-calculus is pspace-complete.

In [FWW97], a version of CTL⋆ with atomic formulae containing control
states and regular conditions on the current stack is shown to admit a decid-
able model-checking problem over pushdown systems. This result is improved
in [EKS03] where exptime-completeness is established. We establish that the
restriction to LTL and one-counter automata is pspace-complete, refining the
above result. However, our model is more expressive than pushdown systems

4



with a single letter pushdown alphabet. For instance, it allows incrementation
modulo some integer or transition of the form Xx ≤ x + 1 that can be seen as
lossy transitions.

Structure of the paper. In Section 2, we introduce the fragments of Pres-
burger arithmetic we consider and give a general definition for the extension
of LTL with Presburger constraints between terms representing values of the
variables at different states of the execution. We also define the relevant sat-
isfiability and model-checking problems we consider. For the extension of LTL
with the difference constraint language DL, we establish undecidability results
for the fragments with X-length one and two variables, and X-length two and
one variable. In Section 3 we consider an extension of CLTL(DL) with peri-
odicity constraints and propositional variables and we show how to translate a
one-variable formula of this logic with X-length equal to one into a one-counter
automaton. This translation is the basis for the pspace upper bound results
established in this paper and requires a finite abstraction of the models de-
fined in the same section. Based on the same approach, we show in Section 4
that model-checking one-Z-counter automata for LTL with full quantifier-free
Presburger formulae restricted to one variable is pspace-complete. The two
pspace upper bounds are obtained thanks to the nlogspace-membership of
the nonemptiness problem for a particular subclass of one-counter automata
shown in Section 5. Finally, Section 6 contains concluding remarks and open
problems.

This paper is a completed version of [DG07].

2 Temporal logics, automata and Presburger con-

straints

2.1 Linear-time temporal logics

Constraint languages. Let VAR = {x0, x1, . . .} be a countably infinite set
of variables. We consider several fragments of Presburger Arithmetic (PA). The
Difference Logic DL is defined by constraints of the form

α ::= x ∼ y + d | x ∼ d | α ∧ α | ¬α

where x, y ∈ VAR, d ∈ Z and ∼ ∈ {<,>,≤,≥,=}. We denote by DL+ the
extension of DL with periodicity constraints of the form x ≡k c or x ≡k y + c

(c ∈ N and k ∈ N \ {0, 1}). Finally, QFP is the quantifier-free fragment of PA,
which can be defined by the following grammar:

α ::=
∑

i∈I

aixi ∼ d |
∑

i∈I

aixi ≡k c | α ∧ α | ¬α

where ai ∈ Z \ {0} and I is a finite set of indices. Obviously, we have the
following inclusions between these languages: DL ⊆ DL+ ⊆ QFP. Given a

5



valuation v : VAR→ Z, the satisfaction relation v |= α is defined in the obvious
way. For instance, v |= x ≡k y iff there exists z ∈ Z such that v(x) = v(y) + kz.
We assume that all integers are encoded in binary.

Linear-time temporal logics. Given a constraint language L (typically DL,
DL+ or QFP), we define the logic CLTL(L) as the extension of LTL [GPSS80]
where the propositional variables are refined to atomic constraints from L over
expressions representing different states of the variables. The formulae of CLTL(L)
are defined by the grammar:

φ ::= αθ | φ ∧ φ | ¬φ | Xφ | φUφ

where α is a constraint in L and θ is a substitution of all the free variables
which possibly occur in α by terms of the form Xlxj . The symbols X and U are
respectively the classical operators “next” and “until” of LTL. We also use the
standard notations Fφ and Gφ as the abbreviations for ⊤Uφ and ¬F¬φ.

We call term a variable xi prefixed by a certain number l of X symbols,
shortly denoted by Xlxi. The encoding of Xlxi requires O(l + log(i)) bits.
Indeed, the symbol “X” in Xlxi is not a logical operator but a simple syntactic
means to refer to the value of xi at the lth next state.

Given a CLTL(L) formula φ, we define its X-length |φ|X as the maximal
number l such that a term of the form Xlx occurs in φ. Intuitively, the X-length
defines the size of a frame of consecutive states that can be compared in the
formula. We denote by CLTLl

k(L) the restriction of CLTL(L) to formulae with
at most k variables and X-length bounded by l.

The models of CLTL(L) are ω-sequences of valuations σ : N→ (VAR→ Z)
and the satisfaction relation is defined as in LTL except for atomic formulae:

• σ, i |= α[x1←Xl1xj1 ,..., xn←Xlnxjn
] iff

(σ(i+ l1)(xj1 ),..., σ(i + ln)(xjn
)) |= α in PA,

• σ, i |= φ ∧ φ′ iff σ, i |= φ and σ, i |= φ′,

• σ, i |= ¬φ iff σ, i 6|= φ,

• σ, i |= Xφ iff σ, i+ 1 |= φ,

• σ, i |= φUφ′ iff there exists j ≥ i such that σ, j |= φ′ and
for every i ≤ k < j, we have σ, k |= φ.

We abbreviate σ, 0 |= φ to σ |= φ. The symbol |=, used at the level of the
constraint language, is overloaded but this will not lead to any confusion. As
usual, a formula φ ∈ CLTL(L) is satisfiable iff there exists a model σ such that
σ |= φ. Note that the satisfiability problem for CLTL(QFP) can be placed
easily in the class Σ1

1 from the analytical hierarchy (see e.g. [Rog67]). Indeed,
any model of CLTL(QFP) restricted to n variables can be encoded by functions
f1, . . . , fn : N → N. A first-order predicate on f1, . . . , fn which expresses that
σ, 0 |= φ (φ contains at most n variables) is routine to construct by structural
recursion on φ. We conclude that satisfiability for φ can be expressed by a
Σ1

1-sentence.

6



Constraint automata. The model-checking problem we consider for CLTL(L)
involves a class of automata whose transitions are labeled with constraints of L.
A one-step constraint is an atomic formula of the form α[x1 ← Xl1xj1 , . . . , xn ←
Xlnxjn

] such that l1, . . . , ln ≤ 1. One-step constraints express constraints on
the values of the variables at the current state and the next state only. A k-
variable L-automaton A is a structure 〈Q, δ, I, F 〉 such that Q is a finite set of
states, I ⊆ Q is a subset of initial states, F ⊆ Q is a subset of final states and
δ ⊆ Q× A ×Q where A is a finite subset of the set 1SCk(L) of Boolean com-
binations of one-step constraints from L built over the variables {x1, . . . , xk}.

We use the notation q
α
−→ q′ as an abbreviation for 〈q, α, q′〉 ∈ δ. Note that

L-automata have no input alphabet. We do not use them as language acceptors
but we are rather interested in the behaviors of such systems.

A configuration ofA is a tuple 〈q, c〉 ∈ Q×Z
k. We denote by c(i) the ith value

of c. The one-step transition relation −→ is defined as follows: 〈q, c〉 −→ 〈q′, c′〉
def

⇔ there exists 〈q, α, q′〉 ∈ δ such that if for every i ∈ {1, . . . k} the term xi

takes the value c(i) and Xxi takes the value c′(i), then α holds true. We write

〈q, c〉
α
−→ 〈q′, c′〉 whenever we need to exhibit the constraint α on the transition.

The symbol −→ is overloaded but this does not lead to any confusion. A finite
path w is a sequence of the form {0, . . . , n} → (Q × Z

k) such that for every
i ∈ {0, . . . , n − 1} we have w(i) −→ w(i + 1). Infinite paths are defined in a
similar way, by considering infinite sequences of the form N → (Q × Z

k). We
denote by −→∗ the reflexive and transitive closure of −→, i.e. 〈q, c〉 −→∗ 〈q′, c′〉
iff there is a finite path from 〈q, c〉 to 〈q′, c′〉. An accepting run for A is an
infinite path w such that w(0) ∈ I × Z

k and the set {i ∈ N : w(i) ∈ F × Z
k}

is infinite (standard Büchi acceptance condition). We write Lsymb(A) to denote
the set of ω-words accepted by A viewed as an automaton over the alphabet A.
A CLTL(L) model σ realizes an ω-word α0α1 · · · over A iff for every i ≥ 0, we
have σ, i |= αi.

Given a CLTL(L) formula φ and an L-automaton A, the model-checking
problem for CLTL(L) is to check whether there is a CLTL(L) model σ that
realizes some word of Lsymb(A) and such that σ, 0 |= φ. We denote this by
A |= φ. In other words, A |= φ iff there is an accepting run of A such that
the corresponding valuation sequence, obtained by removing the states, satis-
fies φ. States are removed since the atomic formulae of the logics only speak
about counters. This existential version of the problem simplifies forthcoming
developments since we also deal with satisfiability. Results about the universal
version can be withdrawn from those presented herein. For the restriction to
CLTLl

k(L), the model-checking problem takes as inputs a CLTLl
k(L) formula

and a k-variable L-automaton.

Counter automata. In the rest of the paper, we mainly consider DL+-
automata or subclasses that can simulate non-deterministic Minsky machines.
We introduce below subclasses of DL-automata on which we will restrict in some
places the model-checking problem.

A k-Z-counter automaton is a restricted DL-automaton such that for every

7



transition q
α
−→ q′ in the automaton, the constraint α is a conjunction of the

form below ∧

i∈{1...k}

αtesti ∧
∧

i∈{1...k}

αupdatei

with

• αtesti ∈ {⊤} ∪ {xi ∼ 0 | ∼ ∈ {<,>,=, 6=}},

• αupdatei ∈ {Xxi = xi + u | u ∈ Z}

for every i ∈ {1 . . . k}. Moreover, we require that the initial values of the
counters are equal to zero (with a zero test on every transition from an initial
state). Obviously, k-Z-counter automata form a proper subclass of k-variables
DL-automata that admit also constraints of the form Xxi > xj or Xxi < xj + d.

For ease of presentation, the elements of {⊤}∪{xi ∼ 0 | ∼ ∈ {<,>,=, 6=}}
are encoded by {⊤, <,>,=, 6=}, the elements of {Xxi = xi + u | u ∈ Z} by Z

and we order the constraints according to an arbitrary ordering of the variables
(from x1 to xk). For instance, the transition

q
⊤∧x2=0∧Xx1=x1∧Xx2=x2−1
−−−−−−−−−−−−−−−−−−→ q′

is encoded by

q
⊤,=,0,−1
−−−−−→ q′.

A k-N-counter automaton is defined similarly except that we only consider
non-negative values for the counters. So, we require that

∧

i∈{1...k} xi ≥ 0 is
also part of the constraints on every transition. When explicitly dealing with
N-counter automata, we omit this additional constraint on the transitions.

We only refer in the remaining to automata with at most two counters. In
Section 3, we define an automata-based approach which differs from [VW94] by
the use of one-Z-counter automata where the updates are restricted to {−1, 0, 1},
instead of classical Büchi automata. Such automata are called simple. Hence,
counter automata are used as operational models (inputs of the model-checking
problem) and also as language acceptors for adapting the automata-based ap-
proach from [VW94]. Proving the existence of accepting runs for simple one-Z-
counter automata is not immediate since we are dealing with Büchi acceptance
condition, the counter is interpreted in Z and zero/sign tests are allowed (see
Section 5). As far as two-N-counter automata are concerned, the existence of
an accepting run is Σ1

1-hard since the recurrence problem for nondeterministic
two counter Minsky machines, known to be Σ1

1-complete [AH94, Lemma 8], can
easily be reduced to this problem.

2.2 Improving undecidability boundaries

Satisfiability for CLTL(DL) is undecidable since we can easily encode the ex-
ecutions of a multi-counter Minsky machine with a CLTL(DL) formula. The
proof of [CC00, Theorem 3] provides that CLTL1

3(DL) satisfiability is already

8



Σ1
1-hard. We refine this result by showing that one variable and X-length two

or two variables and X-length one is enough for high undecidability. The idea of
the two proofs below is standard and consists in encoding directly in the formula
the instructions of the Minsky machines. Depending on the available syntac-
tic resources, configurations of the machine are represented differently. Even
though the proofs are not very difficult, we believe that it simply illustrates
that having strictly less than three variables does not necessarily decrease the
complexity of the logic.

Theorem 1 Satisfiability for CLTL2
1(DL) is Σ1

1-complete.

Proof. We show that the existence of an accepting run for a two-N-counter
automaton can be reduced to a satisfiability question in CLTL2

1(DL). This is
sufficient to get Σ1

1-hardness because such counter automata can easily simulate
nondeterministic two counter Minsky machines whose recurrence problem is
Σ1

1-hard.
First we show that for every two-N-counter automaton A, there is a two-N-

counter automaton A′ computable in logarithmic space in |A| such that A has
an accepting run iff A′ has an accepting run and none of the transitions of A′

is of the form q
test1,test2,0,0
−−−−−−−−→ q′. In other words, at least one counter changes its

value at every step of A′. Let A = 〈Q, δ, I, F 〉 be a two-N-counter automaton.
The two-N-counter automaton A′ = 〈Q′, δ′, I ′, F ′〉 is defined as follows:

• Q′ def

= Q ∪ {t ∈ δ : t = q
test1,test2,0,0
−−−−−−−−→ q′},

• I ′
def

= I and F ′ = F ,

• δ′ is defined from δ by replacing each transition t = q
test1,test2,0,0
−−−−−−−−→ q′ ∈

Q′ \Q by q
test1,test2,+1,0
−−−−−−−−−→ t and t

⊤,⊤,−1,0
−−−−−→ q′.

