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Abstract. The paper introduces a framework based on constructiveitommeal
logics to define axiomatization, semantics and proof method access con-
trol logics. We formalize the well knowrsays operator as a conditional nor-
mal modality and, by considering some specific combinatafreccess control
axioms, we define four access control logics, namélgndxs, , Condyg, |
Condl¢, and Condjc, . Such logics integrate access control logics with in-
tuitionistic conditional logics and provide a natural fafdation of boolean prin-
cipals. The well known “speaks for” operator introduced hie togic ABLP is
defined on the top of thesays modality. We provide a Kripke model semantics
for the logics and we prove that their axiomatization is sband complete with
respect to the semantics. Also, we develop sound, completdree sequent cal-
culi for them. For the IogicCondX(c:,_ , which (as concerns atomic principals) is
slightly stronger than the logikCL recently introduced by Garg and Abadi, we
also provide a terminating sequent calculus, thus proviagithe logic is decid-
able and that validity i€ond%s, is in PSPACE.

1 Introduction

Access control is concerned with the decision of acceptmdemying a request from
a principal (e.g., user, program) to do an operation on an object. Intipe|a@n ac-
cess control system is a product of several, often independistributed entities with
different policies that interact in order to determine asc® resources. Many formal
frameworks have been proposed to specify and reason abdusgstems [4, 6, 18, 22,
23]. A common feature of most well-known approaches is thpleyment of construc-
tive logics enriched with formulas of the foreh saysy, intuitively meaning that the
principal A assertsor supportsy to hold in the systemn [2] it is shown that an intu-
itionistic interpretation of the modality “says” allows &woid unexpected conclusions
that are derivable whesays is given an axiomatization in classical logic.

In [13] an access control logidCL, is defined as an extension of intuitionistic
propositional logic, in which the operat@ays is given a modal interpretation in the
logic S4. The treatment of the operateays as a modality can also be found in [7],
which introduces a logical framework, FSL, based on mubidal logic methodology.

* Valerio Genovese is supported by the National Research, Fuxémbourg.
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Even if there is some agreement on looking at Hag/'s construct as a modal oper-
ator, the correspondence between its axiomatization anddmantic properties asso-
ciated with axioms in the Kripke semantics is mainly unexgtb In fact, some of the
axioms of access control logics are non-standard in magashture. The identification
of canonical properties for well-known axioms of accesgi@miogics permits to study
them separately and naturally yields completeness focsotfiat adopt combinations
of them. This methodology is significant if we want logic to déraployed to compare
different access control models, because different systaopt different axioms de-
pending on the specific application domain.

In this paper we show that conditional logics [25] can prevageneral frame-
work to define axiomatization, semantics and proof methodadécess control logics.
As a starting point, we concentrate on some specific combimabf access control
axioms, giving rise to four conditional access control ésgiCondRS, , CondLd, |
Cond,, , Condl, . Such logics integrate access control logics with intaistic
conditional logics. We formalize thesaysoperator as a conditional normal modality
so thatA says¢ is regarded as a conditional implicatidn=- ¢, meaning that proposi-
tion ¢ holds in all the preferred worlds for the princip&l From the access control point
of view, the saysoperator satisfies some basic axioms of access controbIfif¢13].
The generality of this approach allows a natural formaigrabf boolean principals
[13], that is, principals which are formed by boolean comalion of atomic principals,
as well as a natural encoding of the well known “speaks fo€rafor introduced in the
logic ABLP [3,21]. We define a Kripke semantics for the coruitl access control
logics, as well as sound, complete, cut-free labelled sepegculi for them.

For the logicCondyS, , which is slightly stronger (as concerns atomic principals
than the logidCL introduced in [13], we are also able to obtain a decision@doace and
a complexity upper bound, namely that the problem of degigtaidity in Condjg, is
decidable in PSPACE. This is in agreement with [13], whicbvides a PSPACE
complexity result for the logitCL.

The paper is structured as follows. In Section 2 we introdtieeaxiomatization
of the intuitionistic conditional logic€ondyg, , Condyg, , Cond, andCondy, ,
and we compare them with existing approaches. In Section 8eseribe the seman-
tics of the logics. In Section 4 we show that the axiomati#ais sound and complete
with respect to the semantics. In Section 5 we define cutdeggient calculi for the
access control logics and we prove their soundness and etempks. For the logic
CondR§, Wwe also show that the calculus can be turned into a termipatie by adopt-
ing some restrictions on the application of some rules: alvs us to show that the
logic CondRg, is decidable and to give a complexity upper bound for it. ®ed con-
tains the conclusions and a discussion of related work. Wbik is an extended and
revised version of the work presented in [15].

2 Conditional Access Control Logics: the Axiom System

In this section, we introduce the conditional intuitionddbgics for access control by
defining their axiomatizations. The formulation of the “sagnodality as a conditional
operator allows boolean principals to be modelled in a @htway, since in a con-
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ditional formula A says¢, both A and ¢ are formulas. For instance, we can write
A A B says¢ to mean that principalgl and B jointly say thatp, and A v B says¢

to mean that principalgl and B independently say that. Indeed, conditional log-
ics provide a natural generalization of multimodal logioghe case when modalities
are labelled by formulas. In the following, we will regaraatic principals as atomic
propositions, distinct from all the other propositions bétlanguage and we define
boolean principals as boolean formulas obtained by comfiatomic principals with
conjunctions and disjunctions. We will assume the propsstrepresenting principals
to have a truth value in the semantics, where a principa true in a worldw if the
world w is visibleto A. The notion of visibility we introduce is similar to the noti
of visibility introduced in [12] and in [13]. Visibility is sed, for each principall, to
identify those states of affairs (worlds) among which pinefd A worlds are selected.
Following [13], we informally interpret propositiod as “A is happy”, and we mean
that A is happy in those worlds which are visible toA.

We define the languagé of the access control logics. Ldtl’M be a set of atomic
propositions, including a sed of propositions calleditomic principals We define a
(boolean) principato be a boolean combination of the atomic principalglicontain-
ing only the connectives andVv.

The formulas ofZ are defined inductively as follows: i € ATM, thenP € L;

L e £, wherel is a proposition which is always false;4f ¢, andy- are formulas of
L andA is a principal, therp; A s, 01 V a2, p1 — a2, andA saysy are formulas of
L. In the following, we will denote principals by, B, C, . .. while we will use greek
letters for arbitrary formulas. As usual, we introduce tbkofving precedence among
connectivesa, V, says, —. As an exampled saysy — A A B saysyp is a formula of
L, to be read aéA saysy) — ((A A B) saysy). The intended meaning of the formula
A saysp is thatprincipal A says thatp, namely, “the principald asserts or supports
©" [13].

In the following we introduce the axiomatization of the lo@londyg, , first. Then,
we present the axiomatization of the other logics by chajpgome characterizing ac-
cess control axioms.

The axiomatization o€ondx¢, contains few basic axioms for access control log-
ics [2,13], as well as additional axioms governing the bérasf boolean principals.
Because we privilege the modularity of the approach, wergezésted in considering
each axiom separately. As a consequence, the resultinmatization might be redun-
dant.

2.1 Basic Axioms

Theaxiom systerof CondRS, contains the following axioms and inference rules, which
are intended to capture the basic properties ofshgs operator.

