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Abstract

Lax modalities occur in intuitionistic logics concerned with hardware verification, the computa-
tional lambda calculus, and access control in secure systems. They also encapsulate the logic of
Lawvere-Tierney-Grothendieck topologies on topoi. This paper provides a complete semantics for
quantified lax logic by combining the Beth-Kripke-Joyal cover semantics for first-order intuitionistic
logic with the classical relational semantics for a “diamond” modality. The main technique used
is the lifting of a multiplicative closure operator (nucleus) from a Heyting algebra to its MacNeille
completion, and the representation of an arbitrary locale as the lattice of “propositions” of a suitable
cover system. In addition, the theory is worked out for certain constructive versions of the classical
logics K and S4.

An alternative completeness proof is given for (non-modal) first-order intuitionistic logic itself with
respect to the cover semantics, using a simple and explicit Henkin-style construction of a characteristic
model whose points are principal theories rather than prime saturated ones.

The paper provides further evidence that there is more to intuitionistic modal logic than the
generalisation of properties of boxes and diamonds from Boolean modal logic.

1 The Curious Concept of Lax Modality

Propositional lax logic (PLL) was defined by Fairtlough and Mendler [13, 14] as an intuitionistic propo-
sitional logic with a modality © having the axioms

ϕ→©ϕ
©©ϕ→©ϕ
©ϕ ∧©ψ →©(ϕ ∧ ψ).

The motivation was hardware specification and verification, with a modal formula ©ϕ being read “there
is some constraint under which ϕ is true”. Typical constraints are timing delays on input signals to digital
circuits, with the first axiom corresponding to a single wire with no delay; the second corresponding to
the sequential composition of circuits, with constraint given by adding their delays; and the third axiom
corresponding to parallel composition, with the maximum of the two delays as constraint. The term
“lax” was chosen “to indicate the looseness associated with the notion of correctness up to constraints”
[14, p. 3].

In fact there have been several independently motivated investigations that have produced an intu-
itionistic logic with a lax modality, i.e. one having the above axioms.1 The first would appear to be a
Gentzen-style calculus studied by Curry [9] for proof-theoretic purposes. Its modality, denoted ♦, was
intended to express possibility.

Algebraically, a lax modality is modelled on a Heyting algebra by a multiplicative closure operator.
Such an operator, known as a nucleus in locale theory [27], has the same formal properties as a Lawvere-
Tierney “topology” j : Ω→ Ω on the object Ω of truth values in an elementary topos. This generalised the
notion of a Grothendieck topology for presheaf topoi, and led Lawvere to suggest that the notion “appears

1These studies are also reviewed in Section 7.6 of the author’s historical survey [23].
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most naturally as a modal operator of the nature ‘it is locally the case that’ ” [33]. That perspective
was investigated by the author in [20], which studied a system, equivalent to PLL, whose modality was
denoted ∇. It was provided with a complete semantics by taking Kripke’s model theory for propositional
intuitionistic logic [29] and adding a binary relation R to interpret ∇. The truth/satisfaction relation
x |= ∇ϕ for the formula ∇ϕ at world/state x was defined to hold iff

for all y such that xRy, y |= ϕ, (1.1)

with some elementary conditions on R imposed to validate the axioms for ∇.
Notice that (1.1) is exactly the condition for satisfaction of a “box” modality � in Boolean modal

logic. Classically, the deductive criterion for � to be a “Boolean box” is the derivability of the schemas

�>
�ϕ ∧�ψ → �(ϕ ∧ ψ),

and the monotonicity inference rule
ϕ→ ψ

�ϕ→ �ψ
This criterion2 is fulfilled by PLL when � is taken to be ©, but of course the underlying propositional
logic of PLL is intuitionistic, not Boolean. The semantics of [20] presents a lax modality as a natural
generalisation of a Boolean box to an intuitionistic context.

Because of the notation used for Lawvere-Tierney-Grothendieck topologies, a nucleus is sometimes
called a “j-operator”, or “J-operator” as in Fourman and Scott’s extensive study [16]. Aczel [2] showed
that a lax modality Jϕ can be defined in second-order intuitionistic logic as the formula ∀p((ϕ→ p)→ p),
where p is a propositional variable. He called this the “Russell-Prawitz modality”, because of its relation
to certain definitions of ∧, ∨, ¬ and ∃ in terms of→ and ∀ that were introduced by Russell and studied by
Prawitz in the intuitionistic setting. Aczel showed that any lax modality can be used to give a translation
of intuitionistic logic into itself that generalises both the double negation interpretation and the Russell-
Prawitz representation. Concerning double negation, putting Jϕ = ¬¬ϕ defines a lax modality over
intuitionistic logic that Lawvere suggested should be read “it is cofinally the case that ϕ” (see [20, p. 141]
for an analysis of this).

The logical approach to topos theory of Bell [4] employs a lax modality, referred to as a “possibility
operator”, to construct categories of sheaves, using a “universal” closure operator on sets that is defined
by this modality.

In a computational context again, Benton, Bierman and de Paiva [7] introduced a system called
“CL-logic”, equivalent to PLL, having a “curious possibility-like modality ♦”. For a Hilbert-style ax-
iomatisation, the axioms for ♦ were given as

♦ϕ→ ((ϕ→ ♦ψ)→ ♦ψ)

ϕ→ ♦ϕ.

CL-logic corresponds to the computational lambda calculus of Moggi [37], which has a type-constructor
T such that the denotation of a program computing values of type A is itself of type TA. Categorically,
T is a “strong monad” on a cartesian closed category, and has the formal properties of a multiplicative
closure operator.

Most recently, lax modalities have been used in access-control logics, dealing with authorisations in
decentralised systems in which agents requested access to secure resources under the control of other
agents [17, 18]. These are multimodal logics, with lax modalities 〈K〉 indexed by agents K. A formula
〈K〉ϕ is read “K says ϕ”, meaning that K states that ϕ is true. For example, K may be a system
administrator certifying that some other agent is an authorised user, or has access to a particular file.
The 〈K〉 notation comes from dynamic logic, where it was designed to be reminiscent of the diamond
symbol ♦.

So although a lax modality has the defining deductive characteristics of a Boolean box modality, and
is complete for the box-like semantics of (1.1), several authors have viewed it as a kind of “possibilistic”
diamond. This may be because the axiom ϕ → ©ϕ is one of the first principles one thinks of when

2There are other equivalent criteria, most commonly the schema �(ϕ → ψ) → (�ϕ → �ψ) together with the inference
rule ϕ/�ϕ – see Section 7.
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reading © as “possibly”. Now the standard semantics for a Boolean diamond defines x |= ♦ϕ by the
existential condition

there is some y such that xRy and y |= ϕ, (1.2)

dual to (1.1). In the presence of the standard semantics for disjunction, namely

x |= ϕ ∨ ψ iff x |= ϕ or x |= ψ, (1.3)

(1.2) ensures the validity of the axioms

♦(ϕ ∨ ψ)↔ ♦ψ ∨ ♦ψ
¬♦⊥,

(1.4)

which are deductively characteristic of a Boolean diamond (here ⊥ is a constant denoting a proposition
that implies all others). But these axioms are not derivable in PLL when ♦ is taken to be ©, so in that
sense© is not diamond-like, and we cannot model the logic by combining (1.3) for disjunction with (1.2)
as the definition of x |=©ϕ. However there is clearly an existential aspect to the nature of © under the
reading “there is some constraint . . . ”, and this is reflected in the relational semantics provided for PLL
in [13, 14], and extended to its first-order version QLL in [12]. Taking the non-modal part of QLL to be
modelled by Kripke’s semantics for first-order intuitionistic logic,3 the definition of x |=©ϕ is given as

for all z ≥ x there is some y such that zRy and y |= ϕ. (1.5)

Here ≥ is the partial ordering of states used to interpret intuitionistic implication. So either of the
conditions (1.1) and (1.5) can be used to semantically characterise a lax modality over the Kripkean
intuitionistic semantics (with different extra conditions on R in each case).

The main point of the present paper is to give another twist to this tale, by showing that the purely
existential condition (1.2) can be used to model a lax modality after all, without validating (1.4) – provided
we give up the classical semantics (1.3) for disjunction. In its place we adopt an interpretation of the
non-modal connectives and the quantifiers that uses the cover-system structures involved in Grothendieck
topologies. This approach, due to Joyal (cf. [28, Section 1]), is sometimes called “Kripke-Joyal semantics”
because its treatment of conjunction, implication and the universal quantifier is reminiscent of Kripke’s
intuitionistic semantics. But it treats disjunction and the existential quantifier in a non-classical way
that is reminiscent of the semantics of Beth [8], and indeed Beth’s models are explicitly shown to be a
special case of this approach in [6]. For simplicity we will refer to it just as cover semantics.

Accounts of this kind of semantics in topoi can be found in [26, 5.4], [31, II.8], [4, pp. 155ff] and [32,
VI.6]. The history of Beth’s own contribution is discussed in [44].

The basic idea of cover semantics comes from the topological notion of local truth. An assertion
concerning an object X, which may be a space or an open subset of a space, is locally true if X has a
covering by open sets of each of which the assertion is true. For example, a function f is locally constant
on X (i.e. the statement “f is constant” is locally true of X) if X has a covering of open sets on each
of which f is constant. Similarly, two such functions f, g are locally equal on X if X has a covering of
open sets on each of which f and g agree. (See [24], especially Chapter 14, as well as [20], for further
discussion.)

Our abstract models for QLL will assign to each of their members x a family of sets of members called
the covers of x. We write C B x, or x C C, to indicate that C is a cover of x, or x is covered by C.
A condition is locally true of x if there is some C such that C B x and each member of C satisfies the
condition, i.e. if x is covered by a set of members that have this condition. We also use the notation |ϕ|
for the truth set of a sentence ϕ, i.e. the set {x : x |= ϕ} of members at which ϕ is true/satisfied. Then
the truth relation x |= ϕ ∨ ψ for disjunction in cover semantics is defined to hold iff

there is some C B x with C ⊆ |ϕ| ∪ |ψ|. (1.6)

Now if C ⊆ |ϕ| ∪ |ψ|, then each member of C satisfies either ϕ or ψ, so in any case satisfies the classical
disjunction of ϕ and ψ in accordance with (1.3). Thus (1.6) tells us that ϕ ∨ ψ is true at x in the cover
semantics when the classical disjunction of ϕ and ψ is locally true at x.

3Except for the introduction of “fallible” worlds satisfying ⊥ – see later in this section, and Remark 5.2.
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Our QLL-models each have a single domain U over which the individual variables range. This contrasts
with Kripke’s models, where each state x has its own domain Ux, and these domains expand along the
partial ordering. In the cover semantics, the truth relation x |= ∃vϕ for the existential quantifier holds iff

there is some C B x with C ⊆
⋃
c∈U
|ϕ(c/v)|. (1.7)

In classical Tarskian semantics (and in Kripke’s intuitionistic models), satisfaction of any instantiation
ϕ(c/v) is enough to ensure that ∃vϕ is true. Thus (1.7) tells us that ∃vϕ is true at x in the cover semantics
when the corresponding classical existential quantification of ϕ is locally true at x.

