
ar
X

iv
:1

00
6.

49
23

v1
 [

cs
.C

C
]

 2
5

Ju
n

20
10

Complexity Classifications for Propositional

Abduction in Post’s Framework∗

Nadia Creignou1, Johannes Schmidt1, Michael Thomas2

1 LIF, UMR CNRS 6166, Aix-Marseille Université
163, Avenue de Luminy, 13288 Marseille Cedex 9, France

creignou@lif.univ-mrs.fr

johannes.schmidt@lif.univ-mrs.fr

2 Institut für Theoretische Informatik, Gottfried Wilhelm Leibniz Universität
Appelstr. 4, 30167 Hannover, Germany

thomas@thi.uni-hannover.de

Abstract. In this paper we investigate the complexity of abduction, a
fundamental and important form of non-monotonic reasoning. Given a
knowledge base explaining the world’s behavior it aims at finding an
explanation for some observed manifestation. In this paper we consider
propositional abduction, where the knowledge base and the manifesta-
tion are represented by propositional formulae. The problem of deciding
whether there exists an explanation has been shown to be Σp

2-complete
in general. We focus on formulae in which the allowed connectives are
taken from certain sets of Boolean functions. We consider different vari-
ants of the abduction problem in restricting both the manifestations and
the hypotheses. For all these variants we obtain a complexity classifica-
tion for all possible sets of Boolean functions. In this way, we identify
easier cases, namely NP-complete, coNP-complete and polynomial cases.
Thus, we get a detailed picture of the complexity of the propositional
abduction problem, hence highlighting sources of intractability. Further,
we address the problem of counting the explanations and draw a com-
plete picture for the counting complexity.

Keywords: abduction, computational complexity, Post’s lattice, propo-
sitional logic, boolean connective

∗ Supported by ANRAlgorithms and complexity 07-BLAN-0327-04 and DFG grant VO
630/6-1. An earlier version appeared in the Proc. of 12th International Conference

on the Principles of Knowledge Representation and Reasoning, KR’2010, Toronto,
Canada.

http://arxiv.org/abs/1006.4923v1
creignou@lif.univ-mrs.fr
johannes.schmidt@lif.univ-mrs.fr
thomas@thi.uni-hannover.de

1 Introduction

This paper is dedicated to the computational complexity of abduction, a funda-
mental and important form of non-monotonic reasoning. Given a certain consis-
tent knowledge about the world, abductive reasoning is used to generate explana-
tions (or at least telling if there is one) for observed manifestations. Nowadays
abduction has taken on fundamental importance in Artificial Intelligence and
has many application areas spanning medical diagnosis [BATJ89], text analy-
sis [HSAM93], system diagnosis [SW01], configuration problems [AFM02], tem-
poral knowledge bases [BL00] and has connections to default reasoning [SL90].

There are several approaches to formalize the problem of abduction. In this
paper, we focus on logic based abduction in which the knowledge base is given as
a set Γ of propositional formulae. We are interested in deciding whether there
exists an explanation E, i.e., a set of literals consistent with Γ such that Γ and
E together entail the observation.

From a complexity theoretic viewpoint, the abduction problem is very hard
since it is Σp

2-complete and thus situated at the second level of the polynomial
hierarchy [EG95]. This intractability result raises the question for restrictions
leading to fragments of lower complexity. Several such restrictions have been
considered in previous works. One of the most famous amongst those is Schaefer’s
framework, where formulae are restricted to generalized conjunctive normal form
with clauses from a fixed set of relations [CZ06, NZ05, NZ08].

A similar yet different procedure is to rather require formulae to be con-
structed from a restricted set of Boolean functions B. Such formulae are called
B-formulae. This approach has first been taken by Lewis, who showed that the
satisfiability problem is NP-complete if and only if this set of Boolean functions
has the ability to express the negation of implication connective 6→ [Lew79].
Since then, this approach has been applied to a wide range of problems in-
cluding equivalence and implication problems [Rei03, BMTV09a], satisfiability
and model checking in modal and temporal logics [BHSS06, BSS+08], default
logic [BMTV09b], and circumscription [Tho09], among others.

We follow this approach and show that Post’s lattice allows to completely
classify the complexity of propositional abduction for several variants and all
possible sets of allowed Boolean functions. We consider two main variants of the
abduction problem. In the first one we may build explanations from positive
and negative literals. We refer to this problem as symmetric abduction, Abd for
short. The second variant, P-Abd, is the so-called positive abduction where we
allow only positive literals in the explanations.

We first examine the symmetric variant in the case where the representation
of the manifestation is a positive literal. We show that depending on the set
B of allowed connectives the abduction problem is either Σp

2-complete, or NP-
complete, or in P and ⊕Logspace-hard, or in Logspace. More precisely, we
prove that the complexity of this abduction problem is Σp

2-complete as soon as B
can express one of the functions x∨(y∧¬z), x∧(y∨¬z) or (x∧y)∨(x∧¬z)∨(y∧¬z).
It drops to NP-complete when all functions in B are monotonic and have the abil-
ity to express one of the functions x∨(y∧z), x∧(y∨z) or (x∧y)∨(x∧z)∨(y∧z).

2

The problem becomes solvable in polynomial time and is ⊕Logspace-hard if
B-formulae may depend on more than one variable while being representable
as linear equations. Finally the complexity drops to Logspace in all remain-
ing cases. We then complete our study of symmetric abduction with analogous
complexity classifications of the variants of Abd obtained by restricting the
manifestation to be respectively a clause, a term or a B-formula.

These results are subsequently extended to positive abduction. An overview
can be found in Figures 1 and 2.

Please note that in [CZ06], the authors obtained a complexity classification
of the abduction problem in the so-called Schaefer’s framework. The two clas-
sifications are in the same vein since they classify the complexity of abduction
for local restrictions on the knowledge base. However the two results are incom-
parable in the sense that no classification can be deduced from the other. They
only overlap in the particular case of the linear connective ⊕, for which both
types of sets of formulae can be seen as systems of linear equations. This special
abduction case has been shown to be decidable in polynomial time in [Zan03].

Besides the decision problem, another natural question is concerned with the
number of explanations. This problem refers to the counting problem for abduc-
tion. The study of the counting complexity of abduction has been started by
Hermann and Pichler ([HP07]). We prove here a trichotomy theorem showing
that counting the full explanations of symmetric abduction is either #·coNP-
complete or #P-complete or in FP, depending on the set B of allowed connec-
tives. We also consider the counting problem associated with positive abduction,
for which we distinguish two frequently used settings: counting either all pos-
itive explanations, or counting the subset-minimal. For both formalizations of
the counting problem, we get a potentially dichotomous classification with one
open case.

The rest of the paper is structured as follows. We first give the necessary
preliminaries in Section 2. The abduction problems considered herein are defined
in Section 3. In Section 4 we classify the complexity of symmetric abduction,
where we first consider the case where the manifestation is a single positive literal
(Section 4.1), and then turn to variants in which the manifestations are clauses,
terms and restricted formulae (Section 4.2). Section 5 then studies the complexity
of positive abduction. An overview of these results is given in Section 6. Finally,
Section 7 is dedicated to the counting problem, and Section 8 contains some
concluding remarks.

2 Preliminaries

Complexity Theory We require standard notions of complexity theory. For the de-
cision problems the arising complexity degrees encompass the classes Logspace,
P, NP, and Σp

2 . For more background information, the reader is referred to [Pap94].
We furthermore require the class ⊕Logspace defined as the class of languages L
such that there exists a nondeterministic logspace Turing machine that exhibits
an odd number of accepting paths if and only if x ∈ L, for all x [BDHM92].

3

It holds that Logspace ⊆ ⊕Logspace ⊆ P. For our hardness results we em-
ploy logspace many-one reductions, defined as follows: a language A is logspace
many-one reducible to some language B (written A ≤log

m B) if there exists a
logspace-computable function f such that x ∈ A if and only if f(x) ∈ B.

A counting problem is represented using a witness function w, which for every
input x returns a finite set of witnesses. This witness function gives rise to the
following counting problem: given an instance x, find the cardinality |w(x)| of
the witness set w(x). The class #P is the class of counting problems naturally
associated with decision problems in NP. According to [HV95] if C is a complexity
class of decision problems, we define #·C to be the class of all counting problems
whose witness function is such that the size of every witness y of x is polynomially
bounded in the size of x, and checking whether y ∈ w(x) is in C. Thus, we have
#P = #·P and #P ⊆ #·coNP. Completeness of counting problems is usually
proved by means of Turing reductions. A stronger notion is the parsimonious
reduction where the exact number of solutions is conserved by the reduction
function.