(FALSE) 1 -~

(THEN-1) a— (f—a)

(THEN-2) (@ — (8 —17)) = (0 = B) = (@ = 7))
(AND-1) alf—

(AND-2) aNf—p
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(AND-3) a— (68— (aAp))

(OR-1) a—aV

(OR-2) B—aVvp

(OR-3) (a—=B)—=((y—=B) = (avy—p)

(K) A says(a — ) — (A saysa — A saysp)
(UNIT) a — (A saysa)

(©) A says(A saysa — «)

(MP) If - « and- o« — (B thenk 3

(RCEA) If- A — Bthent (A saysy) « (B saysy)
(RCK) If - o — [ thenk (A saysa) — (A saysf)

Definition 1. We say that a formula is a theorem of the logic, and write « if there

is a derivation ofx from the above axioms and rules. We say thaan be derived from
a set of formulad”, and write I" + «, if there arevy,...7, (n > 0) in I" such that
FyuAc oAy, — a.

The definition of derivability above is taken from [8] (Detfiioin 2.14). The axioms and
rules (FALSE), (THEN-1), (THEN-2), (AND-1), (AND-2), (ANEB), (OR-1), (OR-2),
(OR-3), and (MP) are axioms and rules of intuitionistic mgihe rule (MP) is modus
ponens. (RCK) and (RCEA) are standard inference rules foditional logics. (RCK)
plays the role of the rule of NecessitationHifs then O¢) in modal/multimodal logic
and is derivable in botlCL [13] and DTL, [12]. (RCEA) makes the formulag says¢
and B says¢ equivalent when the principal$ and B are equivalent (i.e. if the worlds
visible to A are the same as the worlds visible&g then principalsAd and B support
the same formulas). (UNIT) and (K) are the characterizinigras of the logiclCL
[13] and other access control logics [1, 14, 29]. The axiomt{&longs to the axiom-
atization of all normal modal logics and it is derivable irofmal” conditional logics.
Intuitively, (K) expresses thasays is closed under logical consequence, while (UNIT)
is a stronger form of necessitation which states, for eversntilaa, that if o« holds,
thena is supported by every principal. Axiom (C) has been incluttethe axiomati-
zation of the logic DTlg in [12] and it comes from doxastic logic [30]. Intuitive\C}
means that every principal says that all its statementsaee t

The choice of the above axioms is meaningful in the contexaaafess control.
However, other axioms have been proposed in the literandgeldferent access control
logics have been defined through their combination. In paldr, in alternative to (C)
and (UNIT), weaker axioms have been proposed, namely, (@]l

(C4) (A says(A saysa)) — (A saysa)
() (A saysa) — (B saysA saysa)

(C4) belongs to the original axiomatization of the lo¢@L defined in [13], where it
replaces the axiom (C). (I) is introduced in the axiomaiorabf the logic Binder [9],
which extends the logic ABLP [3,21] in order to express thecalbedauthorization
policies Notice that (1) is a weaker version of (UNIT).

As axiom (C) is stronger than (C4), it can be proved thandRS, is stronger than
the logiclCL [13]:

Theorem 1. For all formulasy, kL ¢ implies = .
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In the following, beside€ondRS, , we introduce three other logics for access control
obtained by considering different combinations of the abaxioms (UNIT), (1), (C),
and (C4), as summarized in Figure 1.

‘ Logic |[ (UNIT) vs (I)| (C) vs (C4) ‘
CondVS, | (UNIT) (C)
Condé,, (UNIT) (C4)
Cond}Gy, (D) (©)
Condje, () (C4)

Fig. 1. Summary of constructive conditional logics under consitlen.

2.2 Axioms for boolean principals

The axioms introduced above do not enforce by themselvesnéeryded property of
boolean principals. In this subsection, we discuss the grtigs that are intended for
boolean principals and we introduce axioms which captuck puoperties. Specifically,
we focus on the intended meaning of conjunctions and disjumeamong principals.

Our interpretation of the statemeAtA B sayse¢ is thatA and B jointly (combin-
ing their statements) say that It comes from the interpretation of the statement as a
conditional implication:A and B (jointly) conditionally provep. Instead, our interpre-
tation of the statement v B says¢ is thatA and B disjointly (independently) say that
¢, which comes from the reading of the conditional formuladaand B (disjointly)
conditionally proves. Concerning the statementv B says¢, we expect that if bottl
saysp and B says¢, thenA and B disjointly (independently) say that This property
can be captured by the following axiom:

A saysop A B saysp — AV B says¢

which corresponds to the well known axiom (CA) of conditiblogics [25]. Similarly,
we can expect that the converse axiom

AV B says¢y — A says¢ A B says¢
holds. The two axioms together enforce the property thahd B disjointly say that)
if and only if A says that) and B says that .

Concerning A A B sayseg, we expect thatd and B jointly say thaty when either
A or B says that). This condition can be enforced by introducing the axiom

Asaysp — A N B sayso
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which, although is a controversial axiom of conditionalitesy called monotonicitly is
consistent with the intuitive reading of boolean princgial this intuitionistic setting.
For instance, assume that Administrator 1 says that, if u&ea superuser, then he has
write premissions

Adming says(SuperUser_user; — write_perm_usery )
and that Administrator 2 says that user 1 is a superuser
Adming saysSuperUser_user;

From these two statements we can conclude that Administtadad Administrator 2,
together, say that user 1 has write permissions:

Adming; N Adming saySwrite_perm_user;

Conversely, we would like to have the property thatifi B says¢ then, by combining
the statements of and B, ¢ can be concluded. This is not equivalent to saying that ei-
ther A says¢ or B says¢. Indeed, the axiom4 A B says¢) — (A sayse¢)V (B sayse)

is too strong and not wantedhe wanted property could, for instance, be captured by
the second order axiofd A B says¢) — J((A saysy — ¢) A B saysy). Inthe
following, however, we show that it is possible to capturewanted property by using
standard axioms of conditional logics, namely:

(DT) A N B says¢ — (A says(B — ¢))
(ID) A saysA

Together such axioms enforce the property that if B says¢ then, by combining the
statements off and B, ¢ can be concluded. The intended meaning of (DT) is that, if
A A B sayse, thenA says that holds in all B worlds, i.e., in all the worlds visible to
the principalB or in all the worlds in whichB is happy The meaning of (ID) is that4
says that principaH is happy”, i.e., all the state of affairs (worlds) prefertgdA are
worlds visible toA. We will come back to the notion of visibility in Section 3, et
describing the semantic conditions associated with thenasi

In conclusion, to deal with boolean principals, the axideaiton of the conditional
access control logics introduced above includes, in aditd the axioms in Section
2.1, the following axioms:

(CA) A says¢ A B says¢p — AV B says¢
(CA-conv) AV B says¢p — A sayseo

(Mon) A saysp — A A B sayso

(DT) A N B says¢ — (A says(B — ¢))
(ID) A saysA

4In general, conditional logics only allow weaker forms ofmtonicity, encoded, for instance,
by the axiom (CV) of Lewis’ logic VC.
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The first three axioms are those introduced above. Notice tifva two axioms (DT)
and (ID) allow propositions representing principals towwcen the right hand side of
the saysmodality.

Observe that, as a difference witbL? [13], where implication within principals is
used to capture the “speaks for” operator, here we do nawaloimplication among
principals to occur on the left hand side of the says moddlitysection 2.3, we will
address the problem of capturing the “speaks for” operMoreover, let us observe
that, by the normality of the conditionalays modality, two principals that are logically
equivalent as, for instance, principalA B and principald A B A A support the same
formulas through thesays modality. This is an advantage of conditional logic over a
multi-modal logic in which principals are simply regardedabels of modalities.

Theorem 2. The above axiomatization is consistent.