Now let A = 〈Q, δ, I, F 〉 be a two-N-counter automaton such that every tran-
sition of δ changes the value of at least one counter. We pose Q = {q1, . . . , qn},
I = {qa1

, . . . , qam
}, F = {qb1 , . . . , qbm′

} and the variables used in the transition
relation of A are denoted by x1 and x2. A configuration of the form 〈qi, c1, c2〉
is encoded by a sequence of 2i states repeating i times the pair c1, (c1 + c2 + 1).
We recall that a CLTL2

1(DL) model is simply an ω-sequence of integers. A new
configuration is detected when four consecutive values c, d, c′, d′ are found with
either c 6= c′ or d 6= d′ (i.e. when the value of a counter changes).

• The formula φch states the change of configuration:

φch = x < Xx ∧ (x 6= X
2x ∨ X(x 6= X

2x))

• Let Beforei state that we are just before the configuration with control
state qi:

Beforei
def

= φch ∧ X
2(

∧

0≤j<i−1

X
2j(x = X

2x ∧ X(x = X
2x)) ∧ X

2(i−1)φch)

9



• Initial configuration:

φinit

def

= x = 0 ∧ Xx = 1 ∧
∨

1≤i≤m

(
∧

0≤j<ai−1

X
2j(x = X

2x ∧ X(x = X
2x))

∧
∨

〈qai
,α,qj′ 〉∈δ

X
2(ai−1)(φ′ ∧ Beforej′ ))

• Recurring elements of F : φrec
def

=
∨

1≤i≤m′ GFBeforebi
.

• Simulation of the run:

φrun
def

= G

∧

1≤i≤n

(Beforei ⇒
∨

〈qi,α,qj〉∈δ

X
2i(α′ ∧ Beforej))

where α′ is obtained from α

– by replacing x1 = 0 by x = 0,

– by replacing x2 = 0 by Xx = x+ 1,

– by replacing Xx1 = x1 +d1 by X
2x = x+d1 for every d1 ∈ {−1, 0, 1},

– by replacing Xx2 = x2 + d2 by
∧

d1∈{−1,0,1}

(X2x = x+ d1)⇒ X(X2x = x+ (d1 + d2))

for every d2 ∈ {−1, 0, 1}.

It is easy to show that A has an accepting run iff the formula φinit ∧φrun ∧φrec

is satisfiable. 2

Theorem 2 Satisfiability for CLTL1
2(DL) is Σ1

1-complete.

Proof. We prove this result by reducing the satisfiability problem for CLTL2
1(DL)

to the satisfiability problem for CLTL1
2(DL). Basically, the idea is to encode

two states from a CLTL2
1(DL) model into a single state in a CLTL1

2(DL) model.
For instance, the CLTL2

1(DL) model below

x0 · x1 · x2 · x3 · · ·

is encoded as the following CLTL1
2(DL) model

(
x0

x1

) (
x2

x3

)

· · ·

For the rest of this proof, we consider a CLTL2
1(DL) model whose unique

variable is x and we show how it can be encoded by a CLTL2
1(DL) model with

variables denoted by y0 and y1. We define a map f : CLTL2
1(DL) × {0, 1} →

CLTL1
2(DL) such that f(φ, i) enforces the variable x in φ to be interpreted by

yi.

10



• f(R(Xj1x, . . . ,Xjsx), i) = R(Xj1x, . . . ,Xjsx)[Xax← Xa′

yb′ ]
where R(Xj1x, . . . ,Xjkx)[Xax← Xa′

xb′ ] is obtained from R(Xj1x, . . . ,Xjsx)
by replacing every occurrence of Xax by Xa′

yb′ where a,a′ and b′ are such
that (a+ i) = 2a′ + b′ with a′ > 0 and b′ ∈ {0, 1}.1

• f is homomorphic for the Boolean operators,

• f(Xφ, 0) = f(φ, 1),

• f(Xφ, 1) = Xf(φ, 0),

• f(φUψ, 0) = f(ψ, 0) ∨ (f(φ, 0) ∧ (f(ψ, 1) ∨ ((f(φ, 1) ∧ X(φ′Uψ′)))) and

f(φUψ, 1) = f(ψ, 1) ∨ ((f(φ, 1) ∧ X(φ′Uψ′)))) where

– φ′ = f(φ, 0) ∧ f(φ, 1),

– ψ′ = f(ψ, 0) ∨ (f(φ, 0) ∧ f(ψ, 1)).

One can easily show that φ is CLTL2
1(DL) satisfiable iff f(φ, 0) is CLTL2

1(DL)
satisfiable. 2

The satisfiability problem can be reduced to the model-checking problem
since φ ∈ CLTL(DL) is satisfiable iff A⊤ |= φ where A⊤ is the one-state DL-

automaton 〈{q}, δ, {q}, {q}〉 with unique transition q
⊤
−→ q (i.e. every model

realizes the execution of A⊤). We obtain the following corollary.

Corollary 1 The model-checking problems for CLTL1
2(DL) and CLTL2

1(DL)
are Σ1

1-complete.

The Σ1
1 upper bound is obtained by reducing model-checking to satisfiability

for CLTL(DL) along the lines of [SC85] (this technique is also used in the proof
of Lemma 1). Indeed, in order to simulate a propositional variable, we use a
constraint of the form x = 0 assuming that x is not used already for other
purposes. By close inspection of the proofs of Theorems 1 and 2, one can even
show that satisfiability and model-checking for CLTL1

2(DL) and CLTL2
1(DL)

restricted to the temporal operator F (instead of until) are also Σ1
1-hard.

3 PSPACE-completeness of CLTL1
1(DL+)

with propositional variables

To complete the results of Section 2, we show that satisfiability for CLTL1
1(DL)

and model-checking CLTL1
1(DL) formulae over one-variable DL-automata are

both pspace-complete, thus refining the exptime bound established for push-
down systems [FWW97]. To do so, we establish a pspace upper bound for
satisfiability of the richer logic CLTL1

1(DL+,PROP) that includes periodicity
constraints of the form x ≡k y + c, x ≡k c (c ∈ N, k ∈ N \ {0, 1}) and propo-
sitional variables that can be viewed as specific variables with their values re-
stricted to be in {0, 1}. We get as a corollary that the model-checking problem

1Note that a′ > 0 and b′ ∈ {0, 1} imply that a′ and b′ are unique.

11



for CLTL1
1(DL) is in pspace by reducing this problem in logarithmic space to

the satisfiability problem for CLTL(DL+,PROP). The above-mentioned results
complete our classification. Furthermore, many problems on one-counter au-
tomata/nets can be encoded in CLTL(DL+,PROP). These problems come from
several applications: verification of cryptographic protocols [LLT05], validation
of XML streams (string representations of XML documents) [CR04], and resolu-
tion of the identification problem described in [WTT04]. For example, the class
of one-variable DL-automata properly contains the one-counter automata used
to validate XML streams against a recursive DTD in [CR04, Sect.5]. Below is
the one-counter automaton recognizing the language {(ac)na(ε|cc)a(ca)nbmbm :
n,m ≥ 1} where x is a counter and the alphabet is partitioned into a set of
opening tags {a, b, c} and a set of corresponding closing tags {a, b, c}. The sym-
bol “=” for the transition between a7 and b8 refers to a zero-test and we assume
that the acceptance condition of the automaton is defined with respect to the
final configuration 〈b9, 0〉.

c1

a0

a2

c3

a5

c4

c6

a7

b9

b8
a

ac, x++

a

c

a

c

a

c

c, x−−a

=, b, x++

b, x−−

b, x−−

b, x++

Checking if a word belongs to the language recognized by this automaton, a key
problem in [CR04, Sect.5], can be expressed in our formalism. The fragment
CLTL1

1(DL+) can also express concisely richer standard properties, for instance
non-trivial safety properties of the form G(x < 2m) and liveness properties such
as G(x ≡2n 0⇒ F(x ≡3m 1)). We also recall that DL-automata are strictly more
expressive than one-counter automata since the transitions are not restricted
to incrementationss and decrementations only. Herein, we provide an optimal
pspace upper bound refining the decidability result from [FWW97] for the
model checking of CTL⋆ properties over pushdown systems.

3.1 Adding propositional variables

Let PROP = {p1, p2, . . .} be a countably infinite set of propositional vari-
ables. We define the logic CLTL(DL+,PROP) as the extension of CLTL(DL+)
obtained by adding propositional variables at the atomic level. As a conse-
quence, the models of CLTL(DL+,PROP) are pairs of the form 〈σ1, σ2〉 such
that σ1 : N → 2PROP is a standard LTL model and σ2 : N → (VAR → Z)
is a CLTL(DL+) model. The satisfaction relation is defined as for CLTL(DL)
except at the atomic level:

• for every proposition p ∈ PROP we have 〈σ1, σ2〉, i |= p
def

⇔ p ∈ σ1(i) and

12



• for every DL+-constraint α we have 〈σ1, σ2〉, i |= α
def

⇔ σ2(i) |= α

(using the satisfaction relation of CLTL(DL+)).

There is no restriction on the propositional variables in the fragments of the
form CLTLl

k(DL+,PROP).

3.2 Model-checking one-counter (DL+)-automata

The presence of propositional variables in CLTL(DL+,PROP) makes the re-
duction from the model-checking problem for CLTL(DL+) to the satisfiability
problem for CLTL(DL+,PROP) easy.

Lemma 1 There is a logspace reduction from the model-checking problem for
CLTL(DL+) to the satisfiability problem for CLTL(DL+,PROP).

Proof. The reduction is similar to the reduction from model-checking to sat-
isfiability for standard LTL [SC85]. Let φ be a CLTL(DL+) formula and
A = 〈Q, δ, I, F 〉 be a DL+-automaton with δ ⊆ Q×1SCk×Q. We describe below
the construction of a CLTL(DL+,PROP) formula φA such that A |= φ iff φ∧φA
is CLTL(DL+,PROP) satisfiable. For every location qi in Q = {q1, . . . , qn}, we
introduce a propositional variable pi. First, we state that a unique propositional
variable holds true at each position:

φuni

def

=
∨

i∈{1,...,n}

(pi ∧
∧

j∈{1,...,n}\{i}

¬pj).

The transition relation can be encoded as follows:

φnext

def

=
∧

i∈{1,...,n}

(pi ⇒
∨

〈qi,α,qj〉∈δ

(α ∧ Xpj)).

Finally, initial configurations and the accepting condition are expressed by the
formulae below:

φinit

def

=
∨

qi∈I

pi, φacc

def

= GF(
∨

qi∈F

pi).

The formula φA is φA
def

= φinit ∧ G(φuni ∧ φnext ) ∧ φacc . 2

As a corollary, we have the following reduction for the model-checking problem
of CLTL1

1(DL+).

Corollary 2 The model-checking problem for CLTL1
1(DL+) can be reduced in

logspace to the satisfiability problem for CLTL1
1(DL+,PROP).

Proof. The model-checking problem for CLTL1
1(DL+) can be reduced to a sat-

isfiability problem by using the reduction of Lemma 1. The formula built with
this construction always belongs to CLTL1

1(DL+,PROP). Indeed, the guards
from a one-variable (DL+)-automaton are one-step constraints from 1SC1 which
corresponds to the set of CLTL1

1(DL+) atomic constraints. 2

13



We dedicate the remaining of this section to prove decidability of the sat-
isfiability problem for CLTL1

1(DL+,PROP), which is partially based on the
abstraction of models.

3.3 Symbolic models

Symbolic valuations. In order to build an automaton that recognizes the
symbolic models of a CLTL1

1(DL+) formula, we first introduce a symbolic rep-
resentation of valuations. Without any loss of generality, we can assume that all
the atomic constraints involving both x and Xx in a CLTL1

1(DL+,PROP) for-
mula (and in any set of constraints used in the sequel) are of the form Xx ∼ x+d
and Xx ≡k x + c where d ∈ Z, c ∈ N and k ∈ N \ {0, 1}. Given a finite set X
of one-step constraints from CLTL(DL+) built over the variable x, we consider
the following syntactic resources.

• CONSx = {dmin, . . . , d−1, d0, d1, . . . , dmax} is the set of constants d occur-
ring in X in constraints of the form x ∼ d and Xx ∼ d. We assume that
dmin < · · · < d−1 < d0 < d1 < · · · < dmax.

• CONSstep = {emin′ , . . . , e−1, e0, e1, . . . , emax′} is the set of constants e oc-
curring in X in constraints of the form Xx ∼ x + e. We assume that
emin′ < · · · < e−1 < e0 < e1 < · · · < emax′ .

