
ar
X

iv
:0

81
2.

13
64

v1
 [

cs
.L

O
]

 7
 D

ec
 2

00
8

GRAPH POLYNOMIALS:

FROM RECURSIVE DEFINITIONS

TO SUBSET EXPANSION FORMULAS

B. GODLIN∗∗, E. KATZ∗∗, AND J.A. MAKOWSKY∗

Abstract. Many graph polynomials, such as the Tutte polynomial, the inter-
lace polynomial and the matching polynomial, have both a recursive definition
and a defining subset expansion formula. In this paper we present a general,
logic-based framework which gives a precise meaning to recursive definitions
of graph polynomials. We then prove that in this framework every recursive
definition of a graph polynomial can be converted into a subset expansion
formula.

Contents

1. Introduction 1
2. Logic and Translation Schemes 2
2.1. Second Order Logic (SOL) 3
2.2. Translation schemes and deconstruction schemes 4
3. SOL-polynomials 5
3.1. SOL-polynomial expressions 5
3.2. Interpretations of SOL-polynomial expressions 6
3.3. Examples 8
3.4. Properties of SOL-definable polynomials 10
3.5. Combinatorial polynomials 10
4. Deconstruction of a signed graph and its valuation 11
4.1. Deconstruction trees 11
4.2. The linear recurrence relation 12
4.3. Valuation of a deconstruction tree 12
4.4. Well defined recursive definition 13
4.5. Examples 13
5. Main result 16
6. Derivations of subset expansion formulas 18
6.1. The universal edge elimnation polynomial 18
6.2. The cover polynomial 20
7. A graph polynomial with no recurrence relation 22
8. Conclusion and open problems 23
References 23

Date: Last revised, December, 7, 2008.
∗ Partially supported by a Grant of the Fund for Promotion of Research of the Technion–Israel

Institute of Technology.
∗∗ Partially supported by a grant of the Graduate School of the Technion–Israel Institute of

Technology.

0

http://arxiv.org/abs/0812.1364v1

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 1

1. Introduction

Graph polynomials are functions from the class of graphs G into some polynomial
ring R which are invariant under graph isomorphisms. In recent years an abundance
of graph polynomials have been studied. Among the most prominent examples we have
the multivariate Tutte polynomial, [BR99, Sok05], the interlace polynomial, [ABS04a,
ABS04b, AvdH04] which is really the Martin polynomial, cf. [EM98, Cou], the matching
polynomial and its relatives, [HL72, LP86, GR01], and the cover polynomial for directed
graphs [CG95]. Older graph polynomials, treated in monographs such as [Big93, God93,
Bol99, GR01, Die05], are the characteristic polynomial, [CDS95], the chromatic polyno-
mial, [DKT05], and the original Tutte polynomial, [Bol99]. A general program for the
comparative study of graph polynomials was outlined in [Mak06, Mak07].

Graph polynomials are usually defined either recursively or explicitely by a subset
expansion formula. In the case of the polynomial of the Pott’s model Z(G, q, v), a bivari-
ate graph polynomial closely related to the Tutte polynomial, both definitions are easily
explained.

Let G = (V,E) be a (multi-)graph. Let A ⊆ E be a subset of edges. We denote by k(A)
the number of connected components in the spanning subgraph (V,A). The definition of
the Pott’s model using a subset expansion formula is given by

(1) Z(G, q, v) =
X

A⊆E

q
k(A)

v
|A|
.

The general subset expansion formula1 of a graph polynomial P (G, X̄) now takes the
form

(2) P (G, X̄) =
X

Ā:〈G,Ā〉∈C

X
f1(G,Ā)
1 · . . . ·Xfn(G,Ā)

n .

where Ā = (A1, . . . , Aℓ) are relations on V (G) of arity ρ(i), in other words Ai ⊆ V (G)ρ(i),
the summation ranges over over a family C of structures of the form 〈G,A1, . . . , Aℓ〉, and
the exponent fi(G, Ā) of the indeterminate Xi is a function from C into N. We refer to
the right hand side of (2) as a subset expansion expression.
Z(G, q, v) can also be defined recursively. It satisfies the initial conditions Z(E1) = q

and Z(∅) = 1, and satisfies a linear recurrence relation

Z(G, q, v) = v · Z(G/e, q, v) + Z(G−e, q, v)

Z(G1 ⊔G2, q, v) = Z(G1, q, v) · Z(G2, q, v)(3)

⊔ denotes the the disjoint union of two graphs, and for e ∈ E, the graph G−e is obtained
from G by deleting the edge e, and G/e is obtained from G by contracting the edge e.
To show that Z(G, q, v) is well-defined using the recurrence relation 3, one chooses an
ordering of the edges and shows that the resulting polynomial does not depend on the
particular choice of the ordering.

In the case of the Tutte polynomial it is a bit more complicated, as the recursion
involves case distinction depending on whether the elimitated edge is a bridge, a loop or
none of these. These conditions can be formulated as guards.

For most prominent graph polynomials, such as the chromatic polynomial, the Tutte
polynomial, the interlace polynomial, and the cover polynomial for directed graphs, there
exist both a recursive definition using a linear recurrence relation and a subset expansion
formula. In each case the author proposes the two definitions and proves their equivalence.

In this paper we show how to convert a definition using a linear recurrence relation into
a subset expansion formula. For this to make sense we define an appropriate framework.
A special case of subset expansion formulas is the notion of a graph polynomial definable
in Second Order Logic SOL, introduced first [Mak04] and further studied in [Mak07,

1 L. Traldi coined this term in [Tra04] in the context of the colored Tutte polynomial.

2 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

KMZ08]. The exact definitions are given in Section 2.1. Roughly speaking, SOL-definable
graph polynomials arise when in the subset expansion formula the class C is required
to be definable in SOL, and similar conditions are imposed on the exponents of the
indeterminates.

The recursive definition given above relies on the fact that every graph can be reduced,
using edge deletion and edge contraction, to a set of isolated vertices. In a last step the
isolated vertices are removed one by one. Using a fixed ordering of the edges and vertices,
one can evaluate the recurrence relation. Finally one has to show that this evaluation does
not depend on the ordering of the edges, provided the that in that ordering the vertices
appear after all the edges.

In general, the two operations, edge deletion and contraction, will be replaced by a
finite set of SOL-definable transductions T1, . . . , Tℓ, which decrease the size of the graph,
and which depend on a fixed number of vertices or edges, the contexts, rather than just
on a single edge. For certain orderings of the vertices and edges, this allows us to define
a deconstruction tree of the graph G.

The recursive definition now takes the form

(4) P (G) =
X

i∈{1,...,ℓ}

σi · P (Ti[G,~x])

where ~x is the context and σi are the coefficients of the recursion. Furthermore, the
recurrence relation is linear in P (Ti[G,~x]). It can be evaluated using the deconstruction
tree. To assure that this defines a unique graph polynomial one has to show that the
evaluation is independent of the ordering. The exact definitions are given in Section 4.

Our main result, Theorem 5.1, now states that, indeed, every order invariant definition
of a graph polynomial P using a linear recurrence relation can be converted into a definition
of P as a SOL-definable graph polynomial. It seems that the converse is not true, but we
have not been able to prove this.

In Section 7 we discuss a graph polynomial introduced in [NW99], which is provably not
a SOL-definable graph polynomial. It is defined by a subset expansion formula, where the
exponents fi(G, Ā) depend on i, which is not allowed in our definition of SOL-definable
graph polynomials.

The choice of SOL is rather pragmatic. It makes exposition clear and covers all the
examples from the literature. The logic SOL could be replaced by the weaker Fixed
Point Logic FPL or by extensions of SOL, as they are used in Finite Model Theory, cf.
[EF95]. The polynomial introduced in [NW99] would still be an example without recursive
definition as long as the exponents fi(G, Ā) are not allowed to depend on i.

The paper is organized as follows. In Section 2 we collect the background material
for Second Order Logic. In Section 3 we give a rigorous definition of SOL-definable
graph polynomials and collect their basic properties. In Section 4 we present our general
framework for recursive definitions of graph polynomials, and discuss examples in detail.
In Section 5 we state and prove our main theorem. In Section 6 we show two derivations
of subset expansion formulas, for the universal edge elimination polynomial and the cover
polynomial, using the technique of the proof of Theorem 5.1. These derivations give the
subset expansion formulas known in the literature. In Section 7 we discuss a polynomial
which is given by a subset expansion formula but has no recursive definition in our sense.
Finally, in Section 8 we draw conclusions and discuss further research.

Acknowledgments. The authors would like to thank I. Averbouch, B. Courcelle, T. Kotek
for valuable discussions and suggestions.

2. Logic and Translation Schemes

In this section we give a rather detailed definition of SOL and the formalism of trans-
lation schemes, because the notational technicalities are needed in our further exposition.

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 3

A vocabulary τ is a finite set of relation symbols, function symbols and constants. It can
be many-sorted. In this paper, we shall only deal with vocabularies which do not contain
any function symbols. τ -structures are interpretations of vocabularies. Sorts are mapped
into non-empty sets - the sort universes. Relation symbols are mapped into relations over
the sorts according to their specified arities. Constant symbols are mapped onto elements
of the corresponding sort-universes. We denote the set of all τ -structures by Str(τ). For
a τ -structureM, we denote its universe by AM, or, in short, A, if the τ -structure is clear
from the context. For a logic L, L(τ) denotes the set of τ -formulas in L.

2.1. Second Order Logic (SOL). We denote relation symbols by bold-face letters, and
their interpretation by the corresponding roman-face letter.

Definition 2.1 (Variables).

(i) vi for each i ∈ N. These are individual variables (VAR1).
(ii) Ur,i for each r, i ∈ N, r ≥ 1. These are relation variables (VAR2). r is the arity

of Ur,i.

We denote the set of variables by VAR.

Given a non-empty finite set A, an A-interpretation is a map

IA : VAR→ A ∪
[

r

P(Ar)

such that IA(vi) ∈ A and IA(Ur,i) ⊆ Ar.

We define term t and formula φ inductively, and associate with them a set of first and
second-order free variables denoted by free(t), free(φ) respectively.