Proof. Consistency immediately follows from the fact that, by eephg A saysB with
the intuitionistic implicationA — B, we obtain axioms which are all derivable in
intuitionistic logic. O

Let us observe that the above interpretation of conjuncdiod disjunction between
principals is different from the one given in the log@L? [13], which actually adopts
the opposite interpretation of andv: in Garg and Abadi’s logi¢CL?, the meaning of
A N B says¢ is the same asl says¢ A B sayse, while AV B says¢ means that,
by combining the statements df and B, ¢ can be concluded. Due to this difference,
the properties of the principal A B in our logic are properties of the principalVv B

in their logic and, vice-versa, the properties of the ppatiA v B in our logic are
properties of the principal A B in their logic. We do not argue that our interpretation of
boolean principals is better that the one in [13], we juseobsthat it naturally derives
from the interpretation of the boolean connectives in thaggpals, according to the
usual semantics of conditional®bserve that the axioms (trust), (untrust) and (cuc’)
of the logicICL? are not derivable from our axiomatization. Also, the additof the
axiom (untrust)T says_L to our axiomatization would entail that for all principads

A saysl, which is an unwanted property.

As an example, assume we want to check whether, given a satliofeg I, a
principal A is authorized to perforn in the logicCondys, , or, in other words, the
requesty from a principalA is compliant with the set of policies. Intuitively, given a
set of formulad” representing policies and a formulawe say that the requegtfrom
a principalA is compliant with” if and only if ¢ can be derived froni” U { A says¢}
in the sense of Definition 1, i.e. if and onlyif A says¢ F ¢.

Example 1.Let I" contain the following formulas (rules):

- Admin; says(SuperUser_user; — write_perm_user;)

- Adming saysSuperUser_user;

- ((Adming; N Adming) saysdelete_file;) — delete_file;

- Adming ANAdming says((write_perm_user; A (user; saySdelete_file;)) —
delete_filey )
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The first two rules have been already introduced above. Bthitetrule, when Admin-
istrator 1 and Administrator 2, together, say that file 1 lodset deleted, then file 1 has
to be deleted. By the last rule, when Administrator 1 and Adstiator 2, together, say
that, when user 1 has write permissions and user 1 says tedidel, then file 1 has
to be deleted. We can prove that

I', user; saySdelete_file; & delete_file;

In fact, as we have already sed) (Admin; N Adming) saySwrite_perm_user;

follows from the first two rules by (Mon). Fromser; saysdelete_file;, we infer by

(UNIT) (i%) (Adming A Adming) says(user; saysdelete_file; ). By propositional rea-

soning, (RCK) and (K), fronf:) and(i7), we derive( Admin; AAdming) says(write_perm_user; A
(user; saysdelete_file;)). Finally, from the fourth rule, we concludel dmin; AAdming)
saysdelete_file;, and hence, by rule 3, we concluddete_file; .

To conclude this section, let us consider the well knownmxd conditional logics
(MP), A says¢ — (A — ¢). Its meaning is the following: “IfA says¢, then¢ holds
in all the worlds visible to principled”.

We observe that the addition of the axiom (MP) to the logiastaiming the axiom
(UNIT), namelyCondys, andCondy¢, , would make the modalitysays to collapse
into intuitionistic implication. In fact, it is easy to sdest the converse of (MP), namely
(A — ¢) — A sayse, can be derived from axioms (UNIT), (ID) and (K).

Proposition 1. (4 — ¢) — (A says¢) is derivable inCondys, andCondyg, .

Proof. From (UNIT), we havé A — ¢) — (A says(A — ¢)). From (K),(A says(A —
¢)) — (AsaysA — A saysg). Hence, by propositional reasoningd — ¢) —
(A saysA — A sayse), and thend saysA — ((A — ¢) — (A says¢)). From (ID),
A saysA hence, by modus ponensl — ¢) — (A sayso). O

Although the addition of (MP) makes the logic collapse inttuitionistic logic in the
presence of axiom (UNIT), the same does not hold when (UN8Teplaced by the
weaker axiom (I).

2.3 Speaks For

TheSpeaks Fooperator has been introduced in the logic ABLP [3, 21] to oeahout
transfer of authority from one principal to another. We shibatSpeaks Focan be de-
fined in the constructive conditional logics introducedwabby using thesays modal-
ity.

Let = be a new connectived = B is readA speaks forB, meaning that ifA
saysa, then alsaB saysa, for any formulax. In line with previous literature on access
control, the connectives is ruled by the following axioms:

(Speaks For) (A = B) — ((A saysa) — (B saysa))
(Reflexivity) A=A

(Transitivity) (A= B) — ((B=C)— (A= ()
(Handoff) (Asays(B = A)) — (B=A4)
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where axioms (Speaks for) and (Handoff) relate the corveeetiwith the says modal-
ity. We can define the connective by means of thesays modality as follows:

A = Biff BsaysA

In agreement with the interpretation of propositidnas “A is happy”, the meaning
of B saysA is that “B says that4 is happy”, i.e. that all the worlds preferred iBbare
worlds visible toA (i.e. worlds in whichA is happy)ltis easy to see that the connective
= has the properties encoded by the four axioms above.

Theorem 3. The axiomgSpeaks For), (Reflexivity), (Transitivitygnd (Handoff) are
derivable in the logic€ondRs, , Condyg, , CondlL, , andCondl, , given the def-
inition of A = B as B saysA.

Proof. To prove that axiom (Speaks For) is derivable, we have togtioat
(B saysA) — ((A saysa) — (B saysa))

is derivable. Given (Mon} saysa — (A A B) saysa and (DT)(A A B) saysa —
B says(A — «), by propositional reasoning, we have thasaysa — B says(A —
«) is derivable. Also, from (K),B says(4A — a) — (BsaysA — B saysa) is
derivable. By propositional reasoning, we gesaysa — (B saysA — B saysa),
and, henceB saysA — (A saysa — B saysa) is derivable.

To prove that (Transitivity) is derivable, the form(lB saysA) — ((C saysB) —
(C saysA)) can be shown to be derivable again by using (Mon) and (DT)ndke
previous case.

(Reflexivity) is derivable as, by (ID)4 saysA, which means thatl = A.

To prove that (Handoff) is derivable, we need to show thsays(A saysB)) —
(A saysB) is derivable. For the logics containing the axiom (C), itdals immediately
from (C) and (K). For the logics containing the axiom (C4)siain instance of (C4).]

Itis important to underline that the proposed encodin§éaks fois possible because
saysis a conditional modality. Moreover, such embeddindgndependentrom the
choice of the characterizing access control axioms we hansidered.

It has to be observed that the fact that the axiom (UNIT) camygied also to
principals may lead to some unintended conclusions. Irnquéat, from (UNIT), when
ais the principalB, we getB — (A saysB), that s,

B— (B=A)
saying that in all the worlds visible to principB8l, B speaks fot4, as well as
B says(B = A)

(whichis notderivable ilCL~ [13]). By this property, we can concludgsays(A saysy)
from B says(B saysy), for all formulase. This conclusion may seem to be unin-
tended. Observe, however, that, even when the applicatti®NiT) is restricted to for-
mulas that are not principals, as in [13], the propéttyays(B saysy) — B says(A saysy)
is anyhow derivable from (UNIT), (K) and (C), as well as frobiNIT), (K) and (C4).
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Hence, it holds ifCL [13], as well as in any logic including (UNIT) and the non con-
troversial axioms (K) and (C4). This may suggest that axioiI{) itself is too strong
even when applied only to formulas which are not principals.

As another observation, notice that, when (RCK) is appliegrincipals, we get:

if A — B, then- (A= C) — (B=C).