Propositional formulae We assume familiarity with propositional logic. The set
of all propositional formulae is denoted by L. A model for a formula ϕ is a
truth assignment to the set of its variables that satisfies ϕ. Further we denote
by ϕ[α/β] the formula obtained from ϕ by replacing all occurrences of α with
β. For a given set Γ of formulae, we write Vars(Γ) to denote the set of variables
occurring in Γ. We identify finite Γ with the conjunction of all the formulae in Γ,
∧

ϕ∈Γ ϕ. Naturally, Γ[α/β] then stands for
∧

ϕ∈Γ ϕ[α/β]. For any formula ϕ ∈ L,
we write Γ |= ϕ if Γ entails ϕ, i.e., if every model of Γ also satisfies ϕ.

A literal l is a variable x or its negation ¬x. Given a set of variables V , Lits(V)
denotes the set of all literals formed upon the variables in V , i.e., Lits(V) :=
V ∪{¬x | x ∈ V }. A clause is a disjunction of literals and a term is a conjunction
of literals.

Clones of Boolean Functions A clone is a set of Boolean functions that is
closed under superposition, i.e., it contains all projections (that is, the functions
f(a1, . . . , an) = ak for all 1 ≤ k ≤ n and n ∈ N) and is closed under arbitrary
composition. Let B be a finite set of Boolean functions. We denote by [B] the
smallest clone containing B and call B a base for [B]. In 1941 Post identified the
set of all clones of Boolean functions [Pos41]. He gave a finite base for each of
the clones and showed that they form a lattice under the usual ⊆-relation, hence
the name Post’s lattice (see, e.g., Figure 1). To define the clones we introduce
the following notions, where f is an n-ary Boolean function:

– f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
– f is monotonic if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
– f is c-separating of degree k if for all A ⊆ f−1(c) of size |A| = k there exists

an i ∈ {1, . . . , n} such that (a1, . . . , an) ∈ A implies ai = c, c ∈ {0, 1}.
– f is c-separating if f is c-separating of degree |f−1(c)|.
– f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) := ¬f(¬x1, . . . ,¬xn).

4

– f is affine if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1}.

A list of all clones with definitions and finite bases is given in Table 1 on
page 24. A propositional formula using only functions from B as connectives is
called a B-formula. The set of all B-formulae is denoted by L(B).

Let f be an n-ary Boolean function. A B-formula ϕ such that Vars(ϕ) =
{x1, . . . , xn, y1, . . . , ym} is aB-representation of f if for all a1, . . . , an, b1, . . . , bm ∈
{0, 1} it holds that f(a1, . . . , an) = 1 if and only if every σ : Vars(ϕ) −→
{0, 1} with σ(xi) = ai and σ(yi) = bi for all relevant i satisfies ϕ. Such a
B-representation exists for every f ∈ [B]. Yet, it may happen that the B-
representation of some function uses some input variable more than once.

Example 2.1. Let h(x, y) = x ∧ ¬y. An {h}-representation of the function x ∧ y
is h(x, h(x, y)).

3 The Abduction Problem

Let B be a finite set of Boolean functions. We are interested in the propositional
abduction problem parameterized by the set B of allowed connectives. We define
the abduction problem for B-formulae as

Problem: Abd(B)

Instance: P = (Γ, A, ϕ), where
– Γ ⊆ L(B) is a set of B-formulae,

– A ⊆ Vars(Γ) is a set of variables,

– ϕ ∈ L is a formula with Vars(ϕ) ⊆ Vars(Γ) \A.

Question: Is there a set E ⊆ Lits(A) such that Γ∧E is satisfiable and
Γ ∧E |= ϕ (or equivalently Γ ∧ E ∧ ¬ϕ is unsatisfiable)?

The set Γ represents the knowledge base. The set A is called the set of hypotheses
and ϕ is called manifestation or query. Furthermore, if such a set E exists, it is
called an explanation or a solution of the abduction problem. It is called a full

explanation if Vars(E) = A. Observe that every explanation can be extended
to a full one. We will consider several restrictions of the manifestations of this
problem. To indicate them, we introduce a second argument M meaning that ϕ
is required to be

– Q (resp. PQ, NQ): a single literal (resp. positive literal, negative literal),
– C (resp. PC, NC): a clause (resp. positive clause, negative clause),
– T (resp. PT, NT): a term (resp. positive term, negative term),
– L(B): a B-formula.

We refer to the above defined abduction problem as symmetric abduction, since
every variable of the hypotheses Amay be taken positive or negative to construct
an explanation. We will also consider positive abduction, where we are interested
in purely positive explanations only. To indicate this, we add the prefix “P-”.

5

Thus, for an instance (Γ, A, ϕ) of P-Abd(B,M), every solution E of (Γ, A, ϕ)
has to satisfy E ⊆ A.

The following important lemma makes clear the role of the constants in our
abduction problem. It often reduces the number of cases to be considered.

Lemma 3.1. Let B be a finite set of Boolean functions.

1. If M ∈ {Q,C,T,L(B)}, then

Abd(B,M) ≡log
m Abd(B ∪ {1},M),

P-Abd(B,M) ≡log
m P-Abd(B ∪ {1},M).

2. If M ∈ {Q,C,T} and ∨ ∈ [B], then

Abd(B,M) ≡log
m Abd(B ∪ {0},M).

Proof. To reduce Abd(B ∪ {1},M) to Abd(B,M) we transform any instance
of the first problem in replacing every occurrence of 1 by a fresh variable t and
adding the unit clause (t) to the knowledge base. The same reduction works for
P-Abd. To prove Abd(B ∪ {0},M) ≡log

m Abd(B,M), let P = (Γ, A, ψ) be an
instance of the first problem and f be a fresh variable. Since M ∈ {Q,C,T}, we
can suppose w.l.o.g. that ψ does not contain 0. We map P to P ′ = (Γ′, A′, ψ),
where Γ′ is the B-representation of {ϕ[0/f] ∨ f | ϕ ∈ Γ} and A′ = A ∪ {f}. ⊓⊔

Of course this lemma holds also for purely positive/negative queries, clauses
or terms, i.e., Q,C,T can be replaced by PQ,PC,PT or NQ,NC,NT, respec-
tively.

Observe that if B1 and B2 are two sets of Boolean functions such that B1 ⊆
[B2], then every function of B1 can be expressed by a B2-formula, namely by its
B2-representation. This way there is a canonical reduction between Abd(B1,M)
and Abd(B2,M) if B1 ⊆ [B2]: replace all B1-connectives by their B2-representa-
tion. Note that this reduction is not necessarily polynomial: Since the B2-representation
of some function may use some input variable more than once, the formula size
may grow exponentially. Nevertheless we will use this reduction very frequently,
avoiding an exponential blow-up by special structures of the B1-formulae.

4 The complexity of Abd(B)

We commence with the symmetric abduction problem Abd(B) The results of
this section are summarized in Figure 1. We will first focus on the case where ϕ
is a single positive literal, thus discussing the problem Abd(B,PQ).

4.1 The complexity of Abd(B,PQ)

Theorem 4.1. Let B be a finite set of Boolean functions. Then the symmetric

abduction problem for propositional B-formulae with a positive literal manifesta-

tion, Abd(B,PQ), is

6

1. Σp
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. NP-complete if S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M,

3. in P and ⊕Logspace-hard if L2 ⊆ [B] ⊆ L, and

4. in Logspace in all other cases.

Remark 4.2. For such a classification a natural question is: given B, how hard is
it to determine the complexity of Abd(B,PQ)? Solving this task requires check-
ing whether certain clones are included in [B] (for lower bounds) and whether
B itself is included in certain clones (for upper bounds). As shown in [Vol09],
the complexity of checking whether certain Boolean functions are included in a
clone depends on the representation of the Boolean functions. If all functions
are given by their truth table then the problem is in quasi-polynomial-size AC0,
while if the input functions are given in a compact way, i.e., by circuits, then
the above problem becomes coNP-complete.

We split the proof of Theorem 4.1 into several propositions.

Proposition 4.3. Let B be a finite set of Boolean functions such that [B] ⊆ E

or [B] ⊆ N or [B] ⊆ V. Then Abd(B,PQ) ∈ Logspace.

Proof. Let P = (Γ, A, q) be an instance of Abd(B,PQ).
For [B] = N or E, Γ is equivalent to a set of literals, hence P has the empty

set as a solution if P possesses a solution at all. Finally notice that satisfiability
of a set of N-formulae can be tested in logarithmic space [Sch05].

For [B] = V each formula ϕ ∈ Γ is equivalent to either a constant or disjunc-
tion. It holds that (Γ, A, q) has a solution if and only if Γ contains a formula
ϕ ≡ q ∨ x1 ∨ · · · ∨ xk such that {x1, . . . xk} ⊆ A, and Γ[x1/0, . . . , xk/0] is satis-
fiable. This can be tested in logarithmic space, as substitution of symbols and
evaluation of V-formulae can all be performed in logarithmic space. ⊓⊔

Proposition 4.4. Let B be a finite set of Boolean functions such that L2 ⊆
[B] ⊆ L. Then Abd(B,PQ) is ⊕Logspace-hard and contained in P.

