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Abstract. The paper introduces a framework based on constructive conditional
logics to define axiomatization, semantics and proof methods for access con-
trol logics. We formalize the well knownsays operator as a conditional nor-
mal modality and, by considering some specific combinationsof access control
axioms, we define four access control logics, namely,CondUC

ACL , CondU4
ACL ,

CondIC
ACL and CondI4

ACL . Such logics integrate access control logics with in-
tuitionistic conditional logics and provide a natural formulation of boolean prin-
cipals. The well known “speaks for” operator introduced in the logic ABLP is
defined on the top of thesays modality. We provide a Kripke model semantics
for the logics and we prove that their axiomatization is sound and complete with
respect to the semantics. Also, we develop sound, complete,cut-free sequent cal-
culi for them. For the logicCondUC

ACL , which (as concerns atomic principals) is
slightly stronger than the logicICL recently introduced by Garg and Abadi, we
also provide a terminating sequent calculus, thus proving that the logic is decid-
able and that validity inCondUC

ACL is in PSPACE.

1 Introduction

Access control is concerned with the decision of accepting or denying a request from
a principal (e.g., user, program) to do an operation on an object. In practice, an ac-
cess control system is a product of several, often independent, distributed entities with
different policies that interact in order to determine access to resources. Many formal
frameworks have been proposed to specify and reason about such systems [4, 6, 18, 22,
23]. A common feature of most well-known approaches is the employment of construc-
tive logics enriched with formulas of the formA saysϕ, intuitively meaning that the
principalA assertsor supportsϕ to hold in the system.In [2] it is shown that an intu-
itionistic interpretation of the modality “says” allows toavoid unexpected conclusions
that are derivable whensays is given an axiomatization in classical logic.

In [13] an access control logic,ICL, is defined as an extension of intuitionistic
propositional logic, in which the operatorsays is given a modal interpretation in the
logic S4. The treatment of the operatorsays as a modality can also be found in [7],
which introduces a logical framework, FSL, based on multi-modal logic methodology.

⋆ Valerio Genovese is supported by the National Research Fund, Luxembourg.
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Even if there is some agreement on looking at thesays construct as a modal oper-
ator, the correspondence between its axiomatization and the semantic properties asso-
ciated with axioms in the Kripke semantics is mainly unexplored. In fact, some of the
axioms of access control logics are non-standard in modal literature. The identification
of canonical properties for well-known axioms of access control logics permits to study
them separately and naturally yields completeness for logics that adopt combinations
of them. This methodology is significant if we want logic to beemployed to compare
different access control models, because different systems adopt different axioms de-
pending on the specific application domain.

In this paper we show that conditional logics [25] can provide a general frame-
work to define axiomatization, semantics and proof methods for access control logics.
As a starting point, we concentrate on some specific combinations of access control
axioms, giving rise to four conditional access control logics: CondUC

ACL , CondU4
ACL ,

CondIC
ACL , CondI4

ACL . Such logics integrate access control logics with intuitionistic
conditional logics. We formalize thesaysoperator as a conditional normal modality
so thatA saysφ is regarded as a conditional implicationA⇒ φ, meaning that proposi-
tionφ holds in all the preferred worlds for the principalA. From the access control point
of view, the saysoperator satisfies some basic axioms of access control logics [12, 13].
The generality of this approach allows a natural formalization of boolean principals
[13], that is, principals which are formed by boolean combination of atomic principals,
as well as a natural encoding of the well known “speaks for” operator introduced in the
logic ABLP [3, 21]. We define a Kripke semantics for the conditional access control
logics, as well as sound, complete, cut-free labelled sequent calculi for them.

For the logicCondUC
ACL , which is slightly stronger (as concerns atomic principals)

than the logicICL introduced in [13], we are also able to obtain a decision procedure and
a complexity upper bound, namely that the problem of deciding validity in CondUC

ACL is
decidable in PSPACE. This is in agreement with [13], which provides a PSPACE
complexity result for the logicICL.

The paper is structured as follows. In Section 2 we introducethe axiomatization
of the intuitionistic conditional logicsCondUC

ACL , CondU4
ACL , CondIC

ACL andCondI4
ACL ,

and we compare them with existing approaches. In Section 3 wedescribe the seman-
tics of the logics. In Section 4 we show that the axiomatization is sound and complete
with respect to the semantics. In Section 5 we define cut-freesequent calculi for the
access control logics and we prove their soundness and completeness. For the logic
CondUC

ACL we also show that the calculus can be turned into a terminating one by adopt-
ing some restrictions on the application of some rules: thisallows us to show that the
logic CondUC

ACL is decidable and to give a complexity upper bound for it. Section 6 con-
tains the conclusions and a discussion of related work. Thiswork is an extended and
revised version of the work presented in [15].

2 Conditional Access Control Logics: the Axiom System

In this section, we introduce the conditional intuitionistic logics for access control by
defining their axiomatizations. The formulation of the “says” modality as a conditional
operator allows boolean principals to be modelled in a natural way, since in a con-



Logics in Access Control: A Conditional Approach 3

ditional formulaA saysφ, bothA and φ are formulas. For instance, we can write
A ∧ B saysφ to mean that principalsA andB jointly say thatφ, andA ∨ B saysφ
to mean that principalsA andB independently say thatφ. Indeed, conditional log-
ics provide a natural generalization of multimodal logics to the case when modalities
are labelled by formulas. In the following, we will regard atomic principals as atomic
propositions, distinct from all the other propositions of the language and we define
boolean principals as boolean formulas obtained by combining atomic principals with
conjunctions and disjunctions. We will assume the propositions representing principals
to have a truth value in the semantics, where a principalA is true in a worldw if the
world w is visible to A. The notion of visibility we introduce is similar to the notion
of visibility introduced in [12] and in [13]. Visibility is used, for each principalA, to
identify those states of affairs (worlds) among which preferredA worlds are selected.
Following [13], we informally interpret propositionA as “A is happy”, and we mean
thatA is happy in those worldsw which are visible toA.

We define the languageL of the access control logics. LetATM be a set of atomic
propositions, including a setA of propositions calledatomic principals. We define a
(boolean) principalto be a boolean combination of the atomic principals inA contain-
ing only the connectives∧ and∨.

The formulas ofL are defined inductively as follows: ifP ∈ ATM , thenP ∈ L;
⊥ ∈ L, where⊥ is a proposition which is always false; ifϕ, ϕ1 andϕ2 are formulas of
L andA is a principal, thenϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, andA saysϕ are formulas of
L. In the following, we will denote principals byA,B,C, . . . while we will use greek
letters for arbitrary formulas. As usual, we introduce the following precedence among
connectives:∧,∨, says,→. As an example,A saysϕ→ A∧B saysϕ is a formula of
L, to be read as(A saysϕ) → ((A∧B) saysϕ). The intended meaning of the formula
A saysϕ is thatprincipal A says thatϕ, namely, “the principalA asserts or supports
ϕ” [13].

In the following we introduce the axiomatization of the logic CondUC
ACL , first. Then,

we present the axiomatization of the other logics by changing some characterizing ac-
cess control axioms.

The axiomatization ofCondUC
ACL contains few basic axioms for access control log-

ics [2, 13], as well as additional axioms governing the behavior of boolean principals.
Because we privilege the modularity of the approach, we are interested in considering
each axiom separately. As a consequence, the resulting axiomatization might be redun-
dant.

2.1 Basic Axioms

Theaxiom systemof CondUC
ACL contains the following axioms and inference rules, which

are intended to capture the basic properties of thesays operator.

(FALSE) ⊥ → γ
(THEN-1) α→ (β → α)
(THEN-2) (α→ (β → γ)) → ((α→ β) → (α→ γ))
(AND-1) α ∧ β → α
(AND-2) α ∧ β → β
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(AND-3) α→ (β → (α ∧ β))
(OR-1) α→ α ∨ β
(OR-2) β → α ∨ β
(OR-3) (α→ β) → ((γ → β) → (α ∨ γ → β))
(K) A says(α→ β) → (A saysα→ A saysβ)
(UNIT) α→ (A saysα)
(C) A says(A saysα→ α)
(MP) If ⊢ α and⊢ α→ β then⊢ β
(RCEA) If ⊢ A↔ B then⊢ (A saysγ) ↔ (B saysγ)
(RCK) If ⊢ α→ β then⊢ (A saysα) → (A saysβ)

Definition 1. We say that a formulaα is a theorem of the logic, and write⊢ α if there
is a derivation ofα from the above axioms and rules. We say thatα can be derived from
a set of formulasΓ , and writeΓ ⊢ α, if there areγ1, . . . γn (n ≥ 0) in Γ such that
⊢ γ1 ∧ . . . ∧ γn → α.

The definition of derivability above is taken from [8] (Definition 2.14). The axioms and
rules (FALSE), (THEN-1), (THEN-2), (AND-1), (AND-2), (AND-3), (OR-1), (OR-2),
(OR-3), and (MP) are axioms and rules of intuitionistic logic. The rule (MP) is modus
ponens. (RCK) and (RCEA) are standard inference rules for conditional logics. (RCK)
plays the role of the rule of Necessitation (if⊢ φ then⊢ 2φ) in modal/multimodal logic
and is derivable in bothICL [13] and DTL0 [12]. (RCEA) makes the formulasA saysφ
andB saysφ equivalent when the principalsA andB are equivalent (i.e. if the worlds
visible toA are the same as the worlds visible toB, then principalsA andB support
the same formulas). (UNIT) and (K) are the characterizing axioms of the logicICL
[13] and other access control logics [1, 14, 29]. The axiom (K) belongs to the axiom-
atization of all normal modal logics and it is derivable in “normal” conditional logics.
Intuitively, (K) expresses thatsays is closed under logical consequence, while (UNIT)
is a stronger form of necessitation which states, for every formulaα, that if α holds,
thenα is supported by every principal. Axiom (C) has been includedin the axiomati-
zation of the logic DTL0 in [12] and it comes from doxastic logic [30]. Intuitively, (C)
means that every principal says that all its statements are true.

The choice of the above axioms is meaningful in the context ofaccess control.
However, other axioms have been proposed in the literature and different access control
logics have been defined through their combination. In particular, in alternative to (C)
and (UNIT), weaker axioms have been proposed, namely, (C4) and (I):

(C4) (A says(A saysα)) → (A saysα)
(I) (A saysα) → (B saysA saysα)

(C4) belongs to the original axiomatization of the logicICL defined in [13], where it
replaces the axiom (C). (I) is introduced in the axiomatization of the logic Binder [9],
which extends the logic ABLP [3, 21] in order to express the socalledauthorization
policies. Notice that (I) is a weaker version of (UNIT).

As axiom (C) is stronger than (C4), it can be proved thatCondUC
ACL is stronger than

the logicICL [13]:

Theorem 1. For all formulasϕ, ⊢ICL ϕ implies ⊢ ϕ.
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In the following, besidesCondUC
ACL , we introduce three other logics for access control

obtained by considering different combinations of the above axioms (UNIT), (I), (C),
and (C4), as summarized in Figure 1.

CondU4

ACL

CondIC

ACL

CondI4

ACL

CondUC

ACL

Logic (C) vs (C4)(UNIT) vs (I)

(UNIT)

(UNIT)

(I)

(I)

(C)

(C)

(C4)

(C4)

Fig. 1. Summary of constructive conditional logics under consideration.

2.2 Axioms for boolean principals

The axioms introduced above do not enforce by themselves anyintended property of
boolean principals. In this subsection, we discuss the properties that are intended for
boolean principals and we introduce axioms which capture such properties. Specifically,
we focus on the intended meaning of conjunctions and disjunctions among principals.

Our interpretation of the statementA ∧ B saysφ is thatA andB jointly (combin-
ing their statements) say thatφ. It comes from the interpretation of the statement as a
conditional implication:A andB (jointly) conditionally proveφ. Instead, our interpre-
tation of the statementA∨B saysφ is thatA andB disjointly (independently) say that
φ, which comes from the reading of the conditional formula asA andB (disjointly)
conditionally proveφ. Concerning the statementA∨B saysφ, we expect that if bothA
saysφ andB saysφ, thenA andB disjointly (independently) say thatφ. This property
can be captured by the following axiom:

A saysφ ∧B saysφ→ A ∨B saysφ

which corresponds to the well known axiom (CA) of conditional logics [25]. Similarly,
we can expect that the converse axiom

A ∨B saysφ→ A saysφ ∧B saysφ

holds. The two axioms together enforce the property thatA andB disjointly say thatφ
if and only ifA says thatφ andB says thatφ .

ConcerningA ∧ B saysφ, we expect thatA andB jointly say thatφ when either
A orB says thatφ. This condition can be enforced by introducing the axiom

A saysφ→ A ∧B saysφ
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which, although is a controversial axiom of conditional logics, called monotonicity4, is
consistent with the intuitive reading of boolean principals in this intuitionistic setting.
For instance, assume that Administrator 1 says that, if user1 is a superuser, then he has
write premissions

Admin1 says(SuperUser user1 → write perm user1 )

and that Administrator 2 says that user 1 is a superuser

Admin2 saysSuperUser user1

From these two statements we can conclude that Administrator 1 and Administrator 2,
together, say that user 1 has write permissions:

Admin1 ∧ Admin2 sayswrite perm user1

Conversely, we would like to have the property that ifA∧B saysφ then, by combining
the statements ofA andB, φ can be concluded. This is not equivalent to saying that ei-
therA saysφ orB saysφ. Indeed, the axiom (A∧B saysφ) → (A saysφ)∨(B saysφ)
is too strong and not wanted.The wanted property could, for instance, be captured by
the second order axiom(A ∧ B saysφ) → ∃ψ((A saysψ → φ) ∧ B saysψ). In the
following, however, we show that it is possible to capture the wanted property by using
standard axioms of conditional logics, namely:

(DT) A ∧B saysφ→ (A says(B → φ))

(ID) A saysA

Together such axioms enforce the property that ifA∧B saysφ then, by combining the
statements ofA andB, φ can be concluded. The intended meaning of (DT) is that, if
A ∧B saysφ, thenA says thatφ holds in allB worlds, i.e., in all the worlds visible to
the principalB or in all the worlds in whichB is happy. The meaning of (ID) is that “A
says that principalA is happy”, i.e., all the state of affairs (worlds) preferredbyA are
worlds visible toA. We will come back to the notion of visibility in Section 3, when
describing the semantic conditions associated with the axioms.

In conclusion, to deal with boolean principals, the axiomatization of the conditional
access control logics introduced above includes, in addition to the axioms in Section
2.1, the following axioms:

(CA) A saysφ ∧B saysφ→ A ∨B saysφ
(CA-conv) A ∨B saysφ→ A saysφ
(Mon) A saysφ→ A ∧B saysφ
(DT) A ∧B saysφ→ (A says(B → φ))

(ID) A saysA

4 In general, conditional logics only allow weaker forms of monotonicity, encoded, for instance,
by the axiom (CV) of Lewis’ logic VC.
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The first three axioms are those introduced above. Notice that, the two axioms (DT)
and (ID) allow propositions representing principals to occur on the right hand side of
the saysmodality.

Observe that, as a difference withICLB [13], where implication within principals is
used to capture the “speaks for” operator, here we do not allow an implication among
principals to occur on the left hand side of the says modality. In Section 2.3, we will
address the problem of capturing the “speaks for” operator.Moreover, let us observe
that, by the normality of the conditionalsays modality, two principals that are logically
equivalent as, for instance, principalA ∧B and principalA ∧B ∧A support the same
formulas through thesays modality. This is an advantage of conditional logic over a
multi-modal logic in which principals are simply regarded as labels of modalities.

Theorem 2. The above axiomatization is consistent.

Proof. Consistency immediately follows from the fact that, by replacingA saysB with
the intuitionistic implicationA → B, we obtain axioms which are all derivable in
intuitionistic logic. �

Let us observe that the above interpretation of conjunctionand disjunction between
principals is different from the one given in the logicICLB [13], which actually adopts
the opposite interpretation of∧ and∨: in Garg and Abadi’s logicICLB, the meaning of
A ∧ B saysφ is the same asA saysφ ∧ B saysφ, whileA ∨ B saysφ means that,
by combining the statements ofA andB, φ can be concluded. Due to this difference,
the properties of the principalA ∧B in our logic are properties of the principalA ∨B
in their logic and, vice-versa, the properties of the principalA ∨ B in our logic are
properties of the principalA∧B in their logic. We do not argue that our interpretation of
boolean principals is better that the one in [13], we just observe that it naturally derives
from the interpretation of the boolean connectives in the principals, according to the
usual semantics of conditionals.Observe that the axioms (trust), (untrust) and (cuc’)
of the logicICLB are not derivable from our axiomatization. Also, the addition of the
axiom (untrust)⊤ says⊥ to our axiomatization would entail that for all principalsA,
A says⊥, which is an unwanted property.

As an example, assume we want to check whether, given a set of policies Γ , a
principalA is authorized to performφ in the logicCondUC

ACL , or, in other words, the
requestφ from a principalA is compliant with the set of policiesΓ . Intuitively, given a
set of formulasΓ representing policies and a formulaφ, we say that the requestφ from
a principalA is compliant withΓ if and only if φ can be derived fromΓ ∪ {A saysφ}
in the sense of Definition 1, i.e. if and only ifΓ,A saysφ ⊢ φ.

Example 1.LetΓ contain the following formulas (rules):

- Admin1 says(SuperUser user1 → write perm user1 )
- Admin2 saysSuperUser user1
- ((Admin1 ∧ Admin2 ) saysdelete file1 ) → delete file1
- Admin1∧Admin2 says((write perm user1 ∧ (user1 saysdelete file1 )) →
delete file1 )
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The first two rules have been already introduced above. By thethird rule, when Admin-
istrator 1 and Administrator 2, together, say that file 1 has to be deleted, then file 1 has
to be deleted. By the last rule, when Administrator 1 and Administrator 2, together, say
that, when user 1 has write permissions and user 1 says to delete file 1, then file 1 has
to be deleted. We can prove that

Γ, user1 saysdelete file1 ⊢ delete file1

In fact, as we have already seen,(i) (Admin1 ∧ Admin2 ) sayswrite perm user1
follows from the first two rules by (Mon). Fromuser1 saysdelete file1 , we infer by
(UNIT) (ii) (Admin1∧Admin2 ) says(user1 saysdelete file1 ). By propositional rea-
soning, (RCK) and (K), from(i) and(ii), we derive(Admin1∧Admin2 ) says(write perm user1∧
(user1 saysdelete file1 )). Finally, from the fourth rule, we conclude(Admin1∧Admin2 )
saysdelete file1 , and hence, by rule 3, we concludedelete file1 .

To conclude this section, let us consider the well known axiom of conditional logics
(MP),A saysφ → (A → φ). Its meaning is the following: “IfA saysφ, thenφ holds
in all the worlds visible to principleA”.

We observe that the addition of the axiom (MP) to the logics containing the axiom
(UNIT), namelyCondUC

ACL andCondU4
ACL , would make the modalitysays to collapse

into intuitionistic implication. In fact, it is easy to see that the converse of (MP), namely
(A→ φ) → A saysφ, can be derived from axioms (UNIT), (ID) and (K).

Proposition 1. (A→ φ) → (A saysφ) is derivable inCondUC
ACL andCondU4

ACL .

Proof. From (UNIT), we have(A→ φ) → (A says(A→ φ)). From (K),(A says(A→
φ)) → (A saysA → A saysφ). Hence, by propositional reasoning,(A → φ) →
(A saysA→ A saysφ), and thenA saysA → ((A → φ) → (A saysφ)). From (ID),
A saysA hence, by modus ponens,(A→ φ) → (A saysφ). �

Although the addition of (MP) makes the logic collapse into intuitionistic logic in the
presence of axiom (UNIT), the same does not hold when (UNIT) is replaced by the
weaker axiom (I).

2.3 Speaks For

TheSpeaks Foroperator has been introduced in the logic ABLP [3, 21] to reason about
transfer of authority from one principal to another. We showthatSpeaks Forcan be de-
fined in the constructive conditional logics introduced above by using thesays modal-
ity.

Let ⇒ be a new connective.A ⇒ B is readA speaks forB, meaning that ifA
saysα, then alsoB saysα, for any formulaα. In line with previous literature on access
control, the connective⇒ is ruled by the following axioms:

(Speaks For) (A⇒ B) → ((A saysα) → (B saysα))
(Reflexivity) A⇒ A
(Transitivity) (A⇒ B) → ((B ⇒ C) → (A⇒ C))
(Handoff) (A says(B ⇒ A)) → (B ⇒ A)
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where axioms (Speaks for) and (Handoff) relate the connective⇒with the says modal-
ity. We can define the connective⇒ by means of thesays modality as follows:

A⇒ B iff B saysA

In agreement with the interpretation of propositionA as “A is happy”, the meaning
of B saysA is that “B says thatA is happy”, i.e. that all the worlds preferred toB are
worlds visible toA (i.e. worlds in whichA is happy).It is easy to see that the connective
⇒ has the properties encoded by the four axioms above.

Theorem 3. The axioms(Speaks For), (Reflexivity), (Transitivity)and (Handoff)are
derivable in the logicsCondUC

ACL , CondU4
ACL , CondIC

ACL , andCondI4
ACL , given the def-

inition ofA⇒ B asB saysA.

Proof. To prove that axiom (Speaks For) is derivable, we have to prove that

(B saysA) → ((A saysα) → (B saysα))

is derivable. Given (Mon)A saysα → (A ∧ B) saysα and (DT)(A ∧ B) saysα →
B says(A → α), by propositional reasoning, we have thatA saysα → B says(A →
α) is derivable. Also, from (K),B says(A → α) → (B saysA → B saysα) is
derivable. By propositional reasoning, we getA saysα → (B saysA → B saysα),
and, hence,B saysA→ (A saysα→ B saysα) is derivable.

To prove that (Transitivity) is derivable, the formula(B saysA) → ((C saysB) →
(C saysA)) can be shown to be derivable again by using (Mon) and (DT), as in the
previous case.

(Reflexivity) is derivable as, by (ID),A saysA, which means thatA⇒ A.
To prove that (Handoff) is derivable, we need to show that(A says(A saysB)) →

(A saysB) is derivable. For the logics containing the axiom (C), it follows immediately
from (C) and (K). For the logics containing the axiom (C4), itis an instance of (C4).�

It is important to underline that the proposed encoding ofSpeaks foris possible because
saysis a conditional modality. Moreover, such embedding isindependentfrom the
choice of the characterizing access control axioms we have considered.

It has to be observed that the fact that the axiom (UNIT) can beapplied also to
principals may lead to some unintended conclusions. In particular, from (UNIT), when
α is the principalB, we getB → (A saysB), that is,

B → (B ⇒ A)

saying that in all the worlds visible to principalB, B speaks forA, as well as

B says(B ⇒ A)

(which is not derivable inICL⇒ [13]). By this property, we can concludeB says(A saysϕ)
from B says(B saysϕ), for all formulasϕ. This conclusion may seem to be unin-
tended. Observe, however, that, even when the application of (UNIT) is restricted to for-
mulas that are not principals, as in [13], the propertyB says(B saysϕ) → B says(A saysϕ)
is anyhow derivable from (UNIT), (K) and (C), as well as from (UNIT), (K) and (C4).
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Hence, it holds inICL [13], as well as in any logic including (UNIT) and the non con-
troversial axioms (K) and (C4). This may suggest that axiom (UNIT) itself is too strong
even when applied only to formulas which are not principals.

As another observation, notice that, when (RCK) is applied to principals, we get:

if ⊢ A→ B, then⊢ (A⇒ C) → (B ⇒ C).

In a sense,⊢ A → B (all the worlds visible toA are also visible toB) appears to say
something similar to “B speaks forA”. Actually, in the presence of (UNIT),(A →
B) → (B ⇒ A) is derivable (see Proposition 1), so that⊢ A → B entails⊢ (A ⇒
C) → (B ⇒ C) by the (Transitivity) of⇒. A similar property also holds inICL⇒ as
well as inICLB [13], namely, if⊢ B → A, then⊢ (A ⇒ C) → (B ⇒ C) (in ICLB it
follows from (untrust) by the transitivity of the speaks for; in ICL⇒ B ⇒ A is defined
as2(B → A) and the property above follows form transitivity of the speaks for). The
difference among the two properties is due to a different interpretation of visibility here
as compared to visibility in [13] (see Section 3 below): here⊢ A → B means that all
the worlds visible toA are also visible toB, while in [13]⊢ B → A means that all the
worlds non visible toB are non visible toA. Actually, (by contraposition) they have
the same meaning.

In the following we will provide a semantics for the four access control logics in-
troduced so far.

3 Conditional Access Control Logics: the Semantics

In this section we introduce a Kripke semantics for the four access control logics intro-
duced above. As the Speaks For connective is a defined connective, we will not take the
Speaks For into consideration in this section.

We first define the semantics ofCondUC
ACL , then we present the semantics of the

other logics by deifning the characterizing conditions on their models. The semantics
of the logicCondUC

ACL is defined as follows.