• K is the least common multiple (lcm) of all the integers k ∈ N \ {0, 1}
such that a relation of the form ≡k occurs in X .

Without loss of generality, we can assume that d0 = e0 = 0, dmax ≥ 0, emax′ ≥ 0,
dmin ≤ 0 and emin′ ≤ 0.

We define an abstraction for valuations that is similar to regions for timed
automata [AD94] and we shall prove that this abstraction fits exactly our goal. A
map {x,Xx} → Z (that can also be viewed as a pair 〈z1, z2〉 ∈ Z

2) is represented
by a tuple sv = 〈αx, αm, α

′
x, α

′
m, αs〉 ∈ Cx × Modx × CXx × ModXx × Cstep

(depending on X) such that

• Cx is composed of constraints of the form below

– di < x ∧ x < di+1 for i ∈ {min, . . . ,max−1},

– x = di for i ∈ {min, . . . ,max},

– x < dmin and dmax < x,

• Modx is composed of the constraints of the form

– x ≡K c for c ∈ {0, . . . ,K − 1},

• CXx and ModXx are defined similarly to Cx and Modx respectively, by
replacing “x” by “Xx” in the constraints used,

• Cstep is composed of constraints of the form below

– x+ ei < Xx ∧ Xx < x+ ei+1 for i ∈ {min′, . . . ,max′−1},

14



– Xx = x+ ei for i ∈ {min′, . . . ,max′},

– Xx < x+ emin′ and x+ emax′ < Xx.

We call the tuple sv symbolic valuation and we write SV(X) to denote the set
of symbolic valuations with respect to the set X . By extension, SV(φ) denotes
the set of symbolic valuations with respect to the set of atomic constraints of
the CLTL1

1(DL+,PROP) formula φ. Note that the size of the set SV(φ) is
exponential in the size of φ (but each element has polynomial size with respect
to |φ|).

Let v : {x,Xx} → Z be a valuation and sv be a symbolic valuation. We note
v |= sv iff v satisfies all the constraints in sv . The following result shows the
correctness of our symbolic valuation abstraction.

Lemma 2 Let X be a finite set of one-step constraints from CLTL1
1(DL+) built

over the variable x.

(I) For every map v : {x,Xx} → Z there is a unique symbolic valuation in
SV (X) denoted by sv(v) such that v |= sv(v).

(II) For every pair of maps v, v′ : {x,Xx} → Z such that sv(v) = sv(v′)
(sv(v), sv (v′) ∈ SV (X)) and for every α ∈ X, we have v |= α iff v′ |= α.

Proof. (I) Given sv ∈ SV(X), let Vsv be the set of pairs 〈z1, z2〉 ∈ Z
2 such

that 〈z1, z2〉 |= sv. By definition of symbolic valuations, it is obvious that
{Vsv : sv ∈ SV(X), Vsv 6= ∅} is a partition of Z

2.

(II) Let v and v′ be valuations such that sv(v) = sv(v′) = 〈αx, αm, α
′
x, α

′
m, αs〉

and suppose that v |= α. We proceed by induction on the structure of α (we
omit the cases with Boolean connectives).

• If α is of the form x = d then v(x) = d and αx must be equal to α. Indeed,
we have d ∈ CONSx by definition of CONSx and so the only constraint of
Cx satisfied by v is x = d (see the definition of Cx). Since v′ also satisfies
αx, we have v′ |= α.

• If α is of the form x < d then v(x) < d and αx can be equal either to
x = d′ with d′ < d or to d′′ < x ∧ x < d′ with d′ ≤ d. In both cases, it is
easy to check that if v′ |= αx then we also have v′ |= α.

• If α is of the form Xx ∼ d (resp. Xx ∼ x+ d) where ∼∈ {<,=}, the proof
is similar to the two above cases, using the constraint α′

x (resp. αs).

• Let α be of the form x ≡k c. We suppose that the constraint αm is
equal to x ≡K c′. By construction of K, k divides K and so we have
αm ⇒ (x ≡k c′r) is valid in Presburger arithmetic where c′r ∈ N is the
remainder of the division of c′ by k. As c and c′r belong to {0, . . . , k − 1}
and v satisfies both α and αm, c must be equal to c′r. Since v′ |= αm and
αm ⇒ α is valid, we have v′ |= α.

15



• If α is of the form Xx ≡k c (resp. Xx ≡k x+ c) the proof is similar to the
previous case, using the constraint α′

m (resp. the conjunction αm ∧ α′
m).

2

Given an atomic formula α from CLTL1
1(DL+), we note sv |=symb α iff for every

valuation v such that sv(v) = sv we have v |= α. Note that this notion is
well-defined thanks to Lemma 2.

Our symbolic representation of CLTL1
1(DL+) models relies on sequences of

symbolic valuations. We say that an infinite sequence ρ : N→ SV(φ) of symbolic
valuations with respect to φ is satisfiable iff there is a CLTL1

1(DL+) model
σ : N → Z such that for every i ∈ N we have σ, i |= ρ(i). In this case, we
write σ |= ρ. A symbolic model with respect to φ is a pair 〈σ1, ρ〉 such that
σ1 : N → 2PROP and ρ : N → SV(φ). We extend the symbolic satisfaction
relation |=symb to symbolic models in a natural way. The definition is identical
to the satisfaction relation of CLTL(DL+,PROP) except for atomic constraints:

〈σ, ρ〉, i |=symb α
def

⇔ ρ(i) |=symb α.

3.4 Automata-based approach

We now show that given a CLTL1
1(DL+,PROP) formula φ, one can build an

automatonAφ recognizing the set of symbolic models satisfying φ. To define this
automaton we extend the definition of simple one-Z-counter automata (where
updates are restricted to {−1, 0, 1}) with an alphabet Σ and ε-transitions. The
transitions are decorated by elements from Σ ∪ {ε} and the constraints are the
same as in one-Z-counter automata. Adding an alphabet is motivated by the
need to consider the automata as language acceptors. So, we define

• L′(A) = {σ : N→ (Σ∪ {ε}) : there is an accepting run w : N→ (Q×Z)

such that ∀i, w(i)
σ(i)
−→ w(i+ 1)},

• L(A) = {σ\ε : σ ∈ L′(A) and |σ\ε| =∞},

where σ\ε is obtained from σ by erasing all the occurrences of the letter ε. The
set L(A) is the language accepted by A and corresponds to the accepting runs
of L′(A) where non-ε-transitions are fired infinitely often. The construction of
Aφ relies on the following observation.

Lemma 3 A CLTL1
1(DL+,PROP) formula φ is satisfiable iff there exist a sym-

bolic model 〈σ1, ρ〉 such that 〈σ1, ρ〉 |=symb φ and a CLTL1
1(DL+) model σ2 such

that σ2 |= ρ.

Proof. If φ is satisfiable then we consider a model 〈σ1, σ2〉 that satisfies it.
Let ρ : N → SV(φ) be the symbolic model such that ρ(i) = sv(vi) where the
valuation vi : {x,Xx} → Z is defined by vi(x) = σ2(i) and vi(Xx) = σ2(i+1) for
every i ∈ N. By construction, we have σ2 |= ρ. Using Lemma 2(II) we can show
that for every v such that sv (v) = ρ(i) we have σ2(i) |= α iff v |= α for every
atomic subformula α of φ. By definition of the symbolic satisfaction relation, this

16



implies that if σ2 |= α then ρ |=symb α. Consequently, 〈σ1, ρ〉 |=symb φ because
the symbolic satisfaction relation differs from CLTL(DL+,PROP) satisfaction
relation only in the case of atomic constraints.

Conversely, suppose that 〈σ1, ρ〉 |=symb φ and σ2 |= ρ for some σ1, σ2 and
ρ. Since for every i ∈ N we have σ2, i |= ρ(i), the symbolic valuation ρ(i)
corresponds to the abstraction of the valuation vi such that vi(x) = σ2(i)
and vi(Xx) = σ2(i + 1). By definition of |=symb, this implies that for every
atomic subformula α of φ, if ρ(i) |=symb α then σ2, i |= α. Thus, we can show
that 〈σ1, ρ〉 |=symb φ and σ2 |= ρ imply 〈σ1, σ2〉 |= φ by using the fact that
CLTL(DL+,PROP) satisfaction relation is different from the symbolic satisfac-
tion only for atomic constraints. 2

So, we define Aφ as the intersection of two automata Asymb and Asat such
that L(Asymb) is the set of symbolic models that symbolically satisfy φ. Fur-
thermore, L(Asat) is the set of symbolic models of the form 〈σ1, ρ〉 such that ρ
is satisfiable. Both automata are simple one-Z-counter automata over the al-
phabet Σ = (2PROP × SV(φ)) but Asymb is essentially a finite-state automaton
(the counter is not used).

Main steps to get the PSPACE upper bound. The automaton Asymb

is built as in [VW94] for LTL except at the atomic level. We define cl(φ)
the closure of φ with a slight modification to consider both atomic constraints
and propositional variables. Let us briefly recall that the closure set cl(φ) is the
smallest set containing φ, closed under subformulae, negations (double negations
are eliminated) and such that if ψUψ′ ∈ cl(φ), then X(ψUψ′) ∈ cl(φ). A set
X ⊆ cl(φ) is an atom whenever it satisfies the usual conditions for subformulae
whose outermost connective is Boolean and, we have ψUψ′ ∈ X iff (ψ′ ∈ X or
(ψ,X(ψUψ′) ∈ X)) whenever ψUψ′ ∈ cl(φ). Let A′

symb be the generalized Büchi
automaton defined as the structure 〈Q, δ, I, F 〉 such that:

• Q is the set of atoms of φ,

• I = {X ∈ Q : φ ∈ X},

• X
〈P,sv〉,⊤,0
−−−−−−→ Y iff

(prop.) P = X ∩ PROP,

(constr.) for every atomic formula α in X , sv |=symb α,

(1-step) for every Xψ ∈ cl(φ), Xψ ∈ X iff ψ ∈ Y ,

• Let {ψ1Uφ1, . . . , ψnUφn} be the set of until formulae in cl(φ). We pose
F = {F1, . . . , Fn} where Fi = {X ∈ Q : ψiUφi 6∈ X or φi ∈ X} for every
i ∈ {1, . . . , n}.

The automatonAsymb is a non-generalized Büchi automaton equivalent toA′
symb.

It can be built in logarithmic space in the size of A′
symb. Note that the counter

is useless in this construction.

17



Section 3.5 is dedicated to the lengthy construction of Asat. The final au-
tomaton is obtained by synchronizing Asymb and Asat in the following way. Let
us pose Asymb = 〈Qsy, δsy, Isy , Fsy〉 and Asat = 〈Qsa, δsa, Isa, Fsa〉. The au-
tomaton Asat has ε-transitions while Asymb has not. The ε-transitions of Asat

can be fired independently of Asymb. Otherwise, one can make a move in both
Asymb and Asat when the same letter is read. In this case, the counter is up-
dated according to the transition in Asat because the counter is useless in Asymb.
Formally, the automaton Aφ = 〈Q, δ, I, F 〉 is defined by:

• Q = Qsy ×Qsa,

• I = Isy × Isa,

• F = Fsy ×Qsa (since we will have Qsa = Fsa),

• 〈q1, q2〉
ε,t,u
−−→ 〈q′1, q

′
2〉 ∈ δ

def

⇔ q1 = q′1 and q2
ε,t,u
−−→ q′2 ∈ δsa,

• 〈q1, q2〉
〈P,sv〉,t,u
−−−−−→ 〈q′1, q

′
2〉 ∈ δ

def

⇔ q1
〈P,sv〉,⊤,0
−−−−−−→ q′1∈ δsy and

q2
〈P,sv〉,t,u
−−−−−→ q′2∈ δsa.

We will show at the end of this section that Aφ can be effectively built from φ in
polynomial space thanks to the way Asat can be built. Moreover the nonempti-
ness problem for one-Z-counter automata with alphabet and ε-transitions is
shown to be nlogspace-complete in Section 5. By combining these two re-
sults, we obtain the result below.

Theorem 3 The satisfiability problem for the fragment CLTL1
1(DL+,PROP)

is pspace-complete.

Proof. The size of the automaton Aφ is exponential in the size of the formula φ
(denoted by |φ|) and it can be built in polynomial space with respect to |φ|. Since
the nonemptiness problem for the resulting automaton is in nlogspace and the
composition of a logarithmic space function with a polynomial space function is
a polynomial space function [BDG88, Lemma 3.35], we obtain a whole procedure
in nondeterministic polynomial space. Using Savitch’s theorem, we can deduce
that the problem is in pspace.

The pspace-hardness is given by the pspace-hardness of LTL. The logic
LTL is subsumed by the fragment CLTL1

1(DL+,PROP) because the number
of propositional variables in this fragment is not concerned by the syntactic
restrictions. 2

We can also deduce the following corollaries.

Corollary 3 The satisfiability and model-checking problems for CLTL1
1(DL)

are pspace-complete.