Proof. In this case, deciding whether an instance of Abd(B,PQ) has a solution
logspace reduces to the problem of deciding whether a propositional abduction
problem in which the knowledge base is a set of linear equations has a solution.
This has been shown to be decidable in polynomial time in [Zan03].

As for the ⊕Logspace-hardness, let B be such that [B] = L2. Consider the
⊕Logspace-complete problem to determine whether a system of linear equa-
tions S over GF (2) has a solution [BDHM92]. Note that ⊕Logspace is closed
under complement, so deciding whether such a system has no solution is also
⊕Logspace-complete. Let S = {s1, . . . , sm} be such a system of linear equations
over variables {x1, . . . , xn}. Then, for all 1 ≤ i ≤ m, the equation si is of the form
xi1 + · · · + xini

= ci (mod 2) with ci ∈ {0, 1} and i1, . . . , ini
∈ {1, . . . , n}. We

map S to a set of affine formulae Γ = {ϕ1, . . . , ϕm} over variables {x1, . . . , xn, q}
via

ϕi := xi1 ⊕ · · · ⊕ xini
⊕ 1 if ci = 0 and

ϕi := xi1 ⊕ · · · ⊕ xini
if ci = 1.

7

Now define

Γ′ := {ϕi ⊕ q | ϕi ∈ Γ is such that ϕi(1, . . . , 1) = 0}

∪ {ϕi | ϕi ∈ Γ is such that ϕi(1, . . . , 1) = 1}.

Γ′ is obviously satisfied by the assignment mapping all propositions to 1. It
furthermore holds that S has no solution if and only if Γ′ ∧ ¬q is unsatisfiable.
Hence, we obtain that S has no solution if and only if the propositional abduction
problem (Γ′, ∅, q) has an explanation.

It remains to transform Γ′ into a set of B-formulae in logarithmic space. Since
[B] = L2, we have x⊕ y ⊕ z ∈ [B]. We insert parentheses in every formula ϕ of
Γ′ in such a way that we get a ternary ⊕-tree of logarithmic depth whose leaves
are either a proposition or the constant 1. Then we replace every node ⊕ by its
equivalent B-formula. Thus we get a (B ∪{1})-formula of size polynomial in the
size of the original one. Lemma 3.1 allows to conclude. ⊓⊔

Observe that in the cases [B] ⊆ L, [B] ⊆ E, and [B] ⊆ V, the abduction prob-
lem for B-formulae is self-reducible. Roughly speaking, this means that given an
instance P and a literal l, we can efficiently compute an instance P ′ such that
the question whether there exists an explanation E with l ∈ E reduces to the
question whether P ′ admits solutions. It is well-known that for self-reducible
problems whose decision problem is in P, the lexicographic first solution can
be computed in FP. It is an easy exercise to extend this algorithm to enumer-
ate all solutions in lexicographic order with polynomial delay and polynomial
space. Thus, if [B] ⊆ L or [B] ⊆ E or [B] ⊆ V, the explanations of Abd(B,PQ)
can be enumerated with polynomial delay and polynomial space according to
Proposition 4.3 and 4.4.

Proposition 4.5. Let B be a finite set of Boolean functions such that S00 ⊆
[B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M. Then Abd(B,PQ) is NP-complete.

Proof. We first show that Abd(B,PQ) is efficiently verifiable. Let P = (Γ, A, q)
be an Abd(B,PQ)-instance and E ⊆ Lits(A) be a candidate for an explanation.
Define Γ′ as the set of formulae obtained from Γ by replacing each occurrence
of the proposition x with 0 if ¬x ∈ E, and each occurrence of the proposition x
with 1 if x ∈ E. It holds that E is a solution for P if Γ′ is satisfiable and Γ′[q/0]
is not. These tests can be performed in polynomial time, because Γ′ is a set of
monotonic formulae [Lew79]. Hence, Abd(B,PQ) ∈ NP.

Next we give a reduction from the NP-complete problem 2-In-3-Sat, i.e.,
the problem to decide whether there exists an assignment that satisfies exactly
two propositions in each clause of a given formula in conjunctive normal form
with exactly three positive propositions per clause, see [Sch78]. Let ϕ :=

∧

i∈I ci
with ci = xi1 ∨ xi2 ∨ xi3, i ∈ I, be the given formula. We map ϕ to the following
instance P = (Γ, A, q). Let qi, i ∈ I, be fresh, pairwise distinct propositions and

8

let A := Vars(ϕ) ∪ {qi | i ∈ I}. The set Γ is defined as

Γ := {ci | i ∈ I} (1)

∪ {xi1 ∨ xi2 ∨ qi, xi1 ∨ xi3 ∨ qi, xi2 ∨ xi3 ∨ qi | i ∈ I} (2)

∪ {
∨

i∈I

∧3
j=1 xij ∨

∨

i∈I qi ∨ q}. (3)

We show that there is an assignment that sets to true exactly two propositions
in each clause of ϕ if and only if P has a solution. First, suppose that there exists
an assignment σ such that for all i ∈ I, there is a permutation πi of {1, 2, 3}
such that σ(xiπi(1)) = 0 and σ(xiπi(2)) = σ(xiπi(3)) = 1. Thus (1) and (2) are
satisfied, and (3) is equivalent to

∨

i∈I qi ∨ q. From this, it is readily observed
that {¬x | σ(x) = 0} ∪ {¬qi | i ∈ I} is a solution to P .

Conversely, suppose that P has an explanation E that is w.l.o.g. full. Then
Γ ∧ E is satisfiable and Γ ∧ E |= q. Let σ : Vars(Γ) −→ {0, 1} be an assignment
that satisfies Γ ∧ E. Then, for any x ∈ A, σ(x) = 0 if ¬x ∈ E, and σ(x) = 1
otherwise. Since Γ ∧ E entails q and as the only occurrence of q is in (3), we
obtain that σ sets to 0 each qi and at least one proposition in each clause of ϕ.
Consequently, from (2) it follows that σ sets to 1 at least two propositions in
each clause of ϕ. Therefore, σ sets to 1 exactly two propositions in each clause
of ϕ.

It remains to show that P can be transformed into an Abd(B,PQ)-instance
for all considered B. Observe that ∨ ∈ [B∪{1}] and [S00∪{0, 1}] = [D2∪{0, 1}] =
[S10 ∪ {0, 1}] = M. Therefore due to Lemma 3.1 it suffices to consider the case
[B] = M. Using the associativity of ∨ rewrite (3) as an ∨-tree of logarithmic depth
and replace all the connectives in Γ by their B-representation (∨,∧ ∈ [B]). ⊓⊔

Proposition 4.6. Let B be a finite set of Boolean functions such that S02 ⊆ [B]
or S12 ⊆ [B] or D1 ⊆ [B]. Then Abd(B,PQ) is Σp

2-complete.

Proof. Membership in Σp
2 is easily seen to hold: given an instance (Γ, A, q), guess

an explanation E and subsequently verify that Γ∧E is satisfiable and Γ∧E∧¬q
is not.

Observe that ∨ ∈ [B ∪ {1}]. By virtue of Lemma 3.1 and the fact that
[S02 ∪{0, 1}] = [S12 ∪ {0, 1}] = [D1 ∪ {0, 1}] = BF, it suffices to consider the case
[B] = BF. In [EG95] it has been shown that the propositional abduction prob-
lem remains Σp

2-complete when the knowledge base Γ is a set of clauses. From
such an instance (Γ, A, q) we build an instance of Abd(B,PQ) by rewriting first
each clause as an ∨-tree of logarithmic depth and then replacing the occurring
connectives ∨ and ¬ by their B-representation, thus concluding the proof. ⊓⊔

4.2 Variants of Abd(B)

We now consider the symmetric abduction problem for different variants on the
manifestations: clause, term and B-formula. Let us first make a remark on the
cases where the manifestation is a (not necessarily positive) literal or a negative
literal.

9

Remark 4.7. Abd(B,Q) obeys the same classification as Abd(B,PQ) since all
bounds, upper and lower, easily carry over. For Abd(B,NQ) the problem be-
comes trivial if [B] ⊆ M. For [B] ⊆ L Abd(B,NQ) is solvable in polynomial time
according to [Zan03]. For the remaining clones (i.e., for S02 ⊆ [B], S12 ⊆ [B],
and D1 ⊆ [B]), we can again easily adapt the proofs of Abd(B,PQ). This way
we obtain a dichotomous classification for Abd(B,NQ) into P-complete and
Σp

2-complete cases; thus skipping the intermediate NP level.