The cover semantics criterion for x |= ∀vϕ is the classical Tarskian

for all c ∈ U , x |= ϕ(c/v),

by contrast with Kripke’s

for all y ≥ x and all c ∈ Uy, y |= ϕ(c/v).

Truth in our models is required to be a property of local character, or more briefly a local property,
meaning one whose satisfaction is implied by its own local satisfaction. An illustration of this notion from
above is the property of equality of functions: two locally equal functions are in fact equal, so equality
is a local property. By contrast, a function can be locally constant on X without being constant, so
constancy is not a property of local character. Now if

there is some C B x with C ⊆ |ϕ|, (1.8)

then ϕ is locally true at x, in the sense that x has a cover consisting of points at which ϕ is true. We
require that local truth implies truth, i.e. that if (1.8) holds, then x |= ϕ (cf. (5.2) below). This property
is needed to ensure the validity of certain intuitionistic axioms (cf. Theorem 5.5). We express it by saying
that |ϕ| is a localised set. More generally, for any set X define

jX = {x : ∃C (x C C ⊆ X)}.

A member x of jX is a local member of X, because it is covered by a set of members of X. X is localised
if jX ⊆ X, meaning that all its local members are actual members, and hence that membership of X is
a property of local character. We require that each truth set |ϕ| be localised.

It is also required that each truth set be an up-set, i.e. be closed upward under the partial order ≥
on models, as in the Kripkean semantics. A localised up-set is called a proposition, and the axioms we
adopt for the covering relation B are designed to ensure that the set Prop of propositions of a model is
a complete Heyting algebra.

A given binary relation R induces an operator 〈R〉 on subsets of a model by putting

〈R〉X = {x : ∃y (xRy ∈ X)}.

Then© is interpreted by |©ϕ| = 〈R〉|ϕ|, in accordance with (1.2). In order for |©ϕ| to be a proposition,
a condition on B and R is imposed to ensure that 〈R〉X is localised whenever X is localised. This
condition is called Modal Localisation (cf. Section 4). Further simple conditions on R enforce 〈R〉 to be
a nucleus on Prop, ensuring that the ©-axioms for a lax modality are valid in the model.

It is noteworthy that the function X 7→ jX is itself a nucleus on the lattice of up-sets, with Prop
being the lattice of fixed points of j. Thus our models carry two nuclei, one to provide the semantics of
the lax modality, and the other to provide the intuitionistic structure of the lattice of propositions.

In the following pages, the formal details of this theory are developed. The completeness theorem for
QLL with respect to its cover semantics is shown by taking the MacNeille completion of the Lindenbaum
algebra of the logic, and then converting this completion into a structural cover-system model of the kind
we have been describing. On the way it is shown that any nucleus on a Heyting algebra can be extended
to a nucleus on its MacNeille completion, and that any complete Heyting algebra is isomorphic to the
lattice Prop of all propositions of a “localic” cover system. The methodology is also worked through
for the quantified extensions of the systems CK (Constructive K) of [36] and CS4 (Constructive S4) of
[3]. In addition, we give a cover semantics for the first-order intuitionistic modal logic studied in [45],
which includes the axiom ¬♦⊥. At the end we also present an alternative completeness proof for (non-
modal) first-order intuitionistic logic itself with respect to the cover semantics, using a simple and explicit
Henkin-style model construction whose points are the principal theories of the logic.
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It is important to be aware that our cover systems allow points that are covered by the empty set,
and our models have

x |= ⊥ iff x C ∅.

Points that satisfy ⊥ are called fallible in [13, 14], and the PLL-models of those papers, as well as those
of [36] and [3], include an arbitrary set F of “fallible worlds”, which serves as the truth set |⊥|. Models
are required to have F ⊆ |ϕ| in general, so that fallible worlds satisfy all sentences, ensuring the truth
of ⊥ → ϕ. Fallible worlds may be thought of as representing contexts of inconsistent requirements.
PLL-models also allow points x satisfying ©⊥, implying that there is some y with xRy ∈ F . Intuitively,
y is a state that is reachable from x under some constraint, but that constraint is inconsistent with x [14,
p. 8].

In the theory developed here, the notion of fallible world is represented by the set j∅ = {x : x C ∅}
of points with the empty cover. This is built into the underlying structure of a cover system, rather
being specified in various models on the system as their interpretation of ⊥. Models of ¬♦⊥ have ♦⊥
also satisfied at exactly the fallible (i.e. empty-covered) worlds. All of the logics we discuss, including
non-modal first-order intuitionistic logic, will be shown to be characterised by models in which j∅ is a
singleton, i.e. there is exactly one fallible world.

In the light of this introduction and overview, we return to the question of the nature of © as
a modality. Relative to Kripke’s semantics it has two natural modellings, the box-like (1.1) and the
partially diamond-like (1.5). Relative to cover semantics it has the diamond-like modelling (1.2). So is it
a box or a diamond?

The moral of the story is that © need not be thought of as either. There is more to intuitionistic
modal logic than will be found by generalising the behaviour of Boolean � and ♦. It includes other
phenomena that lose their significance when the law of excluded middle is present.4 Nuclei on Boolean
algebras are uninteresting,5 as is the notion of a lax modality in Boolean logic. But in the intuitionistic
setting this is a rich notion with a wide range of significant manifestations and applications.

Similarly, although the system CS4 has deductive postulates for � that are just like those of the
Boolean box modality in the classical logic S4 (see Figure 2), here we interpreted the� of CS4 algebraically
as a multiplicative interior operator, just as for classical S4, but model-theoretically as in (1.2) for a
Boolean diamond (see (7.1)). CS4 has an apparently dual pair �,♦ of modalities that can both be given
the “existential” interpretation of (1.2). Likewise for CK. This suggests that there is a place for further
clarification of just what “dual pair” might mean for non-Boolean modalities.

2 Nuclei Under MacNeille Completion

We begin by reviewing some possible properties of order-preserving functions.
Let (H,v) be a partially ordered set, and f : H → H a monotone (order-preserving) function, i.e.

a v b implies fa v fb. Then f is

• idempotent if f(fa) = fa, for all a ∈ H;

• inflationary if a v fa, for all a ∈ H;

• deflationary if fa v a, for all a ∈ H;

• a closure operator if it is inflationary and idempotent;

• an interior operator if it is deflationary and idempotent.

If H is a lattice under v with binary meets a u b and joins a t b, then f is

• multiplicative if fa u fb = f(a u b) for all a, b ∈ H;

4Further examples of this include the proof-intuitionistic modal logic of Kuznetsov and Muravitsky [30], which is related
to the provability interpretation of modality, and its sublogic studied by Esakia [11], in which the modal connective is
interpreted by the dual of the topological derivative operation. These logics have a box-like modality ∆ with ϕ → ∆ϕ as
an axiom.

5Each element a of a Heyting algebra defines the nucleus f(x) = a t x. On a Boolean algebra these are all the nuclei
there are.
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• additive if fa t fb = f(a t b) for all a, b ∈ H;

• a nucleus if it is a multiplicative closure operator.

Lemma 2.1 A monotone function is a nucleus iff it is inflationary and satisfies the inequalities

(i) f(fa) v fa, and (ii) a u fb v f(a u b).

Proof. A nucleus has a u fb v fa u fb v f(a u b), by the inflationary, monotone and multiplicative
properties.

Conversely, let monotone f have the properties stated in the Lemma. Then fa v f(fa) by inflation-
arity, so f is idempotent by (i). Also f(a u b) v fa u fb by monotonicity. But using (ii) twice and then
(i),

fa u fb v f(fa u b) v f(f(a u b)) v f(a u b),

so f is multiplicative. �

Recall that a Heyting algebra is a lattice H = (H,v,u,t, 0) with least element 0 and an “implication”
operation a⇒ b satisfying

c v a⇒ b iff c u a v b. (2.1)

The operation ⇒ is monotone in its second argument and antitone (order-reversing) in its first: if c v a
and b v d, then a⇒ b v c⇒ d. H has a greatest element 1, with 1 = a⇒ a for any a.

Property (2.1) implies that the lattice is distributive. In fact if it is a complete lattice, i.e. every subset
X of H has a join

⊔
X and a meet

d
X , then (2.1) can be used to show that finite meets u distribute

over arbitrary joins
⊔

, meaning that

a u (
⊔
X ) =

⊔
{a u b : b ∈ X}. (2.2)

Conversely, any complete lattice satisfying (2.2) is a Heyting algebra in which

a⇒ b =
⊔
{c : c u a v b}. (2.3)

Thus a complete Heyting algebra can be defined as a complete lattice satisfying (2.2). A complete Heyting
algebra is also called a locale.

A completion of a lattice H is any complete lattice that has H as a sublattice. Each lattice H has a
special completion H, known as the MacNeille completion, with the property that each member x of H
satisfies

x =
⊔
{a ∈ H : a v x} =

d
{b ∈ H : x v b}, (2.4)

so is both a join and a meet of elements of H. In fact this property characterises H uniquely up to
isomorphism, and we will work with it in terms of this abstract characterisation. A crucial feature, which
we make essential use of, is that the inclusion of H into H preserves any existing joins and meets, i.e.
if a subset of H happens to have a join or meet in H, then this is identical to its join or meet in H.
For a distributive lattice H, this is in stark contrast to the Stone completion [40], whose elements are
certain sets of prime filters of H. All completions preserve finite joins, but the Stone completion actually
destroys every infinite join.

MacNeille’s original construction [35] was a generalisation to posets of Dedkind’s completion of the
rationals by cuts. A detailed contemporary account of it may be found in [10, pp. 40–44]. The paper
[41] analyses the lifting of functions from a lattice to its MacNeille completion, and we adopt some of its
notation and terminology.

Any monotone function f on a lattice H has two natural extensions to monotone functions f◦ and
f• on H, defined by

f◦x =
⊔
{fa : x w a ∈ H},

f•x =
d
{fb : x v b ∈ H}.

f◦ is the lower extension of f , and f• is the upper extension (note that f◦x v f•x). These are genuine
extensions of f , i.e. they are identical to f on H.

It is readily checked that the upper extension preserves inflationarity and the inequality f(fa) v fa,
while the lower extension preserves deflationarity and the inequality fa v f(fa). Consequently:
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Theorem 2.2 The upper extension of a closure operator on a lattice is a closure operator on the Mac-
Neille completion, while the lower extension of an interior operator is also an interior operator. �

The class of Heyting algebras is closed under MacNeille completion: if H is a Heyting algebra, then its
implication operation ⇒ can be extended to H by defining

x⇒ y =
d
{a⇒ b : x w a ∈ H and y v b ∈ H}.