Definition 2. A CondUC
ACL model has the formM = (S,≤, {RA}, h) where:S 6= ∅

is a set of items called worlds;≤ is a preorder over S;RA is a binary relation onS
associated with the formulaA; h is an evaluation functionATM −→ Pow(S) that
associates to each atomic propositionP the set of worlds in whichP is true.

We define the truth conditions of a formulaφ ∈ L with respect to a worldt ∈ S
in a modelM, by the relationM, t |= φ, as follows. We use[|φ|] to denote{y ∈ S |
M, y |= φ}.

1. M, t |= P ∈ ATM iff, for all s such thatt ≤ s, s ∈ h(P )
2. M, t |= ϕ ∧ ψ iff M, t |= ϕ andM, t |= ψ
3. M, t |= ϕ ∨ ψ iff M, t |= ϕ or M, t |= ψ
4. M, t |= ϕ→ ψ iff for all s such thatt ≤ s (if M, s |= ϕ thenM, s |= ψ)
5. M, t 6|= ⊥
6. M, t |= A saysψ iff, for all s such thattRAs, M, s � ψ.

Given a worldt ∈ S and a formulaA ∈ L, we defineRA(t) = {s ∈ S | tRAs}. The
relations≤ andRA must satisfy the following conditions:
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∀t, s, z ∈ S, if s ≤ t andtRAz thensRAz; (S-Int)
∀t, s ∈ S, if sRAt, thens ≤ t; (S-UNIT)
∀t, s, z ∈ S, if sRAt andt ≤ z, thenzRAz; (S-C)
RA∨B(t) = RA(t) ∪RB(t); (S-CA)
∀t, s, z ∈ S, if sRA∧Bt, thensRAt andsRBt; (S-Mon)
∀t, s, z ∈ S, if sRAt andt ≤ z, andz ∈ [|B|], thensRA∧Bz; (S-DT)
∀t, s ∈ S, if sRAt, thent ∈ [|A|]; (S-ID)
if [|A|] = [|B|], thenRA = RB . (S-RCEA)

We say thatφ is valid in a modelM if M, t |= φ for all t ∈ S. We say thatφ is valid
tout court(and write|= φ) if φ is valid in every model. We extend the notion of validity
to a set of formulasΓ in the obvious way: for allt, M, t |= Γ if M, t |= ψ for all
ψ ∈ Γ . Last, we say thatφ is a logical consequenceof Γ (and writeΓ |= φ) if, for all
modelsM, for all worlds t ∈ S, if M, t |= Γ , thenM, t |= φ.

Condition (S-Int) enforces the property that when a formulaA saysφ is true in a world
t, it is also true in all worlds reachable fromt by the relation≤ (i.e., in all worldss
such thatt ≤ s). All the other semantic conditions are those associated with the axioms
of the logic, apart from condition (S-RCEA), which is the well-known condition for
normality in conditional logics, claiming that the accessibility relationRA is associated
with the semantic interpretation ofA. Namely, if the worlds in whichA is visible are the
same as those in whichB is visible, then the worlds reachable byRA are the same as
those reachable byRB. (S-CA) is the semantic condition for both axioms (CA) and its
converse. Notice that, the fact that we represent the binaryrelationRA as indexed by a
formula does not mean that the semantics for conditional logic is second-order. In fact,
RA represent a selection function (which is used in most formulations of conditional
logic semantics), in whichsRAt corresponds tot ∈ f([|A|], s), where[|A|] is a set
of worlds. In this view, the semantic conditions above must be intended as first-order
because they quantify over individuals (i.e. worlds) and subsets of the domain (indexes
of the binary relation) identified by formulas of the language 5.

Note also that the semantic conditions for some of the axioms, as for instance (DT),
slightly depart from the semantic conditions usually givento these axioms in condi-
tional logic. This is due to the fact that our logics are intuitionistic conditional logics
and the implication occurring within axioms is intuitionistic implication.Observe that
the satisfiability of atomic propositions is defined as usualin intuitionistic logic: the
evaluation of a proposition in a world depends on the evaluation of that proposition in
all the worlds reachable by≤.

Our semantics assigns a truth value to atomic and boolean principals. The intended
meaning is that a principalA is true in a worldw whenw is visible to A. The notion
of visibility of a world to a principal has been used in the context of access control in
[13] as well as in [12]. In particular, the Kripke models forICL [13] include aview
map, mapping each principalA to the set of worlds which are not visible toA. The
Kripke semantics in [12] makes use of a view functionθ which maps each world to

5 It is well known that the extension of first-order logic with quantification over a family of
subsets of the domain does not add expressivity because it isequivalent to multi-sorted first-
order logic (see [10] Section 4.4).
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the set of principals to which the worlds is visible, and it includes the semantic con-
dition (Imp-mon)w ≤ w′ implies θ(w) ⊆ θ(w′), which requires that, if a world is
visible to a principalA, then all the worlds reachable fromw are visible toA. As a
difference with [13] (and similarly to [12]), a property analogous to (Imp-mon) holds in
our semantics. Notice that, although the notion of visibility introduced in [13] and [12]
is not expressible at the language level, and, in particular, it is not expressible inICL
andICLB, however, it can be expressed in the S4 embedding ofICL andICLB, where
a principalA is not forced to occur on the left hand side of thesays modality. Our
choice of allowing principals to freely occur within formulas, is dictated by the need to
provide an axiomatic counterpart to all the semantic conditions in the Kripke models.

Concerning the interpretation of boolean conditionals and, in particular, of the con-
junction between principals, it can be proved that, from thesemantic conditions (S-
Mon), (S-ID) and (S-DT) it follows that:

Proposition 2. RA∧B(t) = RA(t) ∩RB(t).

Proof. First, we prove thatRA∧B(s) ⊆ RA(s)∩RB(s). Let t ∈ S be a world such that
sRA∧Bt. By (S-Mon), we immediately conclude that alsosRAt andsRBt, and we are
done.

Finally, we prove thatRA(s) ∩RB(s) ⊆ RA∧B(s). Let t ∈ S be a world such that
(i) sRAt and(ii) sRBt. By (S-ID), from(ii) it follows that(iii) t ∈ [|B|]. Since≤ is
reflexive, we have thatt ≤ t. By (S-DT), from(i) sRAt, t ≤ t, and(iii) t ∈ [|B|], we
conclude thatsRA∧Bt and we are done. �

By the presence of the axiom (C), it turns out that the semantic condition (S-DT) can
be equivalently expressed as follows:

Proposition 3. In the axiomatization ofCondUC
ACL , the following are equivalent:

1. ∀t, s, z ∈ S, if sRAt andt ≤ z, andz ∈ [|B|], thensRA∧Bz;
2. ∀t, s ∈ S, if sRAt andt ∈ [|B|], thensRA∧Bt.

Proof. Let us first prove that, if 1. holds, then also 2. holds. Since≤ is reflexive, we
have thatt ≤ t. By replacingz with t in 1., we have that,∀t, s ∈ S, if sRAt and
t ∈ [|B|], thensRA∧Bt, i.e. 2. holds. Now we prove that, if 2. holds, then also 1. holds.
Suppose thatsRAt and considert ≤ z. By the semantic condition (S-C), we have
that alsozRAz. By (S-UNIT), we can also observe thats ≤ t sincesRAt. Since≤ is
transitive, froms ≤ t andt ≤ z it follows thats ≤ z. By the semantic condition (S-Int),
sincezRAz ands ≤ z, we have that alsosRAz. If z ∈ [|B|], sincesRAz, by 2. we
have thatsRA∧Bz, i.e. also 1. holds. �

This allows the semantic condition (S-DT) to be equivalently expressed inCondUC
ACL as

follows:

∀t, s ∈ S, if sRAt andt ∈ [|B|], thensRA∧Bt (S-DT)

Let us now introduce the semantic properties that correspond to axioms (C4) and (I)
introduced above as alternatives to (C) and (UNIT), characterizing the logicsCondU4

ACL ,
CondIC

ACL andCondI4
ACL , as follows:
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∀t, s ∈ S, if sRAt, then∃z ∈ S such thatsRAz andzRAt; (S-C4)
∀t, s, u ∈ S, if tRBs andsRAu, thentRAu (S-I)

Definition 3. A model for the logicsCondU4
ACL , CondIC

ACL andCondI4
ACL is as in Def-

inition 2. The relations≤ andRA satisfy the semantic conditions characterizing each
logic as stated in Figure 2.

CondU4

ACL

CondIC

ACL

CondI4

ACL

(S-UNIT)

(S-C)

(S-CA) (S-Mon) (S-DT) (S-ID) (S-RCEA)

(S-CA) (S-Mon) (S-DT) (S-ID) (S-RCEA)

(S-CA) (S-Mon) (S-DT) (S-ID) (S-RCEA)

(S-I)

(S-C4)

(S-I) (S-C4)

(S-Int)

(S-Int)

(S-Int)

Fig. 2. Conditions of relations≤ andRA for CondU4
ACL , CondIC

ACL andCondI4
ACL .

It is worth noticing that (S-UNIT) and (S-Int), together, imply the condition (S-I). In-
deed, considertRBs andsRAu. By (S-UNIT), from tRBs we obtain thatt ≤ s. By
(S-Int), it immediately follows thattRAu, and we are done.

4 Soundness and Completeness of the Axiomatizations with
respect to the Semantics

In this section we prove that the axiomatizations of the fourconditional access control
logics introduced above are sound and complete with respectto their semantics as de-
fined in Section 3. As in the previous sections, we first consider the logicCondUC

ACL .
The completeness proof we present is based on the proof of completeness for the Kripke
semantics of intuitionistic logic in [31] and extends it to deal with the modalitysays
in the language and, more precisely, with the interplay between the relation≤ and the
accessibility relationsRA associated withsays.

Definition 4 (Consistency).Let Γ be a set of formulas.Γ is consistent iffΓ 6⊢ ⊥. If
Γ has an infinite number of formulas, we say thatΓ is consistent iff there are no finite
Γ0 ⊂ Γ such thatΓ0 ⊢ ⊥.

Definition 5 (Saturation). Let Γ be a set of formulas, we say thatΓ is saturated iff
1. Γ is consistent (Definition 4); 2. ifΓ ⊢ ϕ, thenϕ ∈ Γ ; 3. if Γ ⊢ ϕ ∨ ψ, then
Γ ⊢ ϕ or Γ ⊢ ψ.

Lemma 1 (Saturated Extensions).LetΓ be a set of formulas. SupposeΓ 6⊢ ϕ, then
there is a saturated setΓ ∗ such thatΓ ⊆ Γ ∗ andΓ ∗ 6⊢ ϕ.

Proof. This is proven as in [31]. We obtainΓ ∗ as
⋃
{Γ k : k ∈ N}. We letΓ0 = Γ , and

inductively defineΓ k. Let {B0,1 ∨ B0,2, . . . Bn,1 ∨Bn,2, . . .} be an enumeration with
infinite repetitions of all the disjunctions of the language. We defineΓ k+1 as follows:
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– Γ k+1 = Γ k ∪ {Bk,i} if Γ k ⊢ Bk,1 ∨Bk,2, wherei is the least of{1, 2} such that
Γ k ∪ {Bk,i} 6⊢ ϕ

– Γ k otherwise.

It can be easily shown thatΓ ∗ is saturated, thatΓ ⊆ Γ ∗ , and thatΓ ∗ 6⊢ ϕ. �

Definition 6 (Canonical model construction).We fix a languageLC ⊆ L and we
defineM = (S,≤, {RA}, h) such that: S is the set of all saturatedΓ on the language
LC ; Γ1 ≤ Γ2 iff Γ1 ⊆ Γ2; Γ1RAΓ2 iff {α | A saysα ∈ Γ1} ⊆ Γ2; for all P ∈ ATM ,
h(P ) = {Γ ∈ S | P ∈ Γ}.

We can prove the following Lemmas:

Lemma 2. Let Γ be a set of formulas and let∆ = {ϕ : A saysϕ ∈ Γ}. If ∆ ⊢ ψ,
thenΓ ⊢ A saysψ.

Proof. If ∆ ⊢ ψ, by definition of⊢ there must be{ϕ1, . . . , ϕn} ⊆ ∆ such that⊢
ϕ1 ∧ . . . ∧ ϕn → ψ. By (RCK) and (K),⊢ A saysϕ1 ∧ . . . ∧A saysϕn → A saysψ,
and from definition of⊢ (and sinceA saysϕi ∈ Γ for all i = 1, . . . , n) we conclude
thatΓ ⊢ A saysψ. �

Lemma 3. For all Γ ∈ S and each formulaϕ ∈ L, we have thatM, Γ |= ϕ iff ϕ ∈ Γ .

Proof. By induction on the complexity ofϕ. In caseϕ is an atomic formula, the lemma
holds by definition ofh. Forϕ ≡ φ ∧ ψ the proof is easy and left to the reader. For
ϕ ≡ φ∨ψ, thenΓ |= φ∨ψ ⇔ (Γ |= φ orΓ |= ψ) ⇔ (φ ∈ Γ orψ ∈ Γ ) ⇔ φ∨ψ ∈ Γ
(by the saturation ofΓ ). Forϕ ≡ φ → ψ, supposeΓ |= φ → ψ. Then for all saturated
Γ

′

⊇ Γ we have that ifΓ
′

|= φ, thenΓ ′ |= ψ. AssumeΓ 6⊢ φ→ ψ, thenΓ ∪{φ} 6⊢ ψ;
let Γ

′

be a saturated extension ofΓ ∪ {φ} such thatΓ
′

6⊢ ψ, thenΓ
′

|= φ but not
Γ

′

|= ψ (induction hypothesis). This contradictsΓ |= φ → ψ. HenceΓ ⊢ φ → ψ.
As Γ is saturated, by condition 2 in Definition 5,φ → ψ ∈ Γ . For the converse,
let φ → ψ ∈ Γ . For a contradiction supposeΓ 6|= φ → ψ. Then there would be
a Γ ′ with Γ ⊆ Γ ′ such thatΓ ′ |= φ but Γ ′ 6|= ψ. SinceΓ ⊆ Γ ′, φ → ψ ∈ Γ ′.
Furthermore by inductive hypothesisφ ∈ Γ ′. Hence there areγ1 . . . γn ∈ Γ ′ such that
⊢ γ1 ∧ . . . ∧ γn → (φ → ψ) and⊢ γ1 ∧ . . . ∧ γn → φ. From the axiomatization (and
saturation) it follows thatψ ∈ Γ ′, which contradictsψ 6∈ Γ ′ deriving fromΓ ′ 6|= ψ
by the inductive hypothesis. ThereforeΓ |= φ → ψ. For ϕ ≡ A saysφ, suppose
Γ |= A saysφ. Hence, for allΓ ′ such thatΓRAΓ

′, Γ ′ |= φ. By inductive hypothesis,
φ ∈ Γ ′. Let ∆ = {α : A saysα ∈ Γ}. By construction,Γ ′ ⊇ ∆. Assume, for a
contradiction, thatA saysφ 6∈ Γ . By condition 2 in Definition 5,Γ 6⊢ A saysφ. Then,
by Lemma 2,∆ 6⊢ φ. By Lemma 1, there is a saturated extension∆∗ of ∆ such that
∆∗ 6⊢ φ, i.e.φ 6∈ ∆∗. By definition ofRA, ΓRA∆

∗. This contradicts the fact that, for
all Γ ′ such thatΓRAΓ

′, φ ∈ Γ ′. The converse can be easily shown. �

Lemma 4. Let M be the canonical model as defined in Definition 6.M satisfies the
conditions(S-Int), (S-UNIT), (S-C), (S-CA), (S-Mon), (S-DT), (S-ID), and(S-RCEA).

Proof. We consider each property:
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(S-Int) LetΓ ≤ Γ ′ andΓ ′RAΓ
′′. Consider anyφ s.t.A saysφ ∈ Γ . By definition of≤,

A saysφ ∈ Γ ′, hence byΓRAΓ
′′, φ ∈ Γ ′′. By definition ofRA it follows that

ΓRAΓ
′′.

(S-UNIT) Let ΓRAΓ
′. We want to show thatΓ ≤ Γ ′. Let α ∈ Γ . By (UNIT), α →

A saysα ∈ Γ , hence (by saturation ofΓ ) A saysα ∈ Γ . Hence, by construction
of the canonical model,α ∈ Γ ′. Therefore,Γ ≤ Γ ′.

(S-C) We have to prove that ifΓRAΓ
′, andΓ ′ ≤ Γ ′′, thenΓ ′′RAΓ

′′. By (C) we know
that for all φ, A says(A saysφ → φ) ∈ Γ , henceA saysφ → φ ∈ Γ ′, and
alsoA saysφ → φ ∈ Γ ′′ (by definition of≤). From this it follows that for all
A saysφ ∈ Γ ′′, by saturation ofΓ ′′, φ ∈ Γ ′′. By definition ofRA we conclude
thatΓ ′′RAΓ

′′.
(S-CA) In order to show thatRA∨B = RA ∪ RB we have to consider two directions. 1.

Let ΓRAΓ
′. For allC : A ∨ B saysC ∈ Γ , by (CA-conv) alsoA saysC ∈ Γ ,

henceC ∈ Γ ′. We conclude thatΓRA∨BΓ
′. The same holds ifΓRBΓ

′. Hence,
RA ∪RB ⊆ RA∨B. 2. LetΓRA∨BΓ

′. Suppose that notΓRAΓ
′, i.e. there isC s.t.

A saysC ∈ Γ andC 6∈ Γ ′. We want to show that in this caseΓRBΓ
′. Consider

anyD s.t.B saysD ∈ Γ . By (RCK), and by saturation ofΓ , A saysC ∨ D ∈ Γ
andB saysC ∨D ∈ Γ . By (CA) A ∨B saysC ∨D. It follows thatC ∨D ∈ Γ ′,
and sinceC 6∈ Γ ′, D ∈ Γ ′. We have shown that if notΓRAΓ

′, thenΓRBΓ
′. We

can reason symmetrically in case notΓRBΓ
′. Hence,RA∨B ⊆ RA ∪RB.

(S-Mon) Let ΓRA∧BΓ
′. Considerφ s.t. A saysφ ∈ Γ . By (Mon) it follows thatA ∧

B saysφ ∈ Γ , henceφ ∈ Γ ′ and, by definition ofRA, ΓRAΓ
′. The same holds

for RB.
(S-DT) We have to show that ifΓRAΓ

′, Γ ′ ≤ Γ ′′, andΓ ′′ ∈ [|B|], thenΓRA∧BΓ
′′, i.e.

{φ: A ∧ B saysφ ∈ Γ} ⊆ Γ ′′. Considerφ such thatA ∧ B saysφ ∈ Γ . Then,
by (DT),A says(B → φ) ∈ Γ , hence by definition ofRA, B → φ ∈ Γ ′, and by
definition of≤, B → φ ∈ Γ ′′. Furthermore, fromΓ ′′ ∈ [|B|], B ∈ Γ ′′ by Lemma
3. By saturation ofΓ ′′, we conclude thatφ ∈ Γ ′′.

(S-ID) Let ΓRAΓ
′. By (ID) A saysA ∈ Γ and, by definition ofRA, A ∈ Γ ′ and, by

Lemma 3,Γ ′ ∈ [[A]].
(S-RCEA) If [[A]] = [[B]], then⊢ A ↔ B, otherwise by Lemma 1 there would beΓ ∈ S

such thatA ↔ B 6∈ Γ . In this case, by Lemma 3Γ 6|= A ↔ B hence there would
be aΓ ′ s.t. Γ ≤ Γ ′ andΓ ′ |= A but Γ ′ 6|= B (or viceversa). This contradicts
the hypothesis that[[A]] = [[B]]. Furthermore, from⊢ A ↔ B, by (RCEA) we
conclude thatA saysφ ↔ B saysφ ∈ Γ for eachΓ ∈ S. Therefore, for all
Γ, Γ ′ ∈ S, ΓRAΓ

′ iff ΓRBΓ
′, and henceRA = RB. �

By the above lemmas, we can conclude that the axiomatizationof the logicCondUC
ACL given

in Section 2 is complete with respect to the semantics in Definition 2:

Theorem 4 (Soundness and Completeness ofCondUC
ACL ). Given a formulaϕ ∈ L,

|= ϕ iff ⊢ ϕ.

Proof. Soundness is straightforward. Concerning the completeness, for a contradiction,
suppose6⊢ ϕ. Then by Lemma 1 there is a saturated setΓ ∗ such thatΓ ∗ 6⊢ ϕ, hence
ϕ 6∈ Γ ∗. By Definition 6 and Lemmas 3 and 4, we conclude that there is a (canonical)
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modelM = (S,≤, {RA}, h), made on the language ofϕ, with Γ ∗ ∈ S, such that
M, Γ ∗ 6|= ϕ. It follows thatϕ is not logically valid, i.e.6|= ϕ. �

We can also show that soundness and completeness apply to thelogicsCondU4
ACL ,

CondIC
ACL andCondI4

ACL , obtained respectively when replacing (C) with (C4) or (UNIT)
with (I) or both inCondUC

ACL .

Theorem 5 (Soundness and Completeness ofCondIC
ACL ). The axiomatization of the

logic CondIC
ACL , obtained by replacing(UNIT) with (I), is sound and complete with

respect to the semantics of Definition 2 in which(S-UNIT) is replaced with(S-I) of
Definition 3.

Proof. Soundness is straightforward. For completeness, we reasonas done above. We
prove that if the logic contains (I) instead of (UNIT) then itsatisfies (S-I).

(S-I) LetΓRBΓ
′ andΓ ′RAΓ

′′. Considerφ s.t.A saysφ ∈ Γ . By (I)B says(A saysφ) ∈
Γ , henceA saysφ ∈ Γ ′ andφ ∈ Γ ′′. We conclude thatΓRAΓ

′′. �

Theorem 6 (Soundness and Completeness ofCondU4
ACL ). The axiomatization of the

logic CondU4
ACL , obtained by replacing(C) with (C4), is sound and complete with re-

spect to the semantics of Definition 2 in which(S-C) is replaced with(S-C4)of Defini-
tion 3.

Proof. Soundness is straightforward. For completeness, we reasonas done above. We
prove that if the logic contains (C4) instead of (C) the logicsatisfies (S-C4).

(S-C4) LetΓRAΓ
′. Consider∆ = {φ : A saysφ ∈ Γ}. Clearly, by definition ofRA,

∆ ⊆ Γ ′. Consider now the saturation∆∗ of ∆ obtained as follows. Consider the
disjunctive normal form corresponding to∆: D1 ∨ . . . ∨ Dn. Since∆ is consis-
tent there must be oneDi such that∆ 6⊢ ¬Di. Furthermore, there must also exist
one suchDi in which any formulaA saysφ positively occurs only ifφ ∈ Γ ′. For
a contradiction suppose that for eachDi consistent with∆ there was an occur-
rence ofA saysφ with φ 6∈ Γ ′. Then there would beA saysφ1 . . . A saysφj with
φ1 . . . φj 6∈ Γ ′ such that∆ ⊢ A saysφ1 ∨ . . . ∨ A saysφj . But in this case also
∆ ⊢ A says(φ1∨. . .∨φn), and by Lemma 2,Γ ⊢ A says(A says(φ1∨. . .∨φn)).
By (C4) alsoΓ ⊢ A says(φ1 ∨ . . . ∨ φn), and hence(φ1 ∨ . . . ∨ φn) ∈ ∆ ⊆ Γ ′,
which contradicts thatΓ ′ is saturated but none ofφ1 . . . φn belongs toΓ ′. From
this contradiction we conclude that there must be aDi consistent with∆ and such
that for any positive occurrence ofA saysφ, φ ∈ Γ ′. We saturate∆ with this dis-
junct, obtaining∆∗. It can be easily shown that∆∗ is saturated, and thatΓRA∆

∗

and∆∗RAΓ
′. �

Theorem 7 (Soundness and Completeness ofCondI4
ACL ). The axiomatization of the

logic CondI4
ACL , obtained by replacing(UNIT) with (I) and(C) with (C4), respectively,

is sound and complete with respect to the semantics of Definition 2 in which(S-UNIT)
is replaced with(S-I) and(S-C) is replaced with(S-C4).



Logics in Access Control: A Conditional Approach 17

5 A sequent calculus for Conditional Access Control Logics

In this section we present a cut-free sequent calculus for the four conditional logics for
access control we propose. Our calculus is calledSCondACL and it makes use of labels
to represent possible worlds, following the line of SeqS, a sequent calculus for standard
conditional logics introduced in [26]. In particular, the calculus we propose is formu-
lated following the methods developed in [24] to obtain height-preserving admissibility
of weakening and contraction, admissibility of cut, and decidability for modal labelled
calculi. In the following, bySCondACL we refer to the calculus for any of the four logics
under consideration. For the logicCondUC

ACL , we also show that we can control the ap-

plication of some crucial rules, obtaining a terminating calculus ̂S
CondUC

ACL
. This calculus

describes a decision procedure forCondUC
ACL , and allows us to conclude that provability

is decidable inO(n4logn) space.
In addition to the languageL of the logicCondUC

ACL , we consider a denumerable
alphabet of labelsX , whose elements are denoted byx, y, z, . . .. Moreover, in order to
obtain a terminating calculus, we define the setLP ⊆ L of principals involved in the
computation. Given a set of policiesΓ and a requestϕ of compliance of a principalA
(i.e. we want to verify whetherΓ,A saysϕ |= ϕ), we assume that the setLP contains
at leastA and all principalsB such that, for someφ, B saysφ appears inΓ .