Definition 2.2 (τ -term). A τ -term is of the form v or c where v is a variable and c is
some constant in τ . free(v) = {v}, free(c) = ∅.

Definition 2.3 (Atomic formulas).
Atomic formulas are of the form

(i) (t1 ≃ t2) where t1, t2 are τ -terms, and free(t1 ≃ t2) = free(t1) ∪ free(t2).
(ii) φ of the form Ur,j(t1, t2, . . . , tr) where Ur,j is a relation variable, and t1, t2, . . . , tr

are τ -terms, and free(φ) = {Ur,j} ∪
Sr
i=1 free(ti).

(iii) φ of the form R(t1, t2, . . . , tr) where R ∈ τ is a relation, and t1, t2, . . . , tr are
τ -terms, and free(φ) =

Sr
i=1 free(ti).

We now define inductively the set of SOL-formulas SOL.

Definition 2.4 (SOL formulas).

(i) Atomic formulas φ are in SOL with free(φ) as defined before.
(ii) If φ1 and φ2 are in SOL then φ of the form (φ1 ∨ φ2), (φ1 ∧ φ2) or (φ1 → φ2)

is in SOL with free(φ) = free(φ1) ∪ free(φ2).
(iii) If φ1 is in SOL then φ = ¬φ1 is in SOL

with free(φ) = free(φ1).
(iv) If φ1 is in SOL then φ of the form ∃vjφ, ∀vjφ,

is in SOL with free(φ) = free(φ1)− {vj}.
(v) If φ1 is in SOL then φ of the form ∃Ur,jφ or ∀Ur,jφ

is in SOL with free(φ) = free(φ1)− {Ur,j}.

4 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

2.2. Translation schemes and deconstruction schemes.

Definition 2.5 (Translation scheme Φ). Let τ = {Q1, . . . , Qk} and σ = {R1, . . . , Rm} be
two vocabularies and ρ(Ri) (ρ(Qi)) be the arity of Ri (Qi). Let L be a fragment of SOL,
such as FOL, MSOL, ∃MSOL, FPL (Fixed Point Logic), etc.

A tuple of L(τ) formulae Φ = 〈φ, ψ1, . . . , ψm〉 such that φ has exactly one free first
order variable and each ψi has ρ(Ri) distinct free first order variables is a τ−σ-translation
scheme.

In this paper we use only translation schemes in which φ has exactly one free variable.
Such translation schemes are called non-vectorized.

In our case {x : φ(x)} ⊂ A holds. Such translation schemes are called relativized.
We now define the transduction which is the semantic map associated with Φ.

Definition 2.6 (The induced transduction Φ⋆). Given a τ −σ-translation scheme Φ, the
function Φ⋆ : Str(τ) → Str(σ) is a (partial) function from τ -structures to σ-structures.
Φ⋆[M] is defined by:

(i) the universe of Φ⋆[M] is the set

A
Φ⋆[M] = {a ∈ A :M |= φ(a)}

(ii) the interpretation of Ri in Φ⋆[M] is the set

R
Φ⋆[M]
i = {ā ∈ (AΦ⋆[M])

ρ(Ri)
:M |= ψi(ā)}.

Next we define the syntactic map associated with Φ, the translation.

Definition 2.7 (The induced translation Φ♯). Given a τ − σ-translation scheme Φ we
define a function Φ♯ : L(σ) → L(τ) from L(σ)-formulae to L(τ)-formulae inductively as
follows:

(i) For Ri ∈ σ with ρ(Ri) = m and θ = Ri(x1, . . . , xm), we put

Φ♯(θ) =

ψi(x1, . . . , xm) ∧

m̂

j=1

φ(xj)

!

(ii) This also works for equality and relation variables U instead of relation symbols
R.

(iii) For the boolean connectives, the translation distributes, i.e.
(iii.a) if θ = (θ1 ∨ θ2) then Φ♯(θ) = (Φ♯(θ1) ∨ Φ♯(θ2))

(iii.b) if θ = ¬θ1 then Φ♯(θ) = Φ♯(¬θ1)
(iii.c) similarly for ∧ and →.

(iv) For the existential quantifier, we use relativization to φ:
If θ = ∃yθ1, we put

Φ♯(θ) = ∃y(φ(y)∧ Φ♯(θ1)(y)).

(v) For the universal quantifier, we also use relativization to φ:
If θ = ∀yθ1, we put

Φ♯(θ) = ∀y(φ(y)→ Φ♯(θ1)(y)).

This concludes the inductive definition for first order logic FOL.

(vi) For second order quantification of variables V of arity ℓ and a vector ā of length
ℓ of first order variables or constants, we translate θ = ∃V (θ1(V)) by treating V
as a relation symbol above A and put

Φ♯(θ) = ∃V

∀v̄

"
V (v̄)→ (

ℓ̂

i=1

φ(vi))

#
∧ Φ♯(θ1)(V)

!

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 5

τ -structure
M

Φ⋆

−→
σ-structure
Φ⋆(M)

↓ |= ↓ |=

τ -formulae

Φ♯(θ)

←−
Φ♯

σ-formulae
θ

Figure 1. A diagram of translation scheme Φ

(vii) For θ = ∀V (θ1(V)), ρ(V) = ℓ the relativization yields:

Φ♯(θ) = ∀V

 "
∀v̄(V (v̄)→

ℓ̂

i=1

φ(vi))

#
→ Φ♯(θ1)(V)

!

Next we present the well known fundamental property of translation schemes [Mak04].

Theorem 2.8 (Fundamental Property).

Let Φ = 〈φ, ψ1, . . . , ψm〉 be a (τ−σ)-translation scheme in a logic L. Then the transduc-
tion Φ⋆ and the translation Φ♯ are linked in L. In other words, givenM be a τ -structure
and θ be a L(σ)-formula
then

M |= Φ♯(θ) ⇔ Φ⋆(M) |= θ

The property is illustrated in Figure 1.

Proposition 2.9. [Mak04] Let Φ be a τ − σ-translation scheme which is either in SOL
or in MSOL.

(i) If Φ is in MSOL and non-vectorized, and θ is in MSOL then Φ♯(θ) is in MSOL
(ii) If Φ is of quantifier rank q and has p parameters, and θ is a σ-formula of quan-

tifier rank r, then the quantifier rank of Φ♯(θ) is bounded by r + q + p.

3. SOL-polynomials

SOL-polynomial expressions are expressions the interpretation of which are graph poly-
nomials. We define SOL-polynomial expressions inductively.

3.1. SOL-polynomial expressions. Let the domain R be a commutative semi-ring,
which contains the semi-ring of the integers N. For our discussion it is sufficient for R to
be N, Z or polynomials over these, but the definitions generalize. Our polynomials have
a fixed set of indeterminates I. We denote the indeterminates by capital letters X,Y, . . .
We distinguish them from the variables of SOL which we denote by lowercase letters
v, u, e, x, . . .

Definition 3.1 (SOL-monomial expressions). We first define the SOL-monomial expres-
sions inductively.

(i) a ∈ R is a SOL-monomial expression, and free(a) = ∅.

(ii) Given a logical formula ϕ, tv(ϕ) is a SOL-monomial expression.
tv(ϕ) stands for the truth value of the formula ϕ.

6 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

(iii) For a finite product M =
Qr
i=1 ti of monomial expressions ti, M is a SOL-

monomial expression, and free(M) =
Sr
i=1 free(ti).

(iv) Let φ(ā, b̄, Ū) be a τ∪{ā, b̄, Ū}-formula in SOL, where ā = (a1, . . . , am) is a finite
sequence of constant symbols not in τ , b̄ is a sequence of free individual variables,
and Ū is a sequence of free relation variables. Let t(ā, b̄, Ū) be a SOL-monomial
expression. Then

M(b̄, Ū) =
Y

ā:φ(ā,b̄,Ū)

t(ā, b̄, Ū)

is a SOL-monomial expression and
free(M) = free(t) ∪ free(φ) \ {ā}. Thus,

Q
is a binding operator which binds ā.

Definition 3.2 (SOL-polynomial expressions). The SOL-polynomial expressions are de-
fined inductively:

(i) SOL-monomial expressions are SOL-polynomial expressions.

(ii) For a finite sum S =
Pr
i=1 ti of SOL-polynomial expressions ti, S is a SOL-

polynomial expression, and free(S) =
Sr
i=1 free(ti).

(iii) Let φ(ā, b̄, Ū) be a τ∪{ā, b̄, Ū}-formula in SOL where ā = (a1, . . . , am) is a finite
sequence of constant symbols not in τ , b̄ is a sequence of free individual variables,
and Ū is a sequence of free relation variables. Let t(ā, b̄, Ū) be a SOL-polynomial
expression. Then

S(b̄, Ū) =
X

ā:φ(ā,b̄,Ū)

t(ā, b̄, Ū)

is a SOL-polynomial expression and
free(P) = free(t) ∪ free(φ) \ {ā}. Thus,

P
is a binding operator which binds ā.

(iv) Let φ(W̄ , b̄, Ū) be a τ ∪ {W̄ , b̄, Ū}-formula in SOL where W̄ = (W1, . . . ,Wm) is
a finite sequence of relation symbols not in τ , b̄ is a sequence of free individual
variables, and Ū is a sequence of free relation variables. Let t(W̄ , b̄, Ū) be a
SOL-polynomial expression. Then

S(b̄, Ū) =
X

W̄ :φ(W̄,b̄,Ū)

t(W̄ , b̄, Ū)

is a SOL-polynomial expression and
free(P) = free(t) ∪ free(φ) \ {W̄}. Again,

P
is a binding operator which binds

W̄ .

Note that our definition of SOL-polynomial expressions is the normal form definition
as it appears for example in [KMZ08]. We use only the normal form in this paper.

From our definitions the following is obvious.

Proposition 3.3. Every SOL-polynomial expression is also a subset expansion expres-
sion, where C is SOL-definable.