Proof. These problems can easily be shown to be in pspace using Theorem 3 and
Lemma 1. In order to prove the pspace-hardness, we reduce the satisfiability
problem for the one-variable fragment of LTL (shown to be to pspace-complete
in [DS02, Corollary 3.2]) to the satisfiability problem for CLTL1

1(DL). Given an

18



LTL formula φ with a unique propositional variable p, we simply replace each
occurrence of p by x = 0, providing a formula φ′ in CLTL1

1(DL). It is obvious
that φ is satisfiable iff φ′ is satisfiable. 2

Corollary 4 The one-variable fragment of the counter logic Lp [CC00] has a
pspace-complete satisfiability problem.

Another corollary of Theorem 3 is that model-checking one-clock discrete timed
automata from [DPK03] with CLTL1

1(DL+) can be done in pspace which con-
trasts with the undecidability results from [DPK03, Section 6].

A nice feature of this approach is that the temporal logic part is separated
from the constraint part. As a consequence, this method can be tailored to
any extension with Presburger constraints of a temporal logic whose operators
are definable in the Monadic Second Order logic (MSO), thanks to [GK03].
One just needs to replace the automaton Asymb by an appropriate automaton
recognizing the models of the input formula in the corresponding propositional
logic (instead of the LTL automaton). By [GK03], this automaton can be built
in polynomial space and so we preserve our complexity bound for this kind
of extensions. This includes extensions of LTL with past-time operators, with
automaton-based temporal operators [Wol83], or fixpoints operators [Var88].
All these extensions are denoted by xCLTL in the following corollary.

Corollary 5 The satisfiability and model-checking problems for xCLTL1
1(DL)

are pspace-complete.

As a consequence, the satisfiability and model-checking of the linear µ-calculus
extended with DL-constraints is pspace-complete when the above syntactic
restrictions are made. This refines the result stated in [BEM97].

3.5 Construction of Asat

In the rest of this section, we describe the construction of the automaton Asat

recognizing exactly the set of symbolic models 〈σ1, ρ〉 such that ρ is satisfiable.
We recall that the set of constants CONSx used in the symbolic representation
of the models contains the following elements: d0 = 0, dmax ≥ 0 and dmin ≤ 0.

The alphabet of Asat is 2PROP × SV(φ) but since the set of propositional
variables is not constrained in Asat, we omit them in the technical developments

below. This means that for every non-epsilon transition of the form q
sv ,t,u
−−−→

q′ defined in the rest of this section, we mean to consider all the transitions

q
〈X,sv〉,t,u
−−−−−→ q′ for some X ∈ 2PROP.

The construction of Asat is done in a modular fashion. The automaton Asat

is made of a network of components/gadgets and its size is exponential with
respect to the size of the input formula φ. A component is defined as a simple
one-Z-counter automaton 〈Σ, Q, δ, I, F 〉 such that

• I and F are singletons,

19



• δ is a subset of (Q \ F )× {ε} × {⊤,=, 6=, >,<}× {−1, 0, 1}× (Q \ I).

The unique state in I (resp. F ) is called the input (resp. output) state of
the component. Components are connected in the network by defining tran-
sitions between input states and output states. Each component in Asat has
the function either to check a property of the counter from constraints in Cx

or to update the counter according to constraints in Modx or ModXx × Cstep

(viewed as a conjunction). We define below the components Aα,sv for some
α ∈ Cx ∪ Modx ∪ (ModXx × Cstep) and sv ∈ SV(φ). We write q

α,sv
in

(resp.
q

α,sv
out

) to denote the input (resp. output) state of Aα,sv . However, when the
context is clear we shortly write qin and qout . Each component Aα,sv enforces
that the next symbolic valuation that is guessed is precisely sv . For every
sv = 〈αx, αm, α

′
x, α

′
m, αs〉 ∈ SV(φ), we define the following components:

• Aαx,sv is such that for every c ∈ Z, 〈qαx,sv
in

, c〉 −→∗ 〈qαx,sv
out

, c′〉 iff c = c′ and
[x← c] |= αx. This component checks that value of the counter c satisfies
αx. Figure 1 contains a graphical representation of components Ax=di,sv

and Adi<x<di+1,sv when di ≥ 0. Components with di ≤ 0 can be defined
analogously.

(a)

qin

qout

0 1 2 di

ε, >,−1 ε, >,−1

ε, ⊤, +1ε, ⊤, +1

ε, =, 0

(b)

qin

qout

0
di di+1

di+1−1

ε, >,−1

ε,⊤, +1

ε, =, 0 ε, =, 0

Figure 1: Components Ax=di,sv (a) and Adi<x<di+1,sv (b)

• A〈α′

m,αs〉,sv is such that for every c ∈ Z, [x← c] |= αm and 〈q
〈α′

m,αs〉,sv
in

, c〉 −→∗

〈q
〈α′

m,αs〉,sv
out

, c′〉 iff [x ← c,Xx ← c′] |= α′
m ∧ αs. This component updates

the counter according to 〈α′
m, αs〉. Figure 2 contains a graphical repre-

sentation of the component A〈α′

m,αs〉,sv with αm = x ≡2 1, α′
m = Xx ≡2 0

and αs = x < Xx < x + 7. To build A〈α′

m,αs〉,sv , we determine on-the-fly
(using αm, α′

m and αs) that Xx = x+ i for some i ∈ {1, 3, 5}.

• Aαm,sv is such that for every c ∈ Z, 〈qαm,sv
in

, 0〉 −→∗ 〈qαm,sv
out

, c〉 iff [x← c] |=
αm. This component updates the counter from 0 to a value satisfying αm

20



qin qout

ε,⊤, +1

ε,⊤, +1 ε,⊤, +1 ε,⊤, +1

ε, ⊤, +1
ε,⊤, +1 ε,⊤, +1 ε, ⊤, +1

ε,⊤, +1

Figure 2: Component A〈α′

m,αs〉,sv

(only used at the beginning of the run). Figure 3 contains a graphical
representation of some component Ax≡Kc,sv .

qin qout

0 1 c

+1 +(K − 1)

−1 −(K − 1)

ε,⊤, +1

ε, ⊤, +1

ε, ⊤,−1

ε, ⊤, +1

ε,⊤,−1

Figure 3: Component Ax≡Kc,sv

The automaton Asat = 〈Σ, Q, δ, I, F 〉 is defined as the “disjoint union” of
the above-mentioned components with an additional initial state s0, F = Q and
with the following additional transitions.

• For every sv = 〈αx, αm, α
′
x, α

′
m, αs〉 ∈ SV(φ), we have a transition

s0
ε,⊤,0
−−→ q

αm,sv
in

∈ δ.

These transitions correspond to the choice of the first symbolic valuation.
After this choice, the value of the counter has to be updated in order to
satisfy αm. This update is done by the component Aαm,sv .

• For every sv = 〈αx, αm, α
′
x, α

′
m, αs〉 ∈ SV(φ), we have a transition

q
αm,sv
out

ε,⊤,0
−−→ q

αx,sv
in

∈ δ.

21



When the control state is qαm,sv
out

during any execution, we know that the
counter satisfies αm. The next step is to check that the constraint αx is
satisfied. So, we impose to continue the run by entering in the component
Aαx,sv .

• For every sv = 〈αx, αm, α
′
x, α

′
m, αs〉 ∈ SV(φ), we have a transition

q
αx,sv
out

ε,⊤,0
−−→ q

〈α′

m,αs〉,sv
in

∈ δ.

When the current control state is qαx,sv
out

, the counter satisfies αx and it
is now time to update it according to the constraints α′

m and αs, impos-
ing constraints on the counter for the next position of symbolic model.
Therefore, the only way for the run to continue is to enter further in the
component A〈α′

m,αs〉,sv .

• For all pairs of symbolic valuations sv1 = 〈(αx)1, (αm)1, (α
′
x)1, (α

′
m)1, (αs)1〉

∈ SV(φ) and sv2 = 〈(αx)2, (αm)2, (α
′
x)2, (α

′
m)2, (αs)2〉 ∈ SV(φ) such that

– (α′
x)1[Xx← x] = (αx)2 and

– (α′
m)1[Xx← x] = (αm)2

we have a transition

q
〈(α′

m)1,(αs)1〉,sv1

out

sv1,⊤,0
−−−−→ q

(αx)2,sv2

in
∈ δ.

At this step, the letter sv1 can be read since all the verifications have been
successful. The only way for the run to continue is to enter further in a
component of the form A(αx)2,sv2

. The new symbolic valuation sv2 that is
guessed has to agree with sv1 on some constraints. Note that since (α′

m)1
have been verified by A〈(α′

m)1,(αs)1〉,sv1
and (α′

m)1[Xx ← x] = (αm)2, we
can go directly to the input state in A(αx)2,sv2

.

By construction of the components the following property is satisfied.

Lemma 4 For all symbolic valuations sv1 = 〈(αx)1, (αm)1, (α
′
x)1, (α

′
m)1, (αs)1〉 ∈

SV(φ) and sv2 = 〈(αx)2, (αm)2, (α
′
x)2, (α

′
m)2, (αs)2〉 ∈ SV(φ), and for all c, c′ ∈

Z, the propositions below are equivalent:

(I) [x← c] |= (αm)1 and 〈q
(αx)1,sv1

in , c〉
ε
−→

∗
〈q

〈(α′

m)1,(αs)1〉,sv1

in
, c〉

ε
−→

∗

〈q
〈(α′

m)1,(αs)1〉,sv1

out
, c′〉

sv1−→ 〈q
(αx)2,sv2

in
, c′〉

ε
−→

∗
〈q

(αx)2,sv2

out
, c′〉,

(II) [x← c,Xx← c′] |= sv1.

We can now state the main property: the set of satisfiable symbolic mod-
els (with respect to a formula φ) is recognized by the simple one-Z-counter
automaton Asat.

Lemma 5 L(Asat) is exactly the set of satisfiable symbolic models.

22



Proof. Let 〈σ, ρ〉 be a satisfiable symbolic model and for all i ∈ N, ρ(i) =
〈(αx)i, (αm)i, (α′

x)i, (α
′
m)i, (αs)i〉. So there is a CLTL1

1(DL) model σ′ : N → Z

such that σ′ |= ρ. We can show that 〈σ, ρ〉 ∈ L(Asat) since there is an accepting
run of the form

s0
ε
−→ 〈q

(αm)0,ρ(0)
in

, σ′(0)〉
ε
−→

∗
〈q

(αx)0,ρ(0)
in

, σ′(0)〉
ε
−→

∗
〈q

〈(α′

m)0,(αs)0〉,ρ(0)
in

, σ′(0)〉
ε
−→

∗

〈q
〈(α′

m)0,(αs)0〉,ρ(0)
out

, σ′(1)〉
ρ(0)
−→ 〈q

(αx)1,ρ(1)
in

, σ′(1)〉
ε
−→

∗
〈q

〈(α′

m)1,(αs)1〉,ρ(1)
in

, σ′(1)〉
ε
−→

∗

〈q
〈(α′

m)1,(αs)1〉,ρ(1)
out

, σ′(2)〉
ρ(1)
−→ 〈q

(αx)2,ρ(2)
in

, σ′(2)〉 . . .

Now suppose that 〈σ, ρ〉 ∈ L(Asat). By construction of the network of com-
ponents in Asat, there is an accepting run necessarily of the form

s0
ε
−→ 〈q

(αm)0,sv0

in
, c0〉

ε
−→

∗
〈q

(αx)0,sv0

in
, c0〉

ε
−→

∗
〈q

〈(α′

m)0,(αs)0〉,sv0

in
, c0〉

ε
−→

∗

〈q
〈(α′

m)0,(αs)0〉,sv0

out
, c1〉

ρ(0)
−→ 〈q

(αx)1,sv1

in
, c1〉

ε
−→

∗
〈q

〈(α′

m)1,(αs)1〉,sv1

in
, c1〉

ε
−→

∗

〈q
〈(α′

m)1,(αs)1〉,sv1

out
, c2〉

ρ(1)
−→ 〈q

(αx)2,sv1

in
, c2〉 . . .

By construction of each component and by Lemma 4, we have [x← c0] |= (αm)0
and for every i ∈ N, [x← ci,Xx← ci+1] |= (αx)i∧ (αm)i∧ (α′

x)i∧ (α′
m)i∧ (αs)i.

So the model σ′ : N→ Z such that σ′(i) = ci satisfies ρ, i.e. σ′ |= ρ. This means
precisely that 〈σ, ρ〉 is a satisfiable symbolic model. 2

4 Model-checking one-Z-counter automata

A natural question is whether the decidability results of the previous section
are optimal with respect to the fragments of Presburger arithmetic we have
considered. Lemma 6 below states that we do not preserve decidability when
extending the constraint language to quantifier-free Presburger arithmetic.

Lemma 6 Satisfiability for CLTL1
1(QFP) and model-checking CLTL1

1(QFP) for-
mulae over 1-variable QFP-automata are Σ1

1-complete.