The calculusSCondACL manipulates three types of labelled formulas:

1. world formulas, denoted byx : α, wherex ∈ X andα ∈ L, used to represent that
the formulaα holds in a worldx;

2. transition formulas, denoted byx
A

−→ y, representing thatxRAy;
3. order formulasof the formy ≥ x representing the preorder relation≤.

A sequentis a pair〈Γ,∆〉, usually denoted withΓ ⊢ ∆, whereΓ and∆ are mul-
tisets of labelled formulas. The intuitive meaning of a sequentΓ ⊢ ∆ is: every model
that satisfies all labelled formulas ofΓ in the respective worlds (specified by the la-
bels) satisfies at least one of the labelled formulas of∆ (in those worlds). This is made
precise by the notion ofvalidity of a sequent given in the next definition:

Definition 7 (Sequent validity). Given a modelM = (S,≤, {RA}, h) for L, and a
label alphabetX , we consider amappingI : X → S. LetF be a labelled formula, we
defineM |=I F as follows:

– M |=I x : α iff M, I(x) |= α;

– M |=I x
A

−→ y iff I(x)RAI(y);
– M |=I y ≥ x iff I(x) ≤ I(y).

We say thatΓ ⊢ ∆ is valid in M if, for every mappingI : X → S, if M |=I F for
everyF ∈ Γ , thenM |=I G for someG ∈ ∆. We say thatΓ ⊢ ∆ is valid inCondUC

ACL
if it is valid in everyM.

In Figure 3 we present the basic rules of the calculiSCondACL , common to all the logics
under considerations. In Figure 4 we present the specific rules to adopt in order to
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(AX) (AX⊥) (AX≥)

(→ L)

(→ R)

( says R)
( says L)

(∧R) (∧L)

(ATM )

(EQ)

(CA)

(ID)(DT )

(MON )

(CA − conv)

F either x : P, P ∈ ATM or y ≥ x

y new

A ∨ B ∈ LP

A ∧ B ∈ LP

(TR)

u new

(∨R) (∨L)

y new

(INT )

Γ, F ⊢ ∆, F Γ, x : ⊥ ⊢ ∆ Γ ⊢ ∆, x ≥ x

Γ, x : P ⊢ ∆, y ≥ x Γ, x : P, y : P ⊢ ∆

Γ, x : P ⊢ ∆ Γ, y ≥ x, y
A

−→ z ⊢ ∆

Γ ⊢ ∆, x : β

Γ ⊢ ∆, x : α ∧ β

Γ ⊢ ∆, x : α

Γ, x : α ∧ β ⊢ ∆

Γ, x : α, x : β ⊢ ∆

Γ ⊢ ∆, x : α, x : β

Γ ⊢ ∆, x : α ∨ β

Γ, x : β ⊢ ∆Γ, x : α ⊢ ∆

Γ, x : α ∨ β ⊢ ∆

Γ, y ≥ x, y : α ⊢ ∆, y : β

Γ ⊢ ∆, x : α → β

Γ, z ≥ x, z ≥ y, y ≥ x ⊢ ∆

Γ, z ≥ y, y ≥ x ⊢ ∆

Γ, x : α → β ⊢ ∆, y ≥ x

Γ, x : α → β ⊢ ∆

Γ, x : α → β ⊢ ∆, y : α Γ, x : α → β, y : β ⊢ ∆

Γ ⊢ ∆, x : A says α

Γ, x
A

−→ y ⊢ ∆, y : α

Γ, x : A says α ⊢ ∆

Γ, x : A says α ⊢ ∆, x
A

−→ y

u : B ⊢ u : Au : A ⊢ u : B

Γ, x
A

−→ y ⊢ ∆, x
B
−→ y

Γ, z ≥ y, x
A

−→ y, x
A∧B
−→ z ⊢ ∆

Γ, z ≥ y, x
A

−→ y ⊢ ∆

Γ, z ≥ y, x
A

−→ y ⊢ ∆, z : B

Γ, x
A

−→ y ⊢ ∆

Γ, x
A

−→ y, y : A ⊢ ∆

Γ, x
A∨B
−→ y, x

A
−→ y ⊢ ∆

Γ, x
A

−→ y ⊢ ∆

Γ ⊢ ∆, x
A∨B
−→ y Γ, x

B
−→ y ⊢ ∆Γ, x

A
−→ y ⊢ ∆

Γ, x
A

−→ y, x
B
−→ y ⊢ ∆

Γ ⊢ ∆

Γ ⊢ ∆, x
A∧B
−→ y

A ∧ B ∈ LP

A ∨ B ∈ LP

Γ ⊢ ∆

Γ, x : A says α, y : α ⊢ ∆

Basic Rules

Γ, y ≥ x, y
A

−→ z, x
A

−→ z ⊢ ∆

P ∈ ATM

Fig. 3. Basic rules of the sequent calculusSCondACL
.

(Unit)

(C)

z new

(C4)

(I)

Γ, z ≥ y, x
A

−→ y, z
A

−→ z ⊢ ∆

Γ, z ≥ y, x
A

−→ y ⊢ ∆ Γ, x
A

−→ y ⊢ ∆

Γ, x
A

−→ y, x
A

−→ z, z
A

−→ y ⊢ ∆

Γ, y ≥ x, x
A

−→ y ⊢ ∆

Γ, x
A

−→ y ⊢ ∆ Γ, x
B
−→ y, y

A
−→ z ⊢ ∆

Γ, x
B
−→ y, y

A
−→ z, x

A
−→ z ⊢ ∆

Fig. 4. Additional rules forCondUC
ACL , CondU4

ACL , CondIC
ACL , CondI4

ACL .
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CondU4

ACL

CondIC

ACL

CondI4

ACL

CondUC

ACL

Logic Calculus Rules

Basic Rules

Basic Rules

Basic Rules

Basic Rules

S
CondUC

ACL

S
CondU4

ACL

S
CondIC

ACL

S
CondI4

ACL

+ (Unit) + (C)

+ (Unit) + (C4)

+ (I) + (C4)

+ (I) + (C)

Fig. 5.Calculi and rules for the constructive conditional access control logics.

deal with one of the presented conditional access control logics, namelyCondUC
ACL ,

CondU4
ACL , CondIC

ACL , or CondI4
ACL , following the schema of Figure 5.

As usual, we say that a sequentΓ ⊢ ∆ is derivable in SCondACL if it admits a
derivation. A derivation is a tree whose nodes are sequents. A branch is asequence of
nodesΓ1 ⊢ ∆1, Γ2 ⊢ ∆2, . . . , Γn ⊢ ∆n, . . . Each nodeΓi ⊢ ∆i is obtained from its
immediate successorΓi−1 ⊢ ∆i−1 by applyingbackwarda rule of SCondACL , having
Γi−1 ⊢ ∆i−1 as the conclusion andΓi ⊢ ∆i as one of its premises. A branch is closed if
one of its nodes is an instance of axioms, namely(AX), (AX≥), and(AX⊥), otherwise
it is open. We say that a tree is closed if all its branches are closed. A sequentΓ ⊢ ∆
has a derivation inSCondACL if there is a closed tree havingΓ ⊢ ∆ as a root.

The axioms represent valid sequents. For instance,(AX) is used to close a branch
with a sequent in which a formulaF belongs to both its left hand side and its right hand
side:F is either a formulax : P , whereP is an atom, or a formulay ≥ x. Such a
sequent is obviously valid : given any model satisfying all the formulas in the left hand
side, then also the formulaF , then there is at least one formula in the righ-hand side
holding in such a model, the formulaF itself. Similarly for the other axioms. The rule
(ATM ) is used to support the condition 1. in Definition 2, namely, given a modelM, a
world t and an atomic formulaP not being a principal, we have thatM, t |= P if and
only if, for all s such thatt ≤ s, we have thats ∈ h(P ). Given a sequent containing
x : P in the left hand side, the rule (i) checks whether the premisein which y ≥ x
is added to the right hand side of the sequent is valid: intuitively, this corresponds to
finding a world (represented byy) which is “greater” than the one represented byx; (ii)
introducesy : P in the other premise, in order to impose that the atomP also holds
in the world represented byy such thaty ≥ x. The rule(INT ) supports the condition

(S-Int) in Definition 2: if a sequent contains the formulasy ≥ x andy
A

−→ z in its left

hand side, then the rule introduces also the transition formulax
A

−→ z, and then checks
whether the resulting premise is derivable. The rule(TR) takes care of the transitivity of
the relation≤ in an obvious way: if bothz ≥ y andy ≥ x belong to the left hand side of
a sequent, then also the relationz ≥ x is added to the left hand side of the premise that
the calculus tries to derive. The rule(Unit) is used to support the condition (S-UNIT)

in Definition 2: if the sequent under consideration containsa transition formulax
A

−→ y
in its left hand side, then the rule introduces also the relation y ≥ x. Similarly for the
other rules related to the other semantic conditions. Some of them are related to the
conditions introduced to support boolean principals. As anexample, the rule(MON )
is used to support the condition (S-Mon) in Definition 2. Intuitively, given a sequent
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(AX)
. . . , y ≥ x ⊢ y : P, y ≥ x

(AX)
. . . , x : P, y : P ⊢ y : P

(ATM )
y ≥ x, x ≥ u, x : P, x

A
−→ y ⊢ y : P

(Unit)
x ≥ u, x : P, x

A
−→ y ⊢ y : P

( saysR)
x ≥ u, x : P ⊢ x : A saysP

(→ R)
⊢ u : P → (A saysP )

Fig. 6. A derivation in SCondACL
for an instance of the axiom (UNIT).

Γ ⊢ ∆, the rule works as follows: the left premise checks whetherΓ ⊢ ∆,x
A∧B
−→ y

is a valid sequent, trying to check whether there is a world (represented by the label
y) reachable from the world represented byx given the boolean principalA ∧ B; the

right premise adds tra transitionsx
A

−→ y andx
B
−→ y according to the condition (S-

Mon). The side condition is introduced in order to ensure that A ∧B belongs to the set
of available principals. Similarly for the other rules supporting the other conditions of
boolean principals. The rule(EQ) is used in order to support the rule (RCEA), roughly
speaking the rule has to ensure that, ifA andB are equivalent, i.e. they are true in
the same worlds, then, given a world represented byx, the selection function selects
the same worlds forx (represented byy) for bothA andB. To this aim, if a sequent

Γ, x
A

−→ y ⊢ ∆,x
B
−→ y has to be proved, then the(EQ) rule introduces a branch in

the backward derivation, trying to find a proof for both sequentsu : A ⊢ u : B and
u : B ⊢ u : A. The restrictions on the rules(→ R), ( saysR), and(EQ) are necessary
to preserve the soundness of the calculus.

As an example, in Figure 6 we show a derivation inSCondACL of an instance of the
axiom (UNIT). GivenP ∈ ATM , in order to show that the formulaP → (A saysP )
is valid, we build a derivation inSCondACL for the sequent⊢ u : P → (A saysP ).

The calculusSCondACL is sound and complete with respect to the semantics. In order
to prove it, we need some basic structural properties.

5.1 Basic Structural properties of SCondACL

First of all, we define the complexity of a labelled formula:

Definition 8 (Complexity of a labelled formula cp(F)).We define the complexity of a
labelled formulaF as follows:

– cp(x : γ) = 2 ∗ | γ |
– cp(x : ⊥) = 2
– cp(y ≥ x) = 2

– cp(x
A

−→ y) = 2 ∗ | A | + 1

where| F | is the number of symbols occurring in the string representingF .
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Now we can introduce some basic structural properties holding in SCondACL . First,
we show thatweakeningand label substitutionare height preserving admissible in
SCondACL . As usual, the height of a derivation corresponds to the height of the tree
representing the derivation itself.

Lemma 5 (Height-preserving admissibility of weakening).If Γ ⊢ ∆ has a deriva-
tion of heighth, thenΓ ⊢ ∆,F andΓ, F ⊢ ∆ have a derivation of heighth′ ≤ h.

Proof. By induction on the height of the derivation ofΓ ⊢ ∆. The base case is straight-
forward: if Γ ⊢ ∆ is an instance of an axiom, so areΓ ⊢ ∆,F andΓ, F ⊢ ∆. For the
inductive step, we have to consider all possibile rules applied toΓ ⊢ ∆ in a backward
proof search. We distinguish two subcases:

– the derivation ofΓ ⊢ ∆ is ended by an application of(EQ) as follows:

u : A ⊢ u : B u : B ⊢ u : A
(EQ)

Γ
′
, x

A
−→ y ⊢ ∆

′
, x

B
−→ y

All formulas different from the transition formulas involved in the rule application
are side formulas in(EQ), therefore we can conclude as follows:

u : A ⊢ u : B u : B ⊢ u : A
(EQ)

Γ
′
, x

A
−→ y, F ⊢ ∆

′
, x

B
−→ y

and similarly to prove that alsoΓ ′, x
A
−→ y ⊢ ∆′, x

B
−→ y, F is derivable;

– the derivation is ended by the application of a rule which is different from(EQ).
As an example, we present the case of(DT ), the other ones are similar and left to
the reader:

(1) Γ
′
, z ≥ y, x

A
−→ y ⊢ ∆, z : B (2) Γ

′
, z ≥ y, x

A
−→ y, x

A∧B
−→ y ⊢ ∆

(DT )
Γ

′
, z ≥ y, x

A
−→ y ⊢ ∆

We can apply the inductive hypothesis on the two premises, obtaining derivations

for (1′) Γ ′, z ≥ y, x
A

−→ y, F ⊢ ∆, z : B, (1′′) Γ ′, z ≥ y, x
A

−→ y ⊢ ∆, z : B,F ,

(2′) Γ ′, z ≥ y, x
A

−→ y, x
A∧B
−→ y, F ⊢ ∆, and(2′′) Γ ′, z ≥ y, x

A
−→ y, x

A∧B
−→

y ⊢ ∆,F . We obtain a derivation ofΓ ′, z ≥ y, x
A

−→ y, F ⊢ ∆ by an application

of (DT ) to (1′) and(2′), as well as a derivation ofΓ ′, z ≥ y, x
A

−→ y ⊢ ∆,F by
applying(DT ) to (1′′) and(2′′). �

Lemma 6 (Height-preserving label substitution).If a sequentΓ ⊢ ∆ has a deriva-
tion of heighth, thenΓ [x/y] ⊢ ∆[x/y] has a derivation of heighth′ ≤ h, where
Γ [x/y] ⊢ ∆[x/y] is the sequent obtained fromΓ ⊢ ∆ by replacing all occurrences of
the labelx by the labely.

Proof. By induction on the height ofΓ ⊢ ∆. The base case is straightforward: ifΓ ⊢ ∆
is an axiom, it is still an axiom if we replace eachx with y. For the inductive step, we
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only present the most interesting case of( saysR), the other cases are easy and left to
the reader. Consider the following derivation:

(i) Γ, x
A

−→ y ⊢ ∆
′
, y : γ

( saysR)
Γ ⊢ ∆

′
, x : A saysγ

In order to obtain a derivation (of at most the same height) ofΓ [x/y] ⊢ ∆′[x/y], y :
A saysγ we proceed as follows. First, we apply the inductive hypothesis to (i) by
replacing all occurrences ofy with z, with z not occurring inΓ and∆′. Notice that, by
the condition on the application of( saysR), y is new in(i), that is to sayy does not

occur inΓ and∆′. It follows that we have a derivation of(ii) Γ, x
A

−→ z ⊢ ∆′, z : γ,
whose height is no greater than the height of(i). We can further apply the inductive
hypothesis on(ii) by replacing all occurrences ofx with y, obtaining a derivation of

no greater height than(ii) (then, than(i)) of Γ [x/y], y
A

−→ z ⊢ ∆′[x/y], z : γ, from
which we conclude by an application of( saysR). �

We can also show that all the rules ofSCondACL , with the exception of(EQ), are height-
preserving invertible.

Lemma 7 (Height-preserving invertibility of rules). LetΓ ⊢ ∆ be an instance of the
conclusion of a rule R ofSCondACL , with R different from(EQ). If Γ ⊢ ∆ is derivable,
then the premise(s) of R is (are) derivable with a derivationof (at most) the same height.

Proof. We have to consider each rule of the calculus. We distinguishbetween:

– rules(ATM ), (INT ), (→ L), ( saysL), (MON ), (DT ), (ID), (CA), (CA −
conv), (C), (C4), (Unit), and(I): in these rules, the premises contain all formulas
of the respective conclusions. Therefore, we conclude thatwe have a proof (of no
greater height) of the premises since weakening is height-preserving admissible
(Lemma 5);

– all other rules, not copying their principal formulas in thepremises. For each rule,
we proceed by induction on the height of the derivation ofΓ ⊢ ∆. We only present
the most interesting case of(→ R). The other cases are easier and left to the reader.
For the base case, suppose thatΓ ⊢ ∆′, x : α → β is an axiom: since axioms do
not involve complex formulas, we immediately conclude thatalsoΓ, y ≥ x, y :
α ⊢ ∆′, y : β is an axiom, and we are done. For the inductive step, we distinguish
two subcases:
• the proof ofΓ ⊢ ∆′, x : α → β is ended by an application of(→ R) to
x : α→ β, i.e. the proof is ended as follows:

(i) Γ, y ≥ x, y : α ⊢ ∆
′
, z : β

(→ R)
Γ ⊢ ∆

′
, x : α → β

In this case, we immediately conclude, since we have a derivation of the premise
(i) of (→ R). Notice also that, if the height of the starting derivation ish, then
the height of the proof of(i) is h− 1;
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• the proof ofΓ ⊢ ∆′, x : α → β is ended by an application of a rule (R’)
different from(→ R) or by (→ R) to a formulau : γ → δ ∈ ∆′: in this
case, we apply the inductive hypothesis on the premises, then we conclude
by an application of (R’). As an example, consider a derivation ended by an
application of( saysL) as follows:

(ii) Γ
′
, x : A saysγ ⊢ ∆

′
, x : α → β, x

A
−→ y (iii) Γ

′
, x : A saysγ, y : γ ⊢ ∆

′
, x : α → β

( saysL)
Γ

′
, x : A saysγ ⊢ ∆

′
, x : α → β

We can apply the inductive hypothesys on(ii) and(iii), i.e. we have deriva-
tions (of at most the same height) of(ii′) Γ ′, x : A saysγ, z ≥ x, z : α ⊢

∆′, x
A
−→ y, z : β and(iii′) Γ ′, x : A saysγ, y : γ, z ≥ x, z : α ⊢ ∆′, z : β,

where(ii′) and(iii′) are, respectively, the premises of rule(→ R) applied to
(ii) and(iii). We conclude by an application of( saysL):

(ii′) Γ ′, x : A saysγ, z ≥ x, z : α ⊢ ∆′, x
A

−→ y, z : β

(iii′) Γ ′, x : A saysγ, y : γ, z ≥ x, z : α ⊢ ∆′, z : β
( saysL)

(iv) Γ
′
, x : A saysγ, z ≥ x, z : α ⊢ ∆

′
, z : β

It is worth noticing thatz does not occur inΓ ′ and∆′. Therefore, by Lemma 6
and(iv), we have a derivation (of at most the same height) ofΓ ′, x : A saysγ, y ≥
x, y : α ⊢ ∆′, y : β, which is the premise of the rule(→ R) applied to
Γ ′, x : A saysγ ⊢ ∆′, x : α→ β, and we are done. �

It is worth noticing that the height-preserving invertibility also preserves the number of
applications of the rules in a proof, that is to say: ifΓ1 ⊢ ∆1 is derivable by Lemma
7 since it is the premise of a backward application of an invertible rule R toΓ2 ⊢ ∆2,
then it has a derivation containingthe same rule applicationsof the proof ofΓ2 ⊢ ∆2.

For instance, if(1) Γ, x
A

−→ y ⊢ ∆ is derivable with a proofΠ , then(2) Γ, x
A

−→
y, y : A ⊢ ∆ is derivable since(ID) is invertible; moreover, there exists a proof of
(2) containing the same rules ofΠ , obtained by addingy : A in each sequent ofΠ
from which(1) descends. This fact will be systematically used throughoutthis section,
in the sense that we will assume that every proof transformation due to the invertibility
preserves the number of rules applications in the initial proof.

We can show that the rules ofcontractionare admissibile inSCondACL .

Lemma 8 (Height-preserving and rule-preserving admissibility of contraction).
The rules of contraction are height-preserving admissiblein SCondACL

, i.e. if a sequent
Γ ⊢ ∆,F, F is derivable in SeqS, then there is a derivation of no greaterheight of
Γ ⊢ ∆,F , and if a sequentΓ, F, F ⊢ ∆ is derivable in SCondACL

, then there is a
derivation of no greater height ofΓ, F ⊢ ∆. Moreover, the rules of contraction are
rule-preserving admissibile inSCondACL , i.e. the proof of the contracted sequent does
not add any rule application to the initial proof.

Proof. By simultaneous induction on the height of the drivations for left and right con-
traction. For the base case, letΓ ⊢ ∆,F, F be an axiom. We have the following sub-
cases:
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– F is eithery ≥ x orx : P with P ∈ ATM andF ∈ Γ : in this case, we immediately
conclude that alsoΓ ⊢ ∆,F is an axiom;

– F is x ≥ x: again, alsoΓ ⊢ ∆,F is an instance of(AX≥) and we are done;
– x : ⊥ ∈ Γ : once again, alsoΓ ⊢ ∆,F is an instance of(AX⊥).

The other base case, namely the case whereΓ, F, F ⊢ ∆ is an axiom, is symmetric.
For the inductive step, we consider the last rule applied toΓ ⊢ ∆,F, F (resp.

Γ, F, F ⊢ ∆). We distinguish three cases:

– the proof is ended by an application of(EQ): in this case, we can conclude since
(EQ) only involves two transition formulas, one on the left hand side and one

on the right hand side of the sequent. Even ifF is a transition formulax
A

−→ y
involved in the application of(EQ), as follows:

u : A
′ ⊢ u : A u : A ⊢ u : A

′

(EQ)

Γ
′
, x

A
′

−→ y ⊢ ∆, x
A

−→ y, x
A

−→ y

the rule can be directly applied to the contracted sequent, and we are done:

u : A
′ ⊢ u : A u : A ⊢ u : A

′

(EQ)

Γ
′
, x

A
′

−→ y ⊢ ∆, x
A

−→ y

– the applied rule is different from(EQ) and the contracted formulaF is not prin-
cipal in the application of the rule: in this case, both occurrences ofF are in the
premise(s) of the rule, which have a smaller derivation height. By the inductive
hypothesis, they can be contracted and the conclusion is obtained by applying the
rule to the contracted premise(s). As an example, consider aproof ended by an
application of(DT ) as follows:

Γ
′
, z ≥ y, x

A
−→ y ⊢ ∆, F, F, z : B Γ

′
, z ≥ y, x

A
−→ y, x

A∧B
−→ z ⊢ ∆, F, F

(DT )
Γ

′
, z ≥ y, x

A
−→ y ⊢ ∆, F, F

We apply the inductive hypothesis on the two premises, then we conclude by an
application of(DT ):

Γ
′
, z ≥ y, x

A
−→ y ⊢ ∆, F, z : B Γ

′
, z ≥ y, x

A
−→ y, x

A∧B
−→ z ⊢ ∆, F

(DT )
Γ

′
, z ≥ y, x

A
−→ y ⊢ ∆, F

– the applied rule is different from(EQ) and the contracted formulaF is principal
in the application of the rule: we consider all the rules:
• (ATM ): the proof is ended as follows:

Γ
′
, x : P, x : P ⊢ ∆, y ≥ x Γ

′
, x : P, x : P, y : P ⊢ ∆

(ATM )
Γ

′
, x : P, x : P ⊢ ∆

We apply the inductive hypothesis on the premises, obtaining a proof ofΓ ′, x :
P ⊢ ∆, y ≥ x and ofΓ ′, x : P, y : P ⊢ ∆, from which we conclude by an
application of(ATM );
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• (INT ), (MON), (DT ), (ID), (CA), (CA− conv), (C), (C4), (Unit), and
(I): in these cases, the proof is similar to the one proposed above for (ATM )
and then left to the reader;

• (∧L): the proof is ended as follows:

Γ, x : α, x : β, x : α ∧ β ⊢ ∆
(∧L)

Γ, x : α ∧ β, x : α ∧ β ⊢ ∆

Since(∧L) is height-preserving invertible (Lemma 7), we have a proof of at
most the same height of the premise ofΓ, x : α, x : α, x : β, x : β ⊢ ∆.
We can apply the inductive hypothesis to obtain a proof (of nogreater height)
of Γ, x : α, x : β, x : β ⊢ ∆, to which we can again apply the inductive
hypothesis to obtain a proof ofΓ, x : α, x : β ⊢ ∆, from which we conclude
by an application of(∧L);

• (∧R): the proof is ended as follows:

(i) Γ ⊢ ∆, x : α, x : α ∧ β (ii) Γ ⊢ ∆, x : β, x : α ∧ β
(∧R)

Γ ⊢ ∆, x : α ∧ β, x : α ∧ β

By Lemma 7 and(i), we have a derivation of(i′) Γ ⊢ ∆,x : α, x : α and of
(i′′) Γ ⊢ ∆,x : α, x : β of at most the same height of(i). Similarly, we have
proofs of(ii′) Γ ⊢ ∆,x : β, x : α and(ii′′) Γ ⊢ ∆,x : β, x : β. We apply
the inductive hypothesis to(i′) and(ii′′), obtaining proofs ofΓ ⊢ ∆,x : α
andΓ ⊢ ∆,x : β, respectively, from which we conclude by an application of
(∧R);

• (∨R) and (∨L): these cases are similar to the ones for(∧R) and (∧L) and
therefore left to the reader;

• (→ R): the proof is ended as follows:

Γ, y ≥ x, y : α ⊢ ∆, x : α → β, y : β
(→ R)

Γ ⊢ ∆, x : α → β, x : α → β

Since(→ R) is height-preserving invertible (Lemma 7), we have a derivation
of at most the same height of the premise ofΓ, y ≥ x, z ≥ x, y : α, z : α ⊢
∆, y : β, z : β. y and z are new labels, not occurring inΓ and∆. By the
height-preserving label substitution (Lemma 6), we replace the occurrences of
z with y to obtain a derivation ofΓ, y ≥ x, y ≥ x, y : α, y : α ⊢ ∆, y :
β, y : β. We apply three times the inductive hypothesis, obtaining aderivation
of Γ, y ≥ x, y : α ⊢ ∆, y : β, from which we conclude by an application of
(→ R);

• (→ L): the proof is ended as follows:

(i) Γ, x : α → β, x : α → β ⊢ ∆, y ≥ x

(ii) Γ, x : α → β, x : α → β ⊢ ∆, y : α

(iii) Γ, x : α → β, x : α → β, y : β ⊢ ∆
(→ L)

Γ, x : α → β, x : α → β ⊢ ∆



26 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

We can apply the inductive hypothesis on the three premises,obtaining deriva-
tions (of at most the same heights) of(i′) Γ, x : α → β ⊢ ∆, y ≥ x,
(ii′) Γ, x : α → β ⊢ ∆, y : α , and (iii′) Γ, x : α → β, y : β ⊢ ∆,
from which we conclude by an application of(→ L);

• ( saysR) and ( saysL): these cases are similar to the ones for(→ R) and
(→ L), respectively, and left to the reader. �

We conclude this section by listing some lemmas and properties holding inSCondACL

that will be used to prove its soundness and completeness:

Lemma 9. A sequent⊢ x : A → B is derivable inSCondACL if and only if the sequent
x : A ⊢ x : B is derivable inSCondACL .