For clauses, it is obvious that Abd(B,PQ) ≤log
m Abd(B,PC). Therefore, all

hardness results continue to hold for the Abd(B,PC). It is an easy exercise to
prove that all algorithms that have been developed for a single query can be
naturally extended to clauses. Therefore, the complexity classifications for the
problems Abd(B,PC), Abd(B,C) and Abd(B,NC) are exactly the same as for
Abd(B,PQ), Abd(B,Q) and Abd(B,NQ), respectively.

Theorem 4.8. Let B be a finite set of Boolean functions. Then the symmetric

abduction problem for propositional B-formulae with a positive clause manifes-

tation, Abd(B,PC), is

1. Σp
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. NP-complete if S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M,

3. in P and ⊕Logspace-hard if L2 ⊆ [B] ⊆ L, and

4. in Logspace in all other cases.

Notably, we will prove in the next section that allowing for terms as manifesta-
tions increases the complexity for the clones V (from membership in Logspace

to NP-completeness), while allowing B-formulae as manifestations makes the
classification dichotomous again: all problems become either P- or Σp

2-complete.

The complexity of Abd(B,PT)

Proposition 4.9. Let B be a finite set of Boolean functions such that V2 ⊆
[B] ⊆ V. Then Abd(B,PT) is NP-complete.

Proof. Let B be a finite set of Boolean functions such that V2 ⊆ [B] ⊆ V and
let P = (Γ, A, t) be an instance of Abd(B,PT). Hence, Γ is a set of B-formulae
and t is a term, t =

∧n
i=1 li. Observe that E is a solution for P if Γ ∧ E is

satisfiable and for every i = 1, . . . , n, Γ∧E ∧¬li is not. Given a set E ⊆ Lits(A),
these verifications, which require substitution of symbols and evaluation of an
∨-formula, can be performed in polynomial time, thus proving membership in
NP.

To prove NP-hardness, we give a reduction from 3Sat. Let ϕ be a 3-CNF-
formula, ϕ :=

∧

i∈I ci. Let x1, . . . , xn enumerate the variables occurring in ϕ.
Let x′1, . . . , x

′
n and q1, . . . , qn be fresh, pairwise distinct variables. We map ϕ to

10

P = (Γ, A, t), where

Γ := {ci[¬x1/x
′
1, . . . ,¬xn/x

′
n] | i ∈ I}

∪ {xi ∨ x
′
i, xi ∨ qi, x

′
i ∨ qi | 1 ≤ i ≤ n},

A := {x1, . . . , xn, x
′
1, . . . , x

′
n},

t := q1 ∧ · · · ∧ qn.

We show that ϕ is satisfiable if and only if P has a solution. First assume that
ϕ is satisfied by the assignment σ : {x1, . . . , xn} −→ {0, 1}. Define E := {¬xi |
σ(xi) = 0} ∪ {¬x′i | σ(xi) = 1} and σ̂ as the extension of σ mapping σ̂(x′i) =
¬σ(xi) and σ̂(qi) = 1 for all 1 ≤ i ≤ n. Obviously, σ̂ |= Γ ∧ E. Furthermore,
Γ ∧E |= qi for all 1 ≤ i ≤ n, because any satisfying assignment of Γ ∧ E sets to
0 either xi or x

′
i and thus {xi ∨ qi, x′i ∨ qi} |= qi. Hence E is an explanation for

P .
Conversely, suppose that P has a full explanation E. The facts that Γ ∧

E |= q1 ∧ · · · ∧ qn and that each qi occurs only in the clauses xi ∨ qi, x
′
i ∨ qi

enforce that, for every i, E contains ¬xi or ¬x′i. Because of the clause xi ∨ x′i,
it cannot contain both. Therefore in E the value of x′i is determined by the
value of xi and is its dual. From this it is easy to conclude that the assignment
σ : {x1, . . . , xn} −→ {0, 1} defined by σ(xi) = 0 if ¬xi ∈ E, and 1 otherwise,
satisfies ϕ. Finally P can be transformed into an Abd(B,PT)-instance, because
every formula in Γ is the disjunction of at most three variables and ∨ ∈ [B]. ⊓⊔

Theorem 4.10. Let B be a finite set of Boolean functions. Then the symmetric

abduction problem for propositional B-formulae with a positive term manifesta-

tion, Abd(B,PT), is

1. Σp
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. NP-complete if V2 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M,

3. in P and ⊕Logspace-hard if L2 ⊆ [B] ⊆ L, and

4. in Logspace in all other cases.

Proof. 1. The Σp
2-hardness follows directly from Proposition 4.6.

2. For the clones V2 ⊆ [B] ⊆ V, see Proposition 4.9. In all other clones, the
NP-hardness follows from a straightforward generalization of the proof of
Proposition 4.5.

3. Membership in P follows directly from [NZ08, Theorem 67], the ⊕Logspace-
hardness from Proposition 4.4.

4. Analogous to Proposition 4.3. ⊓⊔

Remark 4.11. All upper and lower bounds for Abd(B,PT) easily carry over
to Abd(B,T). It is also easily seen that Abd(B,NT) is classified exactly as
Abd(B,NQ), see Remark 4.7.

The complexity of Abd(B,L(B))

11

Proposition 4.12. Let B be a finite set of Boolean functions such that S00 ⊆
[B] or S10 ⊆ [B] or D2 ⊆ [B]. Then Abd(B,L(B)) is Σp

2-complete.

Proof. We prove Σp
2-hardness by giving a reduction from the Σp

2-hard prob-
lem Qsat2 [Wra77]. Let an instance of Qsat2 be given by a closed formula
χ := ∃x1 · · · ∃xn∀y1 · · · ∀ymϕ with ϕ being a 3-DNF-formula. First observe that
∃x1 · · · ∃xn∀y1 · · · ∀ymϕ is true if and only if there exists a consistent set X ⊆
Lits({x1, . . . , xn}) such that X ∩ {xi,¬xi} 6= ∅, for all 1 ≤ i ≤ n, and ¬X ∨ ϕ is
(universally) valid (or equivalently ¬ϕ ∧X is unsatisfiable).

Denote by ϕ the negation normal form of ¬ϕ and let ϕ′ be obtained from
ϕ by replacing all occurrences of ¬xi with a fresh proposition x′i, 1 ≤ i ≤ n,
and all occurrences of ¬yi with a fresh proposition y′i, 1 ≤ i ≤ m. That is,
ϕ′ ≡ ϕ[¬x1/x′1, . . . ,¬xn/x

′
n,¬y1/y

′
1, . . . ,¬ym/y

′
m]. Thus ϕ′ =

∧

i∈I c
′
i, where

every c′i is a disjunction of three propositions. To χ we associate the propositional
abduction problem P = (Γ, A, ψ) defined as follows:

Γ := {c′i ∨ q | i ∈ I}

∪ {xi ∨ x
′
i | 1 ≤ i ≤ n} ∪ {yi ∨ y

′
i | 1 ≤ i ≤ m}

∪ {fi ∨ xi, ti ∨ x
′
i, fi ∨ ti | 1 ≤ i ≤ n},

A := {ti, fi | 1 ≤ i ≤ n},

ψ := q ∨
∨

1≤i≤n(xi ∧ x
′
i) ∨

∨

1≤i≤m(yi ∧ y′i).

Suppose that χ is true. Then there exists an assignment σ : {x1, . . . , xn} −→
{0, 1} such that no extension σ′ : {x1, . . . , xn} ∪ {y1, . . . , ym} −→ {0, 1} of σ
satisfies ¬ϕ. Define X as the set of literals over {x1, . . . , xn} set to 1 by σ.
Defining E := {¬fi, ti | xi ∈ X} ∪ {¬ti, fi | ¬xi ∈ X}, we obtain with abuse of
notation

Γ ∧ E ∧ ¬ψ ≡
∧

i∈I c
′
i ∧

∧

1≤i≤n(xi ⊕ x′i) ∧
∧

1≤i≤m(yi ⊕ y′i)∧
∧

1≤i≤n,σ(xi)=1 xi ∧
∧

1≤i≤n,σ(xi)=0 x
′
i

≡ ¬ϕ ∧X,

which is unsatisfiable by assumption. As Γ∧E is satisfied by any assignment
setting in addition all xi, x

′
i, 1 ≤ i ≤ n, and all yj , y

′
j, 1 ≤ i ≤ m, to 1, we have

proved that E is an explanation for P .
Conversely, suppose that P has an explanation E. Assume w.l.o.g. that E is

full. Due to the clause (fi∨ti) in Γ, we also may assume that |E∩{¬ti,¬fi}| ≤ 1
for all 1 ≤ i ≤ n.