This follows directly from [Min67, Section 14.2] about one counter machines with
multiplication and division by constants (plus Σ1

1-hardness from [AH94, Lemma
8]). Intuitively, the introduction of constraints of the form ax + by = 0 where
a, b ∈ Z allow to encode a configuration 〈qi, c1, c2〉 of a Minsky machine, where
qi is the ith control state, by the value 2c13c25i. Zero tests, incrementations and
decrementations can be encoded with constraints of the form x ≡2 0, x ≡3 0,
Xx = 2x (incrementation of the first counter) etc.

As a consequence, the model-checking problem as it is defined in Section 2
is undecidable even for the fragment restricted to one variable and X-length one
too. In this section, the strategy to regain decidability consists in restricting
the class of models to one-Z-counter automata. Model-checking becomes decid-
able (even in pspace) for LTL with full quantifier-free Presburger constraints
restricted to one variable but with no restriction on the X-length. Indeed, the
behavior of the unique counter in such automata is more constrained than in

23



QFP-automata. However, the examples of applications given at the beginning of
the previous section still hold. This result is in sharp contrast with the results of
the previous sections since the logic is much more expressive than CLTL(DL+).

Let A = 〈QA, δA, IA, FA〉 be a one-Z-counter automaton whose set of up-
dates is of the form Xx = x + u with u ∈ {umin, umin + 1, . . . , umax}. Without
loss of generality, we can assume that umin = −umax. Given a CLTLω

1 (QFP)
formula φ such that |φ|X = l, we consider the following syntactic resources:

• K is the lcm of the integers k such that ≡k occurs in φ (k ∈ N \ {0, 1}),

• CONS is the set of constants d ∈ Z such that
∑
aiX

ix ∼ d occurs in φ,

• M = max{|d| : d ∈ CONS} is the maximal absolute value of the elements
of CONS,

• COEF is the set of constants ai ∈ Z \ {0} such that
∑
aiX

ix ∼ d occurs
in φ.

Without any loss of generality, we can assume that amin = −amax where amin

and amax are respectively the minimal and the maximal element of COEF. For
technical reasons (see the proof of Lemma 7), we define CONS(A, φ) as the set
{dmin, . . . , dmax} such that

dmax = −dmin = M +
l(l+ 1)

2
amaxumax.

We define a symbolic valuation with respect to A and φ as an element of the
set SV(A, φ) = Cx ×Modx × C1

step × · · · × Cl
step such that

• Cx is the set composed of the constraints x < dmin, dmax < x, and x = d

for every d ∈ CONS(A, φ).

• Modx contains the constraint x ≡K c for every c ∈ {0, . . . ,K − 1}.

• Ci
step contains the constraint Xix = Xi−1x+u for every u ∈ {umin, . . . , umax}.

Lemma 7 Let φ be a CLTLω
1 (QFP) formula such that |φ|X = l.

(I) For every path v = 〈q0, c0〉 . . . 〈ql, cl〉 of A there is a unique symbolic valua-
tion sv(v) ∈ SV (A, φ) such that v |= sv(v).

(II) For all valuations v, v′ : {x,Xx, . . . ,Xlx} → Z such that sv(v) = sv(v′)
(sv(v) = sv(v′) ∈ SV (A, φ)) and for every atomic subformula α of φ,
v |= α iff v′ |= α.

In the statement (II) we had to suppose that the valuations v and v′ correspond
to some path in A. Actually, this implies that the valuation v is such that for
every i ∈ {0, . . . , l− 1} we have |v(Xi+1x) − v(Xix)| ≤ umax (idem for v′).
Proof. (I) The argument is similar to the proof of Lemma 2(I) since the defini-
tion of symbolic valuations induces a partition of the set of valuations obtained
from runs of A.

24



(II) We proceed by induction on the structure of the formula. Assuming that
for every 1 ≤ i ≤ l, the constraint Xix = Xi−1x + ui is in sv(v), a term of the
form b0x+b1Xx+b2X

2x · · ·+blXlx (some bi might be equal to zero) is equivalent
to

(

j=l
∑

j=0

bj)x+

i=l∑

i=1

bi(

j=i
∑

j=1

uj)

Note that by definition of dmax = −dmin = M + l(l+1)
2 amaxumax, for every

atomic constraint of the form b0x + b1Xx + b2X
2x · · · + blX

lx ∼ d, the value
d −

∑i=l
i=1 bi(

∑j=i
j=1 uj) is also in CONS(A, φ). Indeed, for every i ∈ {1, . . . , l}

we have umin ≤ ul ≤ umax and amin ≤ bi ≤ amax. We recall that by defini-
tion amin = −amax and umin = −umax. Moreover, when (

∑l
j=0 bj) is nonzero,

P

i=l
i=1

bi(
Pj=i

j=1
uj)

(
P

l
j=0 bj)

belongs to the range of constants in CONS(A, φ). Thus, we

can reduce every atomic constraint α ∈ φ without Boolean connective in the
following way.

• A constraint of the form
∑
aiX

ix ∼ d can be reduced to constraints of
the form x ∼ d′ with dmin ≤ d′ ≤ dmax and since sv(v) = sv(v′) we can
conclude.

• A constraint of the form
∑
aiX

ix ≡k c can be reduced to a constraint of
the form ax ≡k c

′ with c′ ∈ {0, . . . , k − 1}. The set of solutions is of the
form x ≡k′ c′′ for k′ = gcd(a, k) (computable in polynomial time). As k′

divides K, x ≡K cx implies x ≡k′ c′x for a unique c′x ∈ {0, . . . , k
′− 1}. We

can conclude by using the hypothesis sv (v) = sv(v′).

The step with Boolean connectives is by an easy verification. Note that the
substitution can be done in polynomial time (the size of dmax is polynomial with
respect to |φ|) and checking that an atomic constraint is satisfied by a symbolic
valuation can be checked in polynomial time. 2

We define a symbolic satisfaction relation as in Section 3.3: sv |=symb α iff
for every valuation v : {x,Xx, . . . ,Xlx} → Z (corresponding to a path with l+1
configurations in A) such that sv(v) = sv we have v |= α. We can naturally
extend this relation to symbolic valuation sequences.

Lemma 8 Let φ be a CLTLω
1 (QFP) formula and A be a one-Z-counter automa-

ton. A |= φ iff there exist a symbolic model ρ ∈ SV (A, φ) such that ρ |=symb φ

and an accepting run 〈q0, c0〉, 〈q1, c1〉, 〈q2, c3〉, . . . of A such that c0, c1, c2 . . . |= ρ.

Proof. In a nutshell, if φ is satisfied by a run then the symbolic valuation
sequence ρ : N → SV(A, φ) such that for every position i ∈ N the symbolic
valuation ρ(i) is the abstraction of the subrun of length l starting at position
i symbolically satisfies φ (see Lemma 7). Conversely, we can prove that if ρ
symbolically satisfies φ, then every run of A satisfying ρ also satisfies φ. Indeed,
for every i, the subrun of this run starting at position i satisfies ρ(i) and therefore
also satisfies the subformulae that are symbolically satisfied by ρ(i). 2

25



Again, we build an automaton Aφ as the intersection Asymb∩Asat such that
Asymb recognizes the set of symbolic models satisfying φ and Asat recognizes
the set of symbolic models abstracting an accepting run of A. The definition of
Asymb and the synchronization between Asymb and Asat are similar to what is
done in Section 3.4 considering the alphabet Σ = SV(A, φ) (with ε-transitions)
and the corresponding relation |=symb. Lemma 9 below is a pivot result for
proving Theorem 4.

Lemma 9 Given a formula φ and a one-Z-counter automaton A, one can build
a simple one-Z-counter automaton Asat over the alphabet Σ = 2PROP×SV(A, φ)
such that L(Asat) is the set of satisfiable symbolic models w.r.t φ and A.
Moreover, Aφ can be effectively built from φ and A in polynomial space thanks
to the way Asat is defined.

Proof. Let A = 〈QA, δA, IA, FA〉 be a one Z-counter automaton and φ be a
CLTLω

1 (QFP) formula such that |φ|X = l. The automaton Asat is defined over
the alphabet Σ = SV (A, φ). As in Section 3.5, the construction is modular. We
denote by QA ×Q the set of states of Asat where Q is a set of auxiliary states
used in the construction of components similar to components of Section 3.5.
For every sv = 〈αx, αm, α

1
s, . . . , α

l
s〉 and qa ∈ QA, we define the following com-

ponents:

• Aqa
αm,sv such that for every c ∈ Z, 〈qa, q

αm,sv
in

, 0〉 −→∗ 〈qa, q
αm,sv
out

, c〉 iff
[x← c] |= αm.

• Aqa
αx,sv such that for every c ∈ Z, 〈qa, q

αx,sv
in

, c〉 −→∗ 〈qa, q
αx,sv
out

, c′〉 iff c = c′

and [x← c] |= αx.

• We also need to define another kind of components that update the counter.
For every d ∈ CONS(A, φ), the component Aqa

α1
s,sv

is such that for every

c ∈ Z, 〈qa, q
α1

s,sv

in
, c〉 −→∗ 〈qa, q

α1
s,sv

out
, c′〉 iff [x← c,Xx← c′] |= α1

s.

These different components are connected as follows:

• The set of initial states is composed of the states of the form 〈q0, q
αm,sv
in

〉
for every sv = 〈αx, αm, α

1
s, . . . , α

l
s〉 ∈ SV(φ,A) and q0 ∈ IA.

• For every sv = 〈αx, αm, α
1
s, . . . , α

l
s〉 ∈ SV(φ,A) and q0 ∈ IA, we have

〈q0, q
αm,sv
out

〉
ε,⊤,0
−−→ 〈q0, q

αx,sv
in

〉 ∈ δ.

• For all sv = 〈αx, αm, α
1
s, . . . , α

l
s〉 ∈ SV(φ,A), 〈qa, q

αx,sv
out

〉
ε,⊤,0
−−→ 〈qa, q

α1
s,sv

in
〉

belongs to δ.

• For all sv1 = 〈(αx)1, (αm)1, (α
1
s)1, . . . , (α

l
s)1〉 ∈ SV(φ,A),

sv2 = 〈(αx)2, (αm)2, (α
1
s)2, . . . , (α

l
s)2〉 ∈ SV(φ,A) and qa, q

′
a ∈ QA such

that

– (α1
s)1 is equal to Xx = x+ d,

– qa
d
−→ q′a ∈ δA,

26



– (α1
s)1 ∧ (α1

m)1 ⇒ (α1
m)2 is valid in Presburger arithmetic (checkable

in polynomial-time),

– for every 1 ≤ i ≤ l− 1, (αi
s)2 = (αi+1

s )1[X
i+1x← Xix,Xix← Xi−1x],

we have 〈qa, q
α1

s,sv1

out
〉

sv1,⊤,0
−−−−→ 〈q′a, q

(αx)2,sv2

in
〉 ∈ δ.

• the set of final states is {〈qf , q
αx,sv
out

〉|qf ∈ FA}.

By construction, for every path inAsat of the form · · · 〈qi, q
(αx)i,svi

in
, ci〉 −→ · · ·

svi−→ 〈qi+1, q
(αx)i+1,svi+1

in
, ci+1〉 −→ · · ·

svi+1

−−→ · · ·
svi+l−1

−−−−→ 〈qi+l, q
(αx)i+l,svi+l

in
, ci+l〉 · · · ,

we have ci, . . . , ci+l |= sv i. 2

We can conclude about the complexity of the model-checking problem.

Theorem 4 Model-checking CLTLω
1 (QFP) formulae over one-Z-counter au-

tomata is pspace-complete.

Proof. The pspace upper bound is corollary of Lemma 9 and Theorem 6. The
pspace-hardness can be obtained by using the result of [DS02] about the model-
checking of LTL restricted to one propositional variable. 2

This result can also be generalized to LTL extensions with MSO-definable
operators (denoted by xCLTL1

1(QFP) below).

Theorem 5 Model-checking xCLTL1
1(QFP) formulae over one-Z-counter au-

tomata is pspace-complete.

5 Complexity of the nonemptiness problem for

simple one-Z-counter automata

This last technical section is dedicated to prove the result used in Theorems 3
and 4 stating that the nonemptiness problem for simple one-Z-counter automata
with alphabet can be decided in nlogspace. This is an interesting result for its
own sake even though it is instrumental to establish our pspace upper bounds.
The proof is divided in two main parts. We first define several reductions to
restrict the class of automata we have to handle. Then, we show that the
existence of accepting runs is equivalent to the existence of finite runs of poly-
nomial length. Even when it is not explicitly mentioned, in the rest of this
section the counter automata are always simple counter automata (the updates
of the counter are among {−1, 0, 1}).

5.1 Reduction to one-N-counter automata

We first show how to reduce in logarithmic space the nonemptiness problem for
simple one-Z-counter automata with alphabet to the existence of an accepting
run in one-N-counter automata (without alphabet). We proceed with several

27



reductions. The first step is to eliminate the alphabet and the ε-transitions. The
main difficulty is to avoid accepting runs where ε-transitions are fired forever
after a certain position.

Lemma 10 Checking whether L(A) is non-empty for one-Z-counter automata
A with alphabet can be reduced in logarithmic space to the existence of an ac-
cepting run in one-Z-counter automata (without alphabet).