Proof. If x : A ⊢ x : B is derivable, then, by Lemma 5, alsox ≥ u, x : A ⊢ x : B
is derivable. By an application of(→ R), we obtain a derivation of⊢ u : A → B. By
Lemma 6 we conclude with a derivation of⊢ x : A→ B.

If ⊢ x : A→ B is derivable, then we have also a derivation foru ≥ x, u : A ⊢ u : B
since(→ R) is invertible (Lemma 7). It can be observed that no rule ofSCondACL

manipulate the labelx, therefore the formulau ≥ x is useless. This means that there is
a derivation inSCondACL of u : A ⊢ u : B and, by Lemma 6, there is a derivation of
x : A ⊢ x : B. �

We can generalize axioms to a generic formulaF , that is to say:

Proposition 4. Given any formulaF , the sequentΓ, F ⊢ ∆,F is derivable inSCondACL
.

Proof. By induction on the complexity ofF . For the base case, we have thatF is either
x : P with P ∈ ATM or y ≥ x, then the sequent is an instance of(AX) and we are
done. For the inductive step, we distinguish two subcases:

– F has the formx
A
−→ y: by inductive hypothesis,u : A ⊢ u : A is derivable, then

we conclude thatΓ, x
A

−→ y ⊢ ∆,x
A

−→ y is derivable by an application of(EQ);
– F is a complex formulax : A⊗B, where⊗ stands for{→,∧,∨, says}. We only

present the most interesting cases ofsays and→, the other cases are similar and
left to the reader. Concerningsays, there are derivations inSCondACL for (1) u :

A ⊢ u : A and (2) Γ, x : A saysB, x A
−→ y, y : B ⊢ ∆, y : B by inductive

hypothesis. We can conclude as follows:

(1) u : A ⊢ u : A (1) u : A ⊢ u : A
(EQ)

Γ, x : A saysB, x
A

−→ y ⊢ ∆, y : B, x
A

−→ y (2) Γ, x : A saysB, x
A

−→ y, y : B ⊢ ∆, y : B
( saysL)

Γ, x : A saysB, x
A

−→ y ⊢ ∆, y : B
( saysR)

Γ, x : A saysB ⊢ ∆, x : A saysB

Concerning→, again we apply the inductive hypothesis to prove that thereare
derivations of(3) Γ, y ≥ x, x : A → B, y : A, y : B ⊢ ∆, y : B and(4) Γ, y ≥
x, x : A→ B, y : A ⊢ ∆, y : B, y : A. We conclude as follows:
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Γ, y ≥ x, x : A → B, y : A ⊢ ∆, y : B, y ≥ x

(3) Γ, y ≥ x, x : A → B, y : A, y : B ⊢ ∆, y : B

(4) Γ, y ≥ x, x : A → B, y : A ⊢ ∆, y : B, y : A
(→ L)

Γ, y ≥ x, x : A → B, y : A ⊢ ∆, y : B
(→ R)

Γ, x : A → B ⊢ ∆, x : A → B

�

Lemma 10. Given any formulaγ ∈ L, the sequentΓ, y ≥ x, x : γ ⊢ ∆, y : γ is
derivable in SCondACL .

Proof. We consider all possible formulasγ ∈ L, starting with atomic onesγ = P ∈
ATM . The sequenty : P ⊢ y : P is an instance of(AX). Since weakening is admis-
sible (Lemma 5), we have that also(1) Γ, y ≥ x, x : P, y : P ⊢ ∆, y : P is derivable.
The same for(1′) Γ, y ≥ x, x : P ⊢ ∆, y : P, y ≥ x, sincey ≥ x ⊢ y ≥ x is an
instance of(AX). We conclude by an application of the rule(ATM ):

(1′) Γ, y ≥ x, x : P ⊢ ∆, y : P, y ≥ x (1) Γ, y ≥ x, x : P, y : P ⊢ ∆, y : P
(ATM )

Γ, y ≥ x, x : P ⊢ ∆, y : P

For the complex formulas, we only present the most interesting cases ofγ = A → B
andγ = A saysB, the other cases are easy and left to the reader. By Proposition 4, we
have derivations for(2) v : A ⊢ v : A, (3) v : B ⊢ v : B, (4) z : B ⊢ z : B, and
(5) v ≥ x ⊢ v ≥ x, and, by Lemma 5, of(2′) Γ, v ≥ x, v ≥ y, y ≥ x, x : A → B, v :
A ⊢ v : B, v : A, (3′) Γ, v ≥ x, v ≥ y, y ≥ x, x : A → B, v : A, v : B ⊢ v : B,

(4′) Γ, y ≥ x, y
A

−→ z, x
A
−→ z, x : A saysB, z : B ⊢ ∆, z : B, and(5′) Γ, v ≥

x, v ≥ y, y ≥ x, x : A→ B, v : A ⊢ v : B, v ≥ x. We can conclude as follows:

(5′) Γ, v ≥ x, v ≥ y, y ≥ x, x : A → B, v : A ⊢ v : B, v ≥ x

(2′) Γ, v ≥ x, v ≥ y, y ≥ x, x : A → B, v : A ⊢ v : B, v : A

(3′) Γ, v ≥ x, v ≥ y, y ≥ x, x : A → B, v : A, v : B ⊢ v : B

(→ L)
Γ, v ≥ x, v ≥ y, y ≥ x, x : A → B, v : A ⊢ v : B

(TR)
Γ, v ≥ y, y ≥ x, x : A → B, v : A ⊢ v : B

(→ R)
Γ, y ≥ x, x : A → B ⊢ ∆, y : A → B

(2) v : A ⊢ v : A (2) v : A ⊢ v : A

(EQ)
Γ, y ≥ x, y

A
−→ z, x

A
−→ z, x : A saysB ⊢ ∆, z : B, x

A
−→ z (4′) Γ, y ≥ x, y

A
−→ z, x

A
−→ z, x : A saysB, z : B ⊢ ∆, z : B

( saysL)
Γ, y ≥ x, y

A
−→ z, x

A
−→ z, x : A saysB ⊢ ∆, z : B

(INT )
Γ, y ≥ x, y

A
−→ z, x : A saysB ⊢ ∆, z : B

( saysR)
Γ, y ≥ x, x : A saysB ⊢ ∆, y : A saysB

�
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Lemma 11. If Γ, x ≥ x ⊢ ∆ is derivable in SCondACL
, then alsoΓ ⊢ ∆ is derivable

with a derivation of at most the same height.

Proof. By induction on the height of the derivation ofΓ, x ≥ x ⊢ ∆. The base case is
easy, since axioms do not involve formulasx ≥ x in the left hand side of a sequent, with
the only exception of the case in whichx ≥ x ∈ ∆: however, in this case,Γ ⊢ ∆ is an
instance of(AX≥) and we are done. For the inductive step, we have to consider all the
rules of SCondACL that can be applied to end the derivation ofΓ, x ≥ x ⊢ ∆. To save
space, we only present the most interesting case of a proof ended with an application of
(TR) as follows:

Γ
′
, y ≥ x, y ≥ x, x ≥ x ⊢ ∆

(TR)
Γ

′
, y ≥ x, x ≥ x ⊢ ∆

By inductive hypothesis, there is a derivation of at most thesame height ofΓ ′, y ≥
x, y ≥ x ⊢ ∆, then, by Lemma 8, ofΓ ′, y ≥ x ⊢ ∆, and we are done. The other cases
are similar and left to the reader. �

Lemma 12. If Γ ⊢ ∆,x : ⊥ is derivable inSCondACL
, then alsoΓ ⊢ ∆ is derivable.

Proof. By induction on the height of the derivation ofΓ ⊢ ∆,x : ⊥. The base case is
straighforward, sincex : ⊥ in the right hand side of a sequent is involved in an axiom
only in casex : ⊥ ∈ Γ , however in this case we immediatley conclude thatΓ ⊢ ∆ is
an instance of(AX⊥). For the inductive step, we just observe that all the rules except
(EQ) copyx : ⊥ in their premise(s), then we can conclude the proof by applying the
inductive hypothesis to such premise(s) and then reapplying the same rules. In case
the derivation ofΓ ⊢ ∆,x : ⊥ is ended by an application of(EQ) the proof is also
straightforward, since(EQ) is applied to transition formulas belonging toΓ and∆,
therefore we have a proof ofΓ ⊢ ∆ by an application of(EQ). �

5.2 Soundness and Completeness ofSCondACL

Let us first prove that the calculusSCondACL is sound with respect to the semantics:

Theorem 8 (Soundness ofSCondACL ). If a sequentΓ ⊢ ∆ is derivable, thenΓ ⊢ ∆ is
valid in the sense of Definition 7.

Proof. By induction on the height of the derivation ofΓ ⊢ ∆. The base cases are as
follows:

– Γ ⊢ ∆ is an instance of(AX), i.e. there is anF such thatF ∈ Γ ∩ ∆. In this
case, given any modelM, if it satifies all the formulas inΓ , then it also satisfiesF .
As a consequence, such model also satisfies at least a formulain ∆ (the formulaF
itself), and the sequent is valid;

– Γ ⊢ ∆ is an instance of(AX⊥), i.e.x : ⊥ ∈ Γ : we immediately conclude that the
sequent is valid, since there is no model satifyingx : ⊥;

– Γ ⊢ ∆ is an instance of(AX≥), i.e.x ≥ x ∈ ∆: in this case, given any model
M and any functionI, since≤ is reflexive, we have thatI(x) ≤ I(x), then the
formulax ≥ x is satisfied inM via I and the sequent is valid.
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For the inductive step, we have the following cases (the listis exhaustive):

– the derivation ofΓ ′, x : P ⊢ ∆ ends with an application of(ATM ), with P ∈
ATM . By inductive hypothesis, the premisesΓ ′, x : P ⊢ ∆, y ≥ x andΓ ′, x :
P, y : P ⊢ ∆ are valid sequents. By absurd, suppose the conclusion is not, that is
to say there is a modelM and a functionI such thatM |=I F for everyF ∈ Γ ′,
M |=I x : P (i.e. I(x) ∈ h(P )), whereasM 6|=I G for anyG ∈ ∆. Since
Γ ′, x : P ⊢ ∆, y ≥ x is valid, we have thatM |=I y ≥ x, i.e. I(x) ≤ I(y) and,
sinceI(x) ∈ h(P ) andP ∈ ATM , we have also thatI(y) ∈ h(P ). Therefore,M
satisfies viaI all formulas in the left hand side of the premiseΓ ′, x : P, y : P ⊢ ∆,
howeverM 6|=I G for anyG ∈ ∆, against its validity;

– the derivation ofΓ ′, x : α ∧ β ⊢ ∆ ends with an application of(∧L): by inductive
hypothesis, the sequentΓ ′, x : α, x : β ⊢ ∆ is valid. By absurd, the conclusion is
not, i.e. there is a modelM and a functionI such thatM |=I F for everyF ∈ Γ ′,
M |=I x : α ∧ β (i.e.,I(x) ∈ [|α|] ∩ [|β|]), whereasM 6|=I G for anyG ∈ ∆. It
immediately follows thatM |=I x : α as well asM |=I x : β, soM |=I F for
everyF in the left hand side of the premise, whereasM 6|=I G for anyG ∈ ∆,
against the validity of the premise itself;

– the derivation ofΓ ⊢ ∆′, x : α ∧ β ends with an application of(∧R): by inductive
hypothesis, the sequentsΓ ⊢ ∆′, x : α andΓ ⊢ ∆′, x : β are valid. By absurd,
suppose that the conclusionΓ ⊢ ∆′, x : α ∧ β is not valid, i.e. there is a modelM
and a functionI such thatM |=I F for everyF ∈ Γ , whereasM 6|=I G for any
G ∈ ∆ andM 6|=I x : α∧β, i.e. eitherI(x) 6∈ [|α|] or I(x) 6∈ [|β|]. If I(x) 6∈ [|α|],
we have thatM satisfies viaI all the formulas in the left hand side of the premise
Γ ⊢ ∆′, x : α, whereas it falsifies all the formulas in its right hand side,against
the validity of such premise. Reasoning in the same way, in caseI(x) 6∈ [|β|] we
contradict the hypothesis thatΓ ⊢ ∆′, x : β is valid;

– the derivation ofΓ ′, x : α ∨ β ⊢ ∆ ends with an application of(∨L): by inductive
hypothesis, the sequentsΓ ′, x : α ⊢ ∆ andΓ ′, x : β ⊢ ∆ are valid. By absurd,
suppose that the conclusion is not, i.e. there is a modelM and a functionI such that
M |=I F for everyF ∈ Γ ′ andM |=I x : α∨ β, i.e.I(x) ∈ [|α|]∪ [|β|], whereas
M 6|=I G for anyG ∈ ∆. SinceI(x) ∈ [|α|]∪[|β|], we have that eitherI(x) ∈ [|α|]
or I(x) ∈ [|β|]. In caseI(x) ∈ [|α|], we have thatM |=I x : α, however, this
contradicts the fact that the premiseΓ ′, x : α ⊢ ∆ of (∨L) is valid, sinceM |=I F
for everyF ∈ Γ ′ butM 6|=I G for anyG ∈ ∆. In caseI(x) ∈ [|β|], we reason in
the same way and we contradict the fact that the premiseΓ ′, x : β ⊢ ∆ of (∨L) is
valid;

– the derivation ofΓ ⊢ ∆′, x : α ∨ β ends with an application of(∨R): by inductive
hypothesis, the sequentΓ ⊢ ∆′, x : α, x : β is valid. By absurd, suppose that the
conclusion is not, i.e. there is a modelM and a functionI such thatM |=I F
for everyF ∈ Γ , whereasM 6|=I G for anyG ∈ ∆′ andM 6|=I x : α ∨ β,
i.e. I(x) 6∈ [|α ∨ β|], that is to sayI(x) 6∈ [|α|] andI(x) 6∈ [|β|]. This contradicts
the validity ofΓ ⊢ ∆′, x : α, x : β, since we have a modelM and a functionI
such thatM |=I F for everyF ∈ Γ ′, whereasM 6|=I G for anyG ∈ ∆′ and
M 6|=I x : α andM 6|=I x : β;

– the derivation ofΓ ′, x : α → β ⊢ ∆ ends with an application of(→ L): by
inductive hypothesis, the premises(1) Γ ′, x : α → β ⊢ ∆, y ≥ x, (2) Γ ′, x :
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α → β ⊢ ∆, y : α, and(3) Γ ′, x : α → β, y : β ⊢ ∆ are valid. By absurd, the
conclusion is not, i.e. there is a modelM and a functionI such thatM |=I F for
everyF ∈ Γ ′, M |=I x : α → β (i.e.,I(x) ∈ [|α→ β|]), whereasM 6|=I G for
anyG ∈ ∆′. By the validity of(1), we can conclude that alsoM |=I y ≥ x, i.e.
I(x) ≤ I(y). Similarly, by the validity of(2), we can conclude thatM |=I y : α,
i.e. I(y) ∈ [|α|]. SinceI(x) ≤ I(y), I(y) ∈ [|α|], andI(x) ∈ [|α→ β|], we have
thatI(y) ∈ [|β|], i.e.M |=I y : β. Therefore,M satisfies, viaI, all the formulas
in the left hand side of the premise(3), whereas it falsifies all the formulas in the
right hand side, against the hypothesis that(3) is valid;

– the derivation ofΓ ⊢ ∆′, x : α → β ends with an application of(→ R): by
inductive hypothesis, the premiseΓ, y ≥ x, y : α ⊢ ∆′, y : β is valid. By absurd,
suppose that the conclusion is not, i.e. there is a modelM and a functionI such
thatM |=I F for everyF ∈ Γ , whereasM 6|=I G for anyG ∈ ∆ andM 6|=I

x : α → β, i.e. I(x) 6∈ [|α→ β|]. This means that there exists a worldw such
thatI(x) ≤ w andw ∈ [|α|], whereasw 6∈ [|β|]. Let us define a functionI ′ such
thatI ′(y) = w, whereasI ′(k) = I(k) for all labelsk different fromy. Sincey is
a label not occurring in the conclusion, it immediately follows thatM |=I′ F for
everyF ∈ Γ , whereasM 6|=I′ G for anyG ∈ ∆′. Furthermore, sinceI(x) ≤ w,
we have thatM |=I′ y ≥ x and, sincew ∈ [|α|], we have thatM |=I′ y : α. From
the fact thatw 6∈ [|β|], we also conclude thatM 6|=I′ y : β, against the validity of
Γ, y ≥ x, y : α ⊢ ∆′, y : β;

– the derivation ofΓ ′, x : A saysγ ⊢ ∆ ends with an application of( saysL):

by inductive hypothesis, the premises(4) Γ ′, x : A saysγ ⊢ ∆,x
A

−→ y and
(5) Γ ′, x : A saysγ, y : γ ⊢ ∆ are valid. By absurd, the conclusion is not, i.e.
there is a modelM and a functionI such thatM |=I F for everyF ∈ Γ ′,
M |=I x : A saysγ (i.e., for allw ∈ RA(I(x)) we have thatw ∈ [|γ|]), whereas

M 6|=I G for anyG ∈ ∆. Since(4) is valid, we have thatM |=I x
A

−→ y, that is
to sayI(y) ∈ RA(I(x)). Therefore, sinceM |=I x : A saysγ, we have that also
I(y) ∈ [|γ|]. We can conclude thatM |=I F for everyF ∈ Γ ′ andM |=I y : γ,
butM 6|=I G for anyG ∈ ∆ against the validity of(5);

– the derivation ofΓ ⊢ ∆′, x : A saysγ ends with an application of( saysR): by

inductive hypothesis, the premiseΓ, x
A

−→ y ⊢ ∆′, y : γ is valid. By absurd,
suppose that the conclusion is not, i.e. there is a modelM and a functionI such
thatM |=I F for everyF ∈ Γ , whereasM 6|=I G for anyG ∈ ∆ andM 6|=I

x : A saysγ, i.e.I(x) 6∈ [|A saysγ|]. This means that there exists a worldw such
thatI(x)RAw andw 6∈ [|γ|]. We define a functionI ′ such thatI ′(y) = w, whereas
I ′(k) = I(k) for all labelsk different fromy. Sincey is a label not occurring in
the conclusion, it immediately follows thatM |=I′ F for everyF ∈ Γ , whereas

M 6|=I′ G for anyG ∈ ∆′. Moreover,I(x)RAw means thatM |=I′ x
A
−→ y,

as well asw 6∈ [|γ|] means thatM 6|=I′ y : γ, against the validity of the premise

Γ, x
A

−→ y ⊢ ∆′, y : γ;

– the derivation ofΓ ′, x
A

−→ y ⊢ ∆′, x
B
−→ y ends with an application of(EQ):

by inductive hypothesis, the premisesu : A ⊢ u : B andu : B ⊢ u : A are
valid sequents. This means that, given any modelM and any functionI, we have
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that I(u) ∈ [|A|] if and only if I(u) ∈ [|B|], that is to say[|A|] = [|B|]. By the
condition (S-RCEA) in Definition 2, we have that alsoRA = RB. By absurd, the
conclusion is not valid, that is to say there is a modelM and a functionI such

thatM |=I F for everyF ∈ Γ ′, M |=I x
A

−→ y (i.e. I(x)RAI(y)), whereas

M 6|=I G for anyG ∈ ∆′ andM 6|=I x
B
−→ y (i.e. I(y) 6∈ RB(I(x))). The facts

thatI(y) ∈ RA(I(x)) butI(y) 6∈ RB(I(x)) contradict the fact thatRA = RB;
– the derivation ofΓ ′, z ≥ y, y ≥ x ⊢ ∆ ends with an application of(TR): by

inductive hypothesis, the premiseΓ ′, z ≥ y, y ≥ x, z ≥ x ⊢ ∆ is valid. By
absurd, the conclusion is not, i.e. there is a modelM and a functionI such that
M |=I F for everyF ∈ Γ ′, M |=I z ≥ y (i.e. I(y) ≤ I(z)), M |=I y ≥ x (i.e.
I(x) ≤ I(y)), whereasM 6|=I G for anyG ∈ ∆. Since the relation≤ is transitive,
it immediately follows thatI(x) ≤ I(z), thereforeM |=I z ≥ x, against the
validity of the premise;

– the derivation ofΓ ′, y ≥ x, y
A

−→ z ⊢ ∆ is ended by an application of(INT ): by

inductive hypothesis, the premiseΓ ′, y ≥ x, y
A
−→ z, x

A
−→ z ⊢ ∆ is valid. By

absurd, the conclusion is not, that is to say there is a modelM and a functionI such

thatM |=I F for everyF ∈ Γ ′, M |=I y ≥ x (i.e.I(x) ≤ I(y)), M |=I y
A

−→ z
(i.e. I(y)RAI(z)), whereasM 6|=I G for anyG ∈ ∆. By (S-Int) in Definition
2, from I(x) ≤ I(y) andI(y)RAI(z) it follows that I(x)RAI(z), thereforeM
satisfies viaI all the formulas in the left hand side of the premise, and nonein the
right hand side, against its validity;

– the derivation ofΓ ′, x
A

−→ y ⊢ ∆ ends by an application of(ID): by inductive

hypothesis, the premiseΓ ′, x
A

−→ y, y : A ⊢ ∆ is a valid sequent. By absurd, the
conclusion is not, i.e. there is a modelM and a functionI such thatM |=I F for

everyF ∈ Γ ′, M |=I x
A

−→ y (i.e., I(x)RAI(y)), whereasM 6|=I G for any
G ∈ ∆. By (S-ID) in Definition 2, we have that, sinceI(x)RAI(y), it holds that
I(y) ∈ [|A|], against the validity of the premise;

– the derivation ofΓ ⊢ ∆ ends by an application of(CA): by inductive hypothesis,

the premises(i) Γ ⊢ ∆,x
A∨B
−→ y, (ii) Γ, x

A
−→ y ⊢ ∆ and(iii) Γ, x

B
−→ y ⊢

∆ are valid sequents. By absurd, the conclusion is not, i.e. there is a modelM
and a functionI such thatM |=I F for everyF ∈ Γ , whereasM 6|=I G for

anyG ∈ ∆. Since(i) Γ ⊢ ∆,x
A∨B
−→ y is valid, we have thatM |=I x

A∨B
−→

y, i.e. I(x)RA∨BI(y). By (S-CA) in Definition 2, we have thatRA∨B(I(x)) =
RA(I(x)) ∪ RB(I(x)), thenI(y) ∈ RA(I(x)) ∪ RB(I(x)), that is to say either
I(y) ∈ RA(I(x)) or I(y) ∈ RB(I(x)). SupposeI(y) ∈ RA(I(x)): in this case,

we have also thatM |=I x
A

−→ y, against the validity of the premise(ii) Γ, x
A

−→
y ⊢ ∆. In caseI(y) ∈ RB(I(x)), we conclude analogously against the validity of

(iii) Γ, x
B
−→ y ⊢ ∆;

– the derivation ofΓ ′, x
A

−→ y ⊢ ∆ ends by an application of(CA − conv): by

inductive hypothesis, the premiseΓ ′, x
A∨B
−→ y, x

A
−→ y ⊢ ∆ is valid. By absurd,

the conclusion is not, i.e. there is a modelM and a functionI such thatM |=I F

for everyF ∈ Γ ′, M |=I x
A

−→ y (i.e., I(x)RAI(y)), whereasM 6|=I G for
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anyG ∈ ∆. By (S-CA) in Definition 2, we have thatRA∨B(I(x)) = RA(I(x)) ∪
RB(I(x)), thenI(y) ∈ RA(I(x)) implies I(y) ∈ RA(I(x)) ∪ RB(I(x)), thus

I(y) ∈ RA∨B(I(x)). We conclude thatM |=I x
A∨B
−→ y, against the validity of the

premise;

– the derivation ofΓ ′, z ≥ y, x
A

−→ y ⊢ ∆ ends by an application of(DT ): by

inductive hypothesis, the premisesΓ ′, z ≥ y, x
A

−→ y ⊢ ∆, z : B andΓ ′, z ≥

y, x
A

−→ y, x
A∧B
−→ z ⊢ ∆ are valid sequents. By absurd, the conclusion is not,

i.e. there is a modelM and a functionI such thatM |=I F for everyF ∈ Γ ′,

M |=I z ≥ y (i.e. I(y) ≤ I(z)), M |=I x
A

−→ y (i.e., I(x)RAI(y)), whereas

M 6|=I G for anyG ∈ ∆. SinceΓ ′, z ≥ y, x
A

−→ y ⊢ ∆, z : B is valid, it follows
that alsoM |=I z : B, that is to sayI(z) ∈ [|B|]. By (S-DT) in Definition 2, from
I(x)RAI(y), I(y) ≤ I(z), andI(z) ∈ [|B|], it follows that alsoI(x)RA∧BI(z),

i.e.M |=I x
A∧B
−→ z, against the validity of the premiseΓ ′, z ≥ y, x

A
−→ y, x

A∧B
−→

z ⊢ ∆;
– the derivation ofΓ ⊢ ∆ ends by an application of(MON ): by inductive hypoth-

esis, the premisesΓ ⊢ ∆,x
A∧B
−→ y andΓ, x

A
−→ y, x

B
−→ y ⊢ ∆ are valid.

