
Separations of non-monotonic randomness
notions

(Preliminary version, 7 July 2009)

Laurent Bienvenu, Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle

Institut für Informatik, Ruprecht-Karls-Universität,
Heidelberg, Germany

Abstract. In the theory of algorithmic randomness, several notions of
random sequence are defined via a game-theoretic approach, and the
notions that received most attention are perhaps Martin-Löf randomness
and computable randomness. The latter notion was introduced by Schnorr
and is rather natural: an infinite binary sequence is computably random
if no total computable strategy succeeds on it by betting on bits in order.
However, computably random sequences can have properties that one
may consider to be incompatible with being random, in particular, there
are computably random sequences that are highly compressible. The
concept of Martin-Löf randomness is much better behaved in this and
other respects, on the other hand its definition in terms of martingales is
considerably less natural.
Muchnik, elaborating on ideas of Kolmogorov and Loveland, refined
Schnorr’s model by also allowing non-monotonic strategies, i.e. strategies
that do not bet on bits in order. The subsequent “non-monotonic” notion
of randomness, now called Kolmogorov-Loveland-randomness, has been
shown to be quite close to Martin-Löf randomness, but whether these
two classes coincide remains a fundamental open question.
In order to get a better understanding of non-monotonic randomness no-
tions, Miller and Nies introduced some interesting intermediate concepts,
where one only allows non-adaptive strategies, i.e., strategies that can still
bet non-monotonically, but such that the sequence of betting positions is
known in advance (and computable). Recently, these notions were shown
by Kastermans and Lempp to differ from Martin-Löf randomness. We
continue the study of the non-monotonic randomness notions introduced
by Miller and Nies and obtain results about the Kolmogorov complexities
of initial segments that may and may not occur for such sequences, where
these results then imply a complete classification of these randomness
notions by order of strength.

1 Introduction

Random sequences are the central object of study in algorithmic random-
ness and have been investigated intensively over the last decade, which

ar
X

iv
:0

90
7.

23
24

v1
 [

cs
.C

C
]

 1
4

Ju
l 2

00
9

led to a wealth of interesting results clarifying the relations between the
various notions of randomness and revealing interesting interactions with
notions such as computational power [2, 5, 11].
Intuitively speaking, a binary sequence is random if the bits of the sequence
do not have effectively detectable regularities. This idea can be formalized
in terms of betting strategies, that is, a sequence will be called random
in case the capital gained by successive bets on the bits of the sequence
according to a fixed betting strategy must remain bounded, with fair
payoff and a fixed set of admissible betting strategies understood.
The notions of random sequences that have received most attention are
Martin-Löf randomness and computable randomness. Here a sequence
is called computably random if no total computable betting strategy
can achieve unbounded capital by betting on the bits of the sequence
in the natural order, a definition that indeed is natural and suggests
itself. However, computably random sequences may lack certain properties
associated with the intuitive understanding of randomness, for example
there are such sequences that are highly compressible, i.e., show a large
amount of redundancy, see Theorem 4 below. Martin-Löf randomness
behaves much better in this and other respects. Indeed, the Martin-
Löf random sequences can be characterized as the sequences that are
incompressible in the sense that all their initial segments have essentially
maximal Kolmogorov complexity, and in fact this holds for several versions
of Kolmogorov complexity according to celebrated results by Schnorr,
by Levin and, recently, by Miller and Yu [2]. On the other hand, it
has been held against the concept of Martin-Löf randomness that its
definition involves effective approximations, i.e., a very powerful, hence
rather unnatural model of computation, and indeed the usual definition of
Martin-Löf randomness in terms of left-computable martingales, that is,
in terms of betting strategies where the gained capital can be effectively
approximated from below, is not very intuitive.
It can be shown that Martin-Löf randomness strictly implies computable
randomness. According to the preceding discussion the latter notion is too
inclusive while the former may be considered unnatural. Ideally, we would
therefore like to find a more natural characterization of ML-randomness;
or, if that is impossible, we are alternatively interested in a notion that is
close in strength to ML-randomness, but has a more natural definition.
One promising way of achieving such a more natural characterization or
definition could be to use computable betting strategies that are more
powerful than those used to define computable randomness.

2

Muchnik [10] proposed to consider computable betting strategies that are
non-monotonic in the sense that the bets on the bits need not be done in the
natural order, but such that the bit to bet on next can be computed from
the already scanned bits. The corresponding notion of randomness is called
Kolmogorov-Loveland randomness because Kolmogorov and Loveland
independently had proposed concepts of randomness defined via non-
monotonic selecting of bits.
Kolmogorov-Loveland randomness is implied by and in fact is quite close
to Martin-Löf randomness, see Theorem 15 below, but whether the two
notions are distinct is one of the major open problems of algorithmic
randomness. In order to get a better understanding of this open problem
and of non-monotonic randomness in general, Miller and Nies [9] intro-
duced restricted variants of Kolmogorov-Loveland randomness, where the
sequence of betting positions must be non-adaptive, i.e., can be computed
in advance without knowing the sequence on which one bets.
The randomness notions mentioned so far are determined by two pa-
rameters that correspond to the columns and rows, respectively, of the
table in Figure 1. First, the sequence of places that are scanned and on
which bets may be placed, while always being given effectively, can just
be monotonic, can be equal to π(0), π(1), . . . for a permutation or an
injection π from N to N, or can be adaptive, i.e., the next bit depends
on the bits already scanned. Second, once the sequence of scanned bits is
determined, betting on these bits can be according to a betting strategy
where the corresponding martingale is total or partial computable, or is
left-computable. The known inclusions between the corresponding classes
of random sequences are shown in Figure 1, see Section 2 for technical
details and for the definitions of the class acronyms that occur in the
figure.