Proof. We show that given a one-Z-counter automaton A with alphabet Σ, it is
possible to compute in logarithmic space a one-Z-counter automaton A′ without
alphabet such that L(A) 6= ∅ iff A′ has an accepting run. The idea of the proof
consists in defining A′ as two copies of A. The copy that contains the final
states is reachable only by reading a non-epsilon transition.

Given the one-Z-counter automaton A = 〈Q, δ, I, F 〉, the one-Z-counter au-
tomaton A′ = 〈Q′, δ′, I ′, F ′〉 is defined as follows:

• Q′ = Q× {1, 2}, I ′ = I × {1}, F ′ = F × {2},

• The transitions in δ′ are defined from transitions in δ:

– for every q
a,t,u
−−→ q′ ∈ δ such that a ∈ Σ (u ∈ {−1, 0,+1})

we have 〈q, i〉
t,u
−→ 〈q′, 2〉 for i ∈ {1, 2},

– for every q
ε,t,u
−−→ q′ ∈ δ we have

∗ if q ∈ F then 〈q, i〉
t,u
−→ 〈q′, 1〉 ∈ δ′ for i ∈ {1, 2},

∗ if q 6∈ F then 〈q, i〉
t,u
−→ 〈q′, i〉 ∈ δ′ for i ∈ {1, 2} .

It is easy to show that L(A) 6= ∅ iff A′ has an accepting run. 2

We now show that the existence of an accepting run for one-Z-counter au-
tomata can be reduced in logarithmic space to the same problem for the simpler
class of one-N-counter automata.

Lemma 11 The existence of an accepting run in one-Z-counter automata can
be reduced in logarithmic space to the existence of an accepting run in one-N-
counter automata.

Proof. We show that given a one-Z-counter automaton A, one can compute in
logarithmic space a one-N-counter automaton A′ such that A has an accepting
run iff A′ has an accepting run. The idea of the proof is simply to define A′ as
two copies of A, one copy when the counter is positive (see the states in Q×{+}
below) and another one when the counter is negative (see the states in Q×{−}
below). The move from one copy to another is done when the counter is equal
to zero and the sign of the counter changes. These two different copies allow to
simulate tests of the form x < 0 and x > 0.

Given the one-Z-counter automaton A = 〈Q, δ, I, F 〉, the one-N-counter au-
tomaton A′ = 〈Q′, δ′, I ′, F ′〉 is defined as follows:

• Q′ = Q× {+,−}, I ′ = I × {+}, F ′ = F × {+,−},

28



• The transitions in δ′ are defined from transitions in δ:

– q
t,0
−→ q′ ∈ δ and t ∈ {=, 6=} imply 〈q,−〉

t,0
−→ 〈q′,−〉 ∈ δ′ and

〈q,+〉
t,0
−→ 〈q′,+〉 ∈ δ′,

– q
>,0
−→ q′ ∈ δ implies 〈q,+〉

6=,0
−→ 〈q′,+〉 ∈ δ′,

– q
<,0
−→ q′ ∈ δ implies 〈q,−〉

6=,0
−→ 〈q′,−〉 ∈ δ′,

– q
=,−1
−−→ q′ ∈ δ implies 〈q,+〉

=,+1
−−→ 〈q′,−〉 ∈ δ′ and

〈q,−〉
=,+1
−−→ 〈q′,−〉 ∈ δ′,

– q
>,−1
−−→ q′ ∈ δ implies 〈q,+〉

6=,−1
−−→ 〈q′,+〉 ∈ δ′,

– q
<,−1
−−→ q′ ∈ δ implies 〈q,−〉

6=,+1
−−→ 〈q′,−〉 ∈ δ′,

– q
⊤,−1
−−→ q′ ∈ δ implies 〈q,+〉

6=,−1
−−→ 〈q′,+〉 ∈ δ′, 〈q,+〉

=,+1
−−→ 〈q′,−〉 ∈ δ′

and 〈q,−〉
⊤,+1
−−→ 〈q′,−〉 ∈ δ′,

– q
6=,−1
−−→ q′ ∈ δ implies 〈q,+〉

6=,−1
−−→ 〈q′,+〉 ∈ δ′ and

〈q,−〉
6=,+1
−−→ 〈q′,−〉 ∈ δ′,

– the remaining cases with incrementations by one are treated in a
similar fashion.

It is easy to show that A has an accepting run iff A′ has an accepting run. 2

Finally, we can simplify the problem once more, by restricting the class of
one-N-counter automata we have to consider.

Lemma 12 The existence of some accepting run in one-N-counter automata
can be reduced in logarithmic space to the existence of some accepting run in
one-N-counter automata with no test of the form x 6= 0.

The simple proof is based on the replacement of each transition of the form

q
6=,u
−→ q′ by the sequence q

⊤,−1
−−→ q1

⊤,+1
−−→ q2

⊤,u
−→ q′ where q1 and q2 are new states.

5.2 Zero-test free paths

We recall that the composition of logarithmic space reductions is a logarithmic
space reduction and the composition of a logarithmic space reduction with a
nondeterministic logarithmic space test can be done in nondeterministic loga-
rithmic space. For these reasons, we are restricting ourselves in the following to
one-N-counter automata with the tests x = 0 and ⊤, that we can obtain using
the reductions we have just described.

We say that an infinite path w : N → (Q × N) for A is zero-test free iff

for every i ∈ N (with w(i) = 〈qi, ci〉), there is a transition qi
⊤,ui
−−→ qi+1 and

ci+1 = ci + ui. Finite zero-test free paths are defined similarly. In other words,
the absence of zero-tests implies that the only “test” is ⊤. We define below
several properties on zero-test free paths that will be useful in the following.

29



Lemma 13 Let w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a finite path such that 〈q2, c2〉, . . . ,
〈qn, cn〉 is zero-test free. There exists a finite path w′ = 〈q′1, c

′
1〉, . . . , 〈q

′
n′ , c′n′〉

such that q′1 = q1, q
′
n′ = qn, c′1 = c1 and n′ ≤ |Q|2 + 2|Q|+ 1.

Proof. First, remark that if there exist two indices i, j > 1 such that qi = qj
and ci ≥ cj then the subpath 〈qi, ci〉, . . . , 〈qj , cj〉 can be deleted from w, still
providing a path since 〈q2, c2〉, . . . , 〈qn, cn〉 is zero-test free. The values of the
counter have to be updated adequately but since the new values are greater,
every transition can be fired. Note that this remark is not true if the path con-
tains zero-tests. So we can assume without any loss of generality that if there
exist 1 < i < j ≤ n such that qi = qj , then ci < cj.

If there are no 1 < i < j ≤ n such that qi = qj , then n ≤ |Q| and so we can
take w′ = w.

Otherwise, there exists a unique pair of indices 〈i0, j0〉 such that

• i0 < j0,

• qi0 = qj0 ,

• q1, . . . , qi0 , . . . , qj0−1 is a sequence of distinct control states.

These indices correspond to the first control state that is repeated in the path.
By hypothesis, we must have N = cj0 − ci0 > 0. Moreover, it is easy to check
that i0 ≤ |Q| and j0 − i0 ≤ |Q| because the control states before the position j0
are distinct.

Since 〈qj0 , cj0〉, . . . , 〈qn, cn〉 is a zero-test free path of A, there is a path
q′1 . . . q

′
m of length at most |Q| such that q′1 = qj0 , q

′
m = qn in the directed graph

G = 〈Q, {〈r, s〉 : 〈r,⊤, u, s〉 ∈ δ}〉 of reachable control states without zero-test
transitions. Thus, we can use the following observation:

If there is a path in G from a state q to a state q′ whose length is c then one can
reach the control state q′ from any configuration 〈q, c′〉 such that c′ ≥ c in A.

Indeed, one can fire all the transition corresponding to this path in A (the worst
case is c decrements by one) since it is zero-test free.

So we build the finite path w′ as the path composed of the following succes-
sive subpaths:

• 〈q1, c1〉, . . . , 〈qi0−1, ci0−1〉, 〈qi0 , ci0〉, . . . , 〈qj0−1, cj0−1〉,

• 〈qi0 , ci0 +N〉, . . . , 〈qj0−1, cj0−1 +N〉,

• 〈qi0 , ci0 + 2N〉, . . . , 〈qj0−1, cj0−1 + 2N〉,

• . . .

• 〈qi0 , ci0 + (|Q| − 1)N〉, . . . , 〈qj0−1, cj0−1 + (|Q| − 1)N〉,

• 〈qi0 , ci0 + |Q|N〉, 〈q′2, y2〉, . . . , 〈q
′
m, ym〉.

30



This path is well-defined since qi0 = qj0 , cj0 = ci0 + N and the value of the
counter is great enough to fire the last part of the path (the part corresponding
to the path in G). The restriction of w′ to control states is presented below:

length ≤|Q|
︷ ︸︸ ︷
q1 . . . qi0−1(

length ≤|Q|
︷ ︸︸ ︷
qi0qi0+1 . . . qj0−1qj0)

|Q|

length ≤|Q|
︷ ︸︸ ︷

q′2 . . . q
′
m .

Obviously, the length of this path is bounded by |Q|2 + 2|Q|+ 1 2

It is also possible to easily adapt the above proof by requiring in the state-
ment of Lemma 13 that c′m is greater than some constant K. In the proof, it
is sufficient to repeat the sequence of transitions between qi0 and qj0 , |Q| +K

times.
We now treat the case of infinite zero-test free path where a final state occurs

infinitely often. Our goal is to extract a cycle whose initial state is this final
state. Indeed, such a cycle allows to build a run satisfying the Büchi acceptance
condition.

Lemma 14 Let w : N → (Q× N) be an infinite zero-test free path where there
is a final state qf ∈ F such that {i ∈ N : w(i) is of the form 〈qf , j〉} is infinite.
There exist i ∈ N and a finite path w′ = 〈q1, c′1〉, . . . , 〈qn, c

′
n〉 such that n > 1,

〈q1, c′1〉 = w(i) with q1 = qf , qn = qf , c′n ≥ c
′
1 and n ≤ 2|Q|2 + 3|Q|.

Proof. Let w(i) = 〈qi, ci〉 for every i ∈ N. Since < is a well-quasi ordering over
the elements of N, there exist i0 and j0 such that:

• i0 < j0,

• qi0 = qj0 = qf and

• ci0 ≤ cj0 .

The finite path w′′ = w(i0), . . . , w(j0) satisfies all the properties of w′ except
that j0 − i0 can be greater than the desired bound. At this point, we proceed
similarly to the proof of Lemma 13. Without any loss of generality, we can
assume that if there exist i0 < i < j ≤ j0 such that qi = qj then ci < cj
(otherwise, the subpath can be deleted).

If there are no i0 < i < j ≤ j0 such that qi = qj then the length of the path
is smaller than |Q| and we can take w′ = w′′.

Otherwise, there is a unique pair 〈i1, j1〉 such that

• i0 ≤ i1 < j1 ≤ j0,

• qi1 = qj1 ,

• qi0 , . . . , qi1 , . . . , qj1−1 is a sequence of distinct control states.

By hypothesis, we have N = cj1 − ci1 > 0 and one can check that i1 ≤ |Q| and
j1−i1 ≤ |Q|. Since 〈qj1 , cj1〉, . . . , 〈qj0 , cj0〉 is a zero-test free path, there is a path

31



q′1 . . . q
′
m of length at most |Q| in the graph G = 〈Q, {〈r, s〉 : 〈r,⊤, u, s〉 ∈ δ}〉

such that q′1 = qj0 , q
′
m = qn. The same observation about the graph G as in

Lemma 13 allows us to build the path w′ composed of the following successive
subpaths:

• 〈qi0 , ci0〉, . . . , 〈qi1−1, ci1−1〉, 〈qi1 , ci1〉, . . . , 〈qj1−1, cj1−1〉,

• 〈qi1 , ci1 +N〉, . . . , 〈qj1−1, cj1−1 +N〉,

• 〈qi1 , ci1 + 2N〉, . . . , 〈qj1−1, cj1−1 + 2N〉,

• . . .

• 〈qi1 , ci1 + 2|Q|N〉, . . . , 〈qj1 , cj1−1 + 2|Q|N〉,

• 〈qi1 , ci1 + (2|Q|+ 1)N〉, 〈q′2, c
′
2〉, . . . , 〈q

′
m, c

′
m〉.

This path is well-defined since qi1 = qj1 , cj1 = ci1 + N and the value of the
counter is large enough to fire the last part corresponding to the path in G.
The restriction of w′ to control states is presented below:

length ≤|Q|
︷ ︸︸ ︷
q1 . . . qi0−1(

length ≤|Q|
︷ ︸︸ ︷
qi0qi0+1 . . . qj0−1qj0)

2|Q|+1

length ≤|Q|
︷ ︸︸ ︷

q′2 . . . q
′
m .

The length of this path is clearly bounded by 2|Q|2 + 3|Q|. Moreover, c′m > ci0
since the first and last part of the path decrement the counter at most by 2|Q|
whereas the repetition of the center loop increments it by 2|Q|N . 2

5.3 Paths with zero-tests

It remains to consider paths containing zero-tests. We first state a result that
is a consequence of [LLT04, Lemma 42].