By absurd, the conclusion is not, i.e. there is a modelM and a functionI such
thatM |=I F for everyF ∈ Γ , whereasM 6|=I G for anyG ∈ ∆. Since the

premiseΓ ⊢ ∆,x
A∧B
−→ y is valid, we have that alsoM |=I x

A∧B
−→ y, that is to

say I(x)RA∧BI(y). By (S-Mon) in Definition 2, we have thatI(x)RAI(y) and

I(x)RBI(y), thereforeM |=I x
A

−→ y andM |=I x
B
−→ y, against the validity

of the premiseΓ, x
A

−→ y, x
B
−→ y ⊢ ∆.

– the derivation ofΓ ′, x
A

−→ y ⊢ ∆ ends by an application of(Unit): by inductive

hypothesis, the premiseΓ ′, x
A

−→ y, y ≥ x ⊢ ∆ is a valid sequent. By absurd,
the conclusion is not, i.e. there is a modelM and a functionI such thatM |=I F

for everyF ∈ Γ ′, M |=I x
A

−→ y (i.e., I(x)RAI(y)), whereasM 6|=I G for
anyG ∈ ∆. By (S-UNIT) in Definition 2, we have that, sinceI(x)RAI(y), also
I(x) ≤ I(y), thenM |=I y ≥ x, against the validity of the premise;

– the derivation ofΓ ′, x
B
−→ y, y

A
−→ z ⊢ ∆ ends by an application of(I): by

inductive hypothesis, the premiseΓ ′, x
B
−→ y, y

A
−→ z, x

A
−→ z ⊢ ∆ is a valid

sequent. By absurd, the conclusion is not, i.e. there is a model M and a function

I such thatM |=I F for everyF ∈ Γ ′, M |=I x
B
−→ y (i.e., I(x)RBI(y)),

M |=I y
A

−→ z (i.e.,I(y)RAI(z)), whereasM 6|=I G for anyG ∈ ∆. By (S-I) in
Definition 3, we have that, sinceI(x)RBI(y) andI(y)RAI(z), alsoI(x)RAI(z),

thenM |=I x
A

−→ z, against the validity of the premise;

– the derivation ofΓ ′, z ≥ y, x
A

−→ y ⊢ ∆ ends by an application of(C): by

inductive hypothesis, the premiseΓ ′, z ≥ y, x
A

−→ y, z
A

−→ z ⊢ ∆ is a valid
sequent. By absurd, the conclusion is not, i.e. there is a model M and a function
I such thatM |=I F for everyF ∈ Γ ′, M |=I z ≥ y (i.e., I(y) ≤ I(z)), and

M |=I x
A

−→ y (i.e.,I(x)RAI(y)), whereasM 6|=I G for anyG ∈ ∆. By (S-C) in
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Definition 2, we have that, sinceI(x)RAI(y) andI(y) ≤ I(z), alsoI(z)RAI(z),

thenM |=I z
A

−→ z, against the validity of the premise;

– the derivation ofΓ ′, x
A

−→ y ⊢ ∆ ends by an application of(C4): by inductive

hypothesis, the premiseΓ ′, x
A

−→ y, x
A

−→ z, z
A

−→ y ⊢ ∆ is a valid sequent.
By absurd, the conclusion is not, i.e. there is a modelM and a functionI such

thatM |=I F for everyF ∈ Γ ′, M |=I x
A

−→ y (i.e., I(x)RAI(y)), whereas
M 6|=I G for anyG ∈ ∆. By (S-C4) in Definition 3, sinceI(x)RAI(y), there
exists a worldw such thatI(x)RAw andwRAI(y). Let us now consider a function
I ′ defined as follows:I ′(z) = w andI ′(k) = I(k) for all labelsk 6= z. Sincez
is a label not occurring in the conclusion of the rule, it immediately follows that

M |=I′ F for everyF ∈ Γ ′, M |=I′ x
A

−→ y (sinceI ′(x) = I(x), I ′(y) = I(y)

andI(x)RAI(y)), M |=I′ x
A

−→ z (sinceI ′(z) = w and, as observed above,

I(x)RAw), M |=I′ z
A

−→ y (sincewRAI(y)), whereasM 6|=I G for anyG ∈ ∆,
against the validity of the premise. �

Completeness is an easy consequence of the admissibility ofcut6. By cut we mean the
following rule:

Γ ⊢ ∆,F Γ, F ⊢ ∆
(cut)

Γ ⊢ ∆

whereF is any labelled formula. The standard proof of admissibility of cut proceeds
by a double induction over the complexity ofF and the sum of the heights of the
derivations of the two premises of(cut), in the sense that we replace one cut by one
or several cuts on formulas of smaller complexity, or on sequents derived by shorter
derivations.

Theorem 9. If Γ ⊢ ∆,F andΓ, F ⊢ ∆ are derivable inSCondACL , so isΓ ⊢ ∆, i.e.
the rule(cut) is admissible inSCondACL .

Proof. By double induction on the complexity of the cut formula and on the sum of the
heights of the premises of the cut inference. To make the schema of the proof clear, we
define:cF as the complexity ofF , i.e. cF = cp(F ); h1 as the height of the derivation

6 It is worth noticing that one can give a semantic proof of completeness, however as a difference
with modal logics, the proof is considerably more complex and require nonetheless the cut rule
(see [27] for a semantic completeness proof of a tableau calculus for the conditional logic CK).
We explain intuitively the difficulty. The usual way to provecompleteness semantically is by
contraposition, that is to say to extract a counter model from a failed branch of a (suitable)
proof tree. To this purpose one needs to “saturate” a branch by applying the rules as much
as possible. However the model being constructed must satisfy the normality condition, i.e.
if [|A|] = [|A′|] then it must beRA = RA′ , or equivalently, the selection function must be
well-defined on arbitrary subsets of worlds. To ensure this property, a simple branch saturation
is not enough. One has to consider in the saturation process other formulas not occurring in the
branch and use inevitably the cut rule to make the whole construction work, the latter being a
kind of Henkin construction. For this reason we prefer the much simpler syntactic proof.
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of Γ ⊢ ∆,F ; h2 as the height of the derivation ofΓ, F ⊢ ∆. For the base case of the
induction on the complexity of the cut formula, we consider the cases in whichcF = 2
(its minimal value), namely the casesF = x : P with P ∈ ATM , F = x : ⊥, and
F = y ≥ x. Then, we fixcF and we prove the base case(s) for the induction on the
sum of the height of the premises, namely we prove the theoremfor the cases in which
h1 = 0 or h2 = 0 (or both), i.e. (at least) one of the two premises is an axiom.For
the inductive steps, we replace the initial cut by one or moreapplications of cut either
(i) on formulasG such thatcp(G) < cF , i.e. we apply the inductive hypothesis on
the complexity of the cut formula to prove that, ifΓ ′ ⊢ ∆′, G andΓ ′, G ⊢ ∆′ are
derivable, so isΓ ′ ⊢ ∆′, or (ii) on the same formulaF but cutting sequentsΓ ′ ⊢ ∆′, F
andΓ ′, F ⊢ ∆′ whose derivations have heightsh′1 andh′2 such thath′1 +h′2 < h1 +h2.

We analize each case in detail.
• Base case of the induction on the complexitycF of the cut formula:cF = 2. As
mentioned above, we consider three subcases: 1. the cut formulaF is an order formula
y ≥ x; 2. the cut formulaF is a world formulax : P whereP is an atom (P ∈ ATM );
3. the cut formulaF is x : ⊥.

1. We proceed by induction on the sum of the heights of the derivations ofΓ ⊢ ∆, y ≥
x andΓ, y ≥ x ⊢ ∆ to show that alsoΓ ⊢ ∆ is derivable.
For the base of the induction, suppose that (at least) one of the premises of(cut)
is an instance of an axiom. For instance, assume thatΓ ⊢ ∆, y ≥ x is an axiom
(the other half is symmetric). We distinguish the followingsubcases: (i)u : ⊥ ∈ Γ ,
and we immediately conclude that alsoΓ ⊢ ∆ is an instance of(AX⊥); (ii) u ≥
u ∈ ∆, then we immediately get that alsoΓ ⊢ ∆ is an instance of(AX≥); (iii)
F ∈ Γ ∩∆, and obviouslyΓ ⊢ ∆ is an instance of(AX) too; (iv) y ≥ x ∈ Γ , i.e.
Γ = Γ ′, y ≥ x: in this case, the right premise of(cut) is Γ ′, y ≥ x, y ≥ x ⊢ ∆,
and we can conclude that alsoΓ ′, y ≥ x ⊢ ∆ is derivable since contraction is
admissible (Lemma 8).
For the inductive step, let us consider the last rule, say R, applied in the derivation
of Γ ⊢ ∆, y ≥ x. We distinguish two subcases:

– the rule R is(EQ), i.e. the derivation is ended as follows:

u : A ⊢ u : A
′

u : A
′ ⊢ u : A

(EQ)

Γ
′
, v

A
−→ z ⊢ ∆

′
, v

A
′

−→ z, y ≥ x

In this case, since order formulas do not play any role in an application of(EQ)

(only transition formulas are involved), we show that alsoΓ ⊢ ∆ = Γ ′, v
A

−→

z ⊢ ∆′, v
A′

−→ z is derivable by means of the following derivation:

u : A ⊢ u : A
′

u : A
′ ⊢ u : A

(EQ)

Γ
′
, v

A
−→ z ⊢ ∆

′
, v

A
′

−→ z

– the rule R is different from(EQ): we just observe that no rule ofSCondACL

has an order formula on the right hand side of a sequent as a principal formula.
Furthermore, in all the rules,y ≥ x is copied into the premise(s). Therefore,
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we can apply the inductive hypothesis on the sum of the heights of the premises
of (cut) to the sequentΓ, y ≥ x ⊢ ∆ and the premise(s) ofΓ ⊢ ∆, y ≥ x,
then we conclude by an application of R. As an example, consider the case R
is (ID), the other cases are similar and left to the reader. The derivation is as
follows:

(1) Γ
′
, x

A
−→ y, y : A ⊢ ∆, y ≥ x

(ID)
Γ

′
, x

A
−→ y ⊢ ∆, y ≥ x

Since weakening is height-preserving admissible (Lemma 5), sinceΓ ′, x
A

−→
y, y ≥ x ⊢ ∆ is derivable, there is also a derivation, of at most the same height,

of (2) Γ ′, x
A

−→ y, y : A, y ≥ x ⊢ ∆. We can then apply the inductive hypoth-
esis on the sum of the heights to cut(1) and(2), and we obtain a derivation

also forΓ ′, x
A

−→ y, y : A ⊢ ∆, from which we conclude by an application of
(ID).

2. As in the previous case, we proceed by induction on the sum of the heights of the
derivations ofΓ ⊢ ∆,x : P andΓ, x : P ⊢ ∆.
For the base case, we have that (at least) one of the two sequents is an axiom,
supposeΓ, x : P ⊢ ∆ (the other half is symmetric). As in the previous case, the
proof is straightforward in casesu : ⊥ ∈ Γ , F ∈ Γ ∩ ∆ andu ≥ u ∈ ∆. In
casex : P ∈ ∆, i.e.∆ = ∆′, x : P , we observe that the left premise of(cut) has
the formΓ ⊢ ∆′, x : P, x : P and, by contraction (Lemma 8), we conclude that
Γ ⊢ ∆′, x : P is derivable.
We proceed similarly to case 1 also for the inductive step. First of all, we consider
the rule R ending the derivation ofΓ ⊢ ∆,x : P . We distinguish two cases:

– the rule R is(EQ), i.e. the derivation is ended as follows:

u : A ⊢ u : A
′

u : A
′ ⊢ u : A

(EQ)

Γ
′
, v

A
−→ z ⊢ ∆

′
, v

A
′

−→ z, x : P

As we have done for the corresponding case in 1, we immediately get that

Γ ⊢ ∆ = Γ ′, v
A

−→ z ⊢ ∆′, v
A′

−→ z is derivable by an application of(EQ) to
u : A ⊢ u : A′ andu : A′ ⊢ u : A, sincex : P does not play any role in the
application of(EQ), which involves only transition formulas;

– the rule R is different from(EQ): as in case 1, we just observe that no rule of
SCondACL has a formulax : P , whereP is an atom, on the right hand side of
a sequent as a principal formula. Furthermore, in all the rules,x : P is copied
into the premise(s). We conclude exactly as we made in case 1,namely we
apply the inductive hypothesis on the sum of the heights of the premises to cut
Γ, x : P ⊢ ∆ and the premise(s) ofΓ ⊢ ∆,x : P , then we conclude by an
application of R. As an example, consider the case R is(Unit), the other cases
are similar and left to the reader. The derivation is as follows:

(1) Γ
′
, y ≥ x, x

A
−→ y ⊢ ∆, x : P

(Unit)
Γ

′
, x

A
−→ y ⊢ ∆, x : P
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Since weakening is height-preserving admissible (Lemma 5), sinceΓ ′, x
A

−→
y, x : P ⊢ ∆ is derivable, we have a derivation of at most the same height

of (2) Γ ′, y ≥ x, x
A
−→ y, x : P ⊢ ∆. We apply the inductive hypothesis to

cut (1) and(2), then we obtain a derivation ofΓ ′, y ≥ x, x
A
−→ y ⊢ ∆, from

which we conclude by an application of(Unit).

3. In this case, sinceΓ ⊢ ∆,x : ⊥ is derivable, we immediately conclude thatΓ ⊢ ∆
is derivable from Lemma 12.

• Base case of the induction on the sum of the heights of the premises of the cut
inference: (at least) one of the two premises of(cut) is an axiom. We have several
subcases: 1.F ∈ Γ ∩ ∆ or x : ⊥ ∈ Γ : in this case, it immediately follows that also
Γ ⊢ ∆ is derivable and we are done. 2.Γ ⊢ ∆,F is an axiom sinceF = x ≥ x:
consider the other sequentΓ, x ≥ x ⊢ ∆. Since it is derivable, by Lemma 11, also
Γ ⊢ ∆ is derivable, and we are done. 3.Γ ⊢ ∆,F is an axiom sinceF ∈ Γ , that
is to sayΓ = Γ ′, F : in this case, the other premise of(cut) is Γ ′, F, F ⊢ ∆ and, by
Lemma 8, we can conclude that alsoΓ ′, F ⊢ ∆ is derivable, thusΓ ⊢ ∆ is derivable,
and we are done. 4.Γ, F ⊢ ∆ is an axiom sinceF = x : ⊥: in this case, the other
premise corresponds toΓ ⊢ ∆,x : ⊥ and, by Lemma 12, we have that alsoΓ ⊢ ∆
is derivable. 5.Γ, F ⊢ ∆ is an axiom sinceF ∈ ∆, i.e.∆ = ∆′, F : similarly to case
3, we have that the other premise corresponds toΓ ⊢ ∆′, F, F , and we conclude that
Γ ⊢ ∆′, F=Γ ⊢ ∆ is derivable since contraction is admissible (Lemma 8).
• Inductive step: we distinguish the following two cases:
(case 1) the last step ofoneof the two premises is obtained by a rule in whichF is
not the principal formula. We further distinguish two subcases: (i) one of the sequents,
sayΓ, F ⊢ ∆ is obtained by the(EQ) rule, whereF is not principal. The premises of
(EQ) do not containF , since this rule only involves two transition formulas belonging
toΓ and∆. Therefore, we have a proof ofΓ ⊢ ∆ by a direct application of(EQ) to it;
(ii) the sequent whereF is not principal is derived by any rule R, except the(EQ) rule.
This case is standard, we can permute R over the cut, i.e. we cut the premise(s) of R
and then we apply R to the result of cut. We present two examples, namely the case in
which R is(DT ) applied to the left premise of(cut) and the case in which R is(Unit)
applied to the right premise of(cut). The other cases are very similar and left to the
reader. For(DT ), consider a derivation ending as follows:

(i) Γ ′, z ≥ y, x
A

−→ y ⊢ ∆, F, z : B

(ii) Γ ′, z ≥ y, x
A

−→ y, x
A∧B
−→ z ⊢ ∆, F

(DT )
Γ

′
, z ≥ y, x

A
−→ y ⊢ ∆, F (iii) Γ

′
, z ≥ y, x

A
−→ y, F ⊢ ∆

(cut)
Γ

′
, z ≥ y, x

A
−→ y ⊢ ∆

By (iii) and Lemma 5, we have derivations of no greater heights of(iii′) Γ ′, z ≥

y, x
A

−→ y, F ⊢ ∆, z : B and(iii′′) Γ ′, z ≥ y, x
A

−→ y, x
A∧B
−→ z, F ⊢ ∆. We can

apply the inductive hypothesis on the sum of the heights of the premises, namely we cut

(i) with (iii′) obtaining a derivation of(iv) Γ ′, z ≥ y, x
A

−→ y ⊢ ∆, z : B, and we cut
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(ii) with (iii′′) obtaining a derivation of(v) Γ ′, z ≥ y, x
A

−→ y, x
A∧B
−→ z ⊢ ∆. From

(iv) and(v) we conclude by an application of(DT ) as follows:

(iv) Γ
′
, z ≥ y, x

A
−→ y ⊢ ∆, z : B (v) Γ

′
, z ≥ y, x

A
−→ y, x

A∧B
−→ z ⊢ ∆

(DT )
Γ

′
, z ≥ y, x

A
−→ y ⊢ ∆

Notice that we have applied the inductive hypothesis on the height since the cut
formula isF itself. Concerning(Unit), consider a derivation ended as follows:

(i) Γ
′
, x

A
−→ y ⊢ ∆, F

(ii) Γ
′
, y ≥ x, x

A
−→ y,F ⊢ ∆

(Unit)
Γ

′
, x

A
−→ y,F ⊢ ∆

(cut)
Γ

′
, x

A
−→ y ⊢ ∆

Since weakening is heigh-preserving admissible (Lemma 5),we have a derivation

of (i′) Γ ′, y ≥ x, x
A

−→ y ⊢ ∆,F . Also in this case, we apply the inductive hypothesis
on the height to cut(i′) and(ii), then we conclude by an application of(Unit):

(i′) Γ
′
, y ≥ x, x

A
−→ y ⊢ ∆, F (ii) Γ

′
, y ≥ x, x

A
−→ y,F ⊢ ∆

(cut)
Γ

′
, y ≥ x, x

A
−→ y ⊢ ∆

(Unit)
Γ

′
, x

A
−→ y ⊢ ∆

(case 2)F is the principal formula in the last step ofbothderivations of the premises
of the cut inference. There are thirteen subcases:F is introduced a) by(∧R) - (∧L), b)
by (∨R) - (∨L), c) by(→ R) - (→ L), d) by( saysR) - ( saysL), e) by(EQ) on the
left and on the right, f) by(EQ) on the left and by(Unit) on the right, g) by(EQ) on
the left and by(ID) on the right, h) by(EQ) on the left and by(C) on the right, i) by
(EQ) on the left and by(DT ) on the right, j) by(EQ) on the left and by(CA − conv )
on the right, k) by(EQ) on the left and by(C4) on the right, l) by(EQ) on the left
and by(I) on the right, m) by(EQ) on the left and by(INT ) on the right. The list is
exhaustive. Notice that the rules(CA) and(MON ) are not involved in any case, since
there is no principal formulaF in their conclusions. The same for(TR) and(ATM ),
since there is no rule having a formulay ≥ x (respectively,x : P with P ∈ ATM )
on the right hand side of its conclusion as a principal formula. We present each case in
detail:

– a) We have the following derivation:

(1) Γ ⊢ ∆, x : α (2) Γ ⊢ ∆, x : β
(∧R)

Γ ⊢ ∆, x : α ∧ β

(3) Γ, x : α, x : β ⊢ ∆
(∧L)

Γ, x : α ∧ β ⊢ ∆
(cut)

Γ ⊢ ∆

Since weakening is admissible (Lemma 5), we have a derivation of no greater height
than(1) also for(1′) Γ, x : β ⊢ ∆,x : α. We conclude by applying two times the
inductive hypothesis, cutting formulas whose complexity is lower than the one of
x : α ∧ β, as follows:
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(2) Γ ⊢ ∆, x : β

(1′) Γ, x : β ⊢ ∆, x : α (3) Γ, x : α, x : β ⊢ ∆
(cut)

Γ, x : β ⊢ ∆
(cut)

Γ ⊢ ∆

– b) We have the following derivation:

(1) Γ ⊢ ∆, x : α, x : β
(∨R)

Γ ⊢ ∆, x : α ∨ β

(2) Γ, x : α ⊢ ∆ (3) Γ, x : β ⊢ ∆
(∨L)

Γ, x : α ∨ β ⊢ ∆
(cut)

Γ ⊢ ∆

By weakening (Lemma 5), we have a derivation of(2′) Γ, x : α ⊢ ∆,x : β of
no greater height than(2). As in case a), we conclude by applying two times the
inductive hypothesis on the complexity of the cut formula, replacing the initial cut
as follows:

(1) Γ ⊢ ∆, x : α, x : β (2′) Γ, x : α ⊢ ∆, x : β
(cut)

Γ ⊢ ∆, x : β (3) Γ, x : β ⊢ ∆
(cut)

Γ ⊢ ∆

– c) We have the following derivation:

(1) Γ, z ≥ x, z : α ⊢ ∆, z : β
(→ R)

(5) Γ ⊢ ∆, x : α → β

(2) Γ, x : α → β ⊢ ∆, y ≥ x

(3) Γ, x : α → β ⊢ ∆, y : α

(4) Γ, x : α → β, y : β ⊢ ∆
(→ L)

Γ, x : α → β ⊢ ∆
(cut)