monotonic permutation injection adaptive

total TMR = TPR ⊇ TIR ⊇ KLR

⊆ ⊆ ⊆ =

partial PMR ⊇ PPR ⊇ PIR ⊇ KLR

⊆ ⊆ ⊆ ⊆

left-computable MLR = MLR = MLR = MLR

Fig. 1. Known class inclusions

3

The classes in the last row of the table in Figure 1 all coincide with the class
of Martin-Löf random sequences by the folklore result that left-computable
martingales always yield the concept of Martin-Löf randomness, no matter
whether the sequence of bits to bet on is monotonic or is determined
adaptively, because even in the latter, more powerful model one can
uniformly in k enumerate an open cover of measure at most 1/k for all
the sequences on which some universal martingale exceeds k. Furthermore,
the classes in the first and second row of the last column coincide with the
class of Kolmogorov-Loveland random sequences, because it can be shown
that total and partial adaptive betting strategies yield the same concept
of random sequence [6]. Finally, it follows easily from results of Buhrman
et al. [1] that the class TMR of computably random sequences coincides
with the class TPR of sequences that are random with respect to total
permutation martingales, i.e., the ability to scan the bits of a sequence
according to a computable permutation does not increase the power of
total martingales.
Concerning non-inclusions, it is well-known that it holds that

KLR (PMR (TMR.

Furthermore, Kastermans and Lempp [3] have recently shown that the
Martin-Löf random sequences form a proper subclass of the class PIR of
partial injective random sequences, i.e., MLR (PIR.
Apart from trivial consequences of the definitions and the results just
mentioned, nothing has been known about the relations of the randomness
notions between computable randomness and Martin-Löf randomness
in Figure 1. In what follows, we investigate the six randomness notions
that are shown in Figure 1 in the range between PIR and TMR, i.e.,
between partial injective randomness as introduced below and computable
randomness. We obtain a complete picture of the inclusion structure of
these notions, more precisely we show that the notions are mutually distinct
and indeed are mutually incomparable with respect to set theoretical
inclusion, except for the inclusion relations that follow trivially by definition
and by the known relation TMR ⊆ TPR, see Figure 2 at the end of this
paper. Interestingly these separation results are obtained by investigating
the possible values of the Kolomogorov complexity of initial segments of
random sequences for the different strategy types, and for some randomness
notions we obtain essentially sharp bounds on how low these complexities
can be.

4

Notation. We conclude the introduction by fixing some notation. The set
of finite strings (or finite binary sequences, or words) is denoted by 2<ω, ε
being the empty word. We denote the set of infinite binary sequences by
2ω. Given two finite strings w,w′, we write w v w′ if w is a prefix of w′.
Given an element x of 2ω or 2<ω, x(i) denotes the i-th bit of x (where by
convention there is a 0-th bit and x(i) is undefined if x is a word of length
less than i+ 1). If A ∈ 2ω and X = {x0 < x1 < x2 < . . .} is a subset of N
then A � X is the finite or infinite binary sequence A(x0)A(x1) We
abbreviate A � {0, . . . , n− 1} by A � n (i.e., the prefix of A of length n).
C and K denote plain and prefix-free Kolmogorov complexity, respec-
tively [2, 5]. The function log designates the logarithm of base 2. An order
is a function h : N→ N that is non-decreasing and tends to infinity.

2 Permutation and injection randomness

We now review the concept of martingale and betting strategy that are
central for the unpredictability approach to define notions of an infinite
random sequence.

Definition 1. A martingale is a nonnegative, possibly partial, function
d : 2<ω → Q such that for all w ∈ 2<ω, if d(w0) is defined if and only
if d(w1) is, and if these are defined, then so is d(w), and the relation
2d(w) = d(w0) + d(w1) holds. A martingale succeeds on a sequence
A ∈ 2ω if d(A � n) is defined for all n, and lim sup d(A � n) = +∞.
We denote by Succ(d) the success set of d, i.e., the set of sequences on
which d succeeds.

Intuitively, a martingale represents the capital of a player who bets on the
bits of a sequence A ∈ 2ω in order, where at every round she bets some
amount of money on the value of the next bit of A. If her guess is correct,
she doubles her stake. If not, she loses her stake. The quantity d(w), with w
a string of length n, represents the capital of the player before the n-th
round of the game (by convention there is a 0-th round) when the first n
bits revealed so far are those of w.

We say that a sequence A is computably random if no total computable
martingale succeeds on it. One can extend this in a natural way to partial
computable martingales: a sequence A is partial computably random
if no partial martingale succeeds on it. No matter whether we consider
partial or total computable martingales, this game model can be seen as

5

too restrictive by the discussion in the introduction. Indeed, one could
allow the player to bet on bits in any order she likes (as long as she
can visit each bit at most once). This leads us to extend the notion of
martingale to the notion of strategy.

Definition 2. A betting strategy is a pair b = (d, σ) where d is a
martingale and σ : 2<ω → N is a function.