In a senset- A — B (all the worlds visible toA are also visible td3) appears to say
something similar to B speaks forA”. Actually, in the presence of (UNIT),A —
B) — (B = A) is derivable (see Proposition 1), so thatA — B entailsi- (A =
C) — (B = C) by the (Transitivity) of=. A similar property also holds ilCL= as
well as inICL? [13], namely, if- B — A, then- (A = C) — (B = C) (inICLB it
follows from (untrust) by the transitivity of the speaks;far ICL= B = A is defined
as0(B — A) and the property above follows form transitivity of the sggéor). The
difference among the two properties is due to a differemtrpretation of visibility here
as compared to visibility in [13] (see Section 3 below): herd — B means that all
the worlds visible ta4 are also visible td3, while in [13]- B — A means that all the
worlds non visible toB are non visible toA. Actually, (by contraposition) they have
the same meaning.

In the following we will provide a semantics for the four assecontrol logics in-
troduced so far.

3 Conditional Access Control Logics: the Semantics

In this section we introduce a Kripke semantics for the fawwess control logics intro-
duced above. As the Speaks For connective is a defined careyeat will not take the
Speaks For into consideration in this section.

We first define the semantics GondyS, , then we present the semantics of the
other logics by deifning the characterizing conditions leait models. The semantics
of the logicCondyg, is defined as follows.

Definition 2. A CondyS, model has the forV = (S, <,{R4}, h) where:S # ()
is a set of items called worldss is a preorder over SR 4 is a binary relation onS
associated with the formuld; h is an evaluation functiodTM — Pow(S) that
associates to each atomic propositibrthe set of worlds in whicl® is true.

We define the truth conditions of a formulac £ with respect to a world € S
in a modelM, by the relationM, ¢ |= ¢, as follows. We usg¢|] to denote{y € S |

M,y E ¢}

. Mt = P e ATM iff, for all s suchthat < s, s € h(P)

.Mt EeANYIff Mt E pand Mt =1

Mt EeVYiff Mt E por Mt

. M.t = ¢ —iffforall ssuchthat < s (if M, s | pthenM, s = )
ML

. M, t = Asaysy iff, for all s suchthatRas, M, s E .

Given a worldt € S and a formulad € £, we defineR4(t) = {s € S | tRas}. The
relations< and R4 must satisfy the following conditions:

OO~ WN PR
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Vt,s,z€ S,if s <tandtR,zthensR,z; (S-Int)
Vt,s € S, if sRat, thens < ¢; (S-UNIT)
Vt, s,z € S,if sRat andt < z,thenzR z; (S-C)
Ravp(t) = Ra(t) U Rp(t); (S-CA)
Vt, s,z € S, if sRanpt, thensRat andsRpt,; (S-Mon)
Vt, s,z € S, if sRat andt < z,andz € [|B|], thensRaapz; (S-DT)
Vi, s € S, if sRat, thent € [|A]]; (S-ID)
if [|A]] = [|B]], thenR4 = Rp. (S-RCEA)

We say that is valid in a modelM if M,t = ¢ forall t € S. We say thab is valid
tout court(and write = ¢) if ¢ is valid in every model. We extend the notion of validity
to a set of formulad™ in the obvious way: for alt, Mt = I' if M,t =  for all

¢ € I'. Last, we say thad is alogical consequenasf I" (and writeI" = ¢) if, for all
modelsM, for all worldst € S, if M, t = I', then M, t |= ¢.

Condition (S-Int) enforces the property that when a formdilsayse is true in a world
t, it is also true in all worlds reachable frotrby the relation< (i.e., in all worldss
such that < s). All the other semantic conditions are those associatéutée axioms
of the logic, apart from condition (S-RCEA), which is the ehown condition for
normality in conditional logics, claiming that the accéddly relation R 4 is associated
with the semantic interpretation df. Namely, if the worlds in whick is visible are the
same as those in which is visible, then the worlds reachable By are the same as
those reachable b . (S-CA) is the semantic condition for both axioms (CA) ard it
converse. Notice that, the fact that we represent the biredaion R 4 as indexed by a
formula does not mean that the semantics for conditionét isgsecond-order. In fact,
R4 represent a selection function (which is used in most foatiahs of conditional
logic semantics), in whickR 4t corresponds te € f([|4]],s), where[|A|] is a set
of worlds. In this view, the semantic conditions above muesiritended as first-order
because they quantify over individuals (i.e. worlds) angssts of the domain (indexes
of the binary relation) identified by formulas of the langadg

Note also that the semantic conditions for some of the axias#r instance (DT),
slightly depart from the semantic conditions usually giterthese axioms in condi-
tional logic. This is due to the fact that our logics are ititiistic conditional logics
and the implication occurring within axioms is intuitioticsimplication. Observe that
the satisfiability of atomic propositions is defined as usnahtuitionistic logic: the
evaluation of a proposition in a world depends on the evalnatf that proposition in
all the worlds reachable by.

Our semantics assigns a truth value to atomic and booleacdipais. The intended
meaning is that a principal is true in a worldw whenw is visibleto A. The notion
of visibility of a world to a principal has been used in the txt of access control in
[13] as well as in [12]. In particular, the Kripke models fi@@L [13] include aview
map mapping each principal to the set of worlds which are not visible t#. The
Kripke semantics in [12] makes use of a view functibmwhich maps each world to

51t is well known that the extension of first-order logic withiantification over a family of
subsets of the domain does not add expressivity becauseqtigalent to multi-sorted first-
order logic (see [10] Section 4.4).
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the set of principals to which the worlds is visible, and itlides the semantic con-
dition (Imp-mon)w < w’ impliesf(w) C O(w'), which requires that, if a world is
visible to a principal4, then all the worlds reachable from are visible toA. As a
difference with [13] (and similarly to [12]), a property dogous to (Imp-mon) holds in
our semantics. Notice that, although the notion of vigipiltroduced in [13] and [12]
is not expressible at the language level, and, in particitlae not expressible ihCL
andICL5B, however, it can be expressed in the S4 embeddir@lofandICL?, where
a principal A is not forced to occur on the left hand side of teays modality. Our
choice of allowing principals to freely occur within fornad, is dictated by the need to
provide an axiomatic counterpart to all the semantic camustin the Kripke models.

Concerning the interpretation of boolean conditionals amgarticular, of the con-
junction between principals, it can be proved that, from ¢bemantic conditions (S-
Mon), (S-ID) and (S-DT) it follows that:

Proposition 2. Raap(t) = Ra(t) N Rp(t).

Proof. First, we prove thalR 4, 5(s) C Ra(s)NRp(s). Lett € S be aworld such that
sRaxpt. By (S-Mon), we immediately conclude that alsB ¢t andsRgt, and we are
done.

Finally, we prove thaR 4 (s) N Rp(s) C Ranrp(s). Lett € S be a world such that
(i) sRat and(ii) sRpt. By (S-ID), from (i7) it follows that(iii) ¢t € [|B]]. Since< is
reflexive, we have that < t. By (S-DT), from(i) sRat, t < t, and(iii) t € [|B|], we
conclude that R 4 gt and we are done. O

By the presence of the axiom (C), it turns out that the seroaatndition (S-DT) can
be equivalently expressed as follows:

Proposition 3. In the axiomatization ofondyg, , the following are equivalent:

1. Vi, s,z € S,if sRat andt < z,andz € [|B|], thensRanpz;
2. Vt,s € S,if sRat andt € [|B|], thensRaapt.

Proof. Let us first prove that, if 1. holds, then also 2. holds. Sinces reflexive, we
have thatt < t. By replacingz with ¢ in 1., we have thatyt,s € S, if sRat and

t € [|B|], thensRaxpt, i.e. 2. holds. Now we prove that, if 2. holds, then also 1dkol
Suppose thatR st and considet < z. By the semantic condition (S-C), we have
that alsozR 42. By (S-UNIT), we can also observe that< ¢ sincesR 4t. Since< is
transitive, froms < t andt < z it follows thats < z. By the semantic condition (S-Int),
sincezRaz ands < z, we have that alseRz. If z € [|B|], sincesRaz, by 2. we
have thatkR4Ap2, i.€. also 1. holds. O

This allows the semantic condition (S-DT) to be equivaleafipressed iiCondys, as
follows:

Vt, s € S, if sRat andt € [|B]], thensRanpt (S-DT)

Let us now introduce the semantic properties that correspomxioms (C4) and (I)
introduced above as alternatives to (C) and (UNIT), charaing the logicondRd, ,
Cond), andCondy., , as follows:
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Vt,s € S, if sRat, thendz € S such thatR 4z andz R 4t; (S-C4)
Vt,s,u €S, if tRgsandsR u, thentR u (S-1)

Definition 3. A model for the logic€ondy, , Cond!t, andCondy., is asin Def-
inition 2. The relations< and R 4 satisfy the semantic conditions characterizing each
logic as stated in Figure 2.