This makes H a Heyting algebra having H as a subalgebra. Although neither type of extension preserves
multiplicativity of a function on a general lattice [41, 3.8 & 3.10], for Heyting algebras we do have

Theorem 2.3 If f is multiplicative on a Heyting algebra H, then f◦ is multiplicative on H.

Proof. 6 Let x, y belong to H. In what follows, a, b, c range over members of H. By a double application
of the u-

⊔
-distribution law (2.2), and the multiplicativity of f , we reason that

f◦x u f◦y =

( ⊔
avx

fa

)
u
( ⊔
bvy

fb

)
=

⊔
avx,bvy

(fa u fb) v
⊔

avx,bvy
f(a u b) v

⊔
cvxuy

fc = f◦(x u y).

But f◦(x u y) v f◦x u f◦y by monotonicity. �

Corollary 2.4 The lower extension of a multiplicative interior operator on a Heyting algebra is also a
multiplicative interior operator.

Proof. By Theorems 2.2 and 2.3. �

We will now show that the upper extension of a nucleus is a nucleus. This requires a new analysis.
We prove a more general result that will also be applied later to algebraic models of the intuitionistic
modal logic CS4 (see Theorem 7.3).

Theorem 2.5 Let f and g be monotone functions on a Heyting algebra H such that fa u gb v g(a u b)
for all a, b ∈ H. Then f◦x u g•y v g•(x u y) for all x, y ∈ H.

Proof. Let x, y ∈ H. Take any a, b ∈ H with a v x and x u y v b. Then y v x⇒ b v a⇒ b, so

fa u g•y v fa u g•(a⇒ b) = fa u g(a⇒ b)

(as a⇒ b ∈ H). But faug(a⇒ b) v g(au(a⇒ b)) by the assumption on f and g, and g(au(a⇒ b)) v gb
as a u (a⇒ b) v b, so altogether we get fa u g•y v gb.

Applying this to a particular b, we reason that

f◦x u g•y =

( ⊔
avx

fa

)
u g•y =

⊔
avx

(fa u g•y) v gb.

Hence f◦x u g•y v
d
xuyvb gb = g•(x u y). �

Corollary 2.6 The upper extension of a nucleus on a Heyting algebra is also a nucleus.

Proof. Let g be a nucleus on Heyting algebra H. Then by Theorem 2.2, g• is a closure operator on H,
i.e. inflationary and idempotent.

Now by Lemma 2.1, a u gb v g(a u b). Let f be the identity function on H. Then f◦ is the identity
on H, so by Theorem 2.5, x u g•y v g•(x u y). Hence by Lemma 2.1 again, g• is a nucleus. �

The observation that upper MacNeille extensions preserve nuclei appears to be new. It would be of
interest to place it, and Theorem 2.5, within the context of general studies of properties preserved by
MacNeille completion, like those of [19, 41].

6A generalisation of this was shown in [22, p. 222] with H a quantale. For H a locale, the result was extended to
functions of more than one argument in [41, 3.16].
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3 Localic Cover Systems

Let S = (S,≤,C), be a structure comprising a partial order ≤ on the set S, and a binary relation C from
S to its powerset PS. When x C C, where x ∈ S and C ⊆ S, we say that x is covered by C, and write
this also as C B x, saying that C covers x or that C is an x-cover. We sometimes write y ≥ x when
x ≤ y, and say that y refines x.

As a possible aid to the intuition, think of S as a set of states, computational or other, that each
have a certain information content. View refinement as a relation of information increase, so that if
y ≥ x, then the information content of y includes that of x. Interpret covering as a relation expressing
commonality of information content, so that if C B x then the information content of x consists of that
which is common to all the states in C. At the end of the paper there is a model construction that
supports this interpretation. For the standard topological construction of cover systems, see Example 3.1
below.

For each subset X of S, define

jX = {x ∈ S : ∃C (x C C ⊆ X)}.

Thus a member x of jX is a local member of X, in the sense that it is covered by a set C of members of
X. X is called localised if jX ⊆ X. A localised set is one for which membership of it is a local property.

An up-set is a subset X of S that is closed upward under the partial order: y ≥ x ∈ X implies y ∈ X.
For an arbitrary X ⊆ S,

↑X = {y ∈ S : (∃x ∈ X)x ≤ y}
is the smallest up-set including X. It consists of those points that refine some member of X. Thus X is
an up-set iff ↑X = X. For x ∈ S,

↑x = ↑{x} = {y : x ≤ y}
is the smallest up-set containing x, and will be called the cone at x.

The collection Up(S) of all up-sets of S is a locale under the partial order ⊆ of set inclusion, with
the join

⊔
X and meet

d
X of any collection X of up-sets being the set union

⋃
X and intersection

⋂
X

respectively, while 0 = ∅ and 1 = S. In this case, the infinite distributive law (2.2) evidently holds, and
the Heyting implication is given by

X ⇒ Y = {x ∈ S : ↑x ∩X ⊆ Y } (3.1)

for any up-sets X,Y . Thus x ∈ X ⇒ Y iff x ≤ y ∈ X implies y ∈ Y , so X ⇒ Y embodies the semantics
for intuitionistic implication of [29].

A subset Y refines a subset X if Y ⊆ ↑X, i.e. every member of Y refines some member of X. We call
S a cover system if it satisfies the following axioms, for all x ∈ S:

• Existence: there exists an x-cover C ⊆ ↑x;

• Transitivity : if x C C and for all y ∈ C, y C Cy, then x C
⋃
y∈C Cy.

• Refinement : if x ≤ y, then every x-cover can be refined to a y-cover, i.e. if C B x, then there exists
a C ′ B y with C ′ ⊆ ↑C.

A localised up-set will be called a proposition. Prop(S) is the collection of all propositions of S.

Example 3.1
Let S be the set of open subsets of some topological space, with x ≤ y iff x ⊇ y and C B x iff

⋃
C = x.

Then B captures the usual notion of open cover, and “Y refines X” has its usual meaning for open covers
that every member of Y is included in a member of X [38, p. 245]. For the Refinement axiom, observe
that if

⋃
C = x ⊇ y, then

⋃
C ′ = y where C ′ = {y ∩ c : c ∈ C} ⊆ ↑C.

In this cover system, each cone ↑x is a proposition, but a union ↑x∪↑y of cones need not be localised.
If z is any subset of the ambient space, {x ∈ S : z ∩ x = ∅} is a proposition.

Example 3.2
Let L be any complete lattice, with partial order v and infinite join operation

⊔
. Then a cover system

on L is defined by putting x ≤ y iff y v x and C B x iff x v
⊔
C. In this case the propositions are

exactly the cones [22, Theorem 6]: if X is a localised up-set, put x =
⊔
X to get x C X, hence x ∈ X,

and so X = ↑x.
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Lemma 3.3 In any cover system S, if X is an up-set then so is jX. The function j : Up(S)→ Up(S)
is a closure operator on the locale of up-sets of S.

Proof. If X is an up-set and y ≥ x ∈ jX, then there exists C with x C C ⊆ X, so by the Refinement
axiom there exists C ′ with y C C ′ ⊆ ↑C ⊆ ↑X = X, hence y ∈ jX. Thus jX is an up-set.

It is straightforward that X ⊆ Y implies jX ⊆ jY , so j is monotone.
For the inflationary property, if x ∈ X with X an up-set, then by the Existence axiom there exists

C with x C C ⊆ ↑x ⊆ X, so x ∈ jX. Thus X ⊆ jX for all X ∈ Up(S). For idempotence, first observe
that if X is an up-set, jX ⊆ j(jX) follows by inflationarity, since jX is also an up-set. But the converse
inclusion j(jX) ⊆ jX holds for any X by Transitivity. For, if there is an x-cover C ⊆ jX, then for all
y ∈ C there is a y-cover Cy ⊆ X, and so

⋃
y∈C Cy is an x-cover included in X, showing x ∈ jX. �

This Lemma implies that if X is a proposition (i.e. if jX ⊆ X = ↑X), then jX = X by inflationarity.
In general, X is a proposition iff X = ↑X = jX. j↑X is the smallest proposition including an arbitrary
X, and j↑x is the smallest proposition containing the element x. The smallest proposition including an
up-set X is just jX, so in fact j : Up(S)→ Prop(S).

Now the set Prop(S) of propositions of a cover system is a complete lattice (see below), but it need not
be a locale, or even be finitely distributive – see Example 3.2. To see what is required for Prop(S) to be
a locale, consider that in the topological case of Example 3.1, x C C was defined to mean that x =

⋃
C.

Now the intuitive idea of open covering is sometimes formulated by requiring only that x ⊆
⋃
C, but

this violates the condition C ⊆ ↑x which holds when x =
⋃
C. On the other hand, if x ⊆

⋃
C, then C

can be refined to C ′ = {x ∩ c : c ∈ C}, which does have x C C ′ ⊆ ↑x.
With this in mind, a cover system will be called localic if it satisfies:

every x-cover can be refined to an x-cover that is included in ↑x.

Lemma 3.4 In a localic cover system S:

(1) j is a nucleus on Up(S).

(2) If X is an up-set and Y is a proposition, then X ⇒ Y is a proposition, where X ⇒ Y is as in (3.1).

Proof.

(1) In view of Lemmas 3.3 and 2.1, it remains only to show X ∩ jY ⊆ j(X ∩ Y ) for up-sets X,Y . So let
x ∈ X ∩ jY . Then there is an x-cover C ⊆ Y . Hence by the localic condition, there is an x-cover
C ′ ⊆ ↑C with C ′ ⊆ ↑x. But ↑x ⊆ X as X is an up-set, and ↑C ⊆ Y as Y is an up-set. So this implies
x C C ′ ⊆ X ∩ Y , showing that x ∈ j(X ∩ Y ).

(2) Let X ∈ Up(S) and Y ∈ Prop(S). Then X ⇒ Y is an up-set. To show it is localised, observe that
since j is a nucleus,

X ∩ j(X ⇒ Y ) ⊆ j(X ∩ (X ⇒ Y )) ⊆ jY.
But jY = Y as Y is a proposition, so X ∩ j(X ⇒ Y ) ⊆ Y , hence j(X ⇒ Y ) ⊆ (X ⇒ Y ) as required.

�

Theorem 3.5 In a localic cover system, the set of propositions forms a locale under the inclusion order
⊆, in which

d
X =

⋂
X⊔

X = j(
⋃
X )

X ⇒ Y = {x ∈ S : ↑x ∩X ⊆ Y }
0 = j∅ = {x : ∅ B x}.

Proof. The propositions are just the up-sets that are fixed by j, i.e.