Γ ⊢ ∆

First, observe that the labelz in the premise of(→ R) is new, i.e. it does not occur
in the conclusion of such rule. By Lemma 6, we have a derivation of no greater
height than(1) also of(1′) Γ, y ≥ x, y : α ⊢ ∆, y : β. Since weakening is height-
preserving admissibile, we have derivations for(5′) Γ ⊢ ∆,x : α → β, y ≥ x,
(5′′) Γ ⊢ ∆,x : α → β, y : α, and(5′′′) Γ, y : β ⊢ ∆,x : α → β, whose heights
are no greater than the height of(5). By applying the inductive hypothesis on the
height of the derivations, we can cut(2) and(5′), obtaining a derivation of(6) Γ ⊢
∆, y ≥ x, (3) and(5′′), obtaining a derivation of(7) Γ ⊢ ∆, y : α, (3) and(5′′′),
obtaining a derivation of(8) Γ, y : β ⊢ ∆. By weakening (Lemma 5), we have also
derivations of(7′) Γ, y ≥ x ⊢ ∆, y : α and(8′) Γ, y ≥ x, y : α, y : β ⊢ ∆. We
replace the initial cut with three cuts on formulas whose complexity is lower than
the one ofx : α→ β, as follows:

(6) Γ ⊢ ∆, y ≥ x

(7′) Γ, y ≥ x ⊢ ∆, y : α

(1′) Γ, y ≥ x, y : α ⊢ ∆, y : β

(8′) Γ, y ≥ x, y : α, y : β ⊢ ∆
(cut)

Γ, y ≥ x, y : α ⊢ ∆
(cut)

Γ, y ≥ x ⊢ ∆
(cut)

Γ ⊢ ∆
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– d) We have the following derivation:

(1) Γ, x
A

−→ z ⊢ ∆, z : γ
( saysR)

(4) Γ ⊢ ∆, x : A saysγ

(2) Γ, x : A saysγ ⊢ ∆, x
A

−→ y (3) Γ, x : A saysγ, y : γ ⊢ ∆
( saysL)

Γ, x : A saysγ ⊢ ∆
(cut)

Γ ⊢ ∆

First, observe that, since the labelz does not occur in the conclusion of( saysR),

by Lemma 6 we have a derivation of(1′) Γ, x
A

−→ y ⊢ ∆, y : γ. By weaken-

ing (Lemma 5), we have derivations of(4′) Γ ⊢ ∆,x : A saysγ, x
A

−→ y and
(4′′) Γ, y : γ ⊢ ∆,x : A saysγ, whose heights are no greater than the one for(4).
We apply the inductive hypothesis on the height of the derivations to cut(2) and

(4′), obtaining(5) Γ ⊢ ∆,x
A

−→ y, and to cut(3) with (4′′), obtaining(6) Γ, y :

γ ⊢ ∆. By Lemma 5 we have also a derivation for(6′) Γ, x
A

−→ y, y : γ ⊢ ∆. We
conclude as follows by applying two times the inductive hypothesis on the com-
plexity of the cut formula:

(5) Γ ⊢ ∆, x
A

−→ y

(1′) Γ, x
A

−→ y ⊢ ∆, y : γ (6′) Γ, x
A

−→ y, y : γ ⊢ ∆
(cut)

Γ, x
A

−→ y ⊢ ∆
(cut)

Γ ⊢ ∆

– e) We have the following derivation:

(1) u : B ⊢ u : A (2) u : A ⊢ u : B
(EQ)

Γ
′
, x

B
−→ y ⊢ ∆

′
, x

C
−→ y, x

A
−→ y

(3) u : A ⊢ u : C (4) u : C ⊢ u : A
(EQ)

Γ
′
, x

B
−→ y, x

A
−→ y ⊢ ∆

′
, x

C
−→ y

(cut)
Γ

′
, x

B
−→ y ⊢ ∆

′
, x

C
−→ y

By Lemma 5, from(1) we obtain a proof of(1′) u : B ⊢ u : A, u : C, from (2) we
obtain a proof of(2′) u : A, u : C ⊢ u : B, from (3) we obtain a proof of(3′) u :
A, u : B ⊢ u : C, and from(4) we obtain a proof of(4′) u : C ⊢ u : A, u : B.
We replace the initial cut with the following derivation, where(cut) is eliminable
by applying the inductive hypothesis on the complexity of the cut formula:

(1′) u : B ⊢ u : A, u : C

(3′) u : A, u : B ⊢ u : C
(cut)

u : B ⊢ u : C

(2′) u : A, u : C ⊢ u : B

(4′) u : C ⊢ u : A, u : B
(cut)

u : C ⊢ u : B
(EQ)

Γ
′
, x

B
−→ y ⊢ ∆

′
, x

C
−→ y

– f) The derivation is ended as follows:

u : A ⊢ u : A
′

u : A
′ ⊢ u : A

(EQ)

(2) Γ
′
, x

A
′

−→ y ⊢ ∆, x
A

−→ y

(1) Γ
′
, x

A
′

−→ y, x
A

−→ y, y ≥ x ⊢ ∆
(Unit)

Γ
′
, x

A
′

−→ y, x
A

−→ y ⊢ ∆
(cut)

Γ
′
, x

A
′

−→ y ⊢ ∆
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By Lemma 5, we have a derivation of height no greater than(2) of (2′) Γ ′, x
A′

−→

y, y ≥ x ⊢ ∆,x
A
−→ y. We can replace the initial cut by applying the inductive

hypothesis on the height of the derivations to cut(2′) and(1) as follows:

(2′) Γ
′
, x

A
′

−→ y, y ≥ x ⊢ ∆, x
A

−→ y (1) Γ
′
, x

A
′

−→ y, x
A

−→ y, y ≥ x ⊢ ∆
(cut)

Γ
′
, x

A
′

−→ y, y ≥ x ⊢ ∆
(Unit)

Γ
′
, x

A
′

−→ y ⊢ ∆

– g) The derivation we are considering is as follows:

u : A ⊢ u : A
′ (1) u : A

′ ⊢ u : A
(EQ)

(3) Γ
′
, x

A
′

−→ y ⊢ ∆, x
A

−→ y

(2) Γ
′
, x

A
′

−→ y, x
A

−→ y, y : A ⊢ ∆
(ID)

Γ
′
, x

A
′

−→ y, x
A

−→ y ⊢ ∆
(cut)

Γ
′
, x

A
′

−→ y ⊢ ∆

First of all, by the height-preserving admissibility of label substitution (Lemma 6),
we have a derivation of no greater height of(1) for (1′) y : A′ ⊢ y : A. Moreover,

by weakening (Lemma 5), we have derivations for(3′) Γ ′, x
A′

−→ y, y : A, y :

A′ ⊢ ∆,x
A

−→ y of no greater height with respect to(3), for (2′) Γ ′, x
A′

−→

y, x
A

−→ y, y : A, y : A′ ⊢ ∆ of no greater height with respect to(2), and of

(1′′) Γ ′, x
A′

−→ y, y : A′ ⊢ ∆, y : A of no greater height with respect to(1′). We
can conclude by replacing the initial cut by the two following cuts:

(1′′) Γ
′
, x

A
′

−→ y, y : A
′ ⊢ ∆, y : A

(3′) Γ ′, x
A

′

−→ y, y : A, y : A′ ⊢ ∆, x
A

−→ y

(2′) Γ ′, x
A

′

−→ y, x
A

−→ y, y : A, y : A′ ⊢ ∆
(cut)

Γ
′
, x

A
′

−→ y, y : A, y : A
′ ⊢ ∆

(cut)

Γ
′
, x

A
′

−→ y, y : A
′ ⊢ ∆

(ID)

Γ
′
, x

A
′

−→ y ⊢ ∆

The upper cut (between(3′) and(2)) can be eliminated by applying the inductive
hypothesis on the height of the premises, whereas the lower one can be removed by
applying the inductive hypothesis on the complexity of the cut formula.

– h) We have the following derivation:

(I) u : A
′ ⊢ u : A (II) u : A ⊢ u : A

′

(EQ)

Γ
′
, z ≥ y, x

A
′

−→ y ⊢ ∆, x
A

−→ y

(1) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y, z
A

−→ z ⊢ ∆
(C)

(2) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y ⊢ ∆
(cut)

Γ
′
, z ≥ y, x

A
′

−→ y ⊢ ∆
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This case is more complicated: intuitively, we cannot conclude as in the previous
case g) by cutting(1) and the conclusion of(EQ) (and using necessary weaken-

ings), because of the presence ofz
A

−→ z. More precisely, the application of the
inductive hypothesis on the sum of the heights of the derivations would lead to a

derivation ofΓ ′, z ≥ y, x
A′

−→ y, z
A

−→ z ⊢ ∆, from which we are not able to
conclude.
In order to tackle this problem, we first show that the sequent(2′) Γ ′, z ≥ y, x

A′

−→

y, x
A′

−→ y ⊢ ∆ is derivable, that is to say we replaceAwith the equivalent formula
A′ in one or more transition formulas7 in (2), since(I) and (II) are derivable.

Given this, we immediately conclude thatΓ ′, z ≥ y, x
A′

−→ y ⊢ ∆ is derivable
since contraction is admissible (Lemma 8). We proceed by induction on the height
of the derivation of(2). The base case corresponds to the situation in which(2) is
an instance of the axioms: since axioms do not involve transition formulas, we can
easily observe that either there is a formulaG such thatG ∈ Γ ′ ∩∆ or z ≥ y ∈ ∆
or, for somew, w : ⊥ ∈ Γ ′ or w ≥ w ∈ ∆. In all these cases, it immediately

follows that also(2′) Γ ′, z ≥ y, x
A′

−→ y, x
A′

−→ y ⊢ ∆ is an axiom and we are
done. For the inductive step, we consider each rule ending the derivation of(2). We
distinguish two subcases:
• the derivation of(2) is ended by an application of(EQ) as follows:

(III) u : A ⊢ u : B (IV ) u : B ⊢ u : A
(EQ)

(2) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y ⊢ ∆
′
, x

B
−→ y

Since weakening is admissible (Lemma 5), from(I) we obtain a derivation of
(I ′) u : A′ ⊢ u : A, u : B, from (II) we obtain a proof of(II ′) u : B, u : A ⊢
u : A′, from (III) we obtain a proof of(III ′) u : A, u : A′ ⊢ u : B and from
(IV ) we obtain a proof of(IV ′) u : B ⊢ u : A, u : A′. We conclude that(2′)
is derivable as follows:

(I ′) u : A′ ⊢ u : A, u : B

(III ′) u : A,u : A′ ⊢ u : B
(cut)

u : A
′ ⊢ u : B

(IV ′) u : B ⊢ u : A,u : A′

(II ′) u : B, u : A ⊢ u : A′

(cut)
u : B ⊢ u : A

′

(EQ)

(2′) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

′

−→ y ⊢ ∆
′
, x

B
−→ y

Notice that the two cuts can be eliminated by applying the inductive hypothesis
on the complexity of the cut formula: indeed, the cut formulais u : A, whose

complexity is lower than the one ofx
A

−→ y;
• the derivation of(2) is ended by an application of(ID) as follows:

(3) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y, y : A ⊢ ∆
(ID)

(2) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y ⊢ ∆

7 In the general case, transition formulas can have the following forms:u
A

−→ v, u
A∨B
−→ v,

u
A∧B
−→ v.
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First of all, we apply the inductive hypothesis to replaceA with A′ in (3),

obtaining a proof of(3′) Γ ′, z ≥ y, x
A′

−→ y, x
A′

−→ y, y : A ⊢ ∆, then,

by Lemma 5, we have a proof also for(3′′) Γ ′, z ≥ y, y : A′, x
A′

−→ y, x
A′

−→
y, y : A ⊢ ∆. By Lemma 6 and weakening (Lemma 5), from(I) u : A′ ⊢ u : A

we obtain a proof of(I ′) Γ ′, z ≥ y, y : A′, x
A′

−→ y, x
A′

−→ y ⊢ ∆, y : A. We
apply the inductive hypothesis of cut to(3′′) and(I ′), again on the complexity
of the cut formula which isy : A, whose complexity is lower than the one of

x
A

−→ y. We obtain a derivation ofΓ ′, z ≥ y, y : A′, x
A′

−→ y, x
A′

−→ y ⊢ ∆,
from which we conclude by an application of(ID);

• the derivation of(2) is ended by an application of(DT ) as follows:

(3) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y ⊢ ∆, z : B (4) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y, x
A∧B
−→ z ⊢ ∆

(DT )

(2) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y ⊢ ∆

First of all, we show thatu : A ∧B ⊢ u : A′ ∧B andu : A′ ∧B ⊢ u : A ∧B
are derivable. Indeed, by Lemma 5, from(I) and(II) we have derivations for
(I ′) u : A′, u : B ⊢ u : A and (II ′) u : A, u : B ⊢ u : A′. Moreover,
(5) u : A, u : B ⊢ u : B and(6) u : A′, u : B ⊢ u : B are derivable (they
are instances of the axiom(AX)), from which we can build the following
derivations:

(II
′) u : A,u : B ⊢ u : A

′ (5) u : A, u : B ⊢ u : B
(∧R)

u : A, u : B ⊢ u : A
′ ∧ B

(∧L)
u : A ∧ B ⊢ u : A

′ ∧ B

(I ′) u : A
′
, u : B ⊢ u : A (6) u : A

′
, u : B ⊢ u : B

(∧R)
u : A

′
, u : B ⊢ u : A ∧ B

(∧L)
u : A

′ ∧ B ⊢ u : A ∧ B

Therefore, we can apply the inductive hypothesis to(3), obtaining a proof of

(3′) Γ ′, z ≥ y, x
A′

−→ y, x
A′

−→ y ⊢ ∆, z : B, as well as to(4) to obtain a proof

of (4′) Γ ′, z ≥ y, x
A′

−→ y, x
A′

−→ y, x
A′∧B
−→ z ⊢ ∆. We immediately conclude

by an application of(DT ) to (3′) and(4′);
• the derivation of(2) is ended by an application of(CA− conv) as follows:

(3) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y, x
A∨B
−→ z ⊢ ∆

(CA − conv)

(2) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y ⊢ ∆

Similarly to the case of(DT ), we observe that alsou : A∨B ⊢ u : A′∨B and
u : A′ ∨B ⊢ u : A ∨B are derivable, then we apply the inductive hypothesis

on (3) to obtain a proof ofΓ ′, z ≥ y, x
A′

−→ y, x
A′

−→ y, x
A′∨B
−→ z ⊢ ∆, from

which we conclude by an application of(CA− conv);
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• the last rule in the derivation of(2) is different from(EQ), (ID), (DT ) and

(CA − conv): in all these cases, the transition formulax
A

−→ y is copied
into the premise(s). We can immediately conclude by first applying the induc-
tive hypothesis, i.e. by replacingA with A′, in such premise(s), and then by
applying the same rule. As an example, let us consider a proofended by an
application of(C4) as follows:

(3) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y, x
A

−→ w, w
A

−→ y ⊢ ∆
(C4)

(2) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y ⊢ ∆

We can apply the inductive hypothesis on(3) to obtain a derivation of(3′) Γ ′, z ≥

y, x
A′

−→ y, x
A′

−→ y, x
A′

−→ w,w
A′

−→ z ⊢ ∆, from which we conclude by an
application of(C4).

– i) The derivation is as follows:

(1) u : A
′ ⊢ u : A (2) u : A ⊢ u : A

′

(EQ)

Γ
′
, z ≥ y, x

A
′

−→ y ⊢ ∆, x
A

−→ y

Γ ′, z ≥ y, x
A

′

−→ y, x
A

−→ y ⊢ ∆, z : B

Γ ′, z ≥ y, x
A

′

−→ y, x
A

−→ y, x
A∧B
−→ z ⊢ ∆

(DT )

(3) Γ
′
, z ≥ y, x

A
′

−→ y, x
A

−→ y ⊢ ∆
(cut)

Γ
′
, z ≥ y, x

A
′

−→ y ⊢ ∆

Since(1) u : A′ ⊢ u : A and(2) u : A ⊢ u : A′ are derivable, we can prove that

also(3′) Γ ′, z ≥ y, x
A′

−→ y, x
A′

−→ y ⊢ ∆ is derivable. The proof is by induction
on the height of the derivation of(3), is exactly the same as the one proposed for
case h) and it is therefore omitted. Since contraction is admissible (Lemma 8), we
can immediately conclude from(3′).

– j) We have the following derivation:

u : A
′ ⊢ u : A u : A ⊢ u : A

′

(EQ)

Γ
′
, x

A
′

−→ y ⊢ ∆, x
A

−→ y

Γ
′
, x

A
′

−→ y, x
A

−→ y, x
A∨B
−→ y ⊢ ∆

(CA − conv)

(1) Γ
′
, x

A
′

−→ y, x
A

−→ y ⊢ ∆
(cut)

Γ
′
, x

A
′

−→ y ⊢ ∆

We proceed as in the previous cases h) and i) to prove that we have a derivation of

(1′) Γ ′, x
A′

−→ y, x
A′

−→ y ⊢ ∆. Since contraction is admissible (Lemma 8), we

conclude that alsoΓ ′, x
A′

−→ y ⊢ ∆ is derivable.
– k) We are considering the following derivation:

u : A
′ ⊢ u : A u : A ⊢ u : A

′

(EQ)

Γ
′
, x

A
′

−→ y ⊢ ∆, x
A

−→ y

Γ
′
, x

A
′

−→ y, x
A

−→ y, x
A

−→ z, z
A

−→ y ⊢ ∆
(C4)

(1) Γ
′
, x

A
′

−→ y, x
A

−→ y ⊢ ∆
(cut)

Γ
′
, x

A
′

−→ y ⊢ ∆
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Also in this case we proceed similarly to what done for cases h), i) and j): by
induction on the height of the derivation of(1), we prove that there is a derivation

of Γ ′, x
A′

−→ y, x
A′

−→ y ⊢ ∆, then we conclude by contraction (Lemma 8) that

Γ ′, x
A′

−→ y ⊢ ∆ is derivable.
– l) We have the following derivation:

u : A
′ ⊢ u : A u : A ⊢ u : A

′

(EQ)

Γ
′
, x

A
′

−→ y, y
B

−→ z ⊢ ∆, x
A

−→ y

Γ
′
, x

A
′

−→ y, x
A

−→ y, y
B

−→ z, x
B

−→ z ⊢ ∆
(I)

(1) Γ
′
, x

A
′

−→ y, x
A

−→ y, y
B

−→ z ⊢ ∆
(cut)

Γ
′
, x

A
′

−→ y, y
B
−→ z ⊢ ∆

As in the previous cases, we first show that(1′) Γ ′, x
A′

−→ y, x
A′

−→ y, y
B
−→ z ⊢ ∆

is derivable; again, the proof is by induction on the height of the derivation of(1)
and it makes use of the inductive hypothesis of cut on the complexity of the cut

formula. We then conclude by contraction (Lemma 8) thatΓ ′, x
A′

−→ y, y
B
−→ z ⊢

∆ is derivable.
– m) We have the following derivation:

u : A ⊢ u : A
′

u : A
′ ⊢ u : A

(EQ)

Γ
′
, x ≥ z, x

A
′

−→ y ⊢ ∆, x
A

−→ y

Γ
′
, x ≥ z, x

A
′

−→ y, x
A

−→ y, z
A

−→ y ⊢ ∆
(INT )

(1) Γ
′
, x ≥ z, x

A
′

−→ y, x
A

−→ y ⊢ ∆
(cut)

Γ
′
, x ≥ z, x

A
′

−→ y ⊢ ∆

As in the previous cases, we first show that(1′) Γ ′, x ≥ z, x
A′

−→ y, x
A′

−→ y ⊢ ∆

is derivable, then we conclude thatΓ ′, x ≥ z, x
A′

−→ y ⊢ ∆ is also derivable since
contraction is admissible (Lemma 8). �

It is worth noticing that in the proof of Theorem 9 above, in cases h), i), j), k), l), and
m), it is needed a property that, given thatu : A ⊢ u : A′ andu : A′ ⊢ u : A are

derivable, allows us to replaceA with A′ in one or more transition formulasx
A

−→

y (resp.x
A∨B
−→ y or x

A∧B
−→ y) in a derivable sequentΓ ⊢ ∆. The proof of such

property in turn requires(cut) (see case h) as an example). As an alternative to the
proof presented above, in order to prove the admissibility of cut for SCondACL , we can
proceed as done in [28] to deal with conditional logics containing the axiom (CEM) of

conditional excluded middle. LetΓ [xi
F
−→ yi] ⊢ ∆[uj

F
−→ vj ] be a sequent containing

anynumber of transitions labelled with the formulaF , whereF is eitherA or A ∧ B
or A ∨ B; moreover, ifu : A ⊢ u : A′ andu : A′ ⊢ u : A are derivable, we denote
with Γ ⋆ ⊢ ∆⋆ the sequent obtained by replacingany number of transitions labelled
with eitherA orA ∧ B orA ∨ B with the same transitions whereA is replaced byA′

in Γ [xi
F

−→ yi] ⊢ ∆[uj
F

−→ vj ]. We can prove that cut is admissible by “splitting” the
notion of cut in two propositions:
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– (A) If Γ ⊢ ∆,F andΓ, F ⊢ ∆ are derivable, so isΓ ⊢ ∆, i.e. the rule(cut) is
admissible inSCondACL ;

– (B) if (I) Γ [xi
F
−→ yi] ⊢ ∆[uj

F
−→ vj ] , (II) u : A ⊢ u : A′ and (III)u : A′ ⊢ u : A

are derivable, thenΓ ⋆ ⊢ ∆⋆ is derivable.

The proof is by mutual induction between (A) and (B). The induction on (A) is, as in
the proof of Theorem 9 above, a double induction on the complexity of the cut formula
and on the sum of the heights of the premises of(cut), whereas the induction on (B) is
on the height of the derivation of (I). To prove (A) in the above mentioned cases from h)
to m), we need to apply the inductive hypothesis on (B) to one of the premises of(cut),
and this is allowed since the height of such premise (sayh2) is lower thanh1 + h2. To

prove (B), in case the derivation of (I)Γ [xi
F

−→ yi] ⊢ ∆[uj
F

−→ vj ] is ended by an
application of either(EQ) or (ID), we need to apply the inductive hypothesis on (A)
on the complexity of the cut formulas, and this is allowed since the cut formulas are

subformulas of the initialx
F

−→ y.
Now we can prove the completeness of the calculusSCondACL :

Theorem 10 (Completeness ofSCondACL ). If a sequentΓ ⊢ ∆ is valid in the sense of
Definition 7, thenΓ ⊢ ∆ is derivable.

Proof. We have to prove that the axioms are derivable and that the setof derivable
formulas is closed under (MP), (RCEA), and (RCK).

First, we show a derivation inSCondACL of the axioms:

– (FALSE)
x ≥ u, x : ⊥ ⊢ x : γ

(→ R)
⊢ u : ⊥ → γ

– (THEN-1): by Lemma 10, we have that, given any formulaα, there is a derivation
in SCondACL for (i) y ≥ x, x ≥ u, y : β, x : α ⊢ y : α. We can conclude as
follows:

(i) y ≥ x, x ≥ u, y : β, x : α ⊢ y : α
(→ R)

x ≥ u, x : α ⊢ x : β → α
(→ R)

⊢ u : α → (β → α)

– (THEN-2)

. . . , z ≥ y ⊢ z ≥ y, . . .

. . . , z : α ⊢ . . . , z : α

. . . , z ≥ x ⊢ z ≥ x, . . .