3.2. Interpretations of SOL-polynomial expressions.

Let G be a graph and z be an assignment of variables to elements of the graph. The
interpretation e(S,G, z) of a SOL-polynomial expression S will be an element in the
polynomial ring R. We shall associate with each SOL-polynomial expression S a graph
polynomial S∗ defined by S∗(G) = e(S,G, z). We shall say that P (G, X̄) is a SOL-
polynomial if there is a SOL-polynomial expression S such that for all graphs G we have
P (G, X̄) = S∗(G).

We now proceed with the precise definitions.

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 7

Definition 3.4 (Variable assignment).

(i) Given a τ -structureM with domain AM, an assignment z is an AM-interpretation
of VAR.

(ii) We denote the set of all assignments above by Ass(M).
(iii) Let z1 and z2 be two assignments in Ass(M). Let v ∈ VAR be a variable. We

write z1 =v z2 if for every variable u 6= v we have that z1(u) = z2(u).

Our notation naturally extends to vectors of variables.

Definition 3.5 (Interpretation of SOL-monomial expressions). Given a τ -structure M
and an assignment z ∈ Ass(M), the interpretation e(S,M, z) of a SOL-monomial ex-
pression S is defined as follows:

(i) If S = a ∈ R, e(S,M, z) = a.

(ii) Given a logical formula ϕ,

e(tv(ϕ),M, z) =

1R if M, z |= ϕ

0R otherwise

(iii) For a finite product S =
Qr
i=1 ti of monomials ti,

e(S,M, z) =
rY

i=1

e(ti,M, z).

(iv) If S(b̄, Ū) =
Q
ā:φ(ā,b̄,Ū) t(ā, b̄, Ū) then

e(S(b̄, Ū),M, z) =
Y

z1 s.t. z1 =ā z and
M, z1 |= φ(ā, b̄, Ū)

e(t(ā, b̄, Ū),M, z1).

We call the expression S a short product as the number of elements in the product is
polynomial in the size of the universe ofM.

The degree of the polynomial e(S,M, z), is polynomially bounded by the size ofM.

Definition 3.6 (Interpretation of SOL-polynomial expressions). Given a τ -structure M
and an assignment z ∈ Ass(M), the meaning function e(S,M, z) of a SOL-polynomial
expression S is defined as follows:

(i) For a finite sum S =
Pr
i=1 ti of SOL-polynomial expressions ti,

e(S,M, z) =
Pr
i=1 e(ti,M, z).

(ii) If S(b̄, Ū) =
P

ā:φ(ā,b̄,Ū) t(ā, b̄, Ū) then

e(S(b̄, Ū),M, z) =
X

z1 s.t. z1 =ā z and
M, z1 |= φ(ā, b̄, Ū)

e(t(ā, b̄, Ū),M, z1).

We call the expression S a short sum as the number of summands in the sum is
polynomially bounded in the size of the universe ofM.

(iii) If S(b̄, Ū) =
P

W̄ :φ(W̄ ,b̄,Ū) t(W̄ , b̄, Ū) then

e(S(b̄, Ū),M, z) =
X

z1 s.t. z1 =W̄ z and

M, z1 |= φ(W̄ , b̄, Ū)

e(t(W̄ , b̄, Ū),M, z1).

We call such a sum S a long sum as the number of addends in the sum can be
exponential in the size of the universe ofM.

8 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

(iv) A SOL-polynomial expression S is short if it does not contain any long sums as
subexpressions.

With these definition we have

Proposition 3.7. Let S be an SOL-polynomial expression. Let S∗ be defined by S∗(G) =
e(S,G, z). Then there is a graph polynomial P (G, X̄) such that for all graphs G we have
P (G, X̄) = S∗(G).

We say that P (G, X̄) is a SOL-polynomial if there is a SOL-polynomial expression S
such that P (G, X̄) = S∗(G).

3.3. Examples.
In the following section we represent graphs using one of the following two vocabularies:
τgraph(1) = {E} and τgraph(2) = {N}. For vocabulary τgraph(1), the universe of the graph

is the set of its vertices, A = V , and R = E ⊆ V 2 is the relation that represents the
edges. For τgraph(2), the universe consists of both vertices and edges, A = V ∪ E, and
R = N ⊆ V × E relates vertices to adjacent edges.

Below are some formulas we need for many of the examples below. All the formulas
are in SOL(τgraph(1)) or SOL(τgraph(2)) logic. We denote by x, y, s, t, u, v, z the VAR1

variables, by A,B, F, S, U,W the VAR2 variables and by X,Y, Z the indeterminants in
I. For any formula f :

∃kx(f(x)) = ∃x1 · · · ∃xk(
^

i6=j

xi 6= xj ∧
k̂

i=1

f(xi) ∧ ∀y((
k̂

i=1

y 6= xi)→ ¬f(y))).

For D ⊆ A(G) and S ⊆ E(G), Touching(D, S) expresses the set of vertices or edges in
D which are adjacent to at least one edge from S, Cycle(S) is valid iff S forms a cycle in
G, and ConnectedS(u, v) expresses that u is connected to v through the edges in S. These
formulas take different form over vocabularies τgraph(1) and τgraph(2). Over the vocabulary
τgraph(1) S is a symmetric relation, and then:

Touching(D, S) = {v : v ∈ D ∧ ∃u(S(v, u))}

Cycle(S) = ∀u, v ∈ Touching(V, S)[∃2y(S(u, y)) ∧ ConnectedS(u, v)]

ConnectedS(s, t) = (s = t) ∨ ∃U [U(s) ∧ U(t) ∧ ∀x[U(x)→ ∃y(y 6= x ∧ S(x, y))] ∧

¬∃W [W (s)∧ ¬W (t) ∧ ∀x[(W (x)→

(U(x) ∧ ∀y((S(x, y) ∧ U(y))→ W (y)))]].

This formula expresses the fact that there is no subset W (U which contains s, does not
contain t, and such that for each vertex x ∈ W all the neighbors of x in U are also on W
i.e., W is a S-closed subset of U which separates s from t.

For the cases we use τgraph(2) (A
G = V ∪E), we define shorthand formulas to identify an

element of the universe to be an edge or a vertex respectively: PE(x) = ∃y(R(y,x)), PV (x) =
x ∈ A ∧ ¬PE(x),

Over the vocabulary τgraph(2) S is a subset S ⊆ {x : PE(x)}, and then:

Touching(D, S) = {x : x ∈ D ∧ ∃e[S(e) ∧ (N(x, e) ∨ ∃u(N(u, e) ∧N(u, x)))]}

Cycle(S) = ∀u, v ∈ Touching(V, S)[∃2e(S(e) ∧N(u, e)) ∧ ConnectedS(u, v)]

ConnectedS(s, t) = (s = t) ∨ ∃U [∀e(U(e)→ S(e)) ∧

∀v[((v = s ∨ v = t)→ (U(s) ∨ ∃1e(U(e) ∧N(v, e)))) ∧

((PV (v) ∧ v 6= s ∧ v 6= t)→

(¬∃e(U(e) ∧N(v, e)) ∨ ∃2e(U(e) ∧N(v, e))))].

This formula expresses the fact that there is a subset U ⊆ S which contains a direct path
from s to t.

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 9

We also define LastInComp(D,S) to be the set of elements in D each of which is the
last one by a given order O in its component defined by the edges in S. Formally:

(5) LastInComp(D,S)
.
= ∀x ∈ D∀y[(ConnectedS(x, y) ∧ x 6= y)→ x ≻O y].

Example 3.8 (Matching polynomial). There are different versions of the matching poly-
nomial discussed in the literature (cf. [HL72, LP86, GR01]), for example matching gen-
erating polynomial g(G,λ) =

Pn
i=0 aiλ

i and matching defect polynomial µ(G,λ) =Pn
i=0(−1)

iaiλ
n−2i, where n = |V | and ai is the number of i-matchings in G. We shall

use the bivariate version that incorporates the both above:

(6) M(G,X, Y) =

nX

i=0

aiX
n−2i

Y
i

Note that using the formulas defined above, if F is a matching in G then i = |F | and
n − 2i = |V \ Touching(V, F). This formula expressed as a SOL(τgraph(2))-polynomial
expression is:

(7) M(G,X, Y) =
X

F :Matching(F)

2
4

Y

v:PV (v)∧¬(v∈Touching(V,F))

X

3
5 ·

"
Y

e:e∈F

Y

#

where

Matching(F) = ∀e1, e2 ∈ F [PE(e1) ∧ (e1 6= e2)→ ¬∃v(N(v, e1) ∧N(v, e2))].

Example 3.9 (Tutte polynomial). The classical two-variable Tutte polynomial satisfies
a subset expansion formula using spanning forests (cf. for example B.Bollobás [Bol99]).
Given a graph G = 〈V ⊔ E,R〉, O an ordering of E, and F ⊆ E a spanning forest
of G, i.e., each component of (V, F) is a spanning tree of a component of G. An edge
e ∈ F is internally active (for F,O) if it is the first edge in the set CutF (e) = {e

′ ∈ E :
F − {e} ∪ {e′} is a spanning forest}. An edge e ∈ E − F is externally active (for F,O) if
it is the first edge in the unique cycle CycleF (e) of F ∪ {e}.

For graphs G with edge ordering O the Tutte polynomial satisfies

(8) T (G,X, Y) =
X

F

X
i
Y
j

where the sum is over all spanning forests of G and i (j) is the number of internally
(externally) active edges of F with respect to O. Furthermore, this is independent of the
ordering O.

Let F ⊂ E(V) be a spanning forest of G, i.e. F contains no cycles and any connected
component by E(G) is also connected by F :

SpanningForestG(F) = ¬∃U [U ⊆ F∧Cycle(U)]∧∀v, u[ConnectedE(v, u)↔ ConnectedF (v, u)]

The cycle of e 6∈ F is a set of edges ZF (e) such that:

e ∈ ZF (e) ∧ (ZF (e) ⊆ F ∪ {e}) ∧ Cycle(ZF (e)).