Setting X := {xi | ¬fi ∈ E} ∪ {¬xi | ¬ti ∈ E} we now obtain
∧

1≤i≤n

(

(fi ∨

xi)∧(ti∨¬xi)∧(fi∨ti)
)

∧E ≡ X and Γ∧E∧¬ψ ≡ ¬ϕ∧X as above. Hence, ¬ϕ∧X
is unsatisfiable, which implies the existence of an assignment σ : {x1, . . . , xn} −→
{0, 1} such that no extension σ′ : {x1, . . . , xn} ∪ {y1, . . . , ym} −→ {0, 1} of σ
satisfies ¬ϕ. Therefore, we have proved that χ is true if and only if P has an
explanation.

It remains to show that P can be transformed into anAbd(B,L(B))-instance
for any relevant B. Since [S00∪{1}] = S01, [S10∪{1}] = M1, [D2∪{1}] = S201 and

12

S01 ⊆ S201 ⊆ M1, it suffices to consider the case [B] = S01 by Lemma 3.1. Observe
that x∨ (y∧z) ∈ [B]. The transformation can hence be done in polynomial time
by local replacements, rewriting ψ as

∨

1≤i≤n q ∨ (xi ∧ x
′
i)∨

∨

1≤i≤m q ∨ (yi ∧ y
′
i)

and using the associativity of ∨. ⊓⊔

Theorem 4.13. Let B be a finite set of Boolean functions. Then the symmetric

abduction problem for propositional B-formulae with a B-formula manifestation,

Abd(B,L(B)), is

1. Σp
2-complete if S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B],

2. in P and ⊕Logspace-hard if L2 ⊆ [B] ⊆ L, and

3. in Logspace in all other cases.

Proof. 1. See Proposition 4.12.
2. Membership in P follows directly from [Zan03], the ⊕Logspace-hardness

follows from Proposition 4.4.
3. Analogous to Proposition 4.3. ⊓⊔

Observe that there are no setsB of Boolean functions for whichAbd(B,L(B))
is NP-complete.

5 The complexity of P-Abd(B)

We will now study the complexity of positive abduction, in which an explanation
consists of a set of positive literals. The results of this section are summarized
in Figure 2. To begin with, note that for monotonic or 1-reproducing sets of
formulae, deciding the existence of a positive explanation reduces to a testing
whether A is one.

Lemma 5.1. For [B] ⊆ R1 or [B] ⊆ M, an instance (Γ, A, ϕ) of P-Abd(B,M)
has solutions if and only if A is a solution.

Proof. Let E ⊆ A be an arbitrary explanation for the given instance (Γ, A, ϕ).
One easily verifies that Γ ∧ A remains satisfiable if Γ ∧ E was, and Γ ∧ A ∧ ¬ϕ
remains unsatisfiable if Γ ∧ E ∧ ¬ϕ was. Conversely, if A is not an explanation,
no proper subset E ⊆ A can be an explanation either. ⊓⊔

As a consequence we will see that some of the formerly NP-complete cases
become tractable and that some of the formerly Σp

2-complete cases become coNP-
complete.

5.1 The complexity of P-Abd(B,PQ)

Proposition 5.2. Let [B] ⊆ M. Then P-Abd(B,PQ) ∈ Logspace.

Proof. According to Lemma 5.1 it suffices to test if A is a solution, that is, to
test if Γ ∧ A¬q or equivalently Γ ∧ A[q/0] is unsatisfiable. This can be done in
logarithmic space, since Γ ∧ A is a monotonic formula [Lew79]. ⊓⊔

13

Proposition 5.3. Let S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆ [B] ⊆ R1.

Then P-Abd(B,PQ) is coNP-complete.

Proof. According to Lemma 5.1 it suffices to test whether A is a solution. Since
Γ ∧A is always satisfiable, only the task of testing whether Γ ∧A ∧ ¬q is unsat-
isfiable remains. And this can be done in coNP.

Since [D1 ∪ {1}] = [S12 ∪ {1}] = R1, [S02 ∪ {1}] = S0 and S0 ⊆ R1, it
suffices to show hardness for the case S0 ⊆ [B] by Lemma 3.1. To show coNP-
hardness we give a reduction from 3Sat. Let ϕ =

∧

i∈I ci be a 3-CNF-formula,
i.e., each clause ci consists of the disjunction of exactly three literals. Since
[{→, 0}] = BF, each clause ci has a representation as a {→, 0}-formula which we
indicate by c′i. Let q be a fresh proposition. We map ϕ to (Γ, ∅, q), where we define
Γ =

⋃

i∈I c
′
i[0/q]. Note that Γ is a set of S0-formulae of polynomial size and 1-

reproducing. Let ϕ be unsatisfiable. Then Γ is satisfied by the assignment setting
to 1 all propositions and Γ∧¬q is unsatisfiable, because it is equivalent to ϕ∧¬q.
Summing up, ∅ is an explanation for (Γ, ∅, q). Conversely, let ϕ be satisfiable.
This implies that Γ ∧ ¬q is satisfiable and thus (Γ, ∅, q) has no explanations.

It remains to transform (Γ, ∅, q) into a P-Abd(B,PQ)-instance for any rele-
vant B. As → ∈ S0 ⊆ [B], this is done by replacing in Γ every occurrence of →
by its B-representation. ⊓⊔

Theorem 5.4. Let B be a finite set of Boolean functions. Then the positive

abduction problem for propositional B-formulae with a positive literal manifesta-

tion, P-Abd(B,PQ), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆ [B] ⊆ R1,

3. in P and ⊕Logspace-hard if L2 ⊆ [B] ⊆ L,

4. in Logspace in all other cases.

Proof. 1. In [NZ08], Nordh and Zanuttini prove that the abduction problem
in which the knowledge base is a set of clauses remains Σp

2-hard even if
explanations are required to comprise positive literals only. A reduction from
this problem can be done analogously to the one in Proposition 4.6.

2. See Proposition 5.3.
3. Membership in P follows from [NZ08, Theorem 66]. For the ⊕Logspace-

hardness the same reduction as in Proposition 4.4 works.
4. See Proposition 5.2. ⊓⊔

5.2 Variants of P-Abd(B)

Having examined the complexity of positive abduction for positive literal man-
ifestations, we will now consider positive abduction for manifestation that are
restricted to be respectively a clause, a term, or a B-formula. But first let us
make a remark on the complexity of positive abduction when the manifestation
is a (not necessarily positive) literal or a negative literal.

14

Remark 5.5. Again all upper and lower bounds for P-Abd(B,PQ) easily carry
over to P-Abd(B,Q). For P-Abd(B,NQ) the problem becomes trivial if [B] ⊆ R1

(Lemma 5.1). For L0 ⊆ [B] ⊆ L and L3 ⊆ [B] ⊆ L, we obtain membership in P
from [NZ08, Theorem 66]. For all remaining cases (i.e., for D ⊆ [B] and S1 ⊆ [B]),
we obtain Σp

2-completeness from an easy adaption of the first part in the proof
of Proposition 5.4.

Analogously to the symmetric case the algorithms can be extended to clauses.
Thus, P-Abd(B,PC) is classified as P-Abd(B,PQ). Similarly the classifica-
tions for P-Abd(B,C) and P-Abd(B,NC) are the same as classifications for
P-Abd(B,Q) and P-Abd(B,NQ).

Theorem 5.6. Let B be a finite set of Boolean functions. Then the positive

abduction problem for propositional B-formulae with a positive clause manifes-

tation, P-Abd(B,PC), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆ [B] ⊆ R1,

3. in P and ⊕Logspace-hard if L2 ⊆ [B] ⊆ L,

4. in Logspace in all other cases.

The Complexity of P-Abd(B,PT) The classification for positive terms is
identical to the one for a single positive literal, except for the affine clones L0,
L3, and L. For these, the complexity of P-Abd(B,PT) jump from membership
in P to NP-completeness.

Proposition 5.7. Let L0 ⊆ [B] ⊆ L or L3 ⊆ [B] ⊆ L. Then P-Abd(B,PT) is

NP-complete.

Proof. Let (Γ, A, t) with t =
∧

i∈I xi be an instance of P-Abd(B,PT). To check
whether a given E ⊆ A is an explanation, we have to test the satisfiability of Γ∧E
and the unsatisfiability of Γ∧E ∧¬xi for every i ∈ I. These tasks are equivalent
to solving systems of linear equations, which can be done in polynomial time.
The hardness follows directly from [NZ08, Theorem 70]. ⊓⊔

Theorem 5.8. Let B be a finite set of Boolean functions. Then the positive ab-

duction problem for propositional B-formulae with a positive term manifestation,

P-Abd(B,PT), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆ [B] ⊆ R1,

3. NP-complete if [B] ∈ {L, L0, L3},
4. in P and ⊕Logspace-hard if [B] ∈ {L1, L2},
5. in Logspace in all other cases.

Proof. 1. Follows from the first item of Proposition 5.4.
2. Both membership and hardness follow from Proposition 5.3.
3. See Proposition 5.7.