. . . , z : α ⊢ . . . , z : α

. . . ⊢ z ≥ z, . . .

z : β, . . . ⊢ z : β, . . .

z : γ, . . . ⊢ z : γ, . . .
(→ L)

. . . , z : β → γ, z : β, z : α ⊢ . . . , z : γ
(→ L)

z ≥ x, . . . , z : α, z : β, x : α → (β → γ) ⊢ . . . , z : γ
(→ L)

z ≥ x, z ≥ y, y ≥ x, x ≥ u, x : α → (β → γ), y : α → β, z : α ⊢ z : γ
(TR)

z ≥ y, y ≥ x, x ≥ u, x : α → (β → γ), y : α → β, z : α ⊢ z : γ
(→ R)

y ≥ x, x ≥ u, x : α → (β → γ), y : α → β ⊢ y : α → γ
(→ R)

x ≥ u, x : α → (β → γ) ⊢ x : (α → β) → (α → γ)
(→ R)

⊢ u : (α → (β → γ)) → ((α → β) → (α → γ))
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– (AND-1), (AND-2) (the two cases are symmetric)

x ≥ u, x : α, x : β ⊢ x : α
(∧L)

x ≥ u, x : α ∧ β ⊢ x : α
(→ R)

⊢ u : α ∧ β → α

– (AND-3): by Lemma 10, we have a derivation for(ii) y ≥ x, x ≥ u, x : α, y : β ⊢
y : α, from which we conclude as follows:

(ii) y ≥ x, x ≥ u, x : α, y : β ⊢ y : α y ≥ x, x ≥ u, x : α, y : β ⊢ y : β
(∧R)

y ≥ x, x ≥ u, x : α, y : β ⊢ y : α ∧ β
(→ R)

x ≥ u, x : α ⊢ x : β → (α ∧ β)
(→ R)

⊢ u : α → (β → (α ∧ β))

– (OR-1), (OR-2) (the two cases are symmetric)

x ≥ u, x : α ⊢ x : α, x : β
(∨R)

x ≥ u, x : α ⊢ x : α ∨ β
(→ R)

⊢ u : α → α ∨ β

– (OR-3)

z ≥ y, . . . z ≥ y, z : β

. . . , z : β ⊢ z : β

. . . z ≥ x ⊢ . . . , z ≥ x

. . . , z : α ⊢ . . . , z : α

. . . , z : β ⊢ . . . , z : β
(→ L)

z ≥ x, x : α → β, . . . , z : α ⊢ z : γ, z : β
(TR)

z ≥ y, y ≥ x, x : α → β, . . . , z : α ⊢ z : γ, z : β . . . , z : γ ⊢ z : γ, z : β
(∨L)

z ≥ y, y ≥ x, x : α → β, . . . , z : α ∨ γ ⊢ z : γ, z : β
(→ L)

z ≥ y, y ≥ x, x ≥ u, x : α → β, y : γ → β, z : α ∨ γ ⊢ z : β
(→ R)

y ≥ x, x ≥ u, x : α → β, y : γ → β ⊢ y : α ∨ γ → β
(→ R)

x ≥ u, x : α → β ⊢ x : (γ → β) → (α ∨ γ → β)
(→ R)

⊢ u : (α → β) → ((γ → β) → (α ∨ γ → β))

– (K)
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v : A ⊢ v : A
(EQ)

. . . , y
A

−→ z ⊢ z : β, y
A

−→ z

v : A ⊢ v : A
(EQ)

. . . , x
A

−→ z ⊢ x
A

−→ z, z : β

. . . ⊢ z : β, z ≥ z

. . . , z : α ⊢ z : β, z : α

. . . , z : β ⊢ z : β
(→ L)

. . . , z : α → β, z : α ⊢ z : β
( saysL)

x
A

−→ z, y ≥ x, y
A

−→ z, x : A says(α → β), z : α, . . . ⊢ z : β
(INT )

y ≥ x, y
A

−→ z, x : A says(α → β), z : α, . . . ⊢ z : β
( saysL)

y ≥ x, x ≥ u, y
A

−→ z, x : A says(α → β), y : A saysα ⊢ z : β
( saysR)

y ≥ x, x ≥ u, x : A says(α → β), y : A saysα ⊢ y : A saysβ
(→ R)

x ≥ u, x : A says(α → β) ⊢ x : A saysα → A saysβ
(→ R)

⊢ u : A says(α → β) → (A saysα → A saysβ)

– (CA): let us first observe that, sinceA ∨ B occurs in the left hand side ofsays in
the initial formula, we have thatA ∨B ∈ LP. We have the following derivation:

v : A ⊢ v : A, v : B

v : B ⊢ v : A, v : B

(∨L)
v : A ∨ B ⊢ v : A, v : B

(∨R)
v : A ∨ B ⊢ v : A ∨ B

(EQ)
. . . , x

A∨B
−→ y ⊢ y : γ, x

A∨B
−→ y

v : A ⊢ v : A

(EQ)
. . . x

A
−→ y . . . , y : γ ⊢ y : γ

( saysL)
. . . , x

A
−→ y, x : A saysγ ⊢ y : γ

v : B ⊢ v : B

(EQ)
. . . x

B
−→ y . . . , y : γ ⊢ y : γ

( saysL)
. . . , x

B
−→ y, x : B saysγ ⊢ y : γ

(CA)
x ≥ u, x

A∨B
−→ y, x : A saysγ, x : B saysγ ⊢ y : γ

( saysR)
x ≥ u, x : A saysγ, x : B saysγ ⊢ x : A ∨ B saysγ

(∧L)
x ≥ u, x : A saysγ ∧ B saysγ ⊢ x : A ∨ B saysγ

(→ R)
⊢ u : A saysγ ∧ B saysγ → A ∨ B saysγ

– (CA-conv): similarly to the case of (CA), we observe thatA ∨ B ∈ LP. We have
the following derivation:

v : A ∨ B ⊢ v : A ∨ B
(EQ)

. . . , x
A∨B
−→ y ⊢ y : γ, x

A∨B
−→ y . . . , y : γ ⊢ y : γ

( saysL)
x ≥ u, x

A
−→ y, x

A∨B
−→ y, x : A ∨ B saysγ ⊢ y : γ

(CA − conv)
x ≥ u, x

A
−→ y, x : A ∨ B saysγ ⊢ y : γ

( saysR)
x ≥ u, x : A ∨ B saysγ ⊢ x : A saysγ

(→ R)
⊢ u : A ∨ B saysγ → A saysγ
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– (Mon): similarly to the cases of (CA) and (CA-conv), we observe thatA∧B ∈ LP.
We have the following derivation:

v : A, v : B ⊢ v : A

v : A, v : B ⊢ v : B
(∧R)

v : A, v : B ⊢ v : A ∧ B
(∧L)

v : A ∧ B ⊢ v : A ∧ B
(EQ)

. . . , x
A∧B
−→ y ⊢ y : γ, x

A∧B
−→ y

v : A ⊢ v : A
(EQ)

. . . , x
A

−→ y ⊢ y : γ, x
A

−→ y . . . , y : γ ⊢ y : γ
( saysL)

. . . , x
A

−→ y, x
B

−→ y, x : A saysγ ⊢ y : γ
(MON)

x ≥ u, x
A∧B
−→ y, x : A saysγ ⊢ y : γ

( saysR)
x ≥ u, x : A saysγ ⊢ x : A ∧ B saysγ

(→ R)
⊢ u : A saysγ → A ∧ B saysγ

– (DT): similarly to the case of (Mon), we observe thatA ∧ B ∈ LP. We have the
following derivation:

. . . , z : B ⊢ z : γ, z : B

v : A ∧ B ⊢ v : A ∧ B
(EQ)

. . . , x
A∧B
−→ z ⊢, z : γ, x

A∧B
−→ z . . . , z : γ ⊢ z : γ

( saysL)
. . . , x

A∧B
−→ z, x : A ∧ B saysγ ⊢ z : γ

(DT )
z ≥ y, x ≥ u, x

A
−→ y, x : A ∧ B saysγ, z : B ⊢ z : γ

(→ R)
x ≥ u, x

A
−→ y, x : A ∧ B saysγ ⊢ y : B → γ

( saysR)
x ≥ u, x : A ∧ B saysγ ⊢ x : A says(B → γ)

(→ R)
⊢ u : A ∧ B saysγ → (A says(B → γ))

– (ID)

x
A

−→ y, y : A ⊢ y : A
(ID)

x
A

−→ y ⊢ y : A
( saysR)

⊢ x : A saysA

– (UNIT): by Lemma 10 we have a derivation inSCondACL of (iii) y ≥ x, x ≥ u, x :

γ, x
A

−→ y ⊢ y : γ, from which we conclude as follows:

(iii) y ≥ x, x ≥ u, x : γ, x
A

−→ y ⊢ y : γ
(Unit)

x ≥ u, x : γ, x
A

−→ y ⊢ y : γ
( saysR)

x ≥ u, x : γ ⊢ x : A saysγ
(→ R)

⊢ u : γ → (A saysγ)

– (I)
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v : A ⊢ v : A v : A ⊢ v : A
(EQ)

. . . , x
A

−→ z ⊢ z : γ, x
A

−→ z . . . , z : γ ⊢ z : γ
( saysL)

x ≥ u, x
B

−→ y, y
A

−→ z, x
A

−→ z, x : A saysγ ⊢ z : γ
(I)

x ≥ u, x
B
−→ y, y

A
−→ z, x : A saysγ ⊢ z : γ

( saysR)
x ≥ u, x

B
−→ y, x : A saysγ ⊢ y : A saysγ

( saysR)
x ≥ u, x : A saysγ ⊢ x : B says(A saysγ)

(→ R)
⊢ u : (A saysγ) → (B saysA saysγ)

– (C)

v : A ⊢ v : A v : A ⊢ v : A
(EQ)

. . . , z
A

−→ z ⊢ z : γ, z
A

−→ z . . . , z : γ ⊢ z : γ
( saysL)

z ≥ y, x
A

−→ y, z
A

−→ z, z : A saysγ ⊢ z : γ
(C)

z ≥ y, x
A

−→ y, z : A saysγ ⊢ z : γ
(→ R)

x
A

−→ y ⊢ y : (A saysγ) → γ
( saysR)

⊢ x : A says(A saysγ → γ)

– (C4)

v : A ⊢ v : A v : A ⊢ v : A
(EQ)

. . . , x
A

−→ z ⊢ y : γ, x
A

−→ z

v : A ⊢ v : A v : A ⊢ v : A
(EQ)

. . . , z
A

−→ y ⊢ y : γ, z
A

−→ y . . . , y : γ ⊢ y : γ
( saysL)

. . . , z
A

−→ y, z : A saysγ ⊢ y : γ
( saysL)

x ≥ u, x
A

−→ y, x
A

−→ z, z
A

−→ y, x : A says(A saysγ) ⊢ y : γ
(C4)

x ≥ u, x
A

−→ y, x : A says(A saysγ) ⊢ y : γ
( saysR)

x ≥ u, x : A says(A saysγ) ⊢ x : A saysγ
(→ R)

⊢ u : (A says(A saysγ)) → (A saysγ)

Let us now show that the set of derivable formulas is closed under (MP), (RCEA),
and (RCK). For (MP), suppose we have a derivation for(iv) ⊢ x : α and(v) ⊢ x :
α → β. Since weakening is admissible, we have that also(iv′) ⊢ x : α, x : β and
(v′) x : α ⊢ x : α→ β, x : β have a derivation inSCondACL . Since(cut) is admissible,
we can conclude that⊢ x : β is derivable as follows:

(iv′) ⊢ x : α, x : β

(v′)x : α ⊢ x : α → β, x : β

x : α → β, x : α ⊢ x : β, x ≥ x

x : α → β, x : α ⊢ x : β, x : α

x : α → β, x : α, x : β ⊢ x : β
(→ L)

x : α → β, x : α ⊢ x : β
(cut)

x : α ⊢ x : β
(cut)

⊢ x : β
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For (RCEA), we proceed as follows. As usual,⊢ A ↔ B is a shorthand for⊢ A → B
and⊢ B → A. Suppose we have a derivation for⊢ v : A → B and for⊢ v : B → A.
By Lemma 9, we have also derivations forv : A ⊢ v : B andv : B ⊢ v : A. The
following derivation shows that also⊢ u : (A saysγ) → (B saysγ) is derivable in
SCondACL (the other half is symmetric):

v : A ⊢ v : B v : B ⊢ v : A
(EQ)

x ≥ u, x : A saysγ, x
B
−→ y ⊢ y : γ, x

A
−→ y . . . , y : γ ⊢ y : γ

( saysL)
x ≥ u, x : A saysγ, x

B
−→ y ⊢ y : γ

( saysR)
x ≥ u, x : A saysγ ⊢ x : B saysγ

(→ R)
⊢ u : (A saysγ) → (B saysγ)

For (RCK), suppose there is a derivation for⊢ y : α → β. By Lemma 9, there is also a

derivation for(vi) y : α ⊢ y : β and, by weakening, of(vi′) x ≥ u, x : A saysα, x A
−→

y, y : α ⊢ y : β, from which we conclude:

. . . x
A

−→ y ⊢ x
A

−→ y, . . . (vi
′) x ≥ u, x : A saysα, x

A
−→ y, y : α ⊢ y : β

( saysL)
x ≥ u, x : A saysα, x

A
−→ y ⊢ y : β

( saysR)
x ≥ u, x : A saysα ⊢ x : A saysβ

(→ R)
⊢ u : (A saysα) → (A saysβ)

�

Completeness ofSCondACL with respect to the models of the respective logic in Defi-
nitions 2 and 3 immediately follows from the completeness ofthe axiomatization with
respect to the semantics, shown in Theorems 4, 5, 6, and 7. We have that a formula
ϕ ∈ L is valid if and only if the sequent⊢ u : ϕ has a derivation inSCondACL .

5.3 Decidability and complexity ofCondUC
ACL

In this section we focus on the logicCondUC
ACL , for which we are able to describe a

decision procedurêS
CondUC

ACL
(starting fromS

CondUC
ACL

) and to give an explicit complex-

ity bound for it. For the calculi for the variantsCondU4
ACL , CondIC

ACL , andCondI4
ACL ,

termination is an open problem at present, and we plan to study it in future work.
In general, cut-freeness alone does not ensure the termination of proof search in a

sequent calculus; the presence of labels and of rules such as( saysL), (→ L), (Unit),
(ID), . . ., which increase the complexity of the sequent in a backward proof search,
are potential causes of a non-terminating proof search. However, we can prove that
the above mentioned “critical” rules can be applied in a controlled way, then the rules
introduce only a finite number of labels.

First of all, by Proposition 3, the condition (S-DT) can be expressed as

∀t, s ∈ S, if sRAt andt ∈ [|B|], thensRA∧Bt (S-DT)
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As a consequence, the calculuŝS
CondUC

ACL
replaces the rule(DT ) in Figure 3 with the

following one:

Γ, x
A

−→ y ⊢ ∆, y : B Γ, x
A

−→ y, x
A∧B
−→ y ⊢ ∆

(DT )
Γ, x

A
−→ y ⊢ ∆

whereA ∧B ∈ LP.

Let us now consider a first source of non-termination, namelythe possible gener-
ation of an infinite branch due to the generation of infinitely-many labels, for instance
introduced by a sequence of applications of(→ L), (→ R) and(TR). As an exam-
ple, consider the following derivation (in the applications of (→ L) we only show the
premise in the middle):

.

.

.
(TR)

w ≥ z, z ≥ x, z ≥ y, y ≥ x, x ≥ u, x : (A4 → A3) → A2, y : A1, z : A4, w : A4 ⊢ y : B, z : A3, w : A3

(→ R)
z ≥ x, z ≥ y, y ≥ x, x ≥ u, x : (A4 → A3) → A2, y : A1, z : A4 ⊢ y : B, z : A3, z : A4 → A3

(→ L)
z ≥ x, z ≥ y, y ≥ x, x ≥ u, x : (A4 → A3) → A2, y : A1, z : A4 ⊢ y : B, z : A3

(TR)
z ≥ y, y ≥ x, x ≥ u, x : (A4 → A3) → A2, y : A1, z : A4 ⊢ y : B, z : A3

(→ R)
y ≥ x, x ≥ u, x : (A4 → A3) → A2, y : A1 ⊢ y : B, y : A4 → A3

(→ L)
y ≥ x, x ≥ u, x : (A4 → A3) → A2, y : A1 ⊢ y : B

(→ R)
x ≥ u, x : (A4 → A3) → A2 ⊢ x : A1 → B

(→ R)
⊢ u : ((A4 → A3) → A2) → (A1 → B)

The problem is exactly the same that affects calculi for intuitionistic propositional logic
in [20], as well as labelled calculi for modal logics K4 and S4in [32], where specific
rules are devoted to capture the transitivity of the order relation ≤ as well as of the
accessibility relationR.

In our calculusS
CondUC

ACL
, the same problem is extended to the interplay between

the rules( saysL), ( saysR), (INT ) and(Unit), as shown in the following example
(again, we only present one branch of the tree):
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.

.

.
(→ L)

x
A

−→ w, . . . , x : A says((A saysB) → ⊥), w : (A saysB) → ⊥ ⊢ y : C, z : B, w : B

( saysL)
x

A
−→ w, z ≥ x, z ≥ y, y ≥ x, z

A
−→ w, y

A
−→ z, . . . , x : A says((A saysB) → ⊥) ⊢ y : C, z : B, w : B

(INT )
z ≥ x, z ≥ y, y ≥ x, z

A
−→ w, y

A
−→ z, . . . , x : A says((A saysB) → ⊥) ⊢ y : C, z : B, w : B

(TR)
z ≥ y, y ≥ x, z

A
−→ w, y

A
−→ z, . . . , x : A says((A saysB) → ⊥) ⊢ y : C, z : B, w : B

(Unit)
y ≥ x, z

A
−→ w, y

A
−→ z, . . . , x : A says((A saysB) → ⊥) ⊢ y : C, z : B, w : B

( saysR)
. . . , x : A says((A saysB) → ⊥), z : (A saysB) → ⊥ ⊢ y : C, z : B, z : A saysB

(→ L)
. . . , x : A says((A saysB) → ⊥), z : (A saysB) → ⊥ ⊢ y : C, z : B

( saysL)
y ≥ x, x

A
−→ z, x

A
−→ y, y

A
−→ z, x : A says((A saysB) → ⊥), . . . ⊢ y : C, z : B

(INT )
y ≥ x, x

A
−→ y, y

A
−→ z, x : A says((A saysB) → ⊥), . . . ⊢ y : C, z : B

(Unit)
x

A
−→ y, y

A
−→ z, x : A says((A saysB) → ⊥), . . . ⊢ y : C, z : B

( saysR)
x ≥ u, x

A
−→ y, x : A says((A saysB) → ⊥), y : (A saysB) → ⊥ ⊢ y : C, y : A saysB

(→ L)
x ≥ u, x

A
−→ y, x : A says((A saysB) → ⊥), y : (A saysB) → ⊥ ⊢ y : C

( saysL)
x ≥ u, x

A
−→ y, x : A says((A saysB) → ⊥) ⊢ y : C

( saysR)
x ≥ u, x : A says((A saysB) → ⊥) ⊢ x : A saysC

(→ R)
⊢ u : (A says((A saysB) → ⊥)) → (A saysC)

In order to tackle this problem, we adopt a standard technique, based on the observation
that each infinite sequence of labels isperiodic, that is to say there are two worldsx

andy such thaty ≥ x (x
A

−→ y, respectively) and, for all formulasφ, φ holds in
the world represented byx if and only if φ holds in the world represented byy. To
ensure termination, we impose a restriction on the application of the rules(→ R) and
( saysR). Given a sequentΓ ⊢ ∆ and two labelsx andy such thaty ≥ x ∈ Γ ,
we define the distanced(y, x) as the length of thelongestsequence of formulas inΓ
“connecting” the two labels, i.e.d(y, x) = n if y ◦ z1, z1 ◦ z2, . . . , zn−1 ◦ x ∈ Γ , with

◦ ∈ {≥,
Ai−→}8 is the longest path betweeny andx in Γ . Given a derivation starting

with ⊢ u : φ, let τ be the height of the parse tree ofφ. We show that we can restrict
the application of(→ R) to Γ ⊢ ∆,x : α → β (of ( saysR) to Γ ⊢ ∆,x : α saysβ,
respectively) to the case in whichd(x, u) ≤ τ , that is to say it is useless to introduce a
new label when the distance betweenx andu is higher than the height of the parse tree
of the initial formula.

We only sketch the argument that allows us to restrict the application of (→ R) and
( saysR) as stated above. A detailed discussion can be found in [16]. Let us first prove
that the following rule:

8 In computingd(y, x) we take into account bothorder formulasand transition formulas. As
mentioned, this is due to the presence of(Unit), which implies that the former is a superset
of the latter.
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Γ, x : α → β ⊢ ∆, y ≥ x Γ, x : α → β, y : α → β ⊢ ∆, y : α Γ, x : α → β, y : α → β, y : β ⊢ ∆
(→̃ L)

Γ, x : α → β ⊢ ∆

is admissible inSCondUC
ACL

, that is to say:

Lemma 13. If the following sequents:

1. Γ, x : α→ β ⊢ ∆, y ≥ x
2. Γ, x : α→ β, y : α→ β ⊢ ∆, y : α
3. Γ, x : α→ β, y : α→ β, y : β ⊢ ∆

are derivable in SCondUC
ACL

, then also the sequentΓ, x : α → β ⊢ ∆ is derivable in

S
CondUC

ACL
.

Proof. First of all, we prove that the sequentΓ, x : α → β ⊢ ∆,x : ⊤ → (α → β) is
derivable inS

CondUC
ACL

. This is shown by the following derivation:

. . . , z ≥ x ⊢ . . . , z ≥ x . . . , z : α ⊢ . . . , z : α . . . , z : β ⊢ . . . , z : β
(→ L)

Γ, z ≥ x, y ≥ x, z ≥ y, x : α→ β, y : ⊤, z : α ⊢ ∆, z : β
(TR)

Γ, y ≥ x, z ≥ y, x : α→ β, y : ⊤, z : α ⊢ ∆, z : β
(→ R)

Γ, y ≥ x, x : α→ β, y : ⊤ ⊢ ∆, y : α→ β
(→ R)

Γ, x : α→ β ⊢ ∆,x : ⊤ → (α→ β)

By the admissibility of weakening (Theorem 5), we have a derivation in S
CondUC

ACL
for

(i) Γ, x : α → β ⊢ ∆, y : α, x : ⊤ → (α → β) and for(ii) Γ, x : α → β, y : β ⊢
∆,x : ⊤ → (α→ β).

Again by weakening, since 1. is derivable, also(1′) Γ, x : α → β, x : ⊤ → (α →
β) ⊢ ∆, y : α, y ≥ x and(1′′) Γ, x : α → β, x : ⊤ → (α → β), y : β ⊢ ∆, y ≥ x
are derivable inSCondUC

ACL
. The same for(2′) Γ, x : α→ β, y : α→ β, x : ⊤ → (α →

β) ⊢ ∆, y : α and(3′) Γ, x : α → β, y : α → β, x : ⊤ → (α → β), y : β ⊢ ∆. Since
⊤ is an abbreviation forP → P , it immediately follows that(∗) Γ, x : α→ β, x : ⊤ →
(α→ β) ⊢ ∆, y : α, y : ⊤ and(∗∗) Γ, x : α→ β, x : ⊤ → (α→ β), y : β ⊢ ∆, y : ⊤
are derivable inS

CondUC
ACL

.

Since(cut) is admissible (Theorem 9), we can prove that the sequent(a) Γ, x :
α→ β ⊢ ∆, y : α is derivable inS

CondUC
ACL

:

(i) Γ, x : α → β ⊢ ∆, y : α, x : ⊤ → (α → β)

(1′) Γ, x : α → β, x : ⊤ → (α → β) ⊢ ∆, y : α, y ≥ x

(∗) Γ, x : α → β, x : ⊤ → (α → β) ⊢ ∆, y : α, y : ⊤

(2′) Γ, x : α → β, y : α → β, x : ⊤ → (α → β) ⊢ ∆, y : α
(→ L)

Γ, x : α → β, x : ⊤ → (α → β) ⊢ ∆, y : α
(cut)

(a) Γ, x : α → β ⊢ ∆, y : α
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Again, since(cut) is admissible, we prove that(b) Γ, x : α→ β, y : β ⊢ ∆ is derivable
in S

CondUC
ACL

:

(ii) Γ, x : α → β, y : β ⊢ ∆, x : ⊤ → (α → β)

(1′′) Γ, x : α → β, x : ⊤ → (α → β), y : β ⊢ ∆, y ≥ x

(∗∗) Γ, x : α → β, x : ⊤ → (α → β), y : β ⊢ ∆, y : ⊤

(3′) Γ, x : α → β, y : α → β, x : ⊤ → (α → β), y : β ⊢ ∆
(→ L)

Γ, x : α → β, x : ⊤ → (α → β), y : β ⊢ ∆
(cut)

(b) Γ, x : α → β, y : β ⊢ ∆

From1., (a) and(b) we conclude by an application of(→ L). �

Analogously, we show that the following rule is also admissible in S
CondUC

ACL
:

Γ, x : A saysα ⊢ ∆, x
A

−→ y Γ, x : A saysα, y : A saysα, y : α ⊢ ∆
( s̃aysL)

Γ, x : A saysα ⊢ ∆

Lemma 14. If (1) Γ, x : A saysα ⊢ ∆,x
A

−→ y and (2) Γ, x : A saysα, y :
A saysα, y : α ⊢ ∆ are derivable in S

CondUC
ACL

, then alsoΓ, x : A saysα ⊢ ∆ is

derivable in S
CondUC

ACL
.