The cut defined by e ∈ F is a set of edges UF (e) such that:

UF (e) = {e
′ : SpanningForestG((F \ {e}) ∪ {e

′})}

Then, formula 8 expressed as a SOL(τgraph(2))-polynomial expression is:

T (G,X, Y) =
X

F :SpanningForestG(F)

hQ
e:∀e′((e′∈UF (e)∧e6=e′)→e≺Oe

′)X
i
·(9)

hQ
e:∀e′((e′∈ZF (e)∧e6=e′)→e≺Oe

′) Y
i

10 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

Example 3.10 (The polynomial of the Pott’s model). This is a version of the Tutte
polynomial used by A.Sokal [Sok05], known as the (bivariate) partition function of the
Pott’s model:

(10) Z(G, q, v) =
X

A⊆E

q
k(A)

v
|A|
.

Note that k(A) = |LastInComp(V,A)|. Formula 10 expressed as a SOL(τgraph(2))-
polynomial expression is:

(11) Z(G, q, v) =
X

A:A⊆E

2
4

Y

v:v∈LastInComp(V,A)

q

3
5 ·

"
Y

e:e∈A

v

#
.

3.4. Properties of SOL-definable polynomials. The following is taken from [KMZ08].

Proposition 3.11.

(i) If we write an SOL-definable polynomial as a sum of monomials, then the coef-
ficients of the monomials are in N.

(ii) Let M be an SOL-definable monomial viewed as a polynomial. Then M is a
product of a finite number s of terms of the form

Q
ā:〈M,ā〉|=φi

ti, where i ∈ [s],

ti ∈ N ∪ I and φi ∈ SOL.
(iii) The product of two SOL(τ)-definable polynomials is again a SOL(τ)-definable

polynomial.
(iv) The sum of two SOL(τ)-definable polynomials is again a SOL(τ)-definable poly-

nomial.
(v) Let Φ(A, X̄) be a SOL-definable monomial and P : Str(τ)→ N[X̄] be of form

P (M, X̄) =
X

R̄:〈M,R̄〉|=χR

Y

b̄:〈M,R̄,b̄〉|=ψ

X

ā:〈M,R̄,ā,b̄〉|=φ

Φ(〈M, R, ā, b̄〉, X̄).

Then P (M, X̄) is a SOL-definable polynomial.

3.5. Combinatorial polynomials. In the examples we need the fact that some combi-
natorial polynomials are indeed SOL-definable polynomials. The question which combi-
natorial function can be written as SOL-definable polynomials is beyong the scope of this
paper, and is the topic of T. Kotek’s thesis [Kot10].

The following are all SOL-definable polynomials. We denote by cardM,v̄(ϕ(v̄)) the
number of v̄’s inM that satisfy ϕ.

Cardinality, I:: The cardinality of a definable set cardM,v̄(ϕ(v̄)) =
P
v̄:ϕ(v̄) 1 is

an evaluation of a SOL-definable polynomial.
Cardinality, II:: The cardinality as the exponent in a monomial
XcardM,v̄(ϕ(v̄)) =

Q
v̄:ϕ(v̄)X is an SOL-definable polynomial.

Factorials:: The factorial of the cardinality of a definable set is an instance of a
SOL-definable polynomial:
cardM,v̄(ϕ(v̄))! =

P
π:Func1to1(π,{v̄:ϕ(v̄)},{v̄:ϕ(v̄)}) 1,

where Func1to1(π, A,B) says that π is a one-to-one function from relation A to
relation B:

Func1to1(π, A,B) = ∀v̄∀ū [π(v̄, ū)→ [v̄ ∈ A ∧ ū ∈ B ∧

¬∃w̄ ((w̄ 6= v̄ ∧ π(w̄, ū)) ∨ (w̄ 6= ū ∧ π(v̄, w̄)))]].

Falling factorial:: The falling factorial

(X)cardM,v̄(ϕ(v̄)) = X · (X − 1) · . . . · (X − cardM,v̄(ϕ(v̄))

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 11

is not an SOL-definable polynomial, because it contains negative terms, which
contradicts Proposition 3.11. However, if the underlying structure has a linear
order, then it is an evaluation of an SOL-definable polynomial. We write

(X)cardM,v̄(ϕ(v̄)) =
Y

ā:ϕ

X − cardM,v̄(ϕ<ā(v̄))

where ϕ<ā is the formula (ϕ(v̄) ∧ v̄ < ā) and v̄ < ā is shorthand for the lexico-
graphical order of tuples of vertices.

4. Deconstruction of a signed graph and its valuation

In the following section we use the notation τgraph(1) and τgraph(2) for graph vocabular-
ies as defined in Subsection 3.3. The definitions below are applicable for either vocabulary.

4.1. Deconstruction trees. Let τ ∈ {τgraph(1), τgraph(2)}.

Definition 4.1 (Context). Given a graph G and ~x ∈ Am, m ∈ N, a vector of elements
of G, we call ~x an m-context. Given a vocabulary τ we denote by τm the vocabulary τ
augmented by m constant symbols interpreted by the m-context ~x. We denote by Gm the
collection of graphs 〈G,~x〉 with an m-context.

We now equip the graph 〈G,~x〉 with a linear ordering of its m-tuples.

Definition 4.2 (Context ordering VALORDm). Let τ om = τ ∪ {a1, . . . , am, O} where the
ai’s are constants symbols and O is a 2m-ary relation symbol. Let φord ∈ SOL(τ om). The
class VALORDm consists of τm-structures such that

(i) 〈G,~x,O〉 ∈ VALORD iff 〈G,~x,O〉 |= φord.
(ii) The interpretation of O is a linear ordering of the m-tuples of G.
(iii) For every 〈G,~x〉 there is an O ⊂ A2m with 〈G,~x,O〉 |= φord.
(iv) ~x is the first element in the ordering O of 〈G,~x,O〉

We denote by Ḡ strutures of the form 〈G,~x,O〉, by A(Ḡ) the universe of Ḡ, by R(Ḡ) the
graph relation of Ḡ, and by c(Ḡ) the context of Ḡ, and by O(Ḡ) the context ordering of Ḡ.

Definition 4.3 (SOL-Deconstruction Scheme). Let Φ be a τ om − τ
o
m-translation scheme.

Φ is a SOL-deconstruction scheme along VALORD, if

(i) AΦ⋆[Ḡ] (A;

(ii) at least one element xi of ~x is deleted, i.e., xi 6∈ A
Φ⋆[Ḡ];

(iii) OΦ⋆ [Ḡ] = O|AΦ⋆[Ḡ] ;

(iv) If Ḡ ∈ VALORD then Φ⋆[Ḡ] ∈ VALORD;

In this case we call Φ⋆ a SOL-deconstruction along VALORD, or simply a deconstruction,
if VALORD is clear from the context.

Definition 4.4 (Guarded SOL-Deconstruction Scheme). A guarded SOL-deconstruction
is a pair (T, ϕ), such that T is a SOL-deconstruction scheme and ϕ is a SOL(τ om)-formula,
and such that Φ⋆(Ḡ) is a non-empty structure for each Ḡ which satisfies ϕ.

Remark 4.5.

(i) Note that the formulas in Φ and the formula ϕ may have up to m additional free
individual variables for the m-context.

(ii) We say that the guarded SOL-deconstruction (T, ϕ) is enabled on a graph Ḡ if
Ḡ |= ϕ.

(iii) One could have incorporated the guard in the definition of Φ, but this is not
suitable here, because we want to refer to the guard ϕ explicitly.

12 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

A SOL-deconstruction tree for a graph G with an m-context ~x and for a set of guarded
deconstructions {(T1, ϕ1), . . . , (Tℓ, ϕℓ)} is a tree each internal node of which is labeled
by a graph with an m-context. The arc from a node labeled with 〈G1, ~x1〉 to its child
labeled with 〈G2, ~x2〉 respectively, is labeled with a guarded deconstruction (Ti, ϕi) such
that 〈G1, ~x1〉 |= ϕi and G2 = T ∗

i [G1, ~x1]. Additionally we require that for each internal
node labeled with 〈G,~x〉 and each guarded deconstruction enabled on 〈G,~x〉 there is an
outgoing arc labeled by it. Furthermore, each leaf of the deconstruction tree is labeled by
the empty graph. With full noational details this looks as follows.

Definition 4.6 (SOL-Deconstruction tree along VALORD). Given a graph Ḡ ∈ VALORD
over τ om and given a set of guarded SOL-definable deconstructions schemes {(Ti, ϕi)}, (i =
1, . . . , l), we define a SOL-deconstruction tree Γ = Γ(Ḡ) along VALORD as follows:

(i) We have ℓ partial functions fi, i ≤ ℓ, denoting the ℓ child relations.
(ii) The root of Γ, r, is a node marked by Ḡ.
(iii) Each internal node n of Γ is marked by a graph Ḡn.
(iv) The child fi(n) of an internal node n marked with a non-empty graph Ḡn is

marked with T ⋆i (Ḡn), where T
⋆
i (Ḡn) is enabled and not empty.

(v) If T ⋆i (Ḡn) is not enabled fi(n) is undefined.
(vi) Each leaf in Γ is marked by the empty graph.

With this definition we have

Proposition 4.7. For every set of guarded SOL-deconstructions T = {(Ti, ϕi) : i ≤ ℓ}
acting on VALORD defined by ϕord, and for every Ḡ ∈ VALORD there is at most one
SOL-deconstruction tree Γ(x̄).

We denote by

enabled(~x) =

l_

i=1

ϕi(~x)

and call the formula enabled(~x) the deconstruction enabling formula. Note that the label-
ing of each internal node n in the deconstruction tree must satisfy Ḡn |= enabled.

The graph Ḡn associated with the node n is called the world view of n. We denote the
subtree of Γ rooted at an internal node n by Γn = Γn(Ḡn).

4.2. The linear recurrence relation. The recursive definition of a graph polynomial
P tells us how to compute P (Ḡ) from T ∗

i (Ḡ). The linear recurrence relation we have in
mind takes the form

(12) rec : P (Ḡ) =
X

i:Ḡ|=ϕi

σi(Ḡ) · P (T ∗
i (Ḡ))

where ϕi is the guard of Ti. We still have to specify what the coefficients σi(Ḡ) are allowed
to be.