[ CondWd, || (5-Int) [ (5-CA) [ (S-Mon) [ (5-DT) [($-1D) [ (SRCEA) [ (S-UNIT) [ (5-C1) |
| Cond!G,, || (S-Int) [ (S-CA) | (S-Mon) | (S-DT) |(SID) | (S-RCEA) | (S1) | (S-C) |
| Condl,;, || (S-Int) | (S-CA) | (5-Mon) | (SDT) [($-ID) | (SRCEA)|  (51) | (5-C1)]

Fig. 2. Conditions of relations< and R4 for Condig, , Condls; andCondi,

It is worth noticing that (S-UNIT) and (S-Int), together, pty the condition (S-1). In-
deed, considetRgs andsR u. By (S-UNIT), fromtRps we obtain that < s. By
(S-Int), it immediately follows thatR 4 u, and we are done.

4 Soundness and Completeness of the Axiomatizations with
respect to the Semantics

In this section we prove that the axiomatizations of the fmanditional access control
logics introduced above are sound and complete with respébtir semantics as de-
fined in Section 3. As in the previous sections, we first caersitie logicCondyg, -
The completeness proof we presentis based on the proof gfletaness for the Kripke
semantics of intuitionistic logic in [31] and extends it tead with the modalitysays
in the language and, more precisely, with the interplay betwthe relatior< and the
accessibility relation$ 4 associated withsays.

Definition 4 (Consistency).Let I" be a set of formulasl” is consistent iffl” t/ L. If
I" has an infinite number of formulas, we say tliats consistent iff there are no finite
Iy C I'suchthatly - L.

Definition 5 (Saturation). Let I" be a set of formulas, we say thAtis saturated iff
1. I’ is consistent (Definition 4); 2. if* - ¢, theny € I'; 3.if I' + ¢ V 9, then
I'por I Fa.

Lemma 1 (Saturated Extensions)Let I" be a set of formulas. Suppogel/ ¢, then
there is a saturated sdt* such thatl” C I'™* andI™ I/ .

Proof. This is proven as in [31]. We obtaifi* as|J{I'* : k € N'}. We letl, = I, and
inductively definel™*. Let{By 1V Bo2,...Bn1 V By, ...} be an enumeration with
infinite repetitions of all the disjunctions of the languaée definel’ ! as follows:
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— "1 = kU {By,} if I'* - By V By, wherei is the least of 1, 2} such that
I U{Byi} t/ ¢
— I'* otherwise.

It can be easily shown thdt* is saturated, thal' C I'* , and thatl™ t/ . O

Definition 6 (Canonical model construction).We fix a languagec® C £ and we
defineM = (S, <,{Rua}, h) such that: S is the set of all saturatéton the language
L I < Tyiff IT C Iy, TYRAT iff {o | Asaysa € I} C Iy; forall P € ATM,
hP)={reS|Pel}.

We can prove the following Lemmas:

Lemma 2. LetI" be a set of formulas and led = {p : Asaysp € I'}. If A F 4,
thenl" - A saysu.

Proof. If A + 4, by definition oft- there must be{¢y,...,p,} € A such that-
w1 A ... Ny — . By (RCK) and (K),- A saysp; A ... A Asaysp, — A saysiy,
and from definition of- (and sinced saysy; € I" forall i = 1,...,n) we conclude
thatl' - A saysiy. O

Lemma 3. Forall I" € S and each formulg € £, we have thaM, I" = piff p € I

Proof. By induction on the complexity af. In casep is an atomic formula, the lemma
holds by definition ofh. For o = ¢ A 1 the proof is easy and left to the reader. For
p=o¢Viy,thenl Eopvip < (I'Edorl’ =) (pelorpel)s vy el
(by the saturation of"). Forp = ¢ — 1, supposd” = ¢ — . Then for all saturated
I'" D I'we have that if” = ¢, thenI” |= 1. Assumel’ I/ ¢ — 1, then'U{¢} t/ ¢;
let I be a saturated extension 6fU {¢} such thatl” I/ ¢, thenI” = ¢ but not
r E ¢ (induction hypothesis). This contradicts = ¢ — . Hencel' F ¢ — 1.
As I' is saturated, by condition 2 in Definition B, — ¢ € I'. For the converse,
let $ — 1 € I'. For a contradiction supposeé = ¢ — . Then there would be
al’with I C I'" such thatl” | ¢ but IV (£ 4. Sincel’ C I, ¢ — ¢ € I".
Furthermore by inductive hypothesisc . Hence there are; ..., € I such that
FyiA.o Ay — (¢ — ) andk v A... Ay, — ¢. From the axiomatization (and
saturation) it follows that) € I/, which contradicts) ¢ I’ deriving fromI™" £ 4
by the inductive hypothesis. Therefofe = ¢ — . For ¢ = A says¢, suppose
I' = A says¢. Hence, for alll”” such that’" RoI"”, I |= ¢. By inductive hypothesis,
¢ € I". Let A = {a : Asaysa € I'}. By construction]” O A. Assume, for a
contradiction, thatd says¢ ¢ I'. By condition 2 in Definition 51" t/ A says¢. Then,
by Lemma 2,A I/ ¢. By Lemma 1, there is a saturated extensihof A such that
A* H ¢, i.e.¢p & A*. By definition of R4, I'R4 A*. This contradicts the fact that, for
all I suchthal" RaI"”, ¢ € I'". The converse can be easily shown. O

Lemma 4. Let M be the canonical model as defined in DefinitioM.satisfies the
conditiong(S-Int), (S-UNIT), (S-C), (S-CA), (S-Mon), (S-DT), (S-1Dand (S-RCEA)

Proof. We consider each property:
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(S-Int) Letl” < I'"andI”RAI". Consider any) s.t. A says¢ € I'. By definition of <,
Asays¢ € I, hence byI'R,I'", ¢ € I'". By definition of R 4 it follows that
I'RyI.

(S-UNIT) Let I'R4I". We want to show thaf” < I”. Leta € I'. By (UNIT), a —
A saysa € I', hence (by saturation df) A saysa € I'. Hence, by construction
of the canonical modety € I'’. Therefore[” < I".