Prop(S) = {X ∈ Up(S) : jX = X}.

It is a general fact about a closure operator on a complete lattice that the set of fixed points is a complete
lattice under the same meet operation, with joins being the closures of the joins in the original lattice.7

7The operation X 7→ ↑X is itself a closure operator on the powerset of S, whose lattice of fixed points is Up(S).
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More directly, it is readily seen that if X ⊆ Prop(S), then
⋂
X is a proposition, and hence is the meetd

X in Prop(S); and j(
⋃
X ) is the least proposition including the up-set

⋃
X , hence is the join

⊔
X in

Prop(S).
For Prop(S) to be a locale, it must have an operation⇒ satisfying (2.1). Since we want (3.1) to hold,

we define X ⇒ Y by the equation (3.1), and conclude from Lemma 3.4 that Prop(S) is closed under this
operation. But this operation has

X ∩ Z ⊆ Y iff Z ⊆ X ⇒ Y

for all up-sets X,Y, Z, so in particular satisfies this for all X,Y, Z ∈ Prop(S), giving the desired result.
Since ∅ is an up-set, j∅ is the least proposition including ∅, hence the least element of Prop(S). Note

that it may be that j∅ 6= ∅, as we will see after the next Theorem. �

An obvious strengthening of the localic condition is the requirement that every x-cover be included
in ↑x, i.e. C B x implies C ⊆ ↑x, as in Example 3.1. This condition, which we shall call strictly localic,
is intrinsically built into generalisations of topological open-cover systems to “Grothendieck topologies”
and other abstract categorical settings [27, 32, 6].8 To define cover semantics for non-distributive logics,
the localic condition has to be abandoned, as in [22].

Theorem 3.6 Every locale is isomorphic to the locale of all propositions of some strictly localic cover
system.

Proof. Let H = (H,v,u,t,⇒, 0) be a locale. Define SH = (S,≤,C) by putting S = H, x ≤ y iff
y v x, and x C C iff x =

⊔
C in H (cf. Examples 3.1 and 3.2). Then the up-set ↑x of x under ≤ is just

the down-set (x] = {y : y v x} of x under v. We verify the cover system axioms for SH:

• Existence: putting either C = {x} or C = (x] will do to provide a C ⊆ (x] with x =
⊔
C, hence

x C C ⊆ ↑x.

• Transitivity: if x =
⊔
C, and for all y ∈ C, y =

⊔
Cy, then x =

⊔
y∈C(

⊔
Cy) =

⊔(⋃
y∈C Cy

)
.

• Refinement: if x ≤ y and C is an x-cover, let C ′ = {yuc : c ∈ C}. Then y = yux = yu
⊔
C =

⊔
C ′.

Hence C ′ is a y-cover, and C ′ refines C as c ≤ y u c.

Since x =
⊔
C implies C ⊆ (x] = ↑x, SH is strictly localic is the sense mentioned above. Now notice that

every cone (x] is localised, hence is a proposition of S, for if y C C ⊆ (x], then y =
⊔
C v x, so y ∈ (x].

But if X is any proposition, and we put x =
⊔
X, then x C X, so x ∈ X as X is localised, hence X = (x]

as X is a down-set under v.
Thus the map x 7→ (x] takes H onto the set of propositions of SH. The map is order-invariant:

x v y iff (x] ⊆ (y]. From this it follows that it is an isomorphism between the ordered sets (H,v) and
(Prop(SH),⊆). But the operations u,

⊔
, ⇒, 0 are all characterised by the order structure (cf. (2.3)), so

x 7→ (x] is an isomorphism between H and Prop(SH) as complete Heyting algebras.
�

Note that in the system SH of this proof, we have 0 C ∅, where 0 is the least element of H, and in
fact j∅ = {0}, since x C ∅ iff x =

⊔
∅ = 0. Thus in locales of the form Prop(SH), the least proposition is

non-empty.

Corollary 3.7 Every Heyting algebra H can be embedded into the locale of all propositions of some
strictly localic cover system, by an injective homomorphism that preserves all existing joins and meets.

Proof. Compose the inclusion H ↪→ H of H into its MacNeille completion with the isomorphism
H→ Prop(SH) given by Theorem 3.6. �

8Those settings typically use down-sets rather than up-sets. Here we are following the order-convention most commonly
used in the relational semantics of intuitionistic, relevant and other substructural logics.
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4 Modal Operators

We will take a modal operator to be any monotone function on a poset. A modal Heyting algebra (H,m)
consists of a monotonic function m on a Heyting algebra H. This is a modal locale if H is a locale.

To construct such algebras, let R be a binary relation on the underlying set of a cover system S =
(S,≤,C). Then a modal operator 〈R〉 on (P(S),⊆) is defined by

〈R〉X = {x ∈ S : ∃y (xRy ∈ X)}.

(S, R) is a modal cover system if it satisfies

• Confluence: if x ≤ y and xRz, then there exists w with z ≤ w and yRw;

• Modal Localisation: if there exists an x-cover included in 〈R〉X, then there exists a y with xRy and
a y-cover included in X.

Confluence ensures that 〈R〉X is an up-set whenever X is an up-set, so that 〈R〉 becomes a modal operator
on (Up(S),⊆). Modal Localisation states that if x ∈ j(〈R〉X), then there is a y ∈ jX with xRy; so that
if jX ⊆ X then x ∈ 〈R〉X. This ensures that if X is localised, then so is 〈R〉X.

Thus in a modal cover system,

〈R〉X is a proposition whenever X is a proposition, (4.1)

so 〈R〉 becomes a modal operator on (Prop(S),⊆). Hence if (S, R) is a localic modal cover system, then
the algebra (Prop(S), 〈R〉) is a modal locale.9

(S, R) will be called nuclear if R is a preorder, i.e. reflexive and transitive, such that

xRy implies ∃z ≥ y (x ≤ z and xRz). (4.2)

This last condition is a weakening of the requirement, used in the models of lax logic of [14], that R be
a subrelation of ≤. For if xRy implies x ≤ y, then (4.2) holds by putting z = y.

Lemma 4.1 If a modal cover system (S, R) is nuclear, then the modal operator 〈R〉 is a nucleus on
Up(S), and hence a nucleus on Prop(S).

Proof. It is well known that if R is reflexive then X ⊆ 〈R〉X, and if R is transitive then 〈R〉〈R〉X ⊆
〈R〉X; so if R is a pre-order then 〈R〉 is a closure operator on P(S), and therefore a closure operator on
Up(S), and on Prop(S).

The extra condition (4.2) ensures that X ∩ 〈R〉Y ⊆ 〈R〉(X ∩ Y ) whenever X and Y are up-sets, from
which by Lemma 2.1 it follows that 〈R〉 is a nucleus on Up(S), hence on Prop(S). For the details: if
x ∈ X ∩ 〈R〉Y , then x ∈ X and xRy for some y ∈ Y , so taking a z as given by (4.2) we get z ∈ X as
x ≤ z and X is an up-set, and similarly z ∈ Y as z ≤ y, hence x ∈ 〈R〉(X ∩ Y ) as xRz ∈ X ∩ Y . �

We have now seen that from any nuclear localic modal cover system (S, R) we can build a modal locale
(Prop(S), 〈R〉) whose modal operator 〈R〉 is a nucleus. To proceed in the converse direction, take any
modal locale (H,m) and define a relation Rm on the localic cover system SH constructed in the proof of
Theorem 3.6 by putting xRmy iff x v my.

Theorem 4.2 (SH, Rm) is a localic modal cover system, and the map x 7→ (x] is an isomorphism from
(H,m) onto the modal locale (Prop(SH), 〈Rm〉). Moreover, if m is a nucleus on H, then (SH, Rm) is
nuclear, and so 〈Rm〉 is a nucleus on Prop(SH).

Proof. We already know from Theorem 3.6 that SH is a localic cover system. To show that (SH, Rm)
is modal requires proving the Confluence and Modal Localisation properties.

Confluence: if x ≤ y and xRmz, then y v x v mz. Hence Confluence holds in the stronger form that
if x ≤ y and xRmz, then yRmz.

Modal Localisation: suppose there is a C with x C C ⊆ 〈Rm〉X. Then x =
⊔
C in H. Let

C ′ = {z ∈ X : ∃c ∈ C (cRmz)} and put y =
⊔
C ′. Then C ′ is a y-cover included in X, and so it remains

only to show that xRmy. But if c ∈ C, then c ∈ 〈Rm〉X by supposition, so there exists z with cRmz ∈ X.

9This only requires Modal Localisation to hold when X is a proposition.
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Then c v mz and z ∈ C ′, so z v y, hence mz v my as m is monotone, and thus c v my. Therefore
x =

⊔
C v my, giving xRmy as required.10

Now Theorem 3.6 showed that x 7→ (x] = {y : y v x} is an isomorphism between the locales H and
Prop(SH), so here we need to show in addition that it preserves the modal operators m and 〈Rm〉, i.e.
that (mx] = 〈Rm〉(x]. But if y ∈ (mx], then yRmx ∈ (x], showing that y ∈ 〈Rm〉(x]. Conversely, if
y ∈ 〈Rm〉(x], then yRmz v x for some z, so y v mz v mx, implying y ∈ (mx].

This completes the proof of the first sentence of the Theorem. Now suppose m is a nucleus. Then
Rm is reflexive as x v mx; and transitive because if x v my and y v mz, then my v mmz v mz, giving
x v mz. To show Rm satisfies (4.2), suppose xRmy. Then x v x umy v m(x u y), so putting z = x u y
we have xRmz, while y ≤ z and x ≤ z because ≤ is the inverse relation of v.

This shows that (SH, Rm) is nuclear. Hence 〈Rm〉 is a nucleus by Lemma 4.1. �

5 Quantified Lax Logic

We adopt a standard syntax for first-order intuitionistic modal predicate logic. Let L be a signature,
i.e. a collection of individual constants c, and predicate symbols P with specified arities n < ω. An
L-term τ is any individual constant c ∈ L, or individual variable v from some fixed denumerable list of
such variables. An atomic L-formula is any expression Pτ1 · · · τn where P ∈ L is n-ary, and the τi are
L-terms. The set of all L-formulas is generated in the usual way from the atomic L-formulas by using
the propositional connectives ∧ (conjunction), ∨ (disjunction), and → (implication); a constant formula
⊥; the quantifiers ∀v, ∃v for all variables v; and a unary modality ©. The negation ¬ϕ is defined to be
the formula ϕ→ ⊥, while the bimplication ϕ↔ ψ is defined to be (ϕ→ ψ) ∧ (ψ → ϕ).

Substitution of terms for free variables is symbolised by writing ϕ(τ/v) for the L-formula obtained
by substituting τ in place of all free occurrences of v in ϕ, on condition that τ is freely substitutable for
v in ϕ. If this condition fails, then ϕ(τ/v) will be taken to be the result of substituting τ for free v in
some bound alphabetic variant of ϕ in which τ is freely substitutable for v.