Lemma 15 [LLT04] Let w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a finite path of A such
that 〈q2, c2〉, . . . , 〈qn, cn〉 is zero-test free and cn = c1 = 0. There exists a finite
path w′ = 〈q′1, c

′
1〉, . . . , 〈q

′
n′ , c′n′〉 such that q′1 = q1, q

′
n′ = qn, c′n′ = c′1 = 0 and

for every i ∈ {1, . . . , n′}, c′i ≤ |Q|
3 + |Q|2.

Proof. The statement of the lemma is a variant of [LLT04, Lemma 42] and the
proof below is a slight adaptation of its proof.

First, we show the following property.

(⋆) Let w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a path such that cn = c1 + |Q|. Then,
there exists a subpath w′ of w such that w′ = 〈q, c〉 −→∗ 〈q, c+ d〉 for some
0 < d ≤ |Q| and q ∈ Q.

Indeed, there is a sequence 1 = i1 < i2 < i3 < . . . < i|Q|+1 ≤ n such that
cij+1

= cij
+1 for 1 ≤ j ≤ |Q|. Consequently, there are l < l′ such that qil

= qil′

and 〈qil
, cil
〉 −→∗ 〈qil

, cil
+ d〉 with d = cil′

− cil
and 0 < d = l′ − l ≤ |Q|. In a

similar way, one can show the property below.

32



(⋆⋆) Let w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a path such that cn + |Q| = c1. Then,
there exists a subpath w′ of w such that w′ = 〈q, c+ d〉 −→∗ 〈q, c〉 for some
0 < d ≤ |Q| and q ∈ Q.

Let w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a path of A such that 〈q2, c2〉, . . . , 〈qn, cn〉 is
zero-test free and cn = c1 = 0. Let γ be the value |Q| (γ will be used also in
the proof of Lemma 17). The overweight of the path w, denoted by ov(w), is
defined as the sum

∑n
i=1max(ci − (|Q| × γ2 + |Q|2), 0). The proof consists in

transforming w into a path w′ with identical first and last configurations and
ov(w′) < ov(w), whenever there is 1 < j < n such that cj > |Q| × γ2 + |Q|2.

Given a finite path w = 〈q1, c1〉, . . . , 〈qn, cn〉 with ov(w) > 0, let 〈L,L′〉 be
the unique pair of indices such that L is the smallest index such that cL =
|Q|×γ2 + |Q|2 and cL+1 = |Q|×γ2 + |Q|2 +1, and L′ is the smallest index such
that cL′−1 = |Q| × γ2 + |Q|2 + 1 and cL′ = |Q| × γ2 + |Q|2.

The proof is by induction on ov(w). The base case with ov(w) = 0 is
obvious. Now, suppose that ov(w) > 0. There exist β < L ≤ L′ < β′ such that
for β ≤ i ≤ β′, ci ≥ |Q|2 and cβ = cβ′ = |Q|2. Figure 4 illustrates the behaviour
of the counter. Consequently, there exist β = β1 < β2 < . . . < βγ2+1 = L and

0

counter

i

|Q|γ2 + |Q|2

|Q|2

L L′β β′

Figure 4: Counter values when ov(w) > 0

L′ = β′
1 < β′

2 < . . . < β′
γ2+1 = β′ such that for 1 ≤ j ≤ γ2, cβj+1

= cβj
+ |Q|

and cβ′

j
= cβ′

j+1
+ |Q|. By using (⋆) and (⋆⋆), we get that for 1 ≤ j ≤ γ2,

• there exists an ascending subpath 〈q, c〉 −→∗ 〈q, c+ dj〉 of the path
〈qβj

, cβj
〉 −→∗ 〈qβj+1

, cβj+1
〉 for some 0 < dj ≤ |Q|,

• there exists a descending subpath 〈q, c+ d′j〉 −→
∗ 〈q, c〉 of the path

〈qβ′

j
, cβ′

j
〉 −→∗ 〈qβ′

j+1
, cβ′

j+1
〉 for some 0 < d′j ≤ |Q|,

33



There exists d ∈ {d1, . . . , dγ2} such that d is equal to at least γ values dj and
there exists d′ ∈ {d′1, . . . , d

′
γ2} such that d′ is equal to at least γ values d′j .

(Remove) The path w′ is obtained from w by removing d′ ascending subpaths
with increasing effect d and by removing d descending subpaths with de-
creasing effect d′.

It is easy to see that ov(w′) < ov(w). Observe that removing such subpaths
causes no problem since 0 < d× d′ ≤ |Q|2 and cβ = c′β = |Q|2. 2

In Lemma 16 below, the initial path is not necessarily zero-test free. This is
a direct consequence of the result stated above.

Lemma 16 Let w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a finite path of A such that cn =
c1 = 0. There exists a finite path w′ = 〈q′1, c

′
1〉, . . . , 〈q

′
n′ , c′n′〉 satisfying q′1 = q1,

q′n′ = qn, c′n′ = c′1 = 0 and n′ ≤ |Q|5 + |Q|4.

Proof. Let w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a finite path of A such that cn = c1 = 0.
Let 1 = i1 < i2 < . . . < im = n be such that ci1 = ci2 = · · · = cim

= 0 and
no other configuration has the counter equal to zero. Note that subpaths of the
form 〈q, 0〉 · · · 〈q, 0〉 can be withdrawn from w. Hence, without loss of generality,
we can assume that m ≤ |Q|.

For every 1 ≤ j < m, the subpath 〈qij
, cij
〉 · · · 〈qij+1

, cij+1
〉 satisfies the

conditions of Lemma 15. So for every 1 ≤ j < m, there exists a path wj such
that wj = 〈qij

, 0〉 · · · 〈qij+1
, 0〉 with all the values of the counter smaller or equal

to |Q|3+ |Q|2. Since subpaths of the form 〈q, c〉, . . . , 〈q, c〉 can also be withdrawn
from wj (see remark in Lemma 13), we can assume that the length of wj is
smaller than |Q| × (|Q|3 + |Q|2). By concatenating the paths w1, . . . , wm−1

we can easily obtained a path w′ = 〈q′1, c
′
1〉, . . . , 〈q

′
n′ , c′n′〉 satisfying q′1 = q1,

q′n′ = qn, c′n′ = c′1 = 0 and n′ ≤ (m− 1)× |Q| × (|Q|3 + |Q|2) ≤ |Q|5 + |Q|4. 2

We finally consider accepting runs such that zero-tests are repeated infinitely
often. As stated in Lemma 14, we want to extract a cycle with a final state
whose length is bounded by some polynomial.

Lemma 17 Let qf ∈ F and w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a finite path such that
〈q2, c2〉, . . . , 〈qn, cn〉 is zero-test free, cn = c1 = 0 and qf ∈ {q1, . . . , qn}. There is
a finite path w′ = 〈q′1, c

′
1〉, . . . , 〈q

′
n′ , c′n′〉 such that q′1 = q1, q

′
n′ = qn, c′n′ = c′1 = 0,

qf ∈ {q′1, . . . , q
′
n} and for every i ∈ {1, . . . , n′}, c′i ≤ |Q|

3 + 3|Q|2 + |Q|.

Proof. The proof is similar to the proof of Lemma 15 except that when trans-
forming a path, we require that qf remains in the path w′. In order to get the
present proof, from the proof of Lemma 15, it is sufficient to take γ = |Q| + 1
and then to observe that in the part (Remove), there are γ = |Q|+ 1 subpaths
for d and d′ respectively, we can guarantee there is a way to remove subpaths
while preserving the presence of qf . 2

34



Lemma 18 Let qf ∈ F and w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a finite path such
that cn = c1 = 0 and qf ∈ {q1, . . . , qn}. There is a finite path w′ of the
form 〈q′1, c

′
1〉, . . . , 〈q

′
n′ , c′n′〉 satisfying q′1 = q1, q

′
n′ = qn, c′n′ = c′1 = 0, qf ∈

{q′1, . . . , q
′
n′} and n′ ≤ 2|Q|5 + 3|Q|4 + 3|Q|3 + |Q|2.

Proof. Let qf ∈ F and w = 〈q1, c1〉, . . . , 〈qn, cn〉 be a finite path such that
cn = c1 = 0 and qf ∈ {q1, . . . , qn}. Let 1 = i1 < i2 < . . . < im = n be such that
ci1 = · · · = cim

= 0 and no other configuration has the counter equal to zero.
There is k ∈ {1, . . . ,m− 1} such that a configuration of the form 〈qf , c〉 occurs
in the subpath 〈qik

, cik
〉, . . . , 〈qik+1

, cik+1
〉. The paths 〈q1, c1〉, . . . , 〈qik−1

, cik−1
〉

and 〈qik+1
, cik+1

〉, . . . , 〈qim
, cim
〉 satisfy the hypothesis of Lemma 16. So, there

exist paths w1 = 〈q1, 0〉, . . . , 〈qik−1
, 0〉 and w3 = 〈qik+1

, 0〉, . . . , 〈qim
, 0〉 of length

at most |Q|5 + |Q|4.
Moreover, the path 〈qik

, cik
〉, . . . , 〈qik+1

, cik+1
〉 satisfies the hypotheses of

Lemma 17 and therefore there is a path w2 = 〈qik
, 0〉, . . . , 〈qik+1

, 0〉 of length at
most |Q|× (|Q|3 +3|Q|2 + |Q|) that contains a configuration of the form 〈qf , c′〉.
By concatenating w1, w2 and w3, we obtain a path w′ satisfying the desired
properties. 2

5.4 Size bound for accepting runs

We now have all the elements to establish a bound on the size of a witness for
the existence of an accepting run in one-N-counter automata without tests of
the form x 6= 0.

Lemma 19 Let P1(x) = x5 + x4 + x3 + 9
2x

2 + 5x+ 1 and P2(x) = 3x5 + 4x4 +
3x3 + x2 be two polynomials. For every one-N-counter automaton A with no
test of the form x 6= 0, A has an accepting run iff one of the propositions below
holds true:

(⋆) There exist a finite path 〈q1, c1〉, . . . , 〈qn, cn〉 with n ≤ P1(|Q|) and i′ < n

such that qi′ = qn ∈ F , ci′ ≤ cn, q1 ∈ I, c1 = 0 and 〈qi′ , ci′〉, . . . , 〈qn, cn〉
is a finite zero-test free path.

(⋆⋆) There is a finite path 〈q1, c1〉, . . . , 〈qn, cn〉 with n ≤ P2(|Q|) such that there
exists i′ < n with qi′ = qn, ci′ = cn = 0, {qi′ , . . . , qn} ∩ F 6= ∅, q1 ∈ I,
c1 = 0 and 〈qi′ , ci′〉, . . . , 〈qn, cn〉 is a finite path that is not zero-test free.

Proof. If either (⋆) or (⋆⋆) holds true, then an accepting run can be easily
defined by repeating infinitely the finite path 〈qi′ , xi′ 〉, . . . , 〈qn, xn〉.

Conversely, let us suppose that there exits an accepting run w : N→ (Q×N)
of A performing finitely many zero-tests. We pose w(i) = 〈qi, ci〉 for every i ∈ N.
By hypothesis, there exist 0 < i0 ≤ i1 < i2 such that

• ci0−1 = 0 and no zero-tests are performed after the position i0
(we omit the particular case when w is zero-test free),

• qi1 = qi2 ∈ F and ci1 ≤ ci2 .

35



By Lemma 16, there is a path w1 = 〈q0, 0〉 · · · 〈qi0−1, 0〉 whose length is bounded
by |Q|5 + |Q|4. Moreover, Lemma 14 implies that there exists a path w3 =
〈qi1 , c〉, . . . , 〈qi2 , c

′〉 such that c ≤ c′ whose length is bounded by 2|Q|2 + 3|Q|.
Since one step in the path can decrement the counter by at most one unit,
the ith configuration 〈q′′, c′′〉 in w3 satisfies c′′ ≥ c − i. Hence, the sequence
w′

3 = 〈qi1 , |Q|
2 +p

3
2 |Q|q〉, . . . , 〈qi2 , c

′ +(|Q|2 +p
3
2 |Q|q− c)〉 obtained from w3 by

adding (|Q|2 + p
3
2 |Q|q− c) is also a valid finite path (the value of the counter is

never negative).
It remains to concatenate these two paths. By using arguments similar to

the proof of Lemma 13 (see the paragraph after its proof), one can show that
there exists a path w2 = 〈qi0−1, 0〉 . . . 〈qi1 , x〉 such that x ≥ |Q|2 +p

3
2 |Q|q whose

length is bounded by

(2 + |Q|2 + p
3

2
|Q|q)× |Q|+ |Q|2.

Since x ≥ |Q|2 + p
3
2 |Q|q, it will be possible to reproduce the sequence of transi-

tions between qi1 and qi2 . One just need to repeat the loop a sufficient amount
of times. By concatenating w1, w2 and w′

3 we get a path satisfying (⋆).