Definition 4.8 (Coefficients of the linear recurrence relation). Let {σi : VALORD 7→
R}, (i = 1, . . . , l) be a set of mappings such that each σi is a map associated with Ti
which maps a graph with an m-context into an element of R. Furthermore we require that
σi(Ḡ) is given by a short SOL-polynomial expression.

4.3. Valuation of a deconstruction tree. Given a deconstruction tree Γ(G) we want
to assign to Γ(G) a value in R.

Given a graph G, a deconstruction tree Γ(G) of G and coefficients {σi}, we compute
the deconstruction tree valuation by applying the formula below to each internal node n
of Γ(G):

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 13

(13) P (Ḡn) =
X

i ∈ {1, . . . , l}
s.t. Ḡn |= ϕi

σi(Ḡn) · P (T ⋆i (Ḡn))

If n is a leaf we define P (Gn, ~xn) = 1R. This computation is well defined for every ordered
graph with a context Ḡ, but the computation may depend on the underlying order of the
contexts.

4.4. Well defined recursive definition.

Definition 4.9. A recursive definition of a graph polynomial P is given by a triple
(T , rec, ϕord), where

(i) T = {(Ti, ϕi) : i ≤ ℓ} is a finite family of guarded SOL-destruction schemes
acting on VALORD defined by ϕord, and

(ii)

rec : P (Ḡ) =
X

i:Ḡ|=ϕi

σi(Ḡ) · P (T ∗
i (Ḡ))

is a linear recurrence relation.

For the recursive definition (T , rec, ϕord) of a graph polynomial P to be well defined
we need several conditions to be satisfied.

Definition 4.10. A triple (T , rec, ϕord) is SOL-feasible for P if the following conditions
are satisfied.

(i) VALORD is SOL-definable by a SOL-formula ϕord.
(ii) Every graph G ∈ Gm has an expansion Ḡ = 〈G,~x,O〉 with an order O such that
〈G,~x,O〉 |= ϕord, i.e., such that 〈G,~x,O〉 ∈ VALORD.

(iii) Every graph Ḡ ∈ VALORD has a SOL-deconstruction tree Γ(Ḡ).
(iv) Given two orders O1 and O2 on G and the corresponding deconstruction trees

Γ(G,O1),Γ(G,O2) we have P (Γ(G,O1)) = P (Γ(G,O2)).

Proposition 4.11. Given a SOL-feasible triple (T , rec,VALORD), there is a unique
graph invariant P such that for all ordered graphs 〈G,O〉 ∈ VALORD

P (G) = P (Γ(G,O))

Note that we can replace the logic SOL in the definitions of this section by other logics
used in finite model theory, say Fixed Point Logic FPL, Monadic Second Order Logic
MSOL, etc. Such logics are defined in detail in, say [EF95]. The choice of SOL here is
a choice of convenience. In Section 8 we shall return to the use of other logics.

4.5. Examples.

In all the examples below, the universe of G is AG = V ∪ E, the context is monadic
(m = 1) and we take VALORD1 to be defined by φord = ∀x, y[(PE(x)∧PV (y))→ x ≺O y],
i.e., we require the edges in G to come before the vertices in the order O.

Example 4.12 (Matching polynomial). The bivariate matching polynomial (cf. for ex-
ample [HL72, LP86, GR01]) is defined by

M(G,X, Y) =
nX

i=0

aiX
n−2i

Y
i

Alternatively, it can be also defined by a linear recurrence relation as follows. The ini-
tial conditions are M(E1) = X and M(∅) = 1. Additionally, it satisfies the recurrence

14 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

relations

M(G) = M(G−e) + Y ·M(G†e)

M(G1 ⊕G2) = M(G1) ·M(G2)(14)

Here M(G†e) is the graph obtained from G by deleting the edge e = (u, v) together with
the vertices u and v and all the edges incident with u and v.

To express this defintion within our framework, we take AG = V ∪ E and R = N ⊆
V × E is the adjacency relation between vertices and edges. We define shorthand for-
mulas to identify an item of the universe to be edge or vertex respectively: PE(x) =
∃y(R(y,x)), PV (x) = x ∈ A ∧ ¬PE(x), and a formula which captures the universe ele-
ments which are removed during the extraction of an edge x:

Extracted(x, y) = [y = x ∨ R(y, x) ∨ ∃u(R(u, x) ∧R(u, y))].

The following table summarizes the formulas for the recursive definition of the match-
ing polynomial.

Action Ti[G, x] Ti[G, x]
i type ϕi(x) φi(y) ψi(y, z) σi(x)

1 G−v PV (x) ∧ ¬∃y(R(x, y)) y 6= x R(y, z) X

2 G−e PE(x) y 6= x R(y, z) ∧ z 6= x 1
3 G†e PE(x) ¬Extracted(x,y) R(y, z) Y

Note that in this case, enabled(G,x) does not contain the case of PV (x)∧ ∃y(R(x, y)),
therefore not for every order O there exists a valid fixed order deconstruction tree with
order O. However, any order O in which all the edges come before all the vertices, defines
a valid fixed order deconstruction tree.

Example 4.13 (Tutte polynomial). The Tutte polynomial is defined (cf. for exam-
ple [Bol99, BR99]) by the initial conditions T (E1) = 1 and T (∅) = 1 and has linear
recurrence relation:

T (G,X, Y) =

8
<
:

X · T (G−e, X, Y) if e is a bridge,

Y · T (G−e, X, Y) if e is a loop,

T (G/e, X, Y) + T (G−e, X, Y) otherwise

T (G1 ⊕G2, X, Y) = T (G1, X, Y) · T (G2, X, Y)(15)

where a bridge is an edge removing which separates its connected component to two con-
nected components.

As in the case of matching polynomial we define AG = V ∪ E, R = N ⊆ V × E,
PE(x) = ∃y(R(y,x)) and PV (x) = x ∈ A∧¬PE(x) In addition we define the next shorthand
formulas:
For any formula f :

∃kx(f(x)) = ∃x1 · · · ∃xk(
^

i6=j

xi 6= xj ∧
k̂

i=1

f(xi) ∧ ∀y((
k̂

i=1

y 6= xi)→ ¬f(y))).

For any two monadic relations U and W :

U ⊆W ≡ ∀x(U(x)→ W (x))

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 15

We define formulas to express an edge being a bridge, a loop, or none of these, respec-
tively:

Bridge(x) = PE(x) ∧ ∃y, z[y 6= z ∧R(y, x) ∧R(z, x) ∧

¬∃U(U ⊆ PE ∧ ¬U(x) ∧ ∃u1, u2[

U(u1) ∧ U(u2) ∧ R(y, u1) ∧ R(x, u2) ∧

∀u3[(PV (u3) ∧ u3 6= y ∧ u3 6= z)→

(¬∃e1(U(e1) ∧ R(u3, e1)) ∨ (∃2e2(U(e2) ∧R(u3, e2))))]])]

Loop(x) = PE(x) ∧ ∃
1
y(R(y,x))

None(x) = PE(x) ∧ ¬Bridge(x)∧ ¬Loop(x)

In the case of contraction of edge x we remove the edge and the smaller one (by order
O) of its end vertices u, v. The remaining end vertex v becomes adjacent to all the edges
which entered either of u, v. To describe this we need the next formulas:

EdgeEnds(x,u, v) = R(u, x) ∧ R(v, x) ∧ u ≺O v

Left(x, u) = PE(x) ∧ ∃v(EdgeEnds(x,u, v))

Right(x, v) = PE(x) ∧ ∃u(EdgeEnds(x,u, v))

The resulting adjacency relation is:

ψContract(x, y, z) = ∃u, v[EdgeEnds(x,u, v) ∧ (R(y, z) ∨ (y = v ∧ R(u, z))]

The following table summarizes the formulas for the recursive definition of the Tutte
polynomial.

Action Ti[G, x] Ti[G, x]
i type ϕi(x) φi(y) ψi(y, z) σi(x)

1 G−e Bridge(x) y 6= x R(y, z) X

2 G−e Loop(x) y 6= x R(y, z) Y

3 G/e None(x) ¬Left(x, y) ψContract(x, y, z) 1
4 G−e None(x) y 6= x R(y, z) 1
5 G−v PV (x) ∧ ¬∃y(R(x, y)) y 6= x R(y, z) 1

Example 4.14 (Pott’s model). The polynomial Z(G, q, v), called the Pott’s model, is
defined (cf. for example [Sok05]) by the initial conditions Z(E1) = q and Z(∅) = 1, and
satisfies the linear recurrence relation

Z(G, q, v) = v · Z(G/e, q, v) + Z(G−e, q, v)

Z(G1 ⊔G2, q, v) = Z(G1, q, v) · Z(G2, q, v)(16)

Again we define AG = V ∪E, R = N ⊆ V ×E, PE(x) = ∃y(R(y,x)) and PV (x) = x ∈
A∧¬PE(x) We also borrow the definition of ψContract(x, y, z) from the Tutte polynomial.

The following table summarizes the formulas for the recursive definition for the Pott’s
model.

Action Ti[G, x] Ti[G, x]
i type ϕi(x) φi(y) ψi(y, z) σi(x)

1 G−v PV (x) PV (x) ∧ ¬∃y(R(x, y)) R(y, z) q

2 G/e PE(x) ¬Left(x, y) ψContract(x, y, z) v

3 G−e PE(x) y 6= x R(y, z) ∧ z 6= x 1

16 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

5. Main result

We now can state and prove our main result.

Theorem 5.1. Let the triple (T , rec, ϕord) be SOL-feasible defining a graph polynomial
P . Then there exists a SOL-polynomial expression S such that for every Ḡ |= ϕord, and
for every z, P (Γ(Ḡ)) = e(S, Ḡ, z).

The following lemma, schematically represented by Figure 2, will be useful for the proof
of the theorem:

Lemma 5.2. Let Φ1 = 〈φ1, ψ1〉, Φ2 = 〈φ2, ψ2〉 be translation schemes on graphs. Let
G1 = Φ1(G), G2 = Φ2(G1), where G,G1, G2 are graphs over the same vocabulary. Then

there exists a translation scheme Φ3 = Φ♯1(Φ2) = 〈Φ
♯
1(φ2),Φ

♯
1(ψ2)〉 such that G2 = Φ3(G).