If U is any set, let LU be the extension of L to include the members of U as individual constants.
A Hilbert-style axiomatisation of the logic QLL is presented in Figure 1. It consists of a standard

axiomatisation of first-order intuitionistic predicate logic, together with three axioms for the modality©.
The first seven rows comprise an adequate set of axioms for intuitionistic propositional logic, one that is
convenient for formulations in which ⊥ is primitive and negation is defined [39, p30]. We write QLL ` ϕ,
or just ` ϕ, to mean that the formula ϕ is derivable as a theorem in the logic of Figure 1.

The axioms for © correspond to the characterisation of a nucleus given in Lemma 2.1. There are
many possible variations on the axiomatisation of a lax modality; for instance the third axiom could
be replaced by (ϕ → ψ) → (©ϕ → ©ψ), or all three axioms could be replaced by the single axiom
(ϕ→©ψ)↔ (©ϕ→©ψ) (see [34] and [20] for discussion).

A QLL-model for L is a structureM = (S, R, U, | · |M), where (S, R) is a nuclear localic cover system,
U is a non-empty set (universe of individuals), and | · |M is an interpretation function assigning

• to each individual constant c ∈ L an element |c|M ∈ U ; and

• to each n-ary predicate symbol P ∈ L, a function |P |M : Un → Prop(S).

An L-model automatically extends to an LU -model by putting |c|M = c for all c ∈ U . In this way, the
members of U function as self-naming constants.

Intuitively, |P |M(u1, . . . , un) is the proposition asserting that the predicate P holds of the n-tuple of
individuals (u1, . . . , un).

A model M has a truth/satisfaction relation M, x |= ϕ between elements x ∈ S and sentences ϕ of
LU , with associated truth-sets

|ϕ|M = {x ∈ S :M, x |= ϕ}.

These notions are defined by induction on the length of ϕ, as follows.

10This holds for any subset X of SH, even though it is only required to hold for X a proposition in order for 〈Rm〉 to be
an operator on Prop(SH).
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Axioms
ϕ ∧ ψ → ϕ, ϕ ∧ ψ → ψ

ϕ→ ϕ ∨ ψ, ψ → ϕ ∨ ψ
(ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))

(ϕ→ ψ)→ ((ϕ→ χ)→ (ϕ→ ψ ∧ χ))

(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

ϕ→ (ψ → ϕ)

⊥ → ϕ

∀vϕ→ ϕ(τ/v)

ϕ(τ/v)→ ∃vϕ

ϕ→©ϕ
©©ϕ→©ϕ
ϕ ∧©ψ →©(ϕ ∧ ψ)

Inference Rules

ϕ, ϕ→ ψ

ψ

ϕ→ ψ

ϕ→ ∀vψ
, if v is not free in ϕ

ϕ→ ψ

∃vϕ→ ψ
, if v is not free in ψ

Figure 1: Axioms and Rules for Quantified Lax Logic

M, x |= Pc1 · · · cn iff x ∈ |P |M(|c1|M, . . . , |cn|M)

M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ

M, x |= ϕ ∨ ψ iff there is an x-cover C ⊆ |ϕ|M ∪ |ψ|M

M, x |= ϕ→ ψ iff for all y ≥ x, M, y |= ϕ implies M, y |= ψ

M, x |= ⊥ iff ∅ B x

M, x |= ∀vϕ iff for all c ∈ U , M, x |= ϕ(c/v)

M, x |= ∃vϕ iff there is an x-cover C ⊆
⋃
c∈U |ϕ(c/v)|M

M, x |=©ϕ iff for some y, xRy and M, y |= ϕ.

These conditions can be expressed entirely in terms of the truth sets |ϕ|M, using the algebra of the set
Prop(S) of propositions of S, by

|Pc1, . . . , cn|M = |P |M(|c1|M, . . . , |cn|M)

|ϕ ∧ ψ|M = |ϕ|M ∩ |ψ|M = |ϕ|M u |ψ|M

|ϕ ∨ ψ|M = j(|ϕ|M ∪ |ψ|M) = |ϕ|M t |ψ|M

|ϕ→ ψ|M = |ϕ|M ⇒ |ψ|M

|⊥|M = j∅ (5.1)

|∀vϕ|M =
⋂
c∈U
|ϕ(c/v)|M =

d

c∈U
|ϕ(c/v)|M

|∃vϕ|M = j(
⋃
c∈U
|ϕ(c/v)|M) =

⊔
c∈U
|ϕ(c/v)|M

|©ϕ|M = 〈R〉|ϕ|M.
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Here, u,t,
d
,
⊔

refer to the meet and join operations in the complete lattice Prop(S). Now the definition
of |P |M ensures that |Pc1, . . . , cn|M ∈ Prop(S). In the case of |ϕ∨ψ|M, if we assume that |ϕ|M and |ψ|M
are propositions, then |ϕ|M ∪ |ψ|M is an up-set, hence j(|ϕ|M ∪ |ψ|M) is indeed the join |ϕ|M t |ψ|M.
Similarly, |∃vϕ|M is

⊔
c∈U |ϕ(c/v)|M if each |ϕ(c/v)|M is a proposition. Then the closure properties of

Prop(S) given in Theorem 3.5 and (4.1) enable us to conclude, by induction on formula length, that the
truth-set of any LU -sentence is a localised up-set:

Lemma 5.1 In any QLL-model M, every LU -sentence ϕ has |ϕ|M ∈ Prop(S). �

In particular, this means that satisfaction of a sentence is a local property, i.e. local satisfaction implies
satisfaction:

if there exist an x-cover C ⊆ |ϕ|M, then M, x |= ϕ. (5.2)

Remark 5.2 The PLL-models of [13, 14] have an arbitrarily specified up-set F of “fallible worlds”,
which serves as |⊥|M. A model is required to have F ⊆ |ϕ|M in general, so that fallible worlds satisfy
all sentences, ensuring the truth of ⊥ → ϕ. In our present approach, such an F is built into the cover
system as the set j∅ of points that have the empty cover. �

A sentence ϕ is said to be true in model M, written M |= ϕ, if it is true at every point, i.e. if
M, x |= ϕ for all x ∈ S, or equivalently |ϕ|M = S. A formula ϕ with free variables is true in M if every
LU -sentence ϕ(c1/v1, . . . , cn/vn) that is a substitution instance of ϕ is true in M.

The following Lemma will be used below in proving the Soundness Theorem.

Lemma 5.3 For all LU -sentences ϕ and ψ, M |= ϕ → ψ iff |ϕ|M ⊆ |ψ|M. Hence M |= ϕ ↔ ψ iff
|ϕ|M = |ψ|M. �

We will also need the following simple fact, which is proven by induction on formula length.

Lemma 5.4 For any LU -formula ϕ(v) with only v free, and any constants c, d, if |c|M = |d|M then
|ϕ(c/v)|M = |ϕ(d/v)|M. In particular, this applies when d = |c|M ∈ U . �

Theorem 5.5 (Soundness) If QLL ` ϕ, then ϕ is true in every QLL-model M.

Proof. Working within the modelM, we may drop the “M” and write satisfaction relations as “x |= ϕ”.
We have to show that if ` ϕ, then every sentential substitution instance ϕ(c1/v1, . . . , cn/vn) of ϕ is true

inM. This is done as usual by induction, showing that the property holds when ϕ is any axiom, and then
that the inference rules preserve this property. But note that if ϕ is any axiom, then ϕ(c1/v1, . . . , cn/vn)
is also an axiom, of the same form. So for the base of the induction we show that every sentential axiom
is true in M.

Lemma 5.3 is used often to show M |= ϕ→ ψ by showing that |ϕ|M ⊆ |ψ|M, i.e. that x |= ϕ implies
x |= ψ for an arbitrary x in M.

The proof that most of the axioms of non-modal intuitionistic propositional logic are true in M is
straightforward, especially given the structure of Prop(S) as a Heyting algebra. For those such axioms
not involving disjunction or ⊥, the proof is as for Kripke’s semantics.

For the cases involving ∨, note first that in the lattice Prop(S), |ϕ|M ⊆ |ϕ|M t |ψ|M = |ϕ ∨ ψ|M, so
ϕ→ ϕ ∨ ψ is true in M . Likewise for ψ → ϕ ∨ ψ.

For the axiom
(ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ)),

let x |= (ϕ → χ) in order to show x |= (ψ → χ) → (ϕ ∨ ψ → χ). Suppose that x ≤ y |= (ψ → χ). Then
we have to show y |= ϕ ∨ ψ → χ. So let y ≤ z |= ϕ ∨ ψ. Now we need z |= χ.

Since z |= ϕ∨ψ, there exists a z-cover C ⊆ |ϕ|M ∪ |ψ|M, hence ↑C ⊆ |ϕ|M ∪ |ψ|M as |ϕ|M ∪ |ψ|M is
an up-set. By the localic condition, C can be refined to an z-cover C ′ included in ↑z. Then any c ∈ C ′
has z ≤ c, hence x ≤ y ≤ c. But C ′ ⊆ ↑C, so either c |= ϕ, hence c |= χ as x |= ϕ→ χ and x ≤ c; or else
c |= ψ, hence again c |= χ as y |= ψ → χ and y ≤ c. Thus we have shown that z C C ′ ⊆ |χ|M. Hence
z |= χ as required, by the local character of satisfaction (5.2).

For the axiom ⊥ → ϕ, observe that |⊥|M is the least proposition j∅ of S, and so |⊥|M ⊆ |ϕ|M, giving
M |= ⊥ → ϕ.
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Now for the two quantifier axioms. For a sentence of the form ∀vϕ→ ϕ(d/v), by Lemma 5.4 we can
assume d ∈ U . Then

|∀vϕ|M =
⋂
c∈U
|ϕ(c/v)|M ⊆ |ϕ(d/v)|M,

making ∀vϕ→ ϕ(d/v) true in M.
For a sentence ϕ(d/v)→ ∃vϕ, we have |ϕ(d/v)|M ⊆

⊔
c∈U |ϕ(c/v)|M = |∃vϕ|M.

The modal axioms are all true in M because 〈R〉 is a nucleus on Prop(S) (Lemma 4.1). Thus
|ϕ|M ⊆ 〈R〉|ϕ|M = |©ϕ|M, so M |= ϕ→©ϕ. Similarly for the other two modal axioms.