(S-C) We have to prove that f R, I, andI” < I'”, thenI" R, I"". By (C) we know
that for all ¢, A says(A says¢p — ¢) € I', henceAsaysyp — ¢ € I, and
also A says¢p — ¢ € I (by definition of <). From this it follows that for all
Asaysg € I'”, by saturation off ”, ¢ € I'”. By definition of R4 we conclude
thatl" R I,

(S-CA) In order to show thaR 4,5 = R4 U Rp we have to consider two directions. 1.
LetI'R,I". ForallC : Av BsaysC e I', by (CA-conv) alsoA saysC' € I,
henceC € I. We conclude thaf'R 4, gI". The same holds if'RzI"”. Hence,
RAURpB C Ryyp. 2. LetI’'RaypI”. Suppose thatndf R, I, i.e. there i s.t.
AsaysC € I'andC ¢ I'. We want to show that in this cageRzI"”. Consider
any D s.t. BsaysD € I'. By (RCK), and by saturation af, AsaysC v D € I"
andB saysC' vV D € I'.By (CA) AV B saysC V D. It follows thatC' v D € I,
and sinceC' ¢ I, D € I'". We have shown that if ndt R4 I, thenI'RpI”’. We
can reason symmetrically in case foRgI”. Hence,Ravp C Ra U Rp.

(S-Mon) LetI"'RanpI”. Considerg s.t. Asays¢ € I'. By (Mon) it follows that A A
B says¢ € I', hencep € I and, by definition ofR 4, 'R4I". The same holds
for Rp.

(S-DT) We have to show that FR,I, I'" < I, andI"” € [|B|], then'Ra,pl", i.e.
{¢p: AN Bsaysp € I'} C I'”. Considerg such thatA A B says¢ € I'. Then,
by (DT), A says(B — ¢) € I', hence by definition ok 4, B — ¢ € I, and by
definition of<, B — ¢ € I'”. Furthermore, fronri"” € [|B|], B € I by Lemma
3. By saturation of ”’, we conclude that € I'"".

(S-ID) LetI'RAI". By (ID) AsaysA € I' and, by definition ofR4, A € I and, by
Lemma 3,1 € [[A]].

(S-RCEA) If[[4]] = [[B]], thent A « B, otherwise by Lemma 1 there would e S
such thatd < B ¢ I. In this case, by LemmaB [~ A «— B hence there would
beal”stI' < I"andI” = Abutl” |~ B (or viceversa). This contradicts
the hypothesis thdfA]] = [[B]]. Furthermore, from- A — B, by (RCEA) we
conclude thatd says¢ <« B says¢ < I for eachl’ € S. Therefore, for all
I'["e S, I’'RAI'"iff 'RgI’, and henc&?y = Rp. O

By the above lemmas, we can conclude that the axiomatizatitre logicCondRS, given
in Section 2 is complete with respect to the semantics in Riefim?2:

Theorem 4 (Soundness and Completeness 6bndRS, ). Given a formulay € £,
E piff - .

Proof. Soundness is straightforward. Concerning the complesefasa contradiction,
suppose/ ¢. Then by Lemma 1 there is a saturated Bétsuch that/™ I/ ¢, hence
¢ ¢ I'*. By Definition 6 and Lemmas 3 and 4, we conclude that there éaaghical)
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modelM = (S,<,{Ra},h), made on the language ¢f with I'* € S, such that
M, I'* £ o. It follows thaty is not logically valid, i.e = . O

We can also show that soundness and completeness applylagiteCondyd, ,
Cond, andCondl, , obtained respectively when replacing (C) with (C4) or (INI
with (I) or both inCondyg, .

Theorem 5 (Soundness and Completeness 6bnds, ). The axiomatization of the
logic Cond);, , obtained by replacingUNIT) with (I), is sound and complete with
respect to the semantics of Definition 2 in wh{@tUNIT) is replaced with(S-1) of
Definition 3.

Proof. Soundness is straightforward. For completeness, we reesdone above. We
prove that if the logic contains (I) instead of (UNIT) thersétisfies (S-1).

(S-l) LetI'RpI” andI”RAI"". Consider s.t. A says¢ € I'. By (I) B says(A says¢) €
I, henceA says¢ € I'" and¢ € I'”. We conclude that' R4 I"". O

Theorem 6 (Soundness and Completeness 6bndjg, ). The axiomatization of the
logic Condy¢, , obtained by replacingC) with (C4), is sound and complete with re-
spect to the semantics of Definition 2 in wh{&C)is replaced with(S-C4)of Defini-
tion 3.

Proof. Soundness is straightforward. For completeness, we reesdone above. We
prove that if the logic contains (C4) instead of (C) the logatisfies (S-C4).

(S-C4) LetI'R4I". ConsiderA = {¢ : Asays¢ € I'}. Clearly, by definition ofR 4,
A C I''. Consider now the saturatiof®* of A obtained as follows. Consider the
disjunctive normal form corresponding t&: Dy V ...V D,. SinceA is consis-
tent there must be onB; such thatA t/ —D,. Furthermore, there must also exist
one suchD; in which any formulad says¢ positively occurs only ifp € I"". For
a contradiction suppose that for eath consistent withA there was an occur-
rence ofA says¢ with ¢ ¢ I'". Then there would bel says¢; ... A says¢; with
¢1...0; ¢ I'" such thatA - A says¢, V...V Asays¢,. Butin this case also
AF Asays(¢1V...Voy,),andby Lemma 2’ - A says(A says(¢1V...Voy)).
By (C4) alsol’ - A says(¢1 V ...V ¢,), and hencép, V...V ¢,) € A C I,
which contradicts that™ is saturated but none @f; ... ¢, belongs tol”. From
this contradiction we conclude that there must be;aonsistent withA and such
that for any positive occurrence df sayseg, ¢ € I''. We saturated with this dis-
junct, obtainingA*. It can be easily shown that* is saturated, and thdtR 4 A*
andA*R,I. O

Theorem 7 (Soundness and Completeness 6bndjy, ). The axiomatization of the
logic Condl, , obtained by replacingUNIT) with (1) and(C) with (C4), respectively,
is sound and complete with respect to the semantics of Defiritin which(S-UNIT)
is replaced with(S-1) and (S-C)is replaced with(S-C4)
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5 A sequent calculus for Conditional Access Control Logics

In this section we present a cut-free sequent calculus éfatr conditional logics for
access control we propose. Our calculus is calfedng,, and it makes use of labels
to represent possible worlds, following the line of SeqS®@quent calculus for standard
conditional logics introduced in [26]. In particular, thalculus we propose is formu-
lated following the methods developed in [24] to obtain heigreserving admissibility
of weakening and contraction, admissibility of cut, andidability for modal labelled
calculi. In the following, by Scong,., We refer to the calculus for any of the four logics
under consideration. For the logondyS, , we also show that we can control the ap-

plication of some crucial rules, obtaining a terminatintpalus S ,uc. This calculus
ACL

describes a decision procedure@ondyS, , and allows us to conclude that provability
is decidable irO(n*logn) space.

In addition to the languagé of the logicCondy<, , we consider a denumerable
alphabet of label&’, whose elements are denoteddy), z, . . .. Moreover, in order to
obtain a terminating calculus, we define the Sgt C £ of principals involved in the
computation. Given a set of policidsand a requesp of compliance of a principall
(i.e. we want to verify whetheF, A saysy = ¢), we assume that the sép contains
at leastA and all principalsB such that, for some, B says¢ appears in".

The calculusScong,, Manipulates three types of labelled formulas:

1. world formulas denoted by: : , wherexz € X anda € L, used to represent that
the formulaa holds in a worldr;

2. transition formulasdenoted byr A, y, representing thatR 4 y;

3. order formulasof the formy > z representing the preorder relatign

A sequents a pair(I’, A), usually denoted with” - A, wherel” and A are mul-
tisets of labelled formulas. The intuitive meaning of a sagu” - A is: every model
that satisfies all labelled formulas &f in the respective worlds (specified by the la-
bels) satisfies at least one of the labelled formulad ¢in those worlds). This is made
precise by the notion ofalidity of a sequent given in the next definition:

Definition 7 (Sequent validity). Given a modelM = (S, <,{Ra},h) for £, and a
label alphabett, we consider anappingl : X — S. LetF' be a labelled formula, we
defineM |=; F as follows:

- MErz:aiff M, I(z) E o
—- Mz yiff I(2)Ral(y);
- MEry>zxiff I(z) < I(y).