For a strategy b = (d, σ), the term σ is called the scan rule. For a string w,
σ(w) represents the position of the next bit to be visited if the player has
read the sequence of bits w during the previous moves. And as before, d
specifies how much money is bet at each move. Formally, given an A ∈ 2ω,
we define by induction a sequence of positions n0, n1, . . . by{

n0 = σ(ε),
nk+1 = σ (A(n0)A(n1) . . . A(nk)) for all k ≥ 0

and we say that b = (d, σ) succeeds on A if the ni are all defined and
pairwise distinct (i.e., no bit is visited twice) and

lim sup
k→+∞

d (A(n0) . . . A(nk)) = +∞

Here again, a betting strategy b = (d, σ) can be total or partial. In fact, its
partiality can be due either to the partiality of d or to the partiality of σ.
We say that a sequence is Kolmogorov-Loveland random if no total
computable betting strategy succeeds on it. As noted in [8], the concept of
Kolmogorov-Loveland randomness remains the same if one replaces “total
computable” by “partial computable” in the definition.
Kolmogorov-Loveland randomness is implied by Martin-Löf randomness
and whether the two notions can be separated is one of the most important
open problems on algorithmic randomness. As we discussed above, Miller
and Nies [9] proposed to look at intermediate notions of randomness,
where the power of non-monotonic betting strategies is limited. In the
definition of a betting strategy, the scan rule is adaptive, i.e., the position
of the next visited bit depends on the bits previously seen. It is interesting
to look at non-adaptive games.

Definition 3. In the above definition of a strategy, when σ(w) only de-
pends on the length of w for all w (i.e., the decision of which bit should be
chosen at each move is independent of the values of the bits seen in previ-
ous moves), we identify σ with the (injective) function π : N→ N, where

6

for all n π(n) is the value of σ on words of length n (π(n) indicates the
position of the bit visited during the n-th move), and we say that b = (d, π)
is an injection strategy. If moreover π is bijective, we say that b is a
permutation strategy. If π is the identity, the strategy b = (d, π) is said
to be monotonic, and can clearly be identified with the martingale d.

All this gives a number of possible non-adaptive, non-monotonic, random-
ness notions: one can consider either monotonic, permutation, or injection
strategies, and either total computable or partial computable ones. This
gives a total of six randomness classes, which we denote by

TMR, TPR, TIR, PMR, PPR, and PIR, (1)

where the first letter indicates whether we consider total (T) or partial (P)
strategies, and the second indicates whether we look at monotonic (M),
permutation (P) or injection (I) strategies. For example, the class TMR
is the class of computably random sequences, while the class PIR is the
class of sequences A such that no partial injection strategy succeeds on A.
Recall in this connection that the known inclusions between the six classes
in (1) and the classes KLR and MLR of Kolmogorov-Loveland random
and Martin-Löf random sequences have been shown in Figure 1 above.

3 Randomness notions based on total computable
strategies

We begin our study by the randomness notions arising from the game
model where strategies are total computable. As we will see, in this
model, it is possible to construct sequences that are random and yet have
very low Kolmogorov complexity (i.e. all their initial segments are of low
Kolmogorov complexity). We will see in the next section that this is no
longer the case when we allow partial computable strategies in the model.

3.1 Building a sequence in TMR of low complexity

The following theorem is a first illustration of the phenomenon we just
described.

Theorem 4 (Lathrop and Lutz [4], Muchnik [10]). For every com-
putable order h, there is a sequence A ∈ TMR such that, for all n ∈ N,

C (A � n | n) ≤ h(n) + O(1).

7

Proof (Idea). Defeating one total computable martingale is easy and can
be done computably, i.e., for every total computable martingale d there
exists a sequence A, uniformly computable in d, such that A /∈ Succ(d).
Indeed, given a martingale d. For any given w, one has either d(w0) ≤ d(w)
or d(w1) ≤ d(w). Thus, one can easily construct a computable sequence A
by setting A � 0 = ε and by induction, having defined A � n, we choose
A � n+ 1 = (A � n)i where i ∈ {0, 1} is such that d((A � n)i) ≤ d(A � n).
This can of course be done computably since d is total computable, and
by construction of A, d(A � n) is non-increasing, meaning in particular
that d does not succeed against A.

Defeating a finite number of total computable martingales is equally
easy. Indeed, given a finite number d1, . . . , dk of such martingales, their
sum D = d1 + . . .+ dk is itself a total computable martingale (this follows
directly from the definition). Thus, we can construct as above a com-
putable sequence A that defeats D. And since D ≥ di for all 1 ≤ i ≤ k,
this implies that A defeats all the di. Note that this argument would work
just as well if we had taken D to be any weighted sum α1d1 + . . .+ αkdk,
with positive rational constants αi.