That the rule of modus ponens preserves truth is well known, so we are left with the two quantifier
rules. Consider a sentence ϕ→ ∀vψ with v not free in ϕ, hence (ϕ→ ψ)(c/v) = ϕ→ ψ(c/v). If ϕ→ ψ
is true in M, then for all c ∈ U , M |= ϕ→ ψ(c/v) and so |ϕ|M ⊆ |ψ(c/v)|M. Hence

|ϕ|M ⊆
⋂
c∈U
|ψ(c/v)| = |∀vψ|M,

so ϕ→ ∀vψ is true in M.
Similarly, if v is not free in ψ, and ϕ→ ψ is true in M, then |ϕ(c/v)|M ⊆ |ψ|M for all c ∈ U , and

|∃vϕ|M =
⊔
c∈U
|ϕ(c/v)|M ⊆ |ψ|M,

showing ∃vϕ→ ψ is true in M. �

6 Completeness

To prove that QLL is complete for truth in QLL-models, we carry out the standard Lindenbaum algebra
construction, take the MacNeille completion of the Lindenbaum algebra, and then convert this into a
QLL-model through the SH construction of Theorems 3.6 and 4.2.

Let F be the set of all L-formulas, and Ut the set of all L-terms. The condition “` ϕ → ψ and
` ψ → ϕ” defines an equivalence relation on F . Let ‖ϕ‖ be the equivalence class of ϕ, and H

QLL

=

{‖ϕ‖ : ϕ ∈ F} the set of equivalence classes. A well-defined relation v on H
QLL

is given by

‖ϕ‖ v ‖ψ‖ iff ` ϕ→ ψ.

This is a partial order, making H
QLL

into a Heyting algebra H
QLL

, the Lindenbaum algebra of QLL, in
which

‖ϕ‖ u ‖ψ‖ = ‖ϕ ∧ ψ‖
‖ϕ‖ t ‖ψ‖ = ‖ϕ ∨ ψ‖
‖ϕ‖ ⇒ ‖ψ‖ = ‖ϕ→ ψ‖

0 = ‖⊥‖
‖∀vϕ‖ =

d

τ∈Ut

‖ϕ(τ/v)‖

‖∃vϕ‖ =
⊔
τ∈Ut

‖ϕ(τ/v)‖.

(6.1)

The greatest element of H
QLL

is characterised by

‖ϕ‖ = 1 iff ` ϕ. (6.2)

Although H
QLL

has the stated meets and joins characterising ‖∀vϕ‖ and ‖∃vϕ‖ (cf., e.g., [5, §3.4]), it is

not a complete lattice. But if H is the MacNeille completion of H
QLL

, then H
QLL

is a Heyting subalgebra
of H, and the inclusion H

QLL

↪→ H preserves any existing meets and joins, so the equations of (6.1) all

remain true when read in H. (6.2) is also true in H, because it has the same greatest element as H
QLL

.
Now QLL is closed under the monotonicity inference rule

ϕ→ ψ

©ϕ→©ψ
,
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from which it follows that if ‖ϕ‖ v ‖ψ‖ then ‖©ϕ‖ v ‖©ψ‖, so a well-defined modal operator m on

H
QLL

is given by
m‖ϕ‖ = ‖©ϕ‖. (6.3)

By the ©-axioms, this m is a nucleus. By Corollary 2.6, the upper extension of m is a nucleus on
the McNeille completion H of H

QLL

. We continue to refer to this extension as m, so can view (6.3)
as a statement in H. From (H,m) by Theorem 4.2 we obtain the nuclear localic modal cover system
(SH, Rm) with (H,m) isomorphic to the modal locale (Prop(SH), 〈Rm〉). Let θ : H→ Prop(SH) be this
isomorphism. Then we construct the model

M = (SH, Rm, Ut, | · |M),

by taking the set Ut of L-terms as the individuals of M, and defining the interpretation | · |M by

|c|M = c ∈ Ut , all c ∈ L;

|P |M(τ1, . . . , τn) = θ‖Pτ1 · · · τn‖ ∈ Prop(SH), all τ1, . . . , τn ∈ Ut.

Notice that every individual variable v, being an L-term, is a member of Ut, hence becomes a self-denoting
LUt-constant, with |v|M = v ∈ Ut. Thus |τ |M = τ for all τ ∈ Ut. From this point of view, each L-formula
ϕ becomes an LUt -sentence, and so has an interpretation as a proposition |ϕ|M ∈ Prop(SH). We adopt
this point of view in showing

Lemma 6.1 For any L-formula ϕ, |ϕ|M = θ‖ϕ‖.

Proof. By induction on formula length. If ϕ is the atomic formula Pτ1 · · · τn, then

|ϕ|M = |P |M(|τ1|M, . . . , |τn|M) = |P |M(τ1, . . . , τn),

so the result holds by definition of |P |M. The inductive cases then hold from the equations (5.1) that
express |ϕ|M by the algebra of Prop(SH), the equations (6.1, 6.3) that specify ‖ϕ‖ by the algebra of H,
and the fact that the isomorphism θ preserves these equations. For instance, if the Lemma holds for ϕ,
then

|©ϕ|M = 〈R〉|ϕ|M = 〈R〉θ‖ϕ‖ = θ(m‖ϕ‖) = θ‖©ϕ‖,

so it holds for ©ϕ. Similarly,

|∀vϕ|M =
d

τ∈Ut

|ϕ(τ/v)|M =
d

τ∈Ut

θ‖ϕ(τ/v)‖ = θ
d

τ∈Ut

‖ϕ(τ/v)‖ = θ‖∀vϕ‖,

and so on. �

Theorem 6.2 (Completeness) If ϕ is true in every QLL-model, then QLL ` ϕ.

Proof. Suppose ϕ is true in every QLL-model. Let M be the QLL-model constructed above. Then
|ϕ|M = S, so by Lemma 6.1, θ‖ϕ‖ = 1 in Prop(SH). Hence ‖ϕ‖ = 1 in H, and so ` ϕ by (6.2).

�

Note that this proof, together with Soundness, shows that M is a single characteristic model for QLL,
i.e. M |= ϕ iff QLL ` ϕ.

7 Constructive K and S4

Use of the MacNeille completion of a modal Heyting algebra, and its representation over a localic cover
system, provides a general method for the analysis of intuitionistic modal logics by cover semantics. This
is an alternative to the method of canonical models, which itself corresponds to the Stone representation of
Heyting algebras using prime filters, and relates naturally to Kripke semantics with its classical treatment
of disjunction and ∃.

For QLL we used the upper extension of a modal operator, because this preserves the property of
being a nucleus. For other modalities the lower extension may be appropriate, while both extensions may
be required for multi-modal logics.
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Axioms

�K: �(ϕ→ ψ)→ (�ϕ→ �ψ) ♦K: �(ϕ→ ψ)→ (♦ϕ→ ♦ψ)

�T: �ϕ→ ϕ ♦T: ϕ→ ♦ϕ

�4: �ϕ→ ��ϕ ♦4: ♦♦ϕ→ ♦ϕ

�-Rule
ϕ

�ϕ

Figure 2: Modal Postulates for CS4

Cases in point are the system called CK, for Constructive K, in [36] and the system CS4, for Con-
structive S4, of [3]. These have an intuitionistic propositional base, and a pair of modalities �,♦. CS4 is
defined by all the postulates of Figure 2, while CK has just the axioms �K and ♦K and the �-rule. We
define a CK-modal algebra (H,m�,m♦) to comprise a Heyting algebra H carrying two modal operators
m�,m♦ such that

(1) m� is multiplicative and satisfies m�1 = 1, and

(2) m�a um♦b v m♦(a u b).

If H is a locale, then we call this a CK-modal locale. A CS4-modal algebra is a CK-modal algebra in
which m� is also an interior operator and m♦ is a closure operator (cf. [3, Def. 3]), and a CS4-modal
locale is CS4-modal algebra for which H is a locale.

Note that the combination of �K and the �-rule is deductively equivalent over intuitionistic propo-
sitional logic to the combination of the axioms

�>
�ϕ ∧�ψ → �(ϕ ∧ ψ),

and the �-monotonicity inference rule
ϕ→ ψ

�ϕ→ �ψ
This combination corresponds algebraically to the requirement that m� be a modal operator satisfying
(1) above. From ♦K and the �-rule we derive the ♦-monotonicity inference rule

ϕ→ ψ

♦ϕ→ ♦ψ

Also the theorem �ϕ ∧ ♦ψ → ♦(ϕ ∧ ψ) is derivable in CK [36, Section 3]. These facts ensure that
the Lindenbaum algebra of any logic that includes CK is a CK-modal algebra under the operators
m�‖ϕ‖ = ‖�ϕ‖ and m♦‖ϕ‖ = ‖♦ϕ‖.

We define a CK-modal cover system to be a structure (S, R�, R♦) with S being a localic cover system,
and R�, R♦ being binary relations on S each satisfying the Confluence and Modal Localisation properties,
such that R� is serial, i.e. ∀x∃y(xR�y), and the following hold:

(i) if xR�y and xR�z then for some w ≥ y, z we have xR�w.

(ii) if xR�y and xR♦z, then for some w ≥ y, z we have xR♦w.

Condition (i) ensures that the axiom �K is true in models on CK-modal cover systems, while (ii) ensures
the truth of ♦K.

A CS4-modal cover system is a CK-modal cover system in which

(iii) R� is a transitive subrelation of ≥, and

(iv) R♦ is a reflexive and transitive.

These last two conditions ensure the truth of the remaining CS4 axioms.
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Theorem 7.1 If (S, R�, R♦) is a CK-modal (respectively CS4-modal) cover system, then the algebra
(Prop(S), 〈R�〉, 〈R♦〉) is a CK-modal (respectively CS4-modal) locale.

Proof. The Confluence and Modal Localisation properties ensure that 〈R�〉 and 〈R♦〉 are both modal
operators, i.e. monotone, on Prop(S).

Condition (i) ensures that 〈R�〉X ∩ 〈R�〉Y ⊆ 〈R�〉(X ∩ Y ) when X,Y are up-sets, and hence that
〈R�〉 is multiplicative on Prop(S). The seriality condition ∀x∃y(xR�y) ensures that S ⊆ 〈R�〉S, hence
〈R�〉1 = 1 in Prop(S). Thus (1) holds for m� = 〈R�〉.

Condition (ii) ensures that 〈R�〉X ∩ 〈R♦〉Y ⊆ 〈R♦〉(X ∩ Y ) when X,Y are up-sets, so (2) holds for
m♦ = 〈R♦〉. Hence altogether (S, R�, R♦) is a CK-modal cover system.

For the CS4 case, the conditions under (iii) ensure that 〈R�〉 is an interior operator, as follows.
Transitivity of R� makes 〈R�〉〈R�〉X ⊆ 〈R�〉X. Having R� a subrelation of ≥ makes 〈R�〉 deflationary,
for if x ∈ 〈R�〉X, then for some y, xR�y ∈ X, so x ≥ y, hence x ∈ X if X is an up-set. In particular,
〈R�〉X ⊆ X for all propositions X, and altogether we have that 〈R�〉 is an interior operator. Finally,
from (iv) it follows that 〈R♦〉 is a closure operator, as mentioned in the proof of Lemma 4.1. �

In the converse direction:

Theorem 7.2 If (H,m�,m♦) is a CK-modal (respectively CS4-modal) locale, then (SH, Rm�
, Rm♦) is

a CK-modal (respectively CS4-modal) cover system.