We say thaf” - A is valid in M if, for every mappindg : X — S, if M |=; F for
everyF € I', thenM |=; G for someG € A. We say thaf” - A is valid in Condig,
if it is valid in every M.

In Figure 3 we present the basic rules of the cal&Hbng,., » common to all the logics
under considerations. In Figure 4 we present the specifesnd adopt in order to
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BAsic RULES

(AX) T,F+FAF (AX,) Dyz:LFA (AX>) TFAz>2
F either v : P,P € ATM ory > x

Tz:PHAy>a Iz:Py:PrA Dy>zy -2 zz kA
Y (ATM) e (INT)
T,z: PFA Ly>zy—zFA
Pe ATM
THFAz:« T'FAx: 0 Tz:a,x:0FA
(AR) L (AL)
T'FAz:aN( Tz:aANBEA
T'FAz:a,z: 0 Tz:akFA Tz:08FA
——  (VR) (VL)
THFAz:aVp T,z:aVpEA
Tz>z,z2>2yy>ak A Ty>zy:akFAy:p
- (TR) — (R
Loz>yy>akA T'FAz:a—f
ik Y new
Tz:a—pFAy>x Tz:a—BFAy:a F,m:a—»,@,y:ﬁ)—A( I
Tz:a— BEFA
F7avi>yFA7y:a(saysR) F,x:Asaysa)—A,mi»y T,z:Asays a,y:aF A
THAx: Asays a T,z:Asaysat A (says L)
Y new
u:AbFu:B u:Bru:A TFA, g8 Tz 2y oSy A
- = (EQ) L T8 VT2 (MoN)
T ——>ykAzxz—y THA
u new ANBeLp
F,zZy,szl—A,z:B F,zZy,zi»y,zMJiz)-A(DT) F,xi»y,y:A)—A (D)
A A
>
Tz>yx—ykA ANBELp T —ykA
F)—A,z'ﬂy F,sz)—A F,zinA(CA) F’qu’mi)y'_A(CAfconv)
T'FA Dz yFA
AVBeLp AVBEeLp
Fig. 3. Basic rules of the sequent calculd&onq,., -
F,zzuaci»y,zi»zl—A ©) F,zﬁy,zﬁz,zi»ykAw%)
A
F,zZy,xLyFA To—ykA 2 new
F,yZz,zi»yl-A(U ) F,xiy,yi’z,zi»z)-A o
—  (Unat
F,xLyFA F,xiy,yizFA

Fig. 4. Additional rules forCond%S, , CondRe, , Cond', , Condlie,
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Logic Calculus Rules \
Cond¥§;, ScOndECCg Basic RuLes + (Unit) + (C)
Cond¥&, ScondUd Basic RuLes + (Unit) + (C4)
Cond!G,,, ScondlC, Basic Rures + (I) + (O)
Cond™., Scondld, Basic Rures + (I) + (C4)

Fig. 5. Calculi and rules for the constructive conditional accesgrol logics.

deal with one of the presented conditional access contgitsp namelyCondys, |
Condy¢, , Cond/, , orCondl, , following the schema of Figure 5.

As usual, we say that a sequelit- A is derivablein Scong,,, if it admits a
derivation A derivation is a tree whose nodes are sequents. A branckaguence of
nodesli - Ay, Ix F As, ..., I, B A,,... Each nodd; + 4; is obtained from its
immediate successdr,_; - A;_; by applyingbackwarda rule of Scong,., ,» having
I;_1 F A;_1 asthe conclusionantd - A; as one of its premises. A branch is closed if
one of its nodes is an instance of axioms, nanfdly ), (AX> ), and(AX , ), otherwise
it is open. We say that a tree is closed if all its branches lmsed. A sequent” - A
has a derivation inScong,., if there is a closed tree havingt- A as a root.

The axioms represent valid sequents. For instafi¢&’) is used to close a branch
with a sequent in which a formul@ belongs to both its left hand side and its right hand
side: F' is either a formular : P, whereP is an atom, or a formulg > x. Such a
sequent is obviously valid : given any model satisfyingladl formulas in the left hand
side, then also the formul&, then there is at least one formula in the righ-hand side
holding in such a model, the formuR itself. Similarly for the other axioms. The rule
(ATM) is used to support the condition 1. in Definition 2, namelyegia modelM, a
world ¢ and an atomic formul® not being a principal, we have that, ¢ = P if and
only if, for all s such that < s, we have that € h(P). Given a sequent containing
x : P in the left hand side, the rule (i) checks whether the prenmisghichy > «
is added to the right hand side of the sequent is valid: inglit, this corresponds to
finding a world (represented hy which is “greater” than the one representeddyii)
introducesy : P in the other premise, in order to impose that the atBralso holds
in the world represented hysuch thaty > z. The rule(/NT) supports the condition

(S-Int) in Definition 2: if a sequent contains the formulas = andy A, Zinits left

hand side, then the rule introduces also the transitionditam A, z, and then checks
whether the resulting premise is derivable. The (dI&) takes care of the transitivity of
the relation< in an obvious way: if both > y andy > « belong to the left hand side of
a sequent, then also the relation> x is added to the left hand side of the premise that
the calculus tries to derive. The rul&nit) is used to support the condition (S-UNIT)

in Definition 2: if the sequent under consideration contaitransition formula: 4, Y
in its left hand side, then the rule introduces also theimlag > «. Similarly for the
other rules related to the other semantic conditions. Sointleeon are related to the
conditions introduced to support boolean principals. Aegample, the rulé MON)
is used to support the condition (S-Mon) in Definition 2. ititely, given a sequent
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(AX) (AX)
.Lwy>axty:Py>ax .o, Py:Pky:P
= (ATM)
y>z,x >u,x: Pbe —yky:P
= (Unit)
r>u,x: Px —yky:P
(saysR)
r>u,r: Pk x: AsaysP
(— R)

Fu:P — (AsaysP)

Fig. 6. A derivation in Scong,, for an instance of the axiom (UNIT).

I' - A, the rule works as follows: the left premise checks wheffier A, x ANG y

is a valid sequent, trying to check whether there is a worgr@sented by the label
y) reachable from the world representeddygiven the boolean principal A B; the

right premise adds tra transitions— y andx B, y according to the condition (S-
Mon). The side condition is introduced in order to ensuré tha B belongs to the set
of available principals. Similarly for the other rules sopiing the other conditions of
boolean principals. The rulgZ Q) is used in order to support the rule (RCEA), roughly
speaking the rule has to ensure thatdifand B are equivalent, i.e. they are true in
the same worlds, then, given a world represented bihe selection function selects
the same worlds fox (represented by) for both A and B. To this aim, if a sequent
Iz A, yHE Az 2, y has to be proved, then tH&Q) rule introduces a branch in
the backward derivation, trying to find a proof for both seuse: : A - « : B and
u: B F u: A. The restrictions on the rulds-> R), ( saysR), and(E(Q) are necessary
to preserve the soundness of the calculus.

As an example, in Figure 6 we show a derivationSgonq,,, Of an instance of the
axiom (UNIT). GivenP € ATM, in order to show that the formul® — (A saysP)
is valid, we build a derivation inScong,, for the sequent u : P — (A saysP).

The calculusScong,., IS sound and complete with respect to the semantics. In order
to prove it, we need some basic structural properties.