We now need to deal with the general case where we have to defeat all
total computable martingales simultaneously. We will again proceed using
a diagonalization technique. Of course, this diagonalization cannot be
carried out effectively, since there are infinitely many such martingales
and since we do not even know whether any one given partial computable
martingale is total. The first problem can easily be overcome by introducing
the martingales to diagonalize against one by one instead of all at the
beginning. So at first, for a number of stages we will only take into
account the first computable martingale d1. Then (maybe after a long
time) we may introduce the second martingale d2, with a small coefficient
α2 (to ensure that introducing d2 does not cost us too much) and then
consider the martingale d1 + α2d2. Much later we can introduce the third
martingale d3 with an even smaller coefficient α3, and diagonalize against
d1 + α2d2 + α3d3, and so on. So in each step of the construction we have
to consider just a finite number of martingales.
The non-effectivity of the construction arises from the second problem,
deciding which of our partial computable martingales are total. However,
once we are supplied with this additional information, we can effectively
carry out the construction of A. And since for each step we need to

8

consider only finitely many potentially total martingales, the information
we need to construct the first n bits of A for some fixed n is finite,
too. Say, for example, that for the first n stages of the construction –
i.e., to define A � n – we decided on only considering k martingales
d0, . . . , dk. Then we need no more than k bits, carrying the information
which martingales among d0, . . . , dk are total, to describe A � n. That way,
we get C (A � n | n) ≤ k +O(1).
As can be seen from the above example, the complexity of descriptions of
prefixes of A depends on how fast we introduce the martingales. This is
where our orders come into play. Fix a fast-growing computable function f
with f(0) = 0, to be specified later. We will introduce a new martingale
at every position of type f(k), that is, between positions [f(k), f(k + 1)),
we will only diagonalize against k + 1 martingales, hence by the above
discussion, for every n ∈ [f(k), f(k + 1)), we have

C (A � n | n) ≤ k +O(1)

Thus, if the function f grows faster than the inverse function h−1 of a
given order h, we get

C (A � n | n) ≤ h(n) +O(1)

for all n. ut

3.2 TMR = TPR: the averaging technique

It turns out that, perhaps surprisingly, the classes TMR and TPR
coincide. This fact was stated explicitely in Merkle et al [8], but is easily
derived from the ideas introduced in Buhrman et al [1]. We present the
main ideas of their proof as we will later need them. We shall prove:

Theorem 5. Let b = (d, π) be a total computable permutation strategy.
There exists a total computable martingale d such that Succ(b) ⊆ Succ(d).

This theorem states that total permutation strategies are no more powerful
than total monotonic strategies, which obviously entails TMR = TPR.
Before we can prove it, we first need a definition.

Definition 6. Let b = (d, π) be a total injective strategy. Let w ∈ 2<ω.
We can run the strategy b on w as if it were an element of 2ω, stopping
the game when b asks to bet on a bit of position outside w. This game

9

is of course finite (for a given w) since at most |w| bets can be made.
We define b̂(w) to be the capital of b at the end of this game. Formally:
b̂(w) = d

(
wπ(0) . . . wπ(N−1)

)
where N is the smallest integer such that

π(N) ≥ |w|.

Note that if b = (d, π) is a total computable injection martingale, b̂ is total
computable. If b̂ was itself a monotonic martingale, Theorem 5 would be
proven. This is however not the case in general: suppose d(ε) = 1, d(0) = 2,
d(1) = 0, and π(0) = 1, π(1) = 5 (i.e., d first visits the bit in position 1,
betting everyrhing on the value 0, then visits the bit in position 5). We
then have b(0) = 1 and b(1) = 1, but b̂(00) = 2, b̂(01) = 2, b̂(10) = 0 and
b̂(11) = 0, which shows that b̂ is not a martingale.

The trick is, given a betting strategy b and a word w, to look at the expected
value of b on w, i.e., look at the mathematical expectation of b(w′) for
large enough extensions w′ of w. Specifically, given a total betting strategy
b = (d, π) and a word w of length n, we take an integer M large enough
to have

π ([0, . . . ,M − 1]) ∩ [0, . . . , n− 1] = π(N) ∩ [0, . . . , n− 1]

(i.e. the strategy b will never bet on a bit of position less than n after the
M -th move), and define:

Avb(w) =
1

2M
∑
wvw′

|w′|=M

b̂(w′)

Proposition 7 (Buhrman et al [1], Kastermans-Lempp [3]).

(i) The quantity Avb(w) (defined above) is well-defined i.e. does not depend
on M as long as it satisfies the required condition.

(ii) For a total injective strategy b, Avb is a martingale.
(iii) For a given injective strategy b and a given word w of length n, Avb(w)

can be computed if we know the set π(N)∩[0, . . . , n−1]. In particular, if b
is a total computable permutation strategy, then Avb is total computable.

As Buhrman et al. [1] explained, it is not true in general that if a total
computable injective strategy b succeeds against a sequence A, then Avb
also succeeds on A. However, this can be dealt with using the well-known
“saving trick”. Suppose we are given a martingale d with initial capital,
say, 1. Consider the variant d′ of d that does the following: when run on a

10

given sequence A, d′ initially plays exactly as d. If at some stage of the
game d′ reaches a capital of 2 or more, it then puts half of its capital on
a “bank account”, which will never be used again. From that point on,
d′ bets half of what d does, i.e. start behaving like d/2 (plus the saved
capital). If later in the game the “non-saved” part of its capital reaches 2
or more, then half of it is placed on the bank account and then d′ starts
behaving like d/4, and so on.

For every martingale d′ that behaves as above (i.e. saves half of its capital
as soon as it exceeds twice its starting capital), we say that d′ has the
“saving property”. It is clear from the definition that if d is computable,
then so is d′, and moreover d′ can be uniformly computed given an index
for d. Moreover, if for some sequence A one has

lim sup
n→+∞

d(A � n) = +∞

then
lim

n→+∞
d′(A � n) = +∞

which in particular implies Succ(d) ⊆ Succ(d′) (it is easy to see that it is
in fact an equality). Thus, whenever one considers a martingale d, one
can assume without loss of generality that it has the saving property (as
long as we are only interested in the success set of martingales, not in
the growth rate of their capital). The key property (for our purposes) of
saving martingales is the following.