Proof. Let us first prove that the sequent(i) Γ, x : A saysα ⊢ ∆,x : A says(A saysα)
has a derivation inSCondUC

ACL
, as shown by the following derivation:

. . . , x
A

−→ z ⊢ . . . , x
A

−→ z . . . , z : α ⊢ ∆, z : α
( saysL)

Γ, x : A saysα, z ≥ y, x
A

−→ z, x
A

−→ y, y
A

−→ z ⊢ ∆, z : α
(INT )

Γ, x : A saysα, y ≥ x, x
A

−→ y, y
A

−→ z ⊢ ∆, z : α
(Unit)

Γ, x : A saysα, x A
−→ y, y

A
−→ z ⊢ ∆, z : α

( saysR)
Γ, x : A saysα, x A

−→ y ⊢ ∆, y : A saysα
( saysR)

(i) Γ, x : A saysα ⊢ ∆,x : A says(A saysα)

Since weakening is admissible inS
CondUC

ACL
(Theorem 5), from(i) we obtain a deriva-

tion also for(ii) Γ, x : A saysα, y : α ⊢ ∆,x : A says(A saysα).
Again, since weakening is admissible inS

CondUC
ACL

, from (1) we obtain a derivation

of (1′) Γ, x : A saysα, x : A says(A saysα), y : α ⊢ ∆,x
A

−→ y, and from(2) we
obtain a derivation for(2′) Γ, x : A saysα, y : A saysα, x : A says(A saysα), y :
α ⊢ ∆. Since(cut) is admissible (Theorem 9), we can conclude as follows:

(1) Γ, x : A saysα ⊢ ∆, x
A

−→ y

(ii) Γ, x : A saysα, y : α ⊢

∆, x : A says(A saysα)

(1′) Γ, x : A saysα, x : A says(A saysα), y : α ⊢ ∆, x
A

−→ y

(2′) Γ, x : A saysα, y : A saysα, x : A says(A saysα), y : α ⊢ ∆

( saysL)
Γ, x : A saysα, x : A says(A saysα), y : α ⊢ ∆

(cut)
Γ, x : A saysα, y : α ⊢ ∆

( saysL)
Γ, x : A saysα ⊢ ∆
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�

We can now prove the following theorem:

Theorem 11. Let ⊢ u : φ be a sequent and letτ be the height of the parse tree ofφ.
In order to check whether⊢ u : φ is derivable, the rules(→ R) and( saysR) can be
reformulated as follows:

Γ, y ≥ x, y : α ⊢ ∆, y : β
(→ R)

Γ ⊢ ∆,x : α→ β

Γ, x
A
−→ y ⊢ ∆, y : α

( saysR)
Γ ⊢ ∆,x : A saysα

where the following conditions hold:

1. y is new, that is to say it does not occur inΓ and∆;
2. d(x, u) ≤ τ .

Proof. (Sketch) Let us consider a sequent of the formΓ, x0 : α1 ◦ α2 ◦ . . . ◦ αn, x0 :
β ⊢ ∆, where◦ ∈ {→, says}, and suppose that a formulaγ ◦ δ occurs negatively inβ,
that is to say in a way such that the application of the rules ofthe calculi could lead to
a sequent of the formΓ ′, x0 : α1 ◦ α2 ◦ . . . ◦ αn, x0 : β ⊢ ∆′, x0 : γ ◦ δ. Suppose also
that, for alll such thatx0 : χ1 ◦χ2 ◦ . . . ◦ χl ∈ Γ , we have thatl ≤ n. Furthermore, by
Lemmas 13 and 14, we can consider, without loss of generality, only proofs in which
any application of(◦L) is replaced by an application of the corresponding(◦̃L). An
application of(◦R) to x0 : γ ◦ δ introduces (backward) a new labelx1, as well as a
formulax1 ≥ x0, either (i) directly, in case◦ =→, or (ii) by an application of(Unit) in
case◦ = says and the transition formulax0

γ
−→ x1 has been introduced (backward)

by the application of( saysR). The rule(◦̃L) can be applied to both the principal
formulasx0 : α1 ◦ α2 ◦ . . . ◦ αn andx0 : β by using the labelx1, obtaining a branch
containing a sequent whose left hand side contains the following formulas:

x0 : α1 ◦ α2 ◦ . . . ◦ αn, x0 : β
x1 : α1 ◦ α2 ◦ . . . ◦ αn, x1 : α2 ◦ . . . ◦ αn, x0 : β, x1 : β

Sinceγ ◦ δ occurs negatively inβ, a new labelx2 can be further introduced by an
application of(◦R) tox1 : γ ◦ δ, thus introducing (backward) a formulax2 ≥ x1, again
either directly by(→ R) or by means of an application of(Unit) with ( saysR). In
case◦ = says, by an application of(INT ), alsox0

γ
−→ x2 is added to the branch.

By an application of(TR), alsox2 ≥ x0 is introduced. The rule(◦̃L) can be further
applied by usingx2 to both the principal formulasx0 : α1 ◦ α2 ◦ . . . ◦ αn andx0 : β.
We obtain a branch containing a sequent whose left hand side contains the following
formulas:

x0 : α1 ◦ α2 ◦ . . . ◦ αn, x0 : β
x1 : α1 ◦ α2 ◦ . . . ◦ αn, x1 : α2 ◦ . . . ◦ αn, x0 : β, x1 : β
x2 : α1 ◦ α2 ◦ . . . ◦ αn, x2 : α2 ◦ . . . ◦ αn, x2 : α3 ◦ . . . ◦ αn, x0 : β, x1 : β, x2 : β

And so on, obtaining a branch containingxn−1 ≥ xn−2, . . . , xn−1 ≥ x0, x1 ≥ x0, the
formulas:
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x0 : α1 ◦ α2 ◦ . . . ◦ αn, x0 : β
x1 : α1 ◦ α2 ◦ . . . ◦ αn, x1 : α2 ◦ . . . ◦ αn, x0 : β, x1 : β
x2 : α1 ◦ α2 ◦ . . . ◦ αn, x2 : α2 ◦ . . . ◦ αn, x2 : α3 ◦ . . . ◦ αn, x0 : β, x1 : β, x2 : β
...
xn−2 : α1 ◦ . . .◦αn, xn−2 : α2 ◦ . . .◦αn, . . . , xn−2 : αn−1 ◦αn, x0 : β, . . . , xn−2 : β
xn−1 : α1 ◦ α2 ◦ . . . ◦ αn, xn−1 : α2 ◦ . . . ◦ αn, . . . , xn−1 : αn, x0 : β, . . . , xn−1 : β

and, in case◦ = says, the transition formulasx0
γ

−→ x1, . . . , x0
γ

−→ xn−1, xn−2
γ

−→
xn−1. We can conclude that it is useless to apply again the rules(◦R) to xn−1 : γ ◦ δ,
thus generating a new labelxn. Indeed, sincen is the highestl such thatx0 : χ1 ◦ χ2 ◦
. . . ◦ χl ∈ Γ , if xn : αn is needed to close the branch, alsoxn−1 : αn can be used to
close such branch, becausexn would label exactly the same formulas ofxn−1, namely:

xn : α1 ◦ α2 ◦ . . . ◦ αn, xn : α2 ◦ . . . ◦ αn, . . . , xn : αn, x0 : β, . . . , xn : β. �

Furthermore, we need the following lemmas:

Lemma 15. If a sequentΓ ⊢ ∆, y ≥ x is derivable inS
CondUC

ACL
, then eitherΓ ⊢ ∆ is

derivable ory ≥ x ∈ Γ or y = x.

Proof. (Sketch) Intuitively, in order to prove a sequentΓ ⊢ ∆, y ≥ x, we observe
that y ≥ x is introduced (looking forward) either by an application of(→ L) or by
weakening. In the latter case, obviouslyΓ ⊢ ∆ is derivable too. In the former one, the
only way to provey ≥ x in the leftmost premiseΓ ⊢ ∆, y ≥ x is by (AX≥) or (AX).
In the first case, we are done, sincex = y. In the other one, since(→ R) and(TR)
are the only rules introducing a formulay ≥ x in the left hand side of a sequent in a
backward proof search, and since such rules are invertible (Lemma 7), we can assume,
without loss of generality, that they have been applied before (→ L), thereforey ≥ x
already belongs toΓ . The rigorous proof is by induction on the height of the derivation
of Γ ⊢ ∆, y ≥ x. �

We can reason analogously for the transition formulas, considering that a formulax
A

−→
y in the right hand side of a sequent can only be proved (backward) by an application
of (EQ):

Lemma 16. If a sequentΓ ⊢ ∆,x
A

−→ y is derivable inSCondUC
ACL

, then eitherΓ ⊢ ∆

is derivable orx
A′

−→ y ∈ Γ .

The following facts allow to obtain a terminating calculus from S
CondUC

ACL
:

– The rules ofSCondUC
ACL

introduce only a finite number of labels in a backward proof

search: labels are only introduced by the rules(→ R) and( saysR), restricted as
stated by Theorem 11 above, by formulas occurring negatively in the initial sequent,
which are finite.

– It is useless to apply the rules(TR), (INT ), (Unit), (ID), (C), (CA), (CA −
conv), (DT ), and(MON ) more than once on the same principal formula. As an
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example, let us consider the rule(Unit): we can restrict its application toΓ, x
A

−→

y ⊢ ∆ only to the case in which the rule has not been previously applied tox
A

−→ y
in that branch, i.e. ify ≥ x 6∈ Γ . Similarly for the other rules.

– A backward application of(CA−conv ) introducesx
A∨B
−→ y in the premise, where

x
A∨B
−→ y does not belong to the conclusion, but whereA∨B is a principal belonging

toLP. The same for(CA). The same for(DT ) and(MON ), introducingx
A∧B
−→ y.

SinceLP is finite, these rules will be applied a finite number of times in the same
branch.

– The rule(→ L), applied to a sequentΓ, x : α → β ⊢ ∆, leads to a premise
Γ, x : α→ β ⊢ ∆, y ≥ x, and can thus be reapplied without any control. However,
it is useless to apply(→ L) on the same formulax : α → β more than once in
each branch in a backward proof search, introducing the sameformulay ≥ x in the
leftmost premise. Moreover, by Lemma 15 we can restrict the choice of the order
formulay ≥ x introduced in a way such that eithery ≥ x ∈ Γ or y = x: this is
explained by the fact that no rule ofSCondUC

ACL
have a formulay ≥ x in the right

hand side of a sequent as a principal formula. Therefore, theonly way to prove it
in a backward search is either by(AX), i.e. by a sequent also havingy ≥ x in its
left hand side (then, we can choose amongy ≥ x already inΓ ) or by (AX≥), thus
choosingy = x. The same for(ATM ).

– Similarly to the previous point, it is useless to apply( saysL) on the same formula
x : A saysγ more than once in each branch, introducing (backward) the same

formula x
A
−→ y in the leftmost premise. Moreover, by Lemma 16, the choice

of the transitionx
A

−→ y to be used is restricted to formulas such that, for some

formulaA′, there existsx
A′

−→ y ∈ Γ . Intuitively, this follows from the fact that
a transition formula on the right hand side of a sequent can only be proved by an
application of(EQ). Moreover, since(EQ) only involves transition formulas, the

premise introducingx
A

−→ y can be reduced tox
A′

−→ y ⊢ x
A

−→ y. A similar
restriction applies also to(MON) and(CA).

The resulting terminating calculuŝSCondUC
ACL

is shown in Figure 7. It is worth noticing

that (AX) is restricted to atomic formulas, and that(AX≥) is not needed due to the
reformulation of the other rules.

By the above facts, it follows that:

Theorem 12. A sequentΓ ⊢ ∆ is derivable in S
CondUC

ACL
if and only if Γ ⊢ ∆ is

derivable in ̂S
CondUC

ACL
.

Theorem 13. The sequent calculuŝS
CondUC

ACL
ensures a terminating proof search, then

the logicCondUC
ACL is decidable.

Proof. Given a formulaφ, just observe that there is only a finite number of derivations
of the sequent⊢ u : φ, as both the length of a proof and the number of labelled formulas
which may occur in it is finite. �
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(AX) (AX⊥)
(ATM )

(EQ)

(C)

(ID)

(CA − conv)

if y : P !∈ Γ

if z ≥ x "∈ Γ

if y : A !∈ Γ

if z

A
−→ z #∈ Γ

if {x
A

−→ y, x
B
−→ y} ∩ Γ = ∅

if x
A∨B
−→ y #∈ Γ

if x
A∧B
−→ y #∈ Γ

if {x
A

−→ y, x
B
−→ y} #⊆ Γ

y ≥ x ∈ Γ

P ∈ ATMif

A ∨ B ∈ LP

A ∧ B ∈ LP

(→ L)

and

(TR)

u new

( says R) ( says L)

(DT )

(MON )

y new

Γ ⊢ ∆, x : A says α

Γ, x
A

−→ y ⊢ ∆, y : α

Γ, x : A says α ⊢ ∆

Γ, x
B
−→ y ⊢ ∆Γ, x

A
−→ y ⊢ ∆

Γ, x
A

−→ y, x
B
−→ y ⊢ ∆

Γ ⊢ ∆
A ∧ B ∈ LP

A ∨ B ∈ LP

Γ ⊢ ∆

(INT )
Γ, y ≥ x, y

A
−→ z ⊢ ∆

if x
A

′

−→ y ∈ Γ

(CA)

(∧R) (∧L)

(∨R) (∨L)

Γ ⊢ ∆, x : β

Γ ⊢ ∆, x : α ∧ β

Γ ⊢ ∆, x : α

Γ, x : α ∧ β ⊢ ∆

Γ, x : α, x : β ⊢ ∆

Γ ⊢ ∆, x : α, x : β

Γ ⊢ ∆, x : α ∨ β

Γ, x : β ⊢ ∆Γ, x : α ⊢ ∆

Γ, x : α ∨ β ⊢ ∆

(→ R)

y new

Γ, y ≥ x, y : α ⊢ ∆, y : β

Γ ⊢ ∆, x : α → β

u : B ⊢ u : Au : A ⊢ u : B

Γ, x
A

−→ y ⊢ ∆, x
B
−→ y

Γ, x : α → β ⊢ ∆

Γ, x : α → β ⊢ ∆, y : α Γ, x : α → β, y : β ⊢ ∆

Γ, z ≥ x, z ≥ y, y ≥ x ⊢ ∆

Γ, z ≥ y, y ≥ x ⊢ ∆

Γ, x : P, y : P ⊢ ∆

Γ, x : P ⊢ ∆

Γ, x : ⊥ ⊢ ∆Γ, x : P ⊢ ∆, x : P

Γ, x
A

−→ y ⊢ ∆

Γ, x
A

−→ y, y : A ⊢ ∆

Γ, z ≥ y, x
A

−→ y, z
A

−→ z ⊢ ∆

Γ, z ≥ y, x
A

−→ y ⊢ ∆

Γ, x
A∨B
−→ y, x

A
−→ y ⊢ ∆

Γ, x
A

−→ y ⊢ ∆

if d(x, u) ≤ τ

x
A

′

−→ y ⊢ x
A

−→ y

(Unit)
Γ, x

A
−→ y ⇒ ∆

Γ, y ≥ x, x
A

−→ y ⇒ ∆

if y ≥ x "∈ Γ

Γ, x
A

−→ y, x
A∧B
−→ y ⊢ ∆Γ, x

A
−→ y ⊢ ∆, y : B

Γ, x
A

−→ y ⊢ ∆

Γ, x : A says α, y : α ⊢ ∆

Γ, y ≥ x, y
A

−→ z, x
A

−→ z ⊢ ∆

if y ≥ x ∈ Γ

and x
A

′

−→ y ∈ Γ

x
A

′

−→ y ⊢ x
A∨B
−→ y

x
A

′

−→ y ⊢ x
A∧B
−→ y

and x
A

′

−→ y ∈ Γ

if x
A

−→ z #∈ Γ

if d(x, u) ≤ τ

P ∈ ATM

Fig. 7.The terminating calculuŝS
CondUC

ACL
. In order to prove that a formulaφ is valid inCondUC

ACL ,

the calculus checks whether there is a derivation of⊢ u : φ. Therefore,u is the label in the initial
sequent.
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This itself gives the decidability ofCondUC
ACL . We have also developed a Prolog proto-

type implementing the decision procedurêS
CondUC

ACL
[17].

We can give an explicit space complexity bound forCondUC
ACL . As usual, a proof

may have an exponential size because of the branching introduced by the rules. However
we can obtain a much sharper space complexity bound since we do not need to store
the whole proof, but only a sequent at a time plus additional information to carry on the
proof search; this standard technique is similar to the one adopted in [19, 26]:

Theorem 14. Let n be the length of the string representing a sequentΓ ⊢ ∆. The
problem of deciding provability ofΓ ⊢ ∆ in CondUC

ACL is decidable inO(n4 logn)
space.

Proof. First, observe that, in the proof search of⊢ u : φ, with | φ |= n, new labels are
introduced only by (sub)formulas occurring negatively inφ. Let τ be the height of the
parse tree ofφ. Theorem 11 states that, given a formula (of the form eitherx : α → β
or x : A saysγ) introducing a new label in the branch, it can be applied onlyif the
distance betweenx and the labelu in the sequent of the root is less or equal toτ .
Obviously,τ is bounded byn. Theorefore, each (sub)formula occurring negatively in
φ generates at mostn labels, then, since there areO(n) (sub)formulas, the number of
different labels introduced in a branch isO(n2). Suppose also that| LP | is bounded
by O(n). All possible (sub)formulas inφ are, obviously,O(n), therefore the number
of different labelled formulas isO(n3). The rules of ̂S

CondUC
ACL

can be applied to each

labelled formula: at mostn rules are applied to each formula, then we have that the
length of each branch of a proof tree is bounded byO(n4).

In searching a proof, there are two kinds of branching to consider: AND-branching
caused by the rules with multiple premises and OR-branching(backtracking points in
a depth first search) caused by the choice of the rule to apply.We store only one se-
quent at a time and maintain a stack containing information sufficient to reconstruct
the branching points of both types. Each stack entry contains the principal formula, the
name of the rule applied and an index which allows to reconstruct the other branches
on return to the branching points. The stack entries represent thus backtracking points
and the index within the entry allows one to reconstruct boththe AND branching and to
check whether there are alternatives to explore (OR branching). The working sequent
on a return point is recreated by replaying the stack entriesfrom the bottom of the stack
using the information in the index (for instance, in the caseof ( saysL) applied to the
principal formulax : A saysγ, the index will indicate which premise-first or second-we

have to expand and the labely involved in the formulax
A

−→ y).
A proof begins with the end sequent⊢ u : φ and the empty stack. Each rule appli-

cation generates a new sequent and extends the stack. If the current sequent is an axiom
we pop the stack until we find an AND branching point to be expanded. If there are not,
the end sequent⊢ u : φ is derivable and we have finished. If the current sequent is not
an axiom and no rule can be applied to it, we pop the stack entries and we continue at
the first available entry with some alternative left (a backtracking point). If there are no
such entries, the end sequent is not derivable.
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The entire process must terminate since: (i) the depth of thestack is bounded by the
length of a branch proof, thus it isO(n4), (ii) the branching is bounded by the number of
rules, the number of premises of any rule and the number of labelled formulas occurring
in one sequent, the last beingO(n3).

To evaluate the space requirement, we have that each subformula of the initial la-
belled formula can be represented by a positional index intothe initial labelled formula,
which requiresO(log n) bits. Moreover, also each label can be represented byO(log n)
bits. Thus, to store the working sequent we needO(n3 logn) space, since there may
occurO(n3) labelled subformulas. Similarly, each stack entry requiresO(log n) bits,
as the name of the rule requires constant space and the indexO(log n) bits. Having
depthO(n4), to store the whole stack requiresO(n4 log n) space. Thus we obtain that
provability inCondUC

ACL is decidable inO(n4 logn) space. �

Given a formulaφ ∈ L, since ̂SCondUC
ACL

is sound and complete with respect to the

semantics of the logicCondUC
ACL , in order to check whetherφ is valid in CondUC

ACL we

can check whether⊢ u : φ is derivable in ̂SCondUC
ACL

. It immediately follows that:

Theorem 15. Given a formulaφ ∈ L, let n be the length of the string representingφ.
The problem of deciding validity ofφ in CondUC

ACL is decidable inO(n4 logn) space.

6 Related work and Conclusions

Related Work. Many formal frameworks have been proposed to specify and reason
about access control systems [4, 6, 18, 22, 23]. Recently, asreported in [14], construc-
tive logics have been recognized to be well suited for reasoning about authorization,
because constructive proofs preserve the justification of statements during reasoning
and, therefore, information about accountability is not lost. Classical logics, instead,
allow proofs that discard evidence.

Abadi in [2] presents a formal study about connections between many possible ax-
iomatizations of the “says” operator, as well as higher-level policy constructs such as
delegation (Speaks for) and control. Abadi provides a strong argument to use construc-
tivism in logic for access control, in fact he shows that froma well-known axiom like
(UNIT) in a classical logic we can deduceA saysϕ → (ϕ ∨ A saysψ). The axiom
above is calledEscalationand it represents a rather degenerate interpretation ofsays,
i.e., if a principal saysϕ then, eitherϕ holds or the principal can sayanything. On the
contrary, if we interpret thesays within an intuitionistic logic we can avoidEscalation.

Although several authorization logics employ the says modality, a limited amount
of work has been done to study the formal logical properties of says, Speaks forand
other constructs.

Garg and Abadi [13] study a class of access control logics (ICL, ICL⇒ andICLB)
via a sound and complete translation into modal logic S4 by relying on a slight sim-
plification of Gödel’s translation from intuitionistic logic to S4, and by extending it to
formulas of the formA saysϕ. The translation to S4 provides decidability and com-
plexity results for this class of logics of access control. Among the conditional access
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control logics we have presented, the logicCondI4
ACL contains the characterizing ac-

cess control axioms ofICL, namely (UNIT), (K) and (C4).CondI4
ACL derives all the

axioms ofICL and is srictly stronger thanICL. As we have seen in Section 2.3, there
are formulas ofICL⇒ that are derivable inCondI4

ACL , but not inICL⇒. Concerning the
treatment of boolean principals, we have discussed in Section 2.2 the differences among
our definition and the one in [13].

Garg [12] adopts an ad-hoc version of constructive S4 calledDTL0 and embeds ex-
isting approaches into it. Constructive S4 has been chosen because of its intuitionistic
Kripke semantics which DTL0 extends by adding the notion ofview, i.e., a mapping
from principals to sets of worlds. DTL0 contains, as characterizing axioms, (K), (4) and
(C). The axioms (K), (4) and (C) are derivable inCondIC

ACL . In particular, (4) is weaker
than (I) and derivable from it. The preorder� among atomic principals can be captured
in CondIC

ACL through the “speaks for” relation (which is reflexive and transitive), and
satisfies axiom (S) (corresponding to the (Speaks For) axiom). The semantics of DTL0
has strong similarities with the semantics ofCondIC

ACL , although it does not deal with
boolean principals. It can be observed that the Kripke models for DTL0 include the
semantic conditions of axioms (ID) and (MP), However, as these axioms are not ex-
pressible in the language of DTL0, they are not derivable from the axiomatization. As a
difference, the aim of our proposal is to provide a modular approach to the definition of
access control logics and their semantics, in which there isa one to one correspondence
among semantic properties and characterizing axioms.

It has to be observed that, adopting a fixed semantics like S4 does not permit to
study the correspondence between axioms of access control logics and Kripke struc-
tures. Suppose we look atsays as a principal indexed modality2A, if we rely on S4
we would have as an axiom2Aϕ → ϕ, which means:everythingthatA says holds.
To overcome this problem, both in [12, 13], Kripke semanticsis weakened with the
addition ofviewswhich relativize the reasoning to a subset of worlds. Although this
approach provides sound and complete semantics for a certain combination of axioms
(those included inICL), it breaks the useful bound between modality axioms and rela-
tions of Kripke structures.

Boella et al. [7] define a logical framework called FSL (Fibred Security Language),
based on fibring semantics [11] by looking at “says” as a (fibred) modal operator.FSL
is, in general, not decidable and its formalization is limited to Kripke-style semantics.
In fact, no proof method for FSL has been provided. Moreover,the representation of the
speaks for in FSL is limited to the definition of axiom schemasof the typeA saysϕ→
B saysϕ, which means that, given a reference monitor modeled with FSL, it is not
possible to introduce new speaks for relationships at run-time.

Conclusions.We have defined four intuitionistic conditional logics for Access Control
called CondUC

ACL , CondU4
ACL , CondIC

ACL and CondI4
ACL . We have presented a sound,

complete and cut-free sequent calculus for such logics. Also, we have shown that prov-
ability in CondUC

ACL is decidable inO(n4logn) space, in agreement with the PSPACE
results given in [13] for the logicICL. With respect to the work in [12, 13], we iden-
tify canonical properties for axioms of the logic, i.e., first-order conditions on Kripke
structures that arenecessaryandsufficientfor the corresponding axiom to hold.
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We believe that this methodology has several advantages. First, conditional log-
ics allow a natural formalization of thesays modality including the specification of
boolean principals as formulas as well as a natural treatment of Speaks for. Second,
the identification of canonical properties for access control axioms provides a natural
deconstruction of access control logics. By deconstruction we mean the possibility to
craft access control logics that adoptanycombination of axioms for which canonical
properties exist. For instance, not all access control systems adopt (UNIT) as an axiom
[22, 5, 18], but the translation in [13] does not provide an embedding in S4 for a logic
without (UNIT). In general, the approach in [13] does not provide a methodology to de-
construct access control logics. In our approach, instead,we can formalize a logic and
a calculus without (UNIT) which is still sound and complete,by dropping the semantic
condition (S-UNIT) and the corresponding rule(Unit) in the calculus, as shown for the
logicsCondIC

ACL andCondI4
ACL and the respective calculiS

CondIC
ACL

and S
CondI4

ACL
.

We believe that choosing axioms for access control logics depends on the needs of
security practitioners. By looking atsays as a conditional modality, we can offer a
formal framework to study the axioms of access control via canonical properties on the
semantics, and to build calculi to carry out automated deduction. Of course, for each
combination of axioms, the decidability and the complexityof the resulting logic as
well as the termination of the calculus have to be determined.
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