Proof. Recall that xRm�
y iff x v m�y, and xRm♦y iff x v m♦y. The definition of SH itself was given

in the proof of Theorem 3.6.
The Confluence and Modal Localisation properties hold for Rm�

and Rm♦ just as for Rm in the proof
of Theorem 4.2, where the argument required only that m was monotone. From m�1 = 1 it follows that
xRm�

1 in general, so Rm�
is serial.

Now we need to show (i) and (ii) for R� = Rm�
and R♦ = Rm♦ .

(i): If xRm�
y and xRm�

z, then x v m�yum�z v m�(yu z) by the multiplicativity of m�. Putting
w = y u z then gives w ≥ y, w ≥ z and xRm�

w.
(ii): If xRm�

y and xRm♦z, then x v m�y u m♦z v m♦(y u z) by (2), so with w = y u z we get
w ≥ y, z and xRm♦w.

For the CS4 case, we need to show (iii) and (iv) for Rm�
and Rm♦ , given that m� is also an interior

operator and m♦ is a closure operator.
(iii): Rm�

is transitive because m�m�x v m�x (as in Theorem 4.2), and Rm�
is a subrelation of ≥,

because if x v m�y then x v y as m�y v y, and this means that x ≥ y.
(iv): Rm♦ is a reflexive and transitive when m♦ is a closure operator, as in the proof of Theorem 4.2.

�

The logic QCK is defined axiomatically, in a first-order language with � and ♦, by the standard
axiomatisation of first-order intuitionistic predicate logic, together with the axioms �K and ♦K and the
�-rule. QCS4 has all the axioms and rules of QCK and also the other CS4 axioms of Figure 2.

Now let L be any logical system whose axioms and rules include those of QCK. Let (HL,m�,m♦)
be the Lindenbaum algebra of L, with m�‖ϕ‖ = ‖�ϕ‖ and m♦‖ϕ‖ = ‖♦ϕ‖, and let (H,m◦�,m

•
♦) be its

MacNeille completion, defined to comprise the MacNeille completion H of HL with the lower extension
of m� and the upper extension of m♦. This Lindenbaum algebra is a CK-modal algebra. Hence by
Theorem 2.3, m◦� is a multiplicative operator. It satisfies m◦�1 = 1, since m�1 = 1 and HL and H have
the same greatest element. By Theorem 2.5, m◦�x um•♦y v m•♦(x u y). Moreover, if L includes the CS4
axioms, then m� is an interior operator, hence by Corollary 2.4 m◦� is an interior operator; and m♦ is a
closure operator, hence by Theorem 2.2 m•♦ is a closure operator.

In particular, these observations establish the following:

Theorem 7.3 The MacNeille completion of the Lindenbaum algebra of QCK (respectively QCS4) is a
QCK-modal (respectively QCS4-modal) locale. �

This provides a basis for developing a model theory for QK and QCS4 using cover systems, adapting
our methodology for QLL. A QCK-model has the form M = (S, R�, R♦, U, | · |M), where (S, R�, R♦) is
a CK-modal cover system, and U and | · |M are as for QLL-models. The satisfaction relation is defined
as before, except that we now have

M, x |= �ϕ iff for some y, xR�y and M, y |= ϕ,

M, x |= ♦ϕ iff for some y, xR♦y and M, y |= ϕ.
(7.1)
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A QCS4-model is a QCK-model whose underlying cover system is CS4-modal, i.e. satisfies (iii) and (iv)
above. We leave it to the reader to put together the results of this section to show

Theorem 7.4 (Soundness and Completeness)

(1) QCK ` ϕ iff ϕ is true in all QCK-models.

(2) QCS4 ` ϕ iff ϕ is true in all QCS4-models. �

The models for CK and CS4 of [36, 3] have a single binary relation R which is used to interpret �
and ♦ by the semantics

M, x |= �ϕ iff ∀y ≥ x∀z (yRz implies M, z |= ϕ),

M, x |= ♦ϕ iff ∀y ≥ x∃z (yRz and M, z |= ϕ).
(7.2)

The non-modal propositional connectives are treated as in Kripke’s intuitionistic semantics (except that
|⊥|M may be a non-empty set of fallible worlds – see Remark 5.2). Here we have seen that if the cover
semantics is used instead, then both � and ♦ can be interpreted as existential quantifiers bounded by
two relations, as in (7.1), that are interconnected by (ii) above. So they are both treated somewhat
like Boolean diamonds. This underscores the point that there is more to intuitionistic modal logic than
combining the classical semantic analysis of � and ♦ with non-modal intuitionistic models.

We can also extend this approach to provide a cover semantics for the system of first-order intuitionistic
modal logic studied in [45]. This can be defined by adding to QCK the axiom ¬♦⊥, i.e. ♦⊥ → ⊥,11

and was shown in [45] to be characterised by models that combine Kripke’s semantics for first-order
intuitionistic logic with the interpretation (7.2) of � and ♦. These models have no fallible worlds, i.e.
have |⊥|M = ∅.

The axiom ¬♦⊥ corresponds algebraically to the requirement that m♦0 = 0, an equation that holds
in the Lindenbaum algebra of any logic in which ¬♦⊥ is a theorem. Moreover, in general m♦0 = 0 implies
m•♦0 = 0, so the equation is preserved by upper MacNeille completion. Model-theoretically, truth of ¬♦⊥
in M requires that |♦⊥|M = |⊥|M, which in a model on a CK-modal cover system (S, R�, R♦) requires
that 〈R♦〉j∅ = j∅. Since j∅ is invariably the least member of Prop(S), this is equivalent to 〈R♦〉j∅ ⊆ j∅,
which means that

(v) xR♦y C ∅ implies x C ∅.

Now if (H,m�,m♦) is a CK-modal locale having m♦0 = 0, then in SH, condition (v) holds when
R♦ = Rm♦ . For if xRm♦y C ∅, then x v m♦y = m♦ (

⊔
∅) = m♦0 = 0, hence x =

⊔
∅ and so x C ∅.

Combining these observations with our general methodology leads to the conclusion that

QCK + ¬♦⊥ ` ϕ iff ϕ is true in all QCK-models that satisfy (v).

This characterisation can be refined a little further. We noted just before Corollary 3.7 that in the cover
system SH of any locale H, the set j∅ is a singleton (namely {0}). Thus whenever we give a completeness
theorem by using the cover system associated with the MacNeille completion of a Lindenbaum algebra,
we obtain a characterisation of the logic in question by models in which there is exactly one member
that has the empty cover and so satisfies ⊥. Logics containing ¬♦⊥ are characterised by models in which
there is an element ∞ such that

〈R♦〉j∅ = j∅ = {∞}.

This amounts to requiring that for all members x,

xR♦∞ iff x C ∅ iff x =∞.

In particular, the logic QCK + ¬♦⊥ is characterised by the class of all QCK-models that have a unique
such empty-covered “fallible” point ∞ satisfying ♦⊥ and ⊥.

11The system of [45] also has �ϕ ∧ ♦(ϕ → ψ) → ♦ψ as an axiom, but this is derivable in CK, as shown in [36], and is
readily seen, with the help of condition (ii), to be true in all of our models based on CK-modal cover systems.
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8 Non-Modal First-Order Intuitionistic Predicate Logic

Apart from the analysis of modalities, our results provide a completeness theorem for first-order intu-
itionistic logic itself with respect to cover semantics. That is not itself a new result (see [43, §13.7] for
instance), but there is interest in alternative model constructions that lead to the characterisation, and
here we sketch an alternative to the algebraic methods used above that were based on the MacNeille
completion. We can use instead a construction in the Henkin style, building a model whose points are
certain sets of formulas, with these sets having closure properties determined by the proof theory of the
logic. Since we are not using the classical semantics for disjunction, we do not have to make our formula-
sets “prime”, i.e. they do not have to contain one of ϕ and ψ whenever they contain ϕ ∨ ψ. Nor do
they need to have the “saturation”, or “∃-witnessing” property of containing some instantiation ϕ(τ/v)
whenever they contain ∃vϕ. So we are able to make a simpler and more explicit model construction than
the Henkin models introduced for Kripke semantics, as in [1, 42, 15].

We now outline this construction. Throughout this section, a “formula” will mean any ©-free L-
formula as defined in Section 5, and the notation “` ϕ” will mean that ϕ is a theorem of first-order
intuitionistic logic, i.e. ϕ is derivable using the ©-free axioms and rules from Figure 1. We also write
ϕ ` ψ when ` ϕ → ψ. We will assume many of the basic properties of this deducibility relation ` for
quantified intuitionistic logic.

A model for the ©-free language has the form M = (S, U, | · |M), with S a localic cover system,
and is defined just like the notion of a QLL-model, but without the relation R or any of the properties
associated with R. From the proof of Theorem 5.5 (Soundness), we can take it as given that every
theorem of first-order intuitionistic logic is true in all models on localic cover systems.

For each ϕ, let ϕ` = {ψ : ϕ ` ψ}. A set of the form ϕ` will be called a principal theory. Note that
ϕ`1 ⊆ ϕ`2 iff ϕ2 ` ϕ1, and that ϕ`1 = ϕ`2 iff ` ϕ1 ↔ ϕ2. Amongst the closure properties of principal
theories that are readily demonstrated are:

Conjunction : ψ1 ∧ ψ2 ∈ ϕ` iff ψ1 ∈ ϕ` and ψ2 ∈ ϕ`; (8.1)

Deduction : if ψ1 ∈ ϕ` and ψ1 ` ψ2 then ψ2 ∈ ϕ`; (8.2)

Modus Ponens : if ψ1, ψ1 → ψ2 ∈ ϕ`, then ψ2 ∈ ϕ`. (8.3)

Define Sp = (Sp,≤,C), the principal system, by

• Sp = {x : x is a principal theory};

• x ≤ y iff x ⊆ y;

• x C C iff x =
⋂
C, where C ⊆ Sp.

Lemma 8.1 Sp is a strictly localic cover system.

Proof. We check the cover system axioms.
Existence: Put C = {x}. Then x C C ⊆ ↑x. (Alternatively, put C = ↑x.)
Transitivity : if x =

⋂
C and for all y ∈ C, y =

⋂
Cy, then by set theory x =

⋂
(
⋃
y∈C Cy).

Refinement : let x ≤ y and C B x. We have to show that C can be refined to some y-cover C ′. Let
x = ϕ` and y = ψ`, and define C ′ = {(ψ ∧ χ)` : χ` ∈ C}. Then as χ` ⊆ (ψ ∧ χ)`, we get C ′ ⊆ ↑C, i.e.
C ′ refines C. It remains to show that C ′ is a y-cover.