Lemma 8. Let b = (d, π) be a total injective strategy such that d has the
saving property. Let d′ = Avb. Then Succ(b) ⊆ Succ(d′).

Proof. Suppose that b = (d, π) succeeds on a sequence A. Since d has the
saving property, for arbitrarily large k there exists a finite prefix A � n
of A such that a capital of at least k is saved during the finite game of b
against A. We then have b̂(w′) ≥ k for all extensions w′ of A � n (as a saved
capital is never used), which by definition of Avb implies Avb(A � m) ≥ k
for all m ≥ n. Since k can be chosen arbitrarily large, this finishes the
proof. ut

Now the proof of Theorem 5 is as follows. Let b = (d, π) be a total
computable permutation strategy. By the above discussion, let d′ be the
saving version of d, so that Succ(d) ⊆ Succ(d′). Setting b′ = (d′, π), we

11

have Succ(b) ⊆ Succ(b′). By Proposition 7 and Lemma 8, d′′ = Avb′ is a
total computable martingale, and

Succ(b) ⊆ Succ(b′) ⊆ Succ(d′′)

as wanted.

3.3 Understanding the strength of injective strategies: the
class TIR

While the class of computably random sequence (i.e. the class TMR) is
closed under computable permutations of the bits, we now see that this
result does not extend to computable injections. To wit, the following
theorem is true.

Theorem 9. Let A ∈ 2ω. Let {nk}k∈N be a computable sequence of inte-
gers such that nk+1 ≥ 2nk for all k. Suppose that A is such that:

C (A � nk | k) ≤ log(nk)− 3 log(log(nk))

for infinitely many k. Then A /∈ TIR.

Proof. Let A be a sequence satisfying the hypothesis of the theorem.
Assuming, without loss of generality, that n0 = 0, we partition N into an
increasing sequence of intervals I0, I1, I2, . . . where Ik = [nk, nk+1). Notice
that we have for all k:

C (A � Ik | k) ≤ C (A � nk+1 | k + 1) +O(1)

By the hypothesis of the theorem, the right-hand side of the above in-
equality is bounded by log(nk+1)− 3 log(log(nk+1)) for infinitely many k.

Additionally, we have |Ik| = nk+1−nk which by hypothesis on the sequence
nk implies |Ik| ≥ nk+1/2, and hence log(|Ik|) = log(nk+1) + O(1) and
log(log(|Ik|)) = log(log(nk+1)) +O(1). It follows that

C (A � Ik | k) ≤ log(|Ik|)− 3 log(log(|Ik|))−O(1)

for infinitely many k, hence

C (A � Ik | k) ≤ log(|Ik|)− 2 log(log(|Ik|))

for infinitely many k.

12

Let us call Sk the set of strings w of length |Ik| such that C (w | |Ik|) ≤
log(|Ik|)− 2 log(log(|Ik|)) (to which A � Ik belongs for infinitely many k).
By the standard counting argument, there are at most

sk = 2log(|Ik|)−2 log(log(|Ik|)) =
|Ik|

log2(|Ik|)

strings in Sk. For every k, we split Ik into sk consecutive disjoint intervals
of equal length:

Ik = J0
k ∪ J1

k ∪ . . . ∪ J
sk−1
k

N

'

& %

$' $' $'

�
��
H
HH

Ik+1

J0
k+1J

sk−1
kJ1

kJ0
k

Ik

0 &

We design a betting strategy as follows. We start with a capital of 2. We
then reserve for each k an amount 1/(k + 1)2 to be bet on the bits in
positions in Ik (this way, the total amount we distribute is smaller than 2),
and we split this evenly between the J ik, i.e. we reserve an amount 1

sk·(k+1)2

for every J ik. We then enumerate the sets Sk in parallel. Whenever the e-th
element wek of some Sk is enumerated, we see wek as a possible candidate
to be equal to A � Ik, and we bet the reserved amount 1

sk·(k+1)2
on the

fact that A � Ik coincides with wek on the bits whose position is in Jek . If
we are successful (this in particular happens whenever wek = A � Ik), our
reserved capital for this Jek is multiplied by 2|J

e
k |, i.e. we now have for this

Jek , a capital of
1

sk · (k + 1)2
· 2(|Ik|/sk)

Replacing sk by its value (and remembering that |Ik| ≥ 2k−O(1)), an
elementary calculation shows that this quantity is greater than 1 for
almost all k. Thus, our betting strategy succeeds on A. Indeed, for infinitely
many k, A � Ik is an element of Sk, hence for some e we will be successful
in the above sub-strategy, making an amount of money greater than 1 for
infinitely many k, hence our capital tends to infinity throughout the game.
Finally, it is easy to see that this betting strategy is total: it simply is a
succession of doubling strategies on an infinite c.e. set of words, and it is
injective as the Jek form a partition of N, and the order of the bits we bet
on is independent of A (in fact, we see our betting strategy succeeds on
all sequences α satisfying the hypothesis of the theorem). ut

13

As an immediate corollary, we get the following.