5.1 Basic Structural properties of Scond,e,
First of all, we define the complexity of a labelled formula:

Definition 8 (Complexity of a labelled formula cp(F)). We define the complexity of a
labelled formulaZ" as follows:

—cplz:iy)=2x%[ 7|
—cplx:Ll)=2
—cply = x) =2

Cp(l‘i>y):2* | A | +1

where| F' | is the number of symbols occurring in the string representin
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Now we can introduce some basic structural properties hgli Scong,, - First,
we show thatweakeningand label substitutionare height preserving admissible in
Scondae. - As usual, the height of a derivation corresponds to thelttiesf the tree
representing the derivation itself.

Lemma 5 (Height-preserving admissibility of weakening)lIf I" - A has a deriva-
tion of heighth, thenI" - A, FFand I, F' - A have a derivation of heighit’ < h.

Proof. By induction on the height of the derivation bfk A. The base case is straight-
forward: if I' - A is an instance of an axiom, so afe- A, F"andl’) F' + A. For the
inductive step, we have to consider all possibile rulesiaedgb I" - A in a backward
proof search. We distinguish two subcases:

— the derivation ofl" - A is ended by an application ¢£@)) as follows:
u:AFu:B u:BrFu:A

(EQ)

F/,xLyFA/,xi»y

All formulas different from the transition formulas invad in the rule application
are side formulas iREQ), therefore we can conclude as follows:

u:AkrFu:B u:BrFu:A

(EQ)
F’,xﬁy,FFA/,xiy

and similarly to prove that alsb’, x A, yk A x B, y, F' is derivable;

— the derivation is ended by the application of a rule whichiffetent from (EQ).
As an example, we present the caséBf'), the other ones are similar and left to
the reader:

W 2>y -SyrAz:B @I :>ys5yz222yrA

(DT)
F/,ZZy,xLyFA

We can apply the inductive hypothesis on the two premisesjrubg derivations

for(1) I,z > y,x A, y FEAz: B, ("I, z>y,x A, yb A z:B,F,
N s A AAB P A AAB
NI z>yx—yx—yFFAand?2") I 2z >y z — yo —
y = A, F. We obtain a derivation of ", z > y, z A, y, F' = A by an application
of (DT) to (1) and(2’), as well as a derivation df’, z > y, x A, y b A F by
applying(DT) to (1”) and(2"). O

Lemma 6 (Height-preserving label substitution).If a sequent” - A has a deriva-
tion of heighth, thenI'[z/y]  A[z/y] has a derivation of height’ < h, where
I'lxz/y] F Alz/y] is the sequent obtained from + A by replacing all occurrences of
the labelx by the labely.

Proof. By induction on the height of' - A. The base case is straightforwardfif- A
is an axiom, it is still an axiom if we replace eaglwith y. For the inductive step, we
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only present the most interesting casd shysR), the other cases are easy and left to
the reader. Consider the following derivation:

() Moyt Ay:y

- (saysR)
't A’z : Asaysy

In order to obtain a derivation (of at most the same heighf)ef/y] - A'[z/y], v :
A saysy we proceed as follows. First, we apply the inductive hypsithéo (:) by
replacing all occurrences gfwith z, with z not occurring in” and A’. Notice that, by
the condition on the application dfsaysR), y is new in(i), that is to sayy does not

occur inI” andA’. It follows that we have a derivation ¢fi) I, x Ak Az,
whose height is no greater than the heigh{©Qf We can further apply the inductive
hypothesis or(ii) by replacing all occurrences afwith y, obtaining a derivation of

no greater height thafii) (then, than(z)) of I'[z/y],y Ak Allz/y], z : v, from
which we conclude by an application pgaysR). O

We can also show that all the rules 8fong,., » With the exception of EQ), are height-
preserving invertible.

Lemma 7 (Height-preserving invertibility of rules). LetI" - A be an instance of the
conclusion of a rule R 0fS¢ong,., » With R different from{ £Q). If I = A is derivable,
then the premise(s) of R is (are) derivable with a derivatibat most) the same height.

Proof. We have to consider each rule of the calculus. We distinduggtiveen:

—rules(ATM), (INT), (— L), (saysL), (MON), (DT), (ID), (CA), (CA —
conv), (C), (C4), (Unit), and(): in these rules, the premises contain all formulas
of the respective conclusions. Therefore, we concludevieatave a proof (of no
greater height) of the premises since weakening is heigggepving admissible
(Lemma5);

— all other rules, not copying their principal formulas in fhremises. For each rule,
we proceed by induction on the height of the derivatio'af A. We only present
the most interesting case 6f> R). The other cases are easier and left to the reader.
For the base case, suppose that A’z : « — 3 is an axiom: since axioms do
not involve complex formulas, we immediately conclude thiso I,y > z,y :
ak A y: @is an axiom, and we are done. For the inductive step, we disish
two subcases:

e the proof of " - A,z : a — [ is ended by an application ¢~ R) to
x: o — (,i.e.the proofis ended as follows:

(i)F,yZm,y:aFA/,z:ﬂ

p (= R)
r-Az:a—pg

In this case, we immediately conclude, since we have a dinivaf the premise
(1) of (— R). Notice also that, if the height of the starting derivatisih,jthen
the height of the proof ofi) is h — 1;
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e the proof of" - A’z : « — [ is ended by an application of a rule (R’)
different from(— R) or by (— R) to a formulau : v — § € A’:in this
case, we apply the inductive hypothesis on the premises, weeconclude
by an application of (R’). As an example, consider a derivagnded by an
application of( saysL) as follows:

(i) T, AsayS'yFA',x:aHﬂ,xiy (iii) I o : Asaysy,y:yvF A z:a—

T T (saysL)
I xz:AsaysyF A z:a—

We can apply the inductive hypothesys @) and (iii), i.e. we have deriva-
tions (of at most the same height) @f') ',z : Asaysy,z > z,z : a
Al x A, y,z: pand(iti') IV, x : Asaysy,y: v,z > x,z:ab A z: [,
where(ii’) and(iii’) are, respectively, the premises of rgle R) applied to
(i4) and(iii). We conclude by an application okaysL):

(") F/,:c:AsaySfy,zzx,z:al—A/,xﬁy,z:ﬁ
(v6d') I,z : Asaysy,y: v,z >x,z:ak A z: 3

(saysL)

(iv) I,z : Asaysy,z > x,z:akF A, z2: 3
Itis worth noticing that does not occur id” andA’. Therefore, by Lemma 6
and(iv), we have a derivation (of at most the same heighf)'of: : A saysy,y >
x,y : a b ALy : 3, which is the premise of the rule—~ R) applied to
I'" z: Asaysyt A’z : a — 3, and we are done. O

It is worth noticing that the height-preserving invertityilalso preserves the number of
applications of the rules in a proof, that is to saylif - A, is derivable by Lemma
7 since it is the premise of a backward application of an iivierrule R tols - As,
then it has a derivation containitige same rule applicationsf the proof of/s - As.
For instance, if(1) I',x 4, y b A is derivable with a proof7, then(2) I,z 4,
y,y : A Alis derivable sincéID) is invertible; moreover, there exists a proof of
(2) containing the same rules @1, obtained by adding : A in each sequent off
from which (1) descends. This fact will be systematically used througtiosisection,
in the sense that we will assume that every proof transfaomalue to the invertibility
preserves the number of rules applications in the initiabfr

We can show that the rules obntractionare admissibile inScong,e, -

Lemma 8 (Height-preserving and rule-preserving admissildity of contraction).
The rules of contraction are height-preserving admissibléScong,., » i-€. if a sequent

I' v A, F, F is derivable in SeqS, then there is a derivation of no grehtgght of

I' = A F, and if a sequent’, F, F' - A