Proof:
By definition of Φ2, we have

A(G2) = A
Φ⋆

2 [G1] = {a ∈ A(G1) : G1 |= φ2(a)}

R(G2) = R
Φ⋆

2 [G1] = {~a ∈ A(G2)
2 : G1 |= ψ2(~a)}

By the fundamental property (Theorem 2.8), because G1 = Φ⋆1[G], we have

∀a ∈ A(G1)(G1 |= φ2(a)↔ G |= [Φ♯1(φ2)](a))

∀~a ∈ A(G1)
2(G1 |= ψ2(~a)↔ G |= [Φ♯1(ψ2)](~a))

This is equivalent to

∀a ∈ A(G)(G1 |= (φ2(a) ∧ a ∈ A(G1))↔ G |= [Φ♯1(φ2)](a))

∀~a ∈ A(G)2(G1 |= (ψ2(~a) ∧ ~a ∈ A(G1)
2)↔ G |= [Φ♯1(ψ2)](~a))

because if A(G1) 6= A(G) then Φ♯1 relativizes φ2, ψ2 to accept only a ∈ A(G1). Thus we

can take Φ3 = Φ♯1(Φ2) = 〈Φ
♯
1(φ2),Φ

♯
1(ψ2)〉 Q.E.D.

�����

����	

���

�����

����

����

���

� !

"#$ % &'(
)
*+,-./

Figure 2. Translation scheme composition

Now let us prove Theorem 5.1.
Proof:
The proof is constructive. The formula will simulate the iterative application of the reduc-
tion formula on some deconstruction tree Υ = Υ(Ḡ). The recursive definition (T , rec, ϕord)
is SOL-feasible and therefore is invariant in the deconstruction tree, thus without loss of
generality we can take Υ to be some fixed order deconstruction tree with a SOL-feasible
order O. Note that the actual order of contexts in a branch b is a sub-order Ob of O. A
context ~x ∈ Am might be omitted from Ob because the deconstructions performed along

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 17

b prior to the node marked by ~x might have deleted an element of ~x. This would make it
impossible to use ~x as a context of any deconstruction.

The SOL-polynomial expression we define, S, is a sum of the valuations of all the
branches of Υ. Each branch b is uniquely defined by the sequence of deconstructions (Ti-

s) performed along the branch. We define the vector of marks, ~U = (U1, . . . , Ul), which
mark each context ~x according to the deconstruction performed at the node of Υ marked
by ~x. Note that not all the contexts are covered by Ui-s. Only the contexts that were
not omitted from Ob will be covered, as only at the nodes marked by these contexts a
deconstruction was performed. We mark the rest of the contexts by D. Note also that
the arity of each Ui, and of D, is m - the cardinality of the contexts.

As follows from Definition 12, the valuation of the branch b is the product of the
elementary valuations σi(~x) applied at each node n marked by the context ~x such that T ⋆i
is applied at n, i.e., in our notation,

lY

i=1

Y

~x:Ui(~x)

σi(~x).

The SOL-polynomial expression S is now defined as follows:

(17) S =
X

~U,D:Ψ(~U,D,O)

lY

i=1

Y

~x:Ui(~x)

σi(~x)

Where Ψ is

Ψ(~U,D,O) =

Disjoint(~U,D) ∧ Cover((D ∪
[
Ui), A

m) ∧

∃B∃Q[

∀ ~x0[firstO(~x0)→

∀u∀v(B(~x0, u) ∧ (R(u, v)↔ Q(~x0, u, v)))] ∧

∀ ~x1∀ ~x2(~x2 = nextO(~x1)→

ChangeWorldView(~U,D,B,Q, ~x1, ~x2))]

(18)

The predicate Disjoint(~U,D) means that the relations U1, . . . , Ul, D are disjoint, and
Cover((D ∪

S
Ui), A

m), meaning that each element of Am (i.e., each context) is marked
either by D or by some Ui. We use B ⊆ Am+1 and Q ⊆ Am+2 to encode the world view
of the nodes of Υ. Below we show that for a node n on the branch b which is marked
by the context ~x, B,Q satisfy A(Gn) = {v : B(~x, v)} and R(Gn) = {(v, u) : Q(~x, v, u)}.
If a context ~x is the first context in O (x0), then no deconstruction has been performed
prior to the node marked by x. Thus the world view of x should be the original graph G.
Otherwise, there exists a context x1 which is an immediate predecessor of x in O. Then
the world view of x can be derived from the world view of x1, and the connection between

these world views is described by the formula ChangeWorldView(~U,D,B,Q, ~x1, ~x)
In order to define ChangeWorldView, the following definitions will be used:

For relations B1, Q1 such that ρ(B1) = 1, ρ(Q1) = 2 we define the translation scheme
ΦB1,Q1 = 〈B1, Q1〉. For two relations R1, R2 of the same arity ℓ we overload the equality
symbol to denote R1 = R2 ⇔ ∀u1 . . .∀ul(R1(u1, . . . , ul)↔ R2(u1, . . . , ul)).

18 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

ChangeWorldView(~U,D,B,Q, ~x1, ~x2) =

∃B1∃B2∃Q1∃Q2[

∀u∀v((B1(u)↔ B(~x1, u)) ∧ (B2(u)↔ B(~x2, u)) ∧

(Q1(u, v)↔ Q(~x1, u, v)) ∧ (Q2(u, v)↔ Q(~x2, u, v))) ∧

l̂

i=1

(Ui(~x1)→ [Φ♯B1,Q1
[ϕi](~x1) ∧

B2 = A
Φ⋆

3 [G, ~x1] ∧

Q2 = R
Φ⋆

3 [G, ~x1]]) ∧

(D(~x1)→ [(∃j¬B1(~x1[j])) ∧ B1 = B2 ∧Q1 = Q2])]

(19)

where ρ(B1) = ρ(B2) = 1, ρ(Q1) = ρ(Q2) = 2 and Φ3 = Φ♯B1,Q1
[Ti].

In accordance with the role of B and Q, the first part of the formula defines the relations
Bi, Qi to comprise the world view of the context xi.

The second part of the formula treats the case when the context ~x1 is marked by
some Ui, i.e., the case when the deconstruction T ⋆i was applied at the node n1 marked
by ~x1. To make the application of T ⋆i at Gn1 possible, Gn1 |= ϕi(~x1) should hold. We
need to find a formula eϕi such that G |= eϕi(~x1) iff Gn1 |= ϕi(~x1). B1, Q1 comprise the
world view of x1, Gn1 . Thus by definition of ΦB1,Q1 = 〈B1, Q1〉, we have that ΦB1,Q1

is a translation scheme translating G to Gn1 . Then, by Theorem 2.8, Gn1 |= ϕi(~x1) iff

G |= Φ♯B1,Q1
[ϕi](~x1), taking eϕi = Φ♯B1,Q1

[ϕi].

The world view of x2, Gn2 , is the result of application of T ⋆i to Gn1 , and is comprised
of B2, Q2. Using Lemma 5.2 applied to Φ1 = ΦB1,Q1 and Φ2 = Ti, we obtain that

ΦB2,Q2 = Φ♯B1,Q1
[Ti].

The last part of the formula treats the case when the context ~x1 (or part of it) is
already deleted by deconstructions applied to contexts which precede it in O. Therefore
it should be marked by D. No deconstruction is applied to ~x1, thus the world view of ~x1

and its successor, ~x2, are the same. Q.E.D.

Note that if the coefficients σi(Ḡ) of the recurrence relation are given by short SOL-
polynomial expression then the expression S defines a SOL-polynomial.

6. Derivations of subset expansion formulas

In this section we shall show how the proof of Theorem 5.1 can be applied to obtain
a subset expansion formula for the universal edge elimination polynomial [AGM08], and
the cover polynomial [CG95].

6.1. The universal edge elimnation polynomial.

The universal edge elimination polynomial ξ(G,X, Y, Z) is a generalization of both the
Matching and the Pott’s model, and is recursively defined in [AGM08].

The initial conditions are ξ(E1, X, Y, Z) = X and ξ(∅, X, Y, Z) = 1.
The recurrence relation is

ξ(G,X, Y, Z) = ξ(G−e, X, Y, Z) + y · ξ(G/e, X, Y, Z) + z · ξ(G†e, X, Y, Z)(20)

ξ(G1 ⊕G2, X, Y, Z) = ξ(G1, X, Y, Z) · ξ(G2, X, Y, Z).

To express this defintion within our framework, we define AG, R, PE(x), PV (x),
ψContract(x, y, z) and Extracted(x,y) similarly as in Example 3.10.

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 19

Table 1. Formulas for the recursive definition of ξ(G,X, Y, Z)

Action Ti[G, x] Ti[G, x]
i type ϕi(x) φi(y) ψi(y, z) σi(x)

1 G−v PV (x) PV (x) ∧ ¬∃y(R(x, y)) R(y, z) X

2 G−e PE(x) y 6= x R(y, z) ∧ z 6= x 1
3 G/e PE(x) ¬R(y, x) ψContract(x, y, z) Y

4 G†e PE(x) ¬Extracted(x, y) R(y, z) Z

Substituting the formulas of Table 1 in the Equations (17,18,19) we get a SOL-
polynomial expression. This expression is a sum over the colorings U1, . . . , U4 of AG

of addends evaluated
Q4
i=1

Q
x:Ui(x)

σi(x) = X|U1| · Y |U3| · Z|U4|.

Let C be the set of the connected components of the graph GC = (V (G), U3 ∪ U4). In
Formula (19), for each context x1 satisfying U3(x1) and x2 = nextO(x1) the contraction
action on edge x1 leaves one of its end verices. In other words, if u, v ∈ V (G) and
{(u, x1), (v, x1)} ∈ R and u ≺O v then we haveB(x1, u)∧B(x1, v) but ¬B(x2, u)∧B(x2, v).
Thus, action number 3 (G/e) can not remove a whole connected component in C from
{y : B(x2, y)}.