Corollary 10. If for a sequence A we have for all n C (A � n | n) <
log n− 4 log log n+ O(1), then A 6∈ TIR.

Another interesting corollary of our construction is that the class of all
computable sequences can be covered by a single total computable injective
strategy.

Corollary 11. There exists a single total computable injective strategy
which succeeds against all computable elements of 2ω.

Proof. This is because, as we explained above, the strategy we construct
in the proof of Theorem 9 succeeds against every sequence A such that
C (A � nk | k) ≤ log(nk) − 3 log(log(nk)) for infinitely many k. This in
particular includes all computable sequences A, for which C (A � nk | k) =
O(1). ut

The lower bound on Kolmogorov complexity given in Theorem 9 is quite
tight, as witnessed by the following theorem.

Theorem 12. For every computable order h there is a sequence A ∈ TIR
such that C(A � n | n) ≤ log(n) + h(n) + O(1). In particular, we have
C(A � n) ≤ 2 log(n) + h(n) + O(1).

Proof. The proof is a modification of the proof of Theorem 4. This time, we
want to diagonalize against all non-monotonic total computable injective
betting strategies. Like in the proof of Theorem 4, we add them one by one,
discarding the partial strategies. However, to achieve the construction of A
by diagonalization, we will diagonalize against the average martingales of
the strategies we consider. As explained on page 11, we can assume that
all total computable injective strategies have the saving property, hence
defeating Avb is enough to defeat b (by Lemma 8). The proof thus goes
as follows:
Fix a fast growing computable function f , to be specified later. We start
with a martingale D0 = 1 (the constant martingale equal to 1) and w0 = ε.
For all k we do the following. Assume we have constructed a prefix wk
of A of length f(k), and that we are currently diagonalizing against a
martingale Dk, so that Dk(wk) < 2. We then enumerate a new partial
computable injective betting strategy b. If it is not total, we memorize
this fact using one extra bit of information, and we set Dk+1 = Dk.

14

Otherwise, we set dk+1 = Avb and compute a positive rational αk+1 such
that (Dk + αk+1dk+1)(wk) < 2, and finally set Dk+1 = Dk + αk+1dk+1.
Then, we define wk+1 to be the extension of wk of length f(k + 1)
by the usual diagonalization against Dk+1, maintaining the inequality
Dk+1(u) < 2 for all prefixes u of wk+1. The infinite sequence A obtained
this way defeats all the average martingales of all total computable injec-
tive strategies, hence by Lemma 8, A ∈ TIR.

It remains to show that A has low Kolmogorov complexity. Suppose we
want to describe A � n for some n ∈ [f(k), f(k + 1)). This can be done by
giving n, the subset of {0, . . . , k} (of complexity k +O(1)) corresponding
to the indices of the total computable injective strategies among the first k
partial computable ones, and by giving the restriction of Dk+1 to words
of length at most n. From all this, A � n can be reconstructed following
the above construction. It remains to evaluate the complexity of the
restriction of Dk+1 to words of length at most n. We already know the total
computable injective strategies b0, . . . , bk that are being considered in the
definition of Dk+1. For all i, let πi be the injection associated to bi. We need
to compute, for all 0 ≤ i ≤ k, the martingale di = Avbi on words of length
at most n. By Proposition 7, this can be done knowing πi(N)∩ [0, . . . , n−1]
for all 0 ≤ i ≤ k. But if the πi are known, this set is uniformly c.e. in i, n.
Hence, we can enumerate all the sets πi(N) ∩ [0, . . . , n− 1] (for 0 ≤ i ≤ k)
in parallel, and simply give the last couple (i, l) such that l is enumerated
in πi(N) ∩ [0, . . . , n − 1]. Since 0 ≤ i ≤ k and 0 ≤ l < n, this costs an
amount of information O(log k) + log n. To sum up, we get

C (A � n | n) ≤ k + O(log k) + log n

Thus, it suffices to take f growing fast enough to ensure that the term
≤ k + O(log k) is smaller than h(n) + O(1). ut

4 Randomness notions based on partial computable
strategies

We now turn our attention to the second line of Figure 1, i.e., to those ran-
domness notions that are based on partial computable betting strategies.

15

4.1 The class PMR: partial computable martingales are
stronger than total ones

We have seen in the previous section that some sequences in TIR (and
a fortiori TPR and TMR) may be of very low complexity, namely loga-
rithmic. This is not the case anymore when one allows partial computable
strategies, even monotonic ones.

Theorem 13 (Merkle [7]). If C(A � n) = O(log n) then A 6∈ PMR.

However, the next theorem, proven by An. A. Muchnik, shows that allowing
slightly super-logarithmic growth of the Kolmogorov complexity is enough
to construct a sequence in PMR.

Theorem 14 (Muchnik et al. [10]). For every computable order h
there is a sequence A ∈ PMR such that, for all n ∈ N,

C (A � n | n) ≤ h(n) log(n) + O(1).