Now we suppose that every accepting run of the automaton A contains
infinitely many zero-tests. We consider such an accepting run w : N→ (Q×N)
and we still note w(i) = 〈qi, ci〉 for every i ∈ N. There exists in w two indices
0 < i0 < i1 such that

• qi0 = qi1 and ci0 = ci1 = 0,

• a final state qf ∈ F occurs in the subpath w′ = 〈qi0+1, ci0+1〉, . . . , 〈qi1 , ci1〉.

Such i0, i1 exist because both final states and zero-tests are repeated infinitely
often in w. By Lemma 16, there is a path w1 = 〈q0, 0〉, . . . , 〈qi0 , 0〉 of length
smaller than |Q|5 + |Q|4. Moreover, Lemma 18 implies that there is a path
w2 = 〈q′1, c

′
1〉, . . . , 〈q

′
j , c

′
j〉 whose length is bounded by 2|Q|5+3|Q|4+3|Q|3+|Q|2

such that

• q′1 = q′j = qi0 , c
′
1 = c′j = 0,

• there is j′ ∈ {1, . . . , n} such that q′j′ ∈ F .

Observe that w2 is not zero-test free, otherwise the infinite path described below
is accepting, which contradicts our hypothesis since it is zero-test free:

〈q0, 0〉, . . . , 〈qi0 , 0〉, (〈q
′
2, c

′
2〉, . . . , 〈q

′
j′ , c

′
j′〉, . . . , 〈q

′
j , 0〉)

ω.

By concatenating w1 and w2 we get a path w′ satisfying (⋆⋆). 2

So we can establish the main result of this section.

Theorem 6 Checking whether L(A) is non-empty for one-Z-counter automata
A with alphabet is nlogspace-complete.

36



Proof. Since the composition of logarithmic space reductions is a logarithmic
space reduction, this problem can be reduced in logarithmic space to the ex-
istence of accepting runs for one-N-counter automata with no test of the form
x 6= 0. Lemma 19 states that the existence of accepting runs for such one-
N-counter automata can be tested in non-deterministic logarithmic space, by
distinguishing the accepting run performing finitely and infinitely many zero-
tests. Indeed, verifying that a path of polynomial length verifies the conditions
of Lemma 19 can be done in logarithmic space.

The composition of a logarithmic space reduction with a nondeterminis-
tic logarithmic space test can be done in nondeterministic logarithmic space.
Hence, the problem of checking whether L(A) is non-empty is in nlogspace.
The nlogspace-hardness can be obtained by reducing the graph accessibility
problem. 2

Note that, if we extend one-Z-counter automata by allowing updates of the
form Xx = x + u for some u ∈ Z (u encoded in binary), then the problem of
the existence of accepting runs becomes np-hard. This can be easily shown
by a reduction from the np-complete problem SUBSET-SUM; a very similar
proof is given in [RY86, Theorem 3.5] for the boundedness problem of vector
addition systems with states restricted to one counter. Moreover, the problem is
in pspace since this problem can be reduced in polynomial space to our original
problem. However, we ignore the precise optimal complexity of this extended
problem. Recently, an np upper bound has been established for one-N-counter
automata with succinct updates [HKOW09].

6 Conclusion

We have studied the decidability and complexity of LTL with Presburger con-
straints by restricting the number of variables, the X-length of the formulae
and the set of constraints. Figure 5 summarizes the complexity of satisfiabil-
ity, model-checking over DL-automata and model-checking over k-Z-counter au-
tomata for most LTL-like specification languages considered herein. As a tech-
nical lemma, we have proved that the nonemptiness problem for one-counter
Büchi automata taking values in Z and allowing zero-tests and sign-tests is
nlogspace-complete. This result is interesting for its own sake.

These results design new decidable subproblems of undecidable problems
from [CC00, DPK03] and establish new decidability boundaries for Presburger
LTL. Apart from the completion of our classification, the most positive re-
sults concern one-counter automata/nets, see applications in [CR04, WTT04,
LLT05]. The pspace upper bound for model-checking one-Z-counter automata
over CLTLω

1 (QFP), or even over its linear µ-calculus extension, refines results
from [FWW97, BEM97, Wal01, Ser06] that concern more general systems and
languages.

37



MC (DL) SAT MC (CA)

CLTL1
3(DL)

undec. undec. undec.
[Min67] [CC00] [Min67]

CLTLω

2 (DL)
undec. undec. undec.
[Min67] [DD07] [Min67]

CLTL2
1(DL)

undec. undec. pspace-c.
Cor. 1 Theo. 1 Theo. 4 + [DS02]

CLTL1
2(DL)

undec. undec. undec.
[Min67] Theo. 1 [Min67]

CLTL1
1(DL or DL+)

pspace-c. pspace-c. pspace-c.
Theo. 3 Theo. 3 Theo. 4 + [DS02]

CLTL1
1(QFP)

undec. undec. pspace-c.
Lem. 6 Lem. 6 Theo. 4 + [DS02]

CLTLω

1 (QFP)
undec. undec. pspace-c.
Lem. 6 Lem. 6 Theo. 4 + [DS02]

Figure 5: Summary

Acknowledgments. We would like to thank the anonymous referees for nu-
merous helpful remarks and suggestions allowing us to significantly improve this
article.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[AH94] R. Alur and Th. Henzinger. A really temporal logic. Journal of the
Association for Computing Machinery, 41(1):181–204, 1994.

[BB90] J. Berstel and L. Boasson. Context-free languages. In Handbook
of Theoretical Computer Science, Volume B, Formal models and
semantics, pages 59–102. Elsevier, 1990.

[BBH+06] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vo-
jnar. Programs with lists are counter automata. In CAV’06, vol-
ume 4144 of Lecture Notes in Computer Science, pages 517–531.
Springer, 2006.

[BC02] Ph. Balbiani and J.F. Condotta. Computational complexity of
propositional linear temporal logics based on qualitative spatial or
temporal reasoning. In FroCoS’02, volume 2309 of Lecture Notes in
Artificial Intelligence, pages 162–173. Springer, 2002.

[BDG88] J. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I.
Springer, 2nd edition, 1988.

38



[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verifica-
tion problem of nonregular properties for nonregular processes. In
LICS’95, pages 123–133. IEEE, 1995.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of
pushdown automata: Application to model checking. In CON-
CUR’97, volume 1243 of Lecture Notes in Computer Science, pages
135–150. Springer, 1997.

[BFLS06] S. Bardin, A. Finkel, E. Lozes, and A. Sangnier. From pointer
systems to counter systems using shape analysis. In AVIS’06, 2006.

[BH96] A. Bouajjani and P. Habermehl. Constrained properties, semilinear
sets, and Petri nets. In CONCUR’96, volume 1119 of Lecture Notes
in Computer Science, pages 481–497. Springer, 1996.

[BHM03] A. Bouajjani, P. Habermehl, and R. Mayr. Automatic verification
of recursive procedures with one integer parameter. Theoretical
Computer Science, 295(1-3):85–106, 2003.

[Boi98] B. Boigelot. Symbolic methods for exploring infinite state spaces.
PhD thesis, Université de Liège, 1998.

[CC00] H. Comon and V. Cortier. Flatness is not a weakness. In CSL’00,
volume 1862 of Lecture Notes in Computer Science, pages 262–276.
Springer, 2000.

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety anal-
ysis and Presburger arithmetic. In CAV’98, volume 1427 of Lecture
Notes in Computer Science, pages 268–279. Springer, 1998.

[CR04] C. Chitic and D. Rosu. On validation of XML streams using finite
state machines. In WebDB, pages 85–90, 2004.

[DD07] S. Demri and D. D’Souza. An automata-theoretic approach to con-
straint LTL. Information and Computation, 205(3):380–415, 2007.

[DG07] S. Demri and R. Gascon. The effects of bounding syntactic resources
on Presburger LTL (extended abstract). In TIME’07, pages 94–104.
IEEE, 2007.

[DG08] S. Demri and R. Gascon. Verification of qualitative Z constraints.
Theoretical Computer Science, 409(1):24–40, 2008.

[DPK03] Z. Dang, P. San Pietro, and R. Kemmerer. Presburger liveness veri-
fication of discrete timed automata. Theoretical Computer Science,
299:413–438, 2003.

39



[DS02] S. Demri and Ph. Schnoebelen. The complexity of propositional lin-
ear temporal logics in simple cases. Information and Computation,
174(1):84–103, 2002.

[EKS03] J. Esparza, A. Kučera, and S. Schwoon. Model checking LTL with
regular valuations for pushdown systems. Information and Compu-
tation, 186(2):355–376, 2003.

[FL02] A. Finkel and J. Leroux. How to compose Presburger accelerations:
Applications to broadcast protocols. In FST&TCS’02, volume 2256
of Lecture Notes in Computer Science, pages 145–156. Springer,
2002.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach
to model checking pushdown systems (extended abstract). In IN-
FINITY’97, volume 9 of Electronic Notes in Theoretical Computer
Science. Elsevier, 1997.

[GK03] P. Gastin and D. Kuske. Satisfiability and model checking for MSO-
definable temporal logics are in PSPACE. In CONCUR’03, vol-
ume 2761 of Lecture Notes in Computer Science, pages 222–236.
Springer, 2003.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal
analysis of fairness. In 7th Annual ACM Symposium on Principles
of Programming Languages, pages 163–173. ACM Press, 1980.

[Hal95] J. Halpern. The effect of bounding the number of primitive propo-
sitions and the depth of nesting on the complexity of modal logic.
Artificial Intelligence, 75(2):361–372, 1995.

[HKOW09] C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability
in succinct and parametric one-counter automata. In CONCUR’09,
Lecture Notes in Computer Science. Springer, 2009. To appear.

[Iba78] O. Ibarra. Reversal-bounded multicounter machines and their deci-
sion problems. Journal of the Association for Computing Machin-
ery, 25(1):116–133, 1978.

[ISD+00] O. Ibarra, J. Su, Z. Dang, T. Bultan, and A. Kemmerer. Counter
machines: Decidable properties and applications to verification
problems. In MFCS’00, volume 1893 of Lecture Notes in Computer
Science, pages 426–435. Springer, 2000.

[JKMS04] P. Jančar, A. Kučera, F. Moller, and Z. Sawa. DP lower bounds for
equivalence-checking and model-checking of one-counter automata.
Information and Computation, 188(1):1–19, 2004.

40



[Kuč00] A. Kučera. Efficient verification algorithms for one-counter pro-
cesses. In ICALP’00, volume 1853 of Lecture Notes in Computer
Science, pages 317–328. Springer, 2000.

[KVW00] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. Journal of the Asso-
ciation for Computing Machinery, 47(2):312–360, 2000.

[LLT04] P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for
AC-like equational theories with homomorphisms. Research Report
LSV-04-16, Laboratoire Spécification et Vérification, ENS Cachan,
France, November 2004. 69 pages.

[LLT05] P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for
AC-like equational theories with homomorphisms. In RTA’05, vol-
ume 3467 of Lecture Notes in Computer Science, pages 308–322.
Springer, 2005.

[LMS04] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model check-
ing timed automata with one or two clocks. In CONCUR’04, vol-
ume 3170 of Lecture Notes in Computer Science, pages 387–401.
Springer, 2004.

[Lut04] C. Lutz. NEXPTIME-complete description logics with concrete
domains. ACM Transactions on Computational Logic, 5(4):669–
705, 2004.

[LW05] S. Lasota and I. Walukiewicz. Alternating timed automata. In
FOSSACS’05, volume 3441 of Lecture Notes in Computer Science.
Springer, 2005.

[Min67] M. Minsky. Computation, Finite and Infinite Machines. Prentice
Hall, 1967.

[OW05] J. Ouaknine and J. Worrell. On the decidability of metric temporal
logic. In LICS’05, pages 188–197. IEEE, 2005.

[Rog67] H. Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill Book Company, 1967.

[RY86] L. Rosier and H.-C. Yen. A multiparameter analysis of the bound-
edness problem for vector addition systems. Journal of Computer
and System Sciences, 32:105–135, 1986.

[SC85] A. Sistla and E. Clarke. The complexity of propositional linear tem-
poral logic. Journal of the Association for Computing Machinery,
32(3):733–749, 1985.

[Ser06] O. Serre. Parity games played on transition graphs of one-counter
processes. In FOSSACS’06, volume 3921 of Lecture Notes in Com-
puter Science, pages 337–351. Springer, 2006.

41



[Var88] M. Vardi. A temporal fixpoint calculus. In POPL’88, pages 250–
259. ACM, 1988.

[VW94] M. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115:1–37, 1994.

[Wal01] I. Walukiewicz. Pushdown processes: games and model-checking.
Information and Computation, 164(2):234–263, 2001.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and
Computation, 56:72–99, 1983.

[WTT04] M. Wakatsuki, K. Teraguchi, and E. Tomita. Polynomial time iden-
tification of strict deterministic restricted one-counter automata in
some class from positive data. In ICGI’04, volume 3264 of Lecture
Notes in Artificial Intelligence, pages 260–272. Springer, 2004.

42