Therefore, for each component c ∈ C, actions 1 (G−v) or 4 (G†e) must be used on the
last vertex or edge in c to eliminate whole of c form {y : B(x, y)} for some x such that
U1(x) or U4(x), respectively.

We divide the components in C into two sets:

CA = {c ∈ C : ∃x ∈ c(U1(x))}

CB = {c ∈ C : ∃x ∈ c(U4(x))}

and define the next edge sets:

A = {x ∈ E(G) : ∃c(x ∈ c ∈ CA)}

B = {x ∈ E(G) : ∃c(x ∈ c ∈ CB)}

Recallin the definition of Touching(D, S) and LastInComp(D,S) from Section 3.3 we
get:

U1 = LastInComp(V,A ∪B) \ Touching(V,B)}

U3 = A ∪ B \ LastInComp(B,B)

U4 = LastInComp(B,B)

If we rewrite Equation (17) using these terms, we get the next simple SOL-polynomial
expression:

ξ(G,X, Y, Z) =
X

A,B:A,B⊆E∧V ertexDisjoint(A,B)

2
4

Y

v:v∈(LastInComp(V,A∪B)\Touching(V,B))

X

3
5 ·

2
4

Y

e:e∈(A∪B\LastInComp(B,B))

Y

3
5 ·

2
4

Y

e:e∈LastInComp(B,B)

Z

3
5 .(21)

where V ertexDisjoint(A,B) = ¬∃v∃a ∈ A∃b ∈ B(N(v, a) ∧N(v, b)).
From this one can get

(22) ξ(G,X, Y, Z) =
X

(A⊔B)⊆E

X
k(A⊔B)−kcov(B) · Y |A|+|B|−kcov(B) · Zkcov(B)

where by abuse of notation we use (A ⊔ B) ⊆ E for summation over subsets A,B ⊆ E,
such that the subsets of vertices V (A) and V (B), covered by respective subset of edges, are
disjoint: V (A) ∩ V (B) = ∅; k(A) denotes the number of spanning connected components

20 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

in (V,A), and kcov(B) denotes the number of covered connected components, i.e. the
connected components of (V (B), B).

Note that k(A⊔B)−kcov(B) = |LastInComp(V,A∪B)\Touching(V, B)|, |A|+ |B|−
kcov(B) = |A ∪B \ LastInComp(B,B)| and kcov(B) = |LastInComp(B,B)|.

Now, Equation 22 is the subset expansion formula for ξ(G,X, Y, Z) presented in [AGM08].

6.2. The cover polynomial.

The standard definition of the Cover polynomial for a directed graph D is (see [CG95]):

C(∅) = 1,

C(En) = X
n = X(X − 1) · · · (X − n+ 1),

C(D) =

C(D−e) + C(D/e) if e is a loop,

C(D−e) + Y · C(D/e) if e is a not a loop

where a contraction of a directed edge e is defined in the following manner:

• If the edge is a loop then it and its adjacent vertex is deleted.
• Otherwise we remove this edge, replace both its adjacent vertices by a single

vertex and keep all their adjecent edges which agree with the direction of e.
I.e., if e = 〈u, v〉 we remove them both, replace them by a new vertex w and
connect all edges 〈x,w〉 such that 〈x, u〉 ∈ E(D) and all edges 〈w, y〉 such that
〈v, y〉 ∈ E(D).

This polynomial is for directed graphs, we express the graph within an extended
vocabulary τdirect−graph(2) = 〈A,NO , NI〉 where the interprestation is: A = V ∪ E is

the universe of the graph, NO ⊆ V × E is the adjacency relation for the outbound
edges, and NI ⊆ E × V is the one for inbound edges. The relevant shorthand formu-
las to identify an element of the universe to be an edge or a vertex respectively, are:
PE(x) = ∃y, z[N

O(y, x) ∧NI(x, z)], PV (x) = x ∈ A ∧ ¬PE(x).
Other shorthand formulas we use:

DEdgeEnds(x,u, v) = N
O(u, x) ∧NI(x, v)

DLoop(x) = PE(x) ∧ ∃y[N
O(y, x) ∧NI(x, y)]

ψ
O
Contract(x, y, z) = N

O(y, z)

ψ
I
Contract(x, y, z) = ∃u, v[DEdgeEnds(x, u, v) ∧ (NI(y, z) ∨ (z = v ∧NI(y, u))]

DExtracted(x, y) = ∃u, v[DEdgeEnds(x, u, v) ∧ y 6= u ∧ ¬NO(u, y) ∧ ¬NI(y, v)]

DLoopExtracted(x, y) = ¬∃u[NO(u, x) ∧ (y = u ∨NI(y, u) ∨NO(u, y))]

Note that σ4(x) is a SOL-definable polynomial so our main result validity is supported
by the last SOL-definable polynomial property in Proposition 3.11.

Substituting the formulas of Table 2 in the Equations (17,18,19) we get a SOL(τdirect−graph(2))-
polynomial expression. Note that in this case Formula (19) should be extended to repre-
sent both the realtions NI and NO . This is peformed trivially by introducing QI and QO

ternary relations into Formulas (18) and (19), instead the single Q relation.
This SOL(τdirect−graph(2))-polynomial expression is a sum over the colorings U1, . . . , U4

of AG of addends evaluated
Q4
i=1

Q
x:Ui(x)

σi(x).

We use similar arguments as in previous section (6.1). Let C be the connected com-
ponents of GC = (V (G), U2 ∪ U3). To eliminate a component c ∈ C from {y, B(x, y)} for
some context y actions 3 (G/e) or 4 (G−v) must be used on the last edge or vertex of c.

We divide the components in C into two sets:

CP = {c ∈ C : ∃x ∈ c(U4(x))}

CC = {c ∈ C : ∃x ∈ c(U3(x))}

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 21

Table 2. Formulas for the recursive definition of the Cover polynomial

Action
i type ϕi(x) σi(x)

1 D−e PE(x) 1
2 G/e PE(x) ∧ ¬DLoop(x) 1
3 G/e DLoop(x) Y

4 G−v ¬∃y(PE(y)) X + (−1)R
P
y:φ4(y)

1R

Action Ti[G, x] Ti[G, x] Ti[G, x]
i type φi(y) ψOi (y, z) ψIi (y, z)

1 D−e y 6= x NO(y, z) ∧ z 6= x NI(y, z) ∧ y 6= x

2 G/e DExtracted(x, y) ψOContract(x, y, z) ψIContract(x, y, z)

3 G/e DLoopExtracted(x, y) NO(y, z) NI(y, z)
4 G−v y 6= x ∅ ∅

Note that if for edge x1, such that U2(x1) ∨ U3(x1), we have NO(u, x1) ∧ N
I(x1, v),

then for x2 = nextO(x1) {y : B(x2, y)} does not contain any edges into v or edges out of
u. Therefore, each vertex in GC = (V (G), U2 ∪ U3) is adjecent to at most one incoming
and one outgoing edge. Thus, each c ∈ C are either a path or a cycle (a single vertex
without a loop is a path or it is a cycle if it has a loop).

Let OnCycle(v, B) = ∃U [U ⊆ B ∧∃e(U(e)∧NO(v, e))∧Cycle(B)]. If we set B = {x :
U2(x) ∧ U3(x)} then:

U3 = {e ∈ E : ∃c ∈ CC({e} = LastInComp(E, c))}

U4 = {v ∈ V : ∃c ∈ CP ({v} = LastInComp(V, c))}(23)

= {v ∈ LastInComp(V,B) ∧ OnCycle(v,B)}(24)

Note that by Equation 23 we have also U3 = |{v ∈ LastInComp(V,B)∧OnCycle(v,B)}|.
Note that in this case we need to take the definitions of LastInComp(V,A), Cycle(B)

and their subformulas with the relation N replaced by NI or NO in accordance to the
context.

Because the context ordering VALORDm permits only orders O such that the vertices

come after edges, for any choice of valid coloring ~U there exists a vertex y such that its
world view graph 〈B(y, . . .), QI(y, . . .), QO(y, . . .)〉 = Ek for some k and therefore for all
x ≻O y we have U4(x) or D(x). For such vertices x with U4(x), σ4(x) = X − k+1 and in

Formola 17 we get
Q
x:Ui(x)

σi(x) = X|U4|. Thus,
Q4
i=1

Q
x:Ui(x)

σi(x) = X|U4| · Y |U3|.

We denote CyclePathCover(B) to be valid iff for every vertex v no two edges of B
emanate or enter v:

CyclePathCover(B) = ∀v[PV (v)→ ¬∃e1, e2(e1 6= e2 ∧

[(NO(v, e1) ∧N
O(v, e2)) ∨ (NI(e1, v) ∧N

I(e2, v))])]

If we rewrite Equation (17) using these terms, we get the next simple SOL(τdirect−graph(2))-
polynomial expression:
(25)

C(D,X, Y) =
X

B,L:B⊆E∧L=LastInComp(V,B)

ˆ
(X){v:v∈L∧¬OnCycle(v,B)}

˜
·

2
4

Y

v:v∈L∧OnCycle(v,B)

Y

3
5 .

where (X){v:v∈L∧¬OnCycle(v,B)} is a falling factorial which by the properties listed in Sec-
tion 3.5 is expressible by a SOL-polynomial expression over R which contains Z. Though
Formula (25) is not a SOL-polynomial expression in a normal form, by Proposition 3.11,
item (v), it is still a SOL-polynomial expression.

22 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

Formula (25) is equivalent to the one presented in [CG95]:

(26) C(D,X, Y) =
X

i,j

cD(i, j)X
i
Y
j

where cD(i, j) is the number of ways of covering all the vertices of D with i directed paths
and j directed cycles (all disjoint of each other), Xi = X(X − 1) · · · (X − i + 1) and
X0 = 1. cD(i, j) is taken to be 0 when it is not defined, e.g., when i < 0 or j < 0.

7. A graph polynomial with no recurrence relation

In [NW99] a graph polynomial U(G, X̄, Y) is introduced which generalises the Tutte
polynomial, the matching polynomial, and the stability polynomial. U(G, X̄, Y) is defined
for a graph G = (V,E) as

(27) U(G, X̄, Y) =
X

A⊆E

y
|A|−r(A)

|V |Y

i=1

X
s(i,A)
i

where s(i, A) denotes the number of connected components of size i in the spanning
subgraph (V,A), and r(A) = |V | − k(A) is the rank of (V,A).