Proof. The proof is almost identical to the proof of Theorem 4. The only
difference is that we insert all partial computable martingales one by
one, and diagonalize against their weighted sum as before. It may happen
however, that at some stage of the construction, one of the martingales
becomes undefined. All we need to do then is to memorize this, and ignore
this particular martingale from that point on. Call A the sequence we
obtain by this construction. We want to describe A � n. To do so, we
need to specify n, and, out of the k partial computable martingales that
are inserted before stage n, which ones have diverged, and at what stage,
hence an information of O(k log n) (giving the position where a particular
martingale diverges costs O(log n) bits, and there are k martingales. Since
we can insert martingales as slowly as we like (following some computable
order), the complexity of A � n given n can be taken to be smaller
than h(n) logn+O(1) (where h is a computable order, fixed before the
construction of A). ut

4.2 The class PPR

In the case of total strategies, allowing permutation gives no real additional
power, as TMR = TPR. Very surprisingly, Muchnik showed that in the
case of partial computable strategies, permutation strategies are a real
improvement over monotonic ones. To wit, the following theorem (quite a
contrast to Theorem 14!).

16

Theorem 15 (Muchnik [10]). If there is a computable order h such
that for all n we have K(A � n) ≤ n− h(n)−O(1), then A 6∈ PPR.

Note that the proof used by Muchnik in [10] works if we replace K by C
in the above statement.

Theorem 16. For every computable order h there is a sequence A ∈
PPR, such that there are infinitely many n where C (A � n | n) < h(n).
Furthermore, if we have an infinite computable set S ⊆ N, we can choose
the infinitely many lengths n such that they all are contained in S.

Lemma 17. Let d be a partial computable martingale. Let C be an effec-
tively closed subset of 2ω. Suppose that d is total on every element of C.
Then there exists a total computable martingale d′ such that Succ(d)∩C =
Succ(d′) ∩ C.

Proof. The idea of the proof is simple: the martingale d′ will try to mimic d
while enumerating the complement U of C. If at some stage a cylinder [w]
is covered by U , then d will be passive (i.e. defined but constant) on the
sequences extending w. As we do not care about the behavior of d′ on U
(as long as it is defined), this will be enough to get the conclusion.

Let d, C be as above. We build the martingale d′ on words by induction.
Define d′(ε) = d(ε) (here we assume without loss of generality that d(ε)
is defined, otherwise there is nothing to prove). During the construction,
some words will be marked as inactive, on which the martingale will be
passive; initially, there is no inactive word. On active words w, we will
have d(w) = d′(w).

Suppose for the sake of the induction that d′(w) is already defined. If w
is marked as inactive, we mark w0 and w1 as inactive, and set d(w0) =
d(w1) = d(w). Otherwise, by the induction hypothesis, we have d(w) =
d′(w). We then run in parallel the computation of d(w0) and d(w1), and
enumerate the complement U of C until one of the two above events
happens:

(a) d(w0) and d(w1) become defined. Then set d′(w0) = d(w0) and
d′(w1) = d(w1)

(b) The cylinder [w] gets covered by U . In that case, mark w0 and w1 as
inactive and set d′(w0) = d′(w1) = d′(w)

17

Note that one of these two events must happen: indeed, if d(w0) and
d(w1) are undefined (remember that by the definition of a martingale,
Definition 1, that they are either both defined or both undefined), then
this means that d diverges on any element of [w0] ∪ [w1] = [w]. Hence,
by assumption, [w] ∩ C = ∅, i.e. [w] ⊆ U . It remains to verify that
Succ(d)∩C = Succ(d′)∩C. Let A ∈ C. Since d is total on A by assumption,
during the construction of d′ on A, we will always be in case (a), hence we
will have for all n, d(A � n) = d′(A � n). The result follows immediately.

ut

Corollary 18. Let b = (d, π) be a partial computable permutation strategy
(resp. injective strategy). Let C be an effectively closed subset of 2ω. Suppose
that b is total on every element of C. Then there exists a total computable
permutation strategy (resp. injective strategy) b′ such that Succ(b) ∩ C =
Succ(b′) ∩ C.

Proof. This follows from the fact that the image or pre-image of an
effectively closed set under a computable permutation of the bits is itself
a closed set: take b = (d, π) and C as above. Let π̄ be the map induced on
2ω by π, i.e. the map defined for all A ∈ 2ω by

π̄(A) = A(π(0))A(π(1))A(π(2)) . . .

For any given sequence A ∈ C, b succeeds on A if and only if d succeeds
on π̄(A). As π̄(A) ∈ π̄(C), and π̄(C) is an effectively closed set, by , there
exists a total martingale d′ such that Succ(d) ∩ π̄(C) = Succ(d′) ∩ π̄(C).
Thus, d′ succeeds on π̄(A), or equivalently, b′ = (d′, π) succeeds on A.
Thus b′ is as desired. ut

Proof (of Theorem 16). Again, this proof is a variant of the proof of The-
orem 4: we add strategies one by one, diagonalizing, at each stage, against
a finite weighted sum of total monotonic strategies (i.e. martingales). Of
course, not all strategies have this property, but we can reduce to this case
using the techniques we presented above. Suppose that in the construction
of our sequence A, we have already constructed an initial segment wk,
and that up to this stage we played against a weighted sum of k total
martingales

Dk =
k∑
i=1

αi di

where the di are total computable martingales, ensuring that D(u) < 2 for
all prefix u of w. Suppose we want to introduce a new strategy b = (d, π).

18

There are three cases:

Case 0: the new strategy is not valid, i.e. π is not a permutation. In this
case, we just add one bit of extra information to record this, and ignore b
from now on, i.e. we set wk+1 = wk, dk+1 = 0 (the zero martingale), and
Dk+1 = Dk + dk+1 = Dk.