15

4. For the ⊕Logspace-hardness the same reduction as in Proposition 4.4 works.
Since L1 ⊆ R1, according to Lemma 5.1, it suffices to check whether A is a
solution. This task reduces to solve systems of linear equations which is in
P.

5. Analogously to Proposition 5.2. ⊓⊔

Remark 5.9. Again all upper and lower bounds for P-Abd(B,PT) carry over
to P-Abd(B,T). For P-Abd(B,NT) the problem becomes trivial if [B] ⊆ R1

(Lemma 5.1). For [B] ∈ {L, L0, L3}, we obtain NP-completeness with the hardness
being obtained from an easy reduction from P-Abd(B,PT): as we have x⊕ y ∈
[B ∪ {1}], we can simply transform the given positive term into a negative one.
For the remaining cases (i.e., D ⊆ [B] and S1 ⊆ [B]), we obtain Σp

2-completeness
from an adaption of the first part in the proof of Proposition 5.4.

The Complexity of P-Abd(B,L(B)) The complexity of P-Abd(B,L(B))
differs from the complexity of P-Abd(B,PQ) for the clones either (a) above E or
V and below M or (b) above L0 or L3 and below L. For the former the complexity
increases to coNP-completeness, whereas for the latter we obtain membership in
NP and hardness for ⊕Logspace; the exact complexity of positive abduction
when both the knowledge base and the manifestation are represented by non-1-
reproducing affine formulae remains an open problem.

Proposition 5.10. Let B be a finite set of Boolean functions such that L0 ⊆
[B] ⊆ L or L3 ⊆ [B] ⊆ L. Then P-Abd(B,L(B)) ∈ NP.

Proof. Let E ⊆ A be a potential solution. The test for satisfiability of Γ∧E and
the test for unsatisfiability of Γ ∧ E ∧ ¬ϕ are equivalent to solving two systems
of linear equations, which can be done in polynomial time. ⊓⊔

Proposition 5.11. Let B be a finite set of Boolean functions such that S00 ⊆
[B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M. Then P-Abd(B,L(B)) is coNP-
complete.

Proof. We will first prove coNP-membership. According to Lemma 5.1, it suffices
to test whether A is a solution. This can be done by first verifying that Γ ∧ A
is satisfiable, and afterwards verifying that Γ ∧ A ∧ ¬ϕ is unsatisfiable. As Γ is
a set of monotonic formulae, deciding the satisfiability of Γ ∧ A can be done in
logarithmic space; and deciding whether Γ ∧ A ∧ ¬ϕ is unsatisfiable is in coNP.

To establish coNP-hardness, we give a reduction from the coNP-hard problem
to decide whether a given 3-DNF-formulae ϕ is a tautology. Let Vars(ϕ) =
{x1, . . . xn}. Denote by ϕ the negation normal form of ¬ϕ and let ϕ′ be obtained
from ϕ by replacing all occurrences of ¬xi with a fresh proposition x′i, 1 ≤ i ≤ n.
That is, ϕ′ ≡ ϕ[¬x1/x′1, . . . ,¬xn/x

′
n]. Thus ϕ

′ =
∧

i∈I c
′
i where every c′i is a

disjunction of three propositions. To ϕ we associate the propositional abduction
problem P = (Γ, ∅, ψ) defined as follows:

Γ := {c′i ∨ q | i ∈ I} ∪ {xi ∨ x
′
i | 1 ≤ i ≤ n},

ψ := q ∨
∨

1≤i≤n(xi ∧ x
′
i).

16

Observe that

Γ ∧ ¬ψ ≡ ¬ϕ ∧ ¬q ∧
n
∧

i=1

(xi ⊕ x′i). (4)

Suppose that ϕ is a tautology, i.e., ¬ϕ is unsatisfiable. From (4) it follows that
Γ ∧ ¬ψ is unsatisfiable. As Γ is satisfiable, ∅ is a solution for P .

Suppose conversely that ∅ is a solution for P . Then Γ ∧ ¬ψ ≡ ¬ϕ ∧ ¬q ∧
∧n

i=1(xi ⊕ x′i) is unsatisfiable. Since q and the x′i do not occur in ϕ, we obtain
the unsatisfiability of ¬ϕ. Hence, ϕ is a tautology.

The transformation of P into an P-Abd(B,L(B))-instance for any relevant
B can be done in exactly the same way as in the proof of Proposition 4.12. ⊓⊔

Theorem 5.12. Let B be a finite set of Boolean functions. Then the positive

abduction problem for propositional B-formulae with a B-formula manifestation,

P-Abd(B,L(B)), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆ [B] ⊆ R1 or

S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M

3. in NP and ⊕Logspace-hard if [B] ∈ {L, L0, L3},

4. in P and ⊕Logspace-hard if [B] ∈ {L1, L2},

5. in Logspace in all other cases.

Proof. 1. Follows from the first item of Proposition 5.4.

2. See Proposition 5.11 and 5.3.

3. For membership in NP, see Proposition 5.10. The ⊕Logspace-hardness, on
the other hand, is established using the same reduction as in the proof of
Proposition 4.4.

4. For membership in P, see the fourth item of Proposition 5.8. The⊕Logspace-
hardness follows from Proposition 4.4 as above.

5. For [B] ⊆ V, a B-formula is a positive clause. Thus the result follows from
Theorem 5.6. For [B] ⊆ N and [B] ⊆ E, see Proposition 4.3. ⊓⊔

6 Overview of Results

The following two tables give an overview of the results for the studied symmetric
and positive abduction problems. The small numbers on the right side in the
table cells refer to the corresponding theorem/proposition/remark. The number
is omitted for trivial results.

17

Manifestation E∗ N∗ V∗ L∗ D2, S∗0 ⊆ D1, S∗2 ⊆

[B] ⊆ M [B] ⊆ BF

NQ,NC,NT ∈ L 4.7 ∈ L 4.7 ∈ L 4.7 ∈ P 4.4 ∈ L 4.7 Σp
2-c. 4.7

PQ,PC,Q,C ∈ L 4.3 ∈ L 4.3 ∈ L 4.3 ∈ P 4.4 NP-c. 4.5 Σp
2-c. 4.6

PT,T ∈ L 4.10 ∈ L 4.10 NP-c. 4.9 ∈ P 4.10 NP-c. 4.10 Σp
2-c. 4.10

L(B) ∈ L 4.13 ∈ L 4.13 ∈ L 4.13 ∈ P 4.13 Σp
2-c. 4.12 Σp

2-c. 4.12

Table 2. The complexity of Abd, where ∗-subscripts on clones denote all valid
completions, L abbreviates Logspace, and the suffix “-c.” indicates complete-
ness for the respective complexity class.

Manifestation E∗,N∗, L1, L2 L0, L3, L D2, S∗0 ⊆ D1, S∗2 ⊆ D, S1 ⊆

V∗ [B] ⊆ M [B] ⊆ R1 [B] ⊆ BF

NQ,NC ∈ L ∈ L ∈ P 5.5 ∈ L ∈ L Σp
2-c. 5.5

NT ∈ L ∈ L NP-c. 5.9 ∈ L ∈ L Σp
2-c. 5.9

PQ,PC,Q,C ∈ L ∈ P 5.4 ∈ P 5.4 ∈ L 5.2 coNP-c. 5.3 Σp
2-c. 5.4

PT,T ∈ L ∈ P 5.8 NP-c. 5.7 ∈ L 5.8 coNP-c. 5.8 Σp
2-c. 5.8

L(B) ∈ L ∈ P 5.12 ∈ NP 5.10 coNP-c. 5.11 coNP-c. 5.12 Σp
2-c. 5.12

Table 3. The complexity of P-Abd, where ∗-subscripts on clones denote all
valid completions, L abbreviates Logspace, and the suffix “-c.” indicates com-
pleteness for the respective complexity class.

Our results show, for instance, that when the knowledge base’s formulae are
restricted to be represented as positive clauses (i.e., [B] = V), then the abduction
problem for single literal manifestations is very easy (solvable in Logspace);
this still holds if the manifestations are represented by positive clauses. But
its complexity jumps to NP-completeness if we change the restriction on the
manifestations to allow for positive terms.