Now as y = ψ` ⊆ (ψ ∧ χ)`, we have y ⊆
⋂
C ′. But if ρ ∈

⋂
C ′, then for each χ` ∈ C we have

ρ ∈ (ψ ∧ χ)`, so ψ ∧ χ ` ρ, hence χ ` ψ → ρ, and thus ψ → ρ ∈ χ`. This shows that ψ → ρ ∈
⋂
C.

But
⋂
C = x ⊆ y, and ψ ∈ y, so ρ ∈ y by Modus Ponens (8.3). Thus we have y =

⋂
C ′, i.e. y C C ′ as

required.
Finally, as x =

⋂
C implies C ⊆ {y : x ⊆ y} = ↑x, the system Sp is strictly localic. �

Note that Sp shares with the locale-based systems SH the property that j∅ is a singleton. The
principal theory

(⊥)` = {ψ : ⊥ ` ψ}

is in fact the set of all formulas, hence is equal to
⋂
∅, and so is the unique member of Sp that is covered

by the empty set.
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For each formula ϕ, define |ϕ| = {x ∈ Sp : ϕ ∈ x}. We will define a model Mp on Sp in which |ϕ| is
the truth set |ϕ|Mp . As before, this model will use the set Ut of L-terms as its domain of individuals, and
will be a single characteristic model for the logic. For this we first show that membership of |ϕ| behaves
like the satisfaction relation:

Lemma 8.2 In the principal cover system Sp, for any x ∈ Sp:

(1) ϕ ∧ ψ ∈ x iff ϕ ∈ x and ψ ∈ x.

(2) ϕ ∨ ψ ∈ x iff there is some C ⊆ Sp with x C C ⊆ |ϕ| ∪ |ψ|.

(3) ϕ→ ψ ∈ x iff for all y ⊇ x, ϕ ∈ y implies ψ ∈ y.

(4) ⊥ ∈ x iff ∅ B x iff x is the set of all formulas.

(5) ∀vϕ ∈ x iff for all terms τ ∈ Ut, ϕ(τ/v) ∈ x.

(6) ∃vϕ ∈ x iff there is some C ⊆ Sp with x C C ⊆
⋃
τ∈Ut

|ϕ(τ/v)|.

Proof. For each y ∈ Sp, fix a formula ϕy ∈ y such that y = (ϕy)` = {ψ : ϕy ` ψ}.
(1): This was noted in (8.1).
(2): Let ϕ ∨ ψ ∈ x. Put C = |ϕx| ∩ (|ϕ| ∪ |ψ|) ⊆ |ϕ| ∪ |ψ|. It suffices to show x C C. First, if y ∈ C,

then ϕx ∈ y, so ϕy ` ϕx, hence (ϕx)` ⊆ (ϕy)`, i.e. x ⊆ y. Thus x ⊆
⋂
C. But if ρ ∈

⋂
C, then as

(ϕx ∧ ϕ)` ∈ |ϕx| ∩ |ϕ| ⊆ C we get ϕx ∧ ϕ ` ρ. Similarly, ϕx ∧ ψ ` ρ. Hence (ϕx ∧ ϕ) ∨ (ϕx ∧ ψ) ` ρ. So
by distributivity ϕx ∧ (ϕ ∨ ψ) ` ρ. But ϕx, ϕ ∨ ψ ∈ x, so ϕx ∧ (ϕ ∨ ψ) ∈ x (8.1), hence ρ ∈ x (8.2). This
shows x =

⋂
C as required.

Conversely, suppose some C has x C C ⊆ |ϕ| ∪ |ψ|. By the axiom ϕ→ ϕ∨ψ, |ϕ| ⊆ |ϕ∨ψ|. Similarly
|ψ| ⊆ |ϕ ∨ ψ|. Hence C ⊆ |ϕ ∨ ψ|. Thus ϕ ∨ ψ ∈

⋂
|ϕ ∨ ψ| ⊆

⋂
C = x, so ϕ ∨ ψ ∈ x.

(3): If ϕ→ ψ ∈ x, then if ϕ ∈ y ⊇ x, we get ψ ∈ y by Modus Ponens (8.3). Conversely, if ϕ ∈ y ⊇ x
implies ψ ∈ y, let y = (ϕx ∧ ϕ)` to conclude that ϕx ∧ ϕ ` ψ. Hence ϕx ` ϕ→ ψ, giving ϕ→ ψ ∈ x.

(4): Let Φ be the set of all formulas. Using the axiom ⊥ → ϕ, we get ⊥ ∈ x iff x = Φ. But ∅ B x iff
x =

⋂
∅ iff x = Φ.

(5): If ∀vϕ ∈ x, then ϕ(τ/v) ∈ x by the axiom ∀vϕ → ϕ(τ/v) and Modus Ponens. Conversely,
assuming ϕ(τ/v) ∈ x for all τ , by choosing some variable w not occuring in ϕx or ϕ we get ϕx ` ϕ(w/v),
hence ϕx ` ∀wϕ(w/v) by the inference rule for ∀. But ∀wϕ(w/v) ` ∀vϕ, leading to ϕx ` ∀vϕ, hence
∀vϕ ∈ x.

(6): Let ∃vϕ ∈ x. Put

C = |ϕx| ∩
⋃
τ∈Ut

|ϕ(τ/v)| =
⋃
τ∈Ut

|ϕx ∧ ϕ(τ/v)|.

Since C ⊆
⋃
τ∈Ut

|ϕ(τ/v)|, it suffices to show x C C. Now if y ∈ C, then ϕx ∈ y, so x ⊆ y as in the proof of

(2). Thus x ⊆
⋂
C. But if ρ ∈

⋂
C, then as (ϕx∧ϕ(τ/v))` ∈ |ϕx∧ϕ(τ/v)| ⊆ C we get ϕx∧ϕ(τ/v) ` ρ for

all τ ∈ Ut. Now choose a variable w that does not occur in any of ϕx, ϕ or ρ. Then from ϕx∧ϕ(w/v) ` ρ
we get ∃w(ϕx ∧ ϕ(w/v)) ` ρ as w is not free in ρ. But ϕx ∧ ∃wϕ(w/v) ` ∃w(ϕx ∧ ϕ(w/v)) as w is
not free in ϕx, so this implies ϕx ∧ ∃wϕ(w/v) ` ρ. Now ∃vϕ ` ∃wϕ(w/v), and we have ∃vϕ ∈ x, so
∃wϕ(w/v) ∈ x, hence ϕx ∧ ∃wϕ(w/v) ∈ x as also ϕx ∈ x. But then ρ ∈ x. This completes the required
proof that x =

⋂
C.

Finally, for the converse direction of (6), suppose there exists C with x C C ⊆
⋃
τ∈Ut

|ϕ(τ/v)|. From
the axiom ϕ(τ/v)→ ∃vϕ we have |ϕ(τ/v)| ⊆ |∃vϕ| for all τ , so C ⊆ |∃vϕ|. Thus ∃vϕ ∈

⋂
|∃vϕ| ⊆

⋂
C =

x, so ∃vϕ ∈ x. �

Now define the desired principal model Mp = (Sp, Ut, | · |Mp) on Sp by putting

|c|Mp = c ∈ Ut , all c ∈ L;

|P |Mp(τ1, . . . , τn) = |Pτ1 · · · τn| = {x ∈ S : Pτ1 · · · τn ∈ x}, all τ1, . . . , τn ∈ Ut.

As with the model of Section 6, we view each L-formula ϕ as an LUt -sentence, with |τ |Mp = τ for all
τ ∈ Ut.

Lemma 8.3 For any ϕ and any x ∈ Sp, Mp, x |= ϕ iff ϕ ∈ x. In other words, |ϕ|Mp = |ϕ|.
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Proof. By induction on formula length. For the atomic case,

|Pτ1 · · · τn|Mp = |P |Mp(|τ1|M, . . . , |τn|M) = |P |Mp(τ1, . . . , τn) = |Pτ1 · · · τn|

by definition of | · |Mp . The inductive cases then all follow using Lemma 8.2. �

We get from this that Mp is a characteristic model for intuitionistic first-order logic. But further, we
obtain a special point x> of Mp such that theoremhood is characterised by truth at x>. Let > be the
sentence ⊥ → ⊥. Then in general ` ϕ iff ` > → ϕ iff ϕ ∈ >`. Putting x> = >`, we have

Theorem 8.4 For any formula ϕ,

(1) Mp |= ϕ iff Mp, x> |= ϕ iff ` ϕ.

(2) ϕ is a theorem of first-order intuitionistic logic iff ϕ is true in all models based on (strictly) localic
cover systems.

Proof.

(1) If Mp |= ϕ then Mp, x> |= ϕ, hence ϕ ∈ x> by Lemma 8.3, which implies ` ϕ as noted above. But
if ` ϕ, then ϕ is true in all models on localic cover systems (cf. the Soundness Theorem 5.5), hence
true in Mp.

(2) From (1) and Soundness.
�

In conclusion we make three observations about this principal model construction. First, an algebraic
version of the construction gives a representation of an arbitrary Heyting algebra H as an algebra of
propositions over a strictly localic cover system (cf. Corollary 3.7). This representation does not depend on
any set-theoretic principles needed that ensure the existence of prime filters, as in the Stone representation.
For each a ∈ H, the set [a) = {b ∈ H : a v b} is the principal filter of H generated by a. Let SpH be
the system based on the set of all principal filters of H, with x ≤ y iff x ⊆ y, and x C C iff x =

⋂
C.

Adapting the above arguments shows that SpH is a strictly localic cover system, and a 7→ {x : a ∈ x} is
an injective homomorphism from H into Prop(SpH) that preserves any joins and meets that exist in H.

Second, the reader may wonder whether we could have used this construction to prove the completeness
of QLL for its cover semantics. A natural binary relation R© on Sp can be defined from © by putting
xR©y iff ϕx ` ©ϕy, where ϕx, ϕy are chosen generators of x, y as in the proof of Theorem 8.2. Then it
can be shown that

©ϕ ∈ x iff for some y, xR©y and ϕ ∈ y,

so |©ϕ| = 〈R©〉|ϕ| and membership of |©ϕ| behaves like satisfaction for ©. Moreover, R© is confluent
and nuclear. But the stumbling block is the Modal Localisation property, which does not appear to be
provable for R© . It is for that reason that we resorted to the use of the MacNeille completion to construct
models that have this essential property.

Thirdly, this principal model construction supports the informational interpretation of the cover
relation B mentioned at the beginning of Section 3. If the points of S are taken to be states containing
certain information, with x |= ϕ iff x contains the information that ϕ, then C B x iff the information
content of x comprises the information that is common to all the members of C.
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