It is obtained from a graph polynomial WG,w(X̄, Y) for weighted graphs 〈G,w〉 by
setting all the weights equal 1. For the weighted version there is a recurrence relation
reminiscent of the one for the Tutte polynomial, but the edge contraction operation for an
edge e = (v1, v2), wich results in a new vertex u, gives u the weight w(u) = w(v1)+w(v2).
For WG,w(X̄, Y) a subset expansion formula is proven, which is equivalent to Equation
(27), when all the weights are set to 1. Equation (27) is used in [NW99] as the definition
of the polynomial U(G, X̄, Y) for graphs without weights. It is noted that the recursive
definition given for WG,w(X̄, Y) does not work, as the edge contraction operation for
weighted graphs, when applied to the case where all weights equal 1, gives a graph with
weight for the new vertex resulting from the contraction.

We now show, that the polynomial U(G, X̄, Y) is not an SOL-polynomial, and therefore
has no feasible recurrence relation in our sense. To see this we note a simple property of
SOL-polynomials.

Definition 7.1. Let X̄ = (X1, . . . , Xn) be a set of variables, and

P (G, X̄) =
X

ĀX
f1(G,Ā)
1 · . . . ·Xfn(G,Ā)

n

be a subset expansion of a graph polynomial P . We say that P is invariant under variable
renaming if for all graphs G and for all permutation σ : N→ N we have

P (G,Xσ(1), . . . , Xσ(n)) =
X

Ā
Y

i≤n

X
fσ(i)(G,Ā)

σ(i)

The following is easy to see:

Proposition 7.2. Assume for

P (G, X̄) =
X

ĀX
f1(G,Ā)
1 · . . . ·Xfn(G,Ā)

n

that for all i ≤ n the exponent fi(G, Ā) of Xi is not dependent on i. Then P (G, X̄) is
invariant under variable renaming. In particular, SOL-polynomials are invariant under
variable renaming.

Proposition 7.3. U(G, X̄, Y) is not invariant under variable renaming.

Proof. Let En be the graph consisting of n isolated vertices. Then s(i, A) = |A| if i = 1
and s(i, A) = 0 if i ≥ 2. We have

U(En, X1, . . . , Xn, y) =
X

A⊆E

y
|A|−r(A) ·X|A|

1

SUBSET EXPANSIONS OF GRAPH POLYNOMIALS 23

If we now set σ(n) = n+ 1 we get

U(En, X2, . . . , Xn+1, Y) =
X

A⊆E

y
|A|−r(A)

�

Corollary 7.4.

(i) U(G, X̄, Y) is not a SOL-definable polynomial.
(ii) There is no feasible recursive definition of U(G, X̄, Y).

8. Conclusion and open problems

We have shown with Theorem 5.1 how to convert certain recursive definition of graph
polynomials, the SOL-feasible recursive definitions, into SOL-definable subset expansion
formulas, herewith generalizing many special cases from the literature, in particular the
classical results for the Tutte polynomial, the interlace polynomial, and the matching
polynomial. We have also explained how Theorem 5.1 was used in [AGM08] to find a
subset expansion formula for the universal edge elimination polynomial ξ(G,X, Y, Z).

Our framework does not cover all the graph polynomials which appear in the literature.
We have not discussed graph polynomials where indeterminates are indexed by elements
of the graph. This occurs for example in [Sok05]. Our framework can be easily adapted
to this situation. In this case renaming of the variables has to include also a renaming of
the elements of the universe.

The weighted graph polynomial from [NW99], however, is not invariant under variable
renaming because the integer index of the variables carries a graph theoretic meaning. It
is this feature which allows us to show that U(G, X̄, Y) is not SOL-definable.

We have not discussed the possibility of a converse of Theorem 5.1.

Problem 1. Find a graph polynomial P which is defined by a SOL-definable subset
expansion formula and which is invaraint under variable renaming, but which has no
SOL-feasible (linear) recurrence relation.

In our framework of SOL-feasible recursive definitions the recurrence relation is re-
quired to be linear. We chose this restriction because we did not want to generalize
beyond the natural examples.

Problem 2. Are there combinatorially interesting graph polynomials defined recursively
by non-linear recurrence relations?

Problem 3. Is there an analogue to Theorem 5.1 for non-linear recurrence relations?

The choice of Second Order Logic SOL as the base logic for this approach is merely
pragmatical. It can be replaced by Fixed Point Logic FPL and extensions of SOL. It
seems not to work for Monadic Second Order Logic MSOL. In our proof of Theorem
5.1 we have to quantify over relations which are at least ternary, even if the recursive
definition is MSOL-feasible.

Problem 4. Find a sufficent condition which ensures that an MSOL-feasible recursive
definition can be converted into an MSOL-definable subset expansion formula.

References

[ABS04a] R. Arratia, B. Bollobás, and G.B. Sorkin. The interlace polynomial of a graph. Journal
of Combinatorial Theory, Series B, 92:199–233, 2004.

[ABS04b] R. Arratia, B. Bollobás, and G.B. Sorkin. A two-variable interlace polynomial. Combi-

natorica, 24.4:567–584, 2004.
[AGM08] I. Averbouch, B. Godlin, and J.A. Makowsky. An extension of the bivariate chromatic

polynomial. submitted, 2008.

24 B. GODLIN, E. KATZ, AND J.A. MAKOWSKY

[AvdH04] M. Aigner and H. van der Holst. Interlace polynomials. Linear Algebra and Applica-

tions, 377:11–30, 2004.
[Big93] N. Biggs. Algebraic Graph Theory, 2nd edition. Cambridge University Press, 1993.
[Bol99] B. Bollobás. Modern Graph Theory. Springer, 1999.
[BR99] B. Bollobás and O. Riordan. A Tutte polynomial for coloured graphs. Combinatorics,

Probability and Computing, 8:45–94, 1999.
[CDS95] D.M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Johann Ambrosius Barth,

3rd edition, 1995.
[CG95] F.R.K. Chung and R.L. Graham. On the cover polynomial of a digraph. Journal of

Combinatorial Theory, Ser. B, 65(2):273–290, 1995.
[Cou] B. Courcelle. A multivariate interlace polynomial. Preprint, December 2006.
[Die05] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 3 edition, 2005.
[DKT05] F.M. Dong, K.M. Koh, and K.L. Teo. Chromatic Polynomials and Chromaticity of

Graphs. World Scientific, 2005.
[EF95] H. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.
[EM98] J. Ellis-Monaghan. New results for the Martin polynomial. Journal of Combinatorial

Theory, Series B, 74:326–352, 1998.
[God93] C.D. Godsil. Algebraic Combinatorics. Chapman and Hall, 1993.
[GR01] C. Godsil and G. Royle. Algebraic Graph Theory. Graduate Texts in Mathematics.

Springer, 2001.
[HL72] C.J. Heilmann and E.H. Lieb. Theory of monomer-dymer systems. Comm. Math. Phys,

28:190–232, 1972.
[KMZ08] T. Kotek, J.A. Makowsky, and B. Zilber. On counting generalized colorings. In CSL’08,

volume 5213 of Lecture Notes in Computer Science, pages xx–yy, 2008.
[Kot10] Tomer Kotek. Definability of combinatorial functions. PhD thesis, Technion - Israel

Institute of Technology, Haifa, Israel, 2009-2010. In progress.
[LP86] L. Lovasz and M.D. Plummer. Matching Theory, volume 29 of Annals of Discrete

Mathematics. North Holland, 1986.
[Mak04] J.A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure

and Applied Logic, 126.1-3:159–213, 2004.
[Mak06] J.A. Makowsky. From a zoo to a zoology: Descriptive complexity for graph polynomials.

In A. Beckmann, U. Berger, B. Löwe, and J.V. Tucker, editors, Logical Approaches to

Computational Barriers, Second Conference on Computability in Europe, CiE 2006,

Swansea, UK, July 2006, volume 3988 of Lecture Notes in Computer Science, pages
330–341. Springer, 2006.

[Mak07] J.A. Makowsky. From a zoo to a zoology: Towards a general theory of graph polynomi-
als. Theory of Computing Systems, online first:http://dx.doi.org/10.1017/s00224–007–
9022–9, July 2007.

[NW99] S.D. Noble and D.J.A. Welsh. A weighted graph polynomial from chromatic invariants
of knots. Ann. Inst. Fourier, Grenoble, 49:1057–1087, 1999.

[Sok05] A. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and ma-
troids. In Survey in Combinatorics, 2005, volume 327 of London Mathematical Society

Lecture Notes, pages 173–226, 2005.
[Tra04] L. Traldi. A subset expansion of the coloured Tutte polynomial. Combinatorics, Prob-

ability and Computing, 13:269–275, 2004.

E-mail address, B. Godlin: bgodlin@cs.technion.ac.il
E-mail address, E. Katz: emika@cs.technion.ac.il
E-mail address, J.A. Makowsky: janos@cs.technion.ac.il

Department of Computer Science,

Technion–Israel Institute of Technology,

32000 Haifa, Israel

	1. Introduction
	2. Logic and Translation Schemes
	2.1. Second Order Logic (SOL)
	2.2. Translation schemes and deconstruction schemes

	3. SOL-polynomials
	3.1. SOL-polynomial expressions
	3.2. Interpretations of SOL-polynomial expressions
	3.3. Examples
	3.4. Properties of SOL-definable polynomials
	3.5. Combinatorial polynomials

	4. Deconstruction of a signed graph and its valuation
	4.1. Deconstruction trees
	4.2. The linear recurrence relation
	4.3. Valuation of a deconstruction tree
	4.4. Well defined recursive definition
	4.5. Examples

	5. Main result
	6. Derivations of subset expansion formulas
	6.1. The universal edge elimnation polynomial
	6.2. The cover polynomial

	7. A graph polynomial with no recurrence relation
	8. Conclusion and open problems
	References