Considering the case that all monotonic functions can be simulated (i.e.,
X ⊆ [B] ⊆ M for X ∈ {D2, S00, S10}), the abduction problem is NP-complete for
manifestations represented by literals, clauses, or terms. Here allowing manifesta-
tion represented by a monotonic formulae, causes the jump to Σp

2-completeness.
This increase in the complexity of the problem can be intuitively explained as fol-
lows. The complexity of the abduction rests on two sources: finding a candidate
explanation and checking that it is indeed a solution. The NP-complete cases
that occur in our classification hold for problems in which the verification can
be performed in polynomial time. If both the knowledge base and the manifesta-
tion are represented by monotonic formulae, verifying a candidate explanation
is coNP-complete.

It comes as no surprise that the complexity of P-Abd(B,M) is lower than or
equal to the complexity ofAbd(B,M) in most cases (except for the affine clones).

18

We have seen in Lemma 5.1 that for monotonic or 1-reproducing knowledge
bases only one candidate needs to be considered. In these cases the complexity
of the abduction problem is determined by the verification of the candidate.
This explains the appearance of coNP-complete cases in our classification. For
the affine clones (i.e., [B] ∈ {L, L0, L3}), on the other hand, the tractability of
Abd(B,M) relies on Gaussian elimination. This method fails when restricting
the hypotheses to be positive, and there is no obvious alternative.

7 Counting complexity

We now turn to the complexity of counting. We focus on the case where the
manifestation is a single positive literal. For the symmetric abduction problem
we are interested in counting the number of full explanations, #Abd(B,PQ). For
positive abduction two counting problems commonly arise: either to count all
positive explanations, denoted by #P-Abd(B,PQ); or to count only the subset-
minimal explanations, denoted by #-⊆-P-Abd(B,PQ). Our first result in this
section is the complete classification of #Abd(B,PQ).

Theorem 7.1. Let B be a finite set of Boolean functions. Then the counting

problem of symmetric abduction for propositional B-formulae with a positive

literal manifestation, #Abd(B,PQ), is

1. #·coNP-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],
2. #P-complete if V2 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M,

3. in FP in all other cases.

Proof. The #·coNP-membership for #Abd(B,PQ) follows from the facts that
checking whether a set of literals is indeed an explanation for an abduction
problem is in PNP = ∆p

2 and from the equality #·∆p
2 = #·coNP, see [HV95].

We show #·coNP-hardness by giving a parsimonious reduction from the fol-
lowing #·coNP-complete problem: Count the number of satisfying assignments of
ψ(x1, . . . , xn) = ∀y1 · · · ∀ymϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is a DNF-formula
(see, e.g., [DHK05]). Let x′1, . . . , x

′
n, r1, . . . , rn, t and q be fresh, pairwise distinct

propositions. We define the propositional abduction problem P = (Γ, A, q) as
follows:

Γ := {xi → ri, x
′
i → ri,¬xi ∨ ¬x′i | 1 ≤ i ≤ n}

∪ {ϕ→ t} ∪ {
∧n

i=1 ri ∧ t→ q},

A := {x1, . . . , xn} ∪ {x′1, . . . , x
′
n}.

Observe that the manifestation q occurs only in the formula
∧n

i=1 ri ∧ t → q.
This together with the formulae xi → ri, x

′
i → ri,¬xi ∨ ¬x′i, 1 ≤ i ≤ n, enforces

that every full explanation of P has to select for each i either xi and ¬x′i, or
¬xi and x′i. By this the value of x′i is fully determined by the value of xi and
is its dual. Moreover, it is easy to see that there is a one-to-one correspondence
between the models of ψ and the full explanations of P .

19

Observe that since the reductions in Lemma 3.1 are parsimonious, we can
suppose w.l.o.g. that B contains the two constants 1 and 0. Therefore, it suffices
to consider the case [B] = BF. Suppose that ϕ =

∨

i∈I ti and let Γ′ be the

set of formulae obtained by replacing ϕ → t ≡ ¬
(
∨

i∈I ti
)

∨ t by the set of
clauses {¬ti ∨ t|i ∈ I}. Then Γ′ is a set of disjunctions of literals, whose size
is polynomially bounded by |Γ|. Hence, by the associativity of ∨, Γ′ can be
transformed in logarithmic space into an equivalent set of B-formulae. This
provides a parsimonious reduction from the above #·coNP-complete problem to
#Abd(B,PQ).

Let us now consider the #P-complete cases. When [B] ⊆ M, checking whether
a set of literals E is an explanation for an abduction problem with B-formulae
is in P (see Proposition 4.5). This proves membership in #P. For the hardness
result, it suffices to consider the case [B] = V2, because the reduction provided in
Lemma 3.1 is parsimonious and V2 ⊆ [S10∪{1}]. We provide a Turing reduction
from the problem #Positive-2-Sat, which is known to be #P-complete [Val79].

Let ϕ =
∧k

i=1(pi ∨ qi) be an instance of this problem, where pi and qi are propo-
sitional variables from the set X = {x1, . . . , xn}. Let q be a fresh proposition.
Define the propositional abduction problem P = (Γ, A, q) as follows:

Γ := {pi ∨ qi ∨ q | 1 ≤ i ≤ k}, A := {x1, . . . , xn}.

It is easy to check that the number of satisfying assignments for ϕ is equal to
2n − #Sol(P). Finally, since ∨ ∈ [B] = V2, P can easily be transformed in
logarithmic space into an Abd(B,PQ)-instance.

As for the tractable cases, the clones E and N are easy; and finally, for [B] ⊆ L,
the number of full explanations is polynomial time computable according to
[HP07, Theorem 8]. ⊓⊔

Turning to positive abduction the #P-complete cases vanish, while for the
L-clones the exact complexity remains open.

Theorem 7.2. Let B be a finite set of Boolean functions. Then both counting

problems of positive abduction for propositional B-formulae with a positive literal

manifestation, #P-Abd(B,PQ), #-⊆-P-Abd(B,PQ) are

1. #·coNP-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],
2. in #P if L2 ⊆ B ⊆ L,

3. in FP in all other cases.

Proof. The #·coNP-membership follows analogously to the proof of Theorem 7.1.
Indeed, the same reduction as in the proof of Theorem 7.1 works: there is an
one-to-one correspondence between full explanations and purely positive expla-
nations. Moreover, all explanations are incomparable and hence subset-minimal.

For the affine case membership in #P follows from the NP-membership of
the corresponding decision problem.

The remaining cases are encompassed by [B] ⊆ M. In this case a slight
strengthening of Lemma 5.1 is easily seen: Let (Γ, A, q) be an instance. Then

20

A is an explanation if and only if all subsets of A are explanations. Hence for
#P-Abd(B,PQ) the number of solutions is either 0 or 2|A| (all subsets), while for
#-⊆-P-Abd(B,PQ) it is either 0 or 1 (the empty set). We obtain membership
in FP, because for monotonic formulae deciding whether A is an explanation
can be done in Logspace. ⊓⊔

We note that for manifestations represented as terms, clauses, or B-formulae,
most of the classifications of the corresponding counting problems can be easily
derived from the above results; the exceptions to this are #Abd(M,L(B)) and
some cases satisfying [B ∪ {1}] = L, whose exact complexity remains open.

8 Concluding Remarks

In this paper we studied the decision and counting complexity of symmetric and
positive propositional abduction from a knowledge base being represented as
sets of B-formulae, for all possible finite sets B of Boolean functions. We gave
a detailed picture of the complexity of abduction in considering restrictions on
both manifestations and hypotheses. Thus our results highlight the sources of
intractability, identify fragments of lower complexity, and may help to identify
candidates for parameters in the study of parameterized complexity of abduction.

Our restrictions on the hypotheses covered only the symmetric and the posi-
tive case. One can as well define negative abduction, where explanations consist
of negative literals only; or non-symmetric abduction, where explanations are
formed upon a given set of literals, which is not demanded to be closed under
complement (in contrast to S-Abd). However, results not mentioned herein in-
dicate that the classifications of these variants are easily seen to be identical to
S-Abd (except for the L-clones).

It is worth noticing that, with the exception of the clones between L2 and L,
whenever the abduction problem is tractable for some clone, it is trivial. In con-
trast, tractability for the clones between L2 and L relies on Gaussian elimination,
which fails when we restrict explanations to be positive. Determining the com-
plexity of positive abduction for the clone L with manifestations represented by
L-formulae might hence prove to be a challenging task (note that a similar case,
the circumscriptive inference of an affine formula from a set of affine formulae,
remained unclassified in [Tho09]).

References

[AFM02] J. Amilhastre, H. Fargier, and P. Marquis. Consistency restoration and
explanations in dynamic CSPs. Artif. Intell., 135(1-2):199–234, 2002.

[BATJ89] T. Bylander, D. Allemang, M. C. Tanner, and J. R. Josephson. Some
results concerning the computational complexity of abduction. In Proc.

1st KR, pages 44–54, 1989.
[BDHM92] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and

importance of logspace MOD-classes. Mathematical Systems Theory,
25:223–237, 1992.