Case 1: the strategy b is indeed a partial computable permutation strategy,
and there exists an extension w′ of w such that Dk(u) < 2 for all prefixes u
of w′, and b diverges on w′. In this case, we simply take w′ as our new
prefix of A, as it both diagonalizes against D, and defeats b (since b
diverges on w′, it will not win against any possible extension of w′). We
can thus ignore b from that point on, so we set wk+1 = w′, dk+1 = 0 and
Dk+1 = Dk + dk+1 = Dk.

Case 2: if we are not in one of the two previous cases, this means that
our strategy b = (d, π) is a partial computable permutation strategy, and
that b is total on the whole Π0

1 class

Ck = [wk] ∩ {X ∈ 2ω | ∀nDk(X � n) < 2}

Thus, by Lemma 18, there exists a total computable permutation strat-
egy b′ such that Succ(b) ∩ Ck = Succ(b′) ∩ Ck. And by Theorem 5, there
exists a total computable martingale d′′ such that Succ(b′) ⊆ Succ(d′′).
Thus, we can replace b by d′′, and defeating d′′ will be enough to defeat b
as long as the sequence we construct is in Ck. We thus set dk+1 = d′′,
wk+1 = wk and

Dk+1 =
k+1∑
i=1

αi di

where αk+1 is sufficiently small to have Dk+1(wk+1) < 2.

Once we have added a new monotonic martingale, we (as usual) com-
putably find an extension w′′ of wk+1, ensuring that Dk+1(u) < 2 for all
prefix u of w′′, taking w′′ long enough to have C (w′′ | |w′′|) ≤ h(|w′′|).
We then set wk+1 = w′′, then add a k + 2-th strategy and so on.

Note that since w′′ can be chosen arbitrarily large, if we have fixed a
computable susbet S of N, we can also ensure that |w′′| belong to S if we
like.

19

It is clear that the infinite sequence A constructed via this process satisfies

C (A � n | n) ≤ h(n)

for infinitely many n (and, since Case 2 happens infinitely often, if we fix
a given computable set S, we can ensure that infinitely many of such n
belong to S). To see that it belongs to PPR, we notice that since for
all k, Dk+1 ≥ Dk and wk v wk+1, we have Ck+1 ⊆ Ck and thus A ∈

⋂
k Ck.

Now, given a total computable strategy b = (d, π), let k be the stage
where b was considered, and replaced by the martingale dk. Since by
construction of A, dk+1 does not win against A and by definition of dk,
Succ(b) ∩ Ck ⊆ Succ(dk) ∩ Ck, it follows that A /∈ Succ(b). ut

Now that we have assembled all our tools, we can easily prove the desired
results.

Theorem 19. The following statements hold.

1. PPR 6⊆ TIR
2. TIR 6⊆ PMR
3. PMR 6⊆ PPR

From these results it easily follows that in Figure 2 no inclusion holds
except those indicated and those implied by transitivity.

Proof. 1. Choose a computable sequence {nk}k fulfilling the requirements
of Theorem 9 such that C(k) ≤ log lognk for all k. The members of
this set then form a computable set S. Use Theorem 16 to construct
a sequence A ∈ PPR such that C(A � n | n) < log logn at infinitely
many places in S. We then have for infinitely many k

C(A � nk | k) ≤ C(A � nk) ≤ C(A � nk | nk)+2 log log nk ≤ 3 log log nk,

so A cannot be in TIR according to Theorem 9.
2. Follows immediately from Theorems 12 and 13.
3. Follows immediately from Theorems 14 and 15. ut

20

monotonic permutation injection

total TMR = TPR) TIR

(((

partial PMR) PPR) PIR

Fig. 2. Assembled class inclusion results

References

1. Harry Buhrman, Dieter van Melkebeek, Kenneth Regan, D. Sivakumar, and Martin
Strauss. A generalization of resource-bounded measure, with application to the
BPP vs. EXP problem. SIAM Journal of Computing, 30(2):576–601, 2000.

2. Rod Downey and Denis Hirschfeldt. Algorithmic Randomness. Springer, to appear.
3. Bart Kastermans and Steffen Lempp. Comparing notions of randomness.

Manuscript, 2008.
4. James Lathrop and Jack Lutz. Recursive computational depth. Information and

Computation, 153(1):139–172, 1999.
5. Ming Li and Paul Vitányi. Kolmogorov Complexity and Its Applications. Springer,

2008.
6. Wolfgang Merkle. The Kolmogorov-Loveland stochastic sequences are not closed

under selecting subsequences. Journal of Symbolic Logic, 68:1362–1376, 2003.
7. Wolfgang Merkle. The complexity of stochastic sequences. Journal of Computer

and System Sciences, 74(3):350–357, 2008.
8. Wolfgang Merkle, Joseph S. Miller, André Nies, Jan Reimann, and Frank Stephan.

Kolmogorov-Loveland randomness and stochasticity. Annals of Pure and Applied
Logic, 138(1-3):183–210, 2006.

9. Joseph Miller and André Nies. Randomness and computability: open questions.
Bulletin of Symbolic Logic, 12(3):390–410, 2006.

10. Andrei A. Muchnik, Alexei Semenov, and Vladimir Uspensky. Mathematical
metaphysics of randomness. Theoretical Computer Science, 207(2):263–317, 1998.

11. André Nies. Computability and Randomness. Oxford University Press, 2009.

21