21

[BHSS06] M. Bauland, E. Hemaspaandra, H. Schnoor, and I. Schnoor. Generalized
modal satisfiability. In Proc. 23rd STACS, volume 3884 of LNCS, pages
500–511, 2006.

[BL00] M. Bouzid and A. Ligeza. Temporal causal abduction. Constraints,
5(3):303–319, 2000.

[BMTV09a] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. The complexity of
propositional implication. Information Processing Letters, 109(18):1071–
1077, 2009.

[BMTV09b] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. The complexity
of reasoning for fragments of default logic. In Proc. 12th SAT, volume
5584 of LNCS, pages 51–64, 2009.

[BSS+08] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer. The
complexity of generalized satisfiability for linear temporal logic. In Log-

ical Methods in Computer Science, volume 5, 2008.

[CZ06] N. Creignou and B. Zanuttini. A complete classification of the complexity
of propositional abduction. SIAM J. Comput., 36(1):207–229, 2006.

[DHK05] Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. Subtractive
reductions and complete problems for counting complexity classes. The-
oretical Computer Science, 340(3):496–513, 2005.

[EG95] T. Eiter and G. Gottlob. The complexity of logic-based abduction. J.

ACM, 42(1):3–42, 1995.

[HP07] M. Hermann and R. Pichler. Counting complexity of propositional ab-
duction. In Proc. 20th IJCAI, pages 417–422, 2007.

[HSAM93] J. R. Hobbs, M. E. Stickel, D. E. Appelt, and P. A. Martin. Interpretation
as abduction. Artif. Intell., 63(1-2):69–142, 1993.

[HV95] L. Hemaspaandra and H. Vollmer. The satanic notations: counting
classes beyond #P and other definitional adventures. Complexity Theory

Column 8, ACM-SIGACT News, 26(1):2–13, 1995.

[Lew79] H. Lewis. Satisfiability problems for propositional calculi. Mathematical

Systems Theory, 13:45–53, 1979.

[NZ05] G. Nordh and B. Zanuttini. Propositional abduction is almost always
hard. In Proc. 19th IJCAI, pages 534–539, 2005.

[NZ08] G. Nordh and B. Zanuttini. What makes propositional abduction
tractable. Artif. Intell., 172(10):1245–1284, 2008.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Pos41] E. Post. The two-valued iterative systems of mathematical logic. Annals
of Mathematical Studies, 5:1–122, 1941.

[Rei03] S. Reith. On the complexity of some equivalence problems for proposi-
tional calculi. In Proc. 28th MFCS, volume 2747 of LNCS, pages 632–641,
2003.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th

STOC, pages 216–226, 1978.

[Sch05] H. Schnoor. The complexity of the Boolean formula value problem.
Technical report, Theoretical Computer Science, University of Hannover,
2005.

[SL90] B. Selman and H. Levesque. Abductive and default reasoning: A com-
putational core. In Proc. 8th AAAI, pages 343–348, 1990.

[SW01] M. Stumptner and F. Wotawa. Diagnosing tree-structured systems. Artif.
Intell., 127(1):1–29, 2001.

22

[Tho09] M. Thomas. The complexity of circumscriptive inference in Post’s lat-
tice. In Proc. 10th LPNMR, volume 5753 of Lecture Notes in Computer

Science, pages 290–302, 2009.
[Val79] L. G. Valiant. The complexity of enumeration and reliability problems.

SIAM J. Comput., 8(3):411–421, 1979.
[Vol09] H. Vollmer. The complexity of deciding if a boolean function can be com-

puted by circuits over a restricted basis. Theory of Computing Systems,
44(1):82–90, July 2009.

[Wra77] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoret-
ical Computer Science, 3:23–33, 1977.

[Zan03] B. Zanuttini. New polynomial classes for logic-based abduction. J. Artif.
Intell. Res., 19:1–10, 2003.

23

Name Definition Base

BF All Boolean functions {x ∧ y,¬x}

R0 {f | f is 0-reproducing} {x ∧ y, x⊕ y}

R1 {f | f is 1-reproducing} {x ∨ y, x⊕ y ⊕ 1}

R2 R0 ∩ R1 {∨, x ∧ (y ⊕ z ⊕ 1)}

M {f | f is monotonic} {x ∨ y, x ∧ y, 0, 1}

M1 M ∩ R1 {x ∨ y, x ∧ y, 1}

M0 M ∩ R0 {x ∨ y, x ∧ y, 0}

M2 M ∩ R2 {x ∨ y, x ∧ y}

Sn0 {f | f is 0-separating of degree n} {x → y,dual(hn)}

S0 {f | f is 0-separating} {x → y}

Sn1 {f | f is 1-separating of degree n} {x ∧ ¬y, hn}

S1 {f | f is 1-separating} {x ∧ ¬y}

Sn02 Sn0 ∩ R2 {x ∨ (y ∧ ¬z),dual(hn)}

S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}

Sn01 Sn0 ∩M {dual(hn), 1}

S01 S0 ∩M {x ∨ (y ∧ z), 1}

Sn00 Sn0 ∩ R2 ∩M {x ∨ (y ∧ z),dual(hn)}

S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}

Sn12 Sn1 ∩ R2 {x ∧ (y ∨ ¬z), hn}

S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}

Sn11 Sn1 ∩M {hn, 0}

S11 S1 ∩M {x ∧ (y ∨ z), 0}

Sn10 Sn1 ∩ R2 ∩M {x ∧ (y ∨ z), hn}

S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}

D {f | f is self-dual} {(x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}

D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z)}

D2 D ∩M {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}

L {f | f is affine} {x⊕ y, 1}

L0 L ∩ R0 {x⊕ y}

L1 L ∩ R1 {x⊕ y ⊕ 1}

L2 L ∩ R2 {x⊕ y ⊕ z}

L3 L ∩ D {x⊕ y ⊕ z ⊕ 1}

V {f | f is a disjunction of variables or constants} {x ∨ y, 0, 1}

V0 V ∩ R0 {x ∨ y, 0}

V1 V ∩ R1 {x ∨ y, 1}

V2 V ∩ R2 {x ∨ y}

E {f | f is a conjunction of variables or constants} {x ∧ y, 0, 1}

E0 E ∩ R0 {x ∧ y, 0}

E1 E ∩ R1 {x ∧ y, 1}

E2 E ∩ R2 {x ∧ y}

N {f | f depends on at most one variable} {¬x, 0, 1}

N2 N ∩ R2 {¬x}

I {f | f is a projection or a constant} {id, 0, 1}

I0 I ∩ R0 {id, 0}

I1 I ∩ R1 {id, 1}

I2 I ∩ R2 {id}

Table 1. The list of all Boolean clones with definitions and bases, where hn :=
∨n+1

i=1

∧n+1
j=1,j 6=i xj and dual(f)(a1, . . . , an) = ¬f(¬a1 . . . ,¬an).

24

BF

R1 R0

R2

M

M1 M0

M2

S20

S202 S201
S30

S200
S302 S301

S300
S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S21

S212S211
S31

S210
S312S311

S310
S1

S12S11

S10

E

E0E1

E2

∈ L

∈ L

⊕L-h./∈ P

NP-c.

Σp
2-c.

Abd(B,C)

Abd(B,Q)

∈ L

NP-c.

⊕L-h./∈ P

NP-c.

Σp
2-c.

Abd(B,T)

∈ L

∈ L

⊕L-h./∈ P

Σp
2-c.

Σp
2-c.

Abd(B,L(B))

Fig. 1. Post’s lattice showing the complexity of the symmetric abduction prob-
lem Abd(B,M) for all sets B of Boolean functions and the most interesting
restrictions M of the manifestations. In the legend, L abbreviates Logspace

and the suffixes “-h” and “-c” indicate hardness and completeness respectively.

25

BF

R1 R0

R2

M

M1 M0

M2

S20

S202 S201
S30

S200
S302 S301

S300
S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S21

S212S211
S31

S210
S312S311

S310
S1

S12S11

S10

E

E0E1

E2

∈ L

∈ L

⊕L-h./∈ P

⊕L-h./∈ P

coNP-c.

Σp
2-c.

P-Abd(B,C)

P-Abd(B,Q)

∈ L

∈ L

⊕L-h./∈ P

NP-c.

coNP-c.

Σp
2-c.

P-Abd(B,T)

∈ L

coNP-c.

⊕L-h./∈ P

⊕L-h./∈ NP

coNP-c.

Σp
2-c.

P-Abd(B,L(B))

Fig. 2. Post’s lattice showing the complexity of the positive abduction problem
P-Abd(B,M) for all sets B of Boolean functions and the most interesting re-
strictions M of the manifestations. In the legend, L abbreviates Logspace and
the suffixes “-h” and “-c” indicate hardness and completeness respectively.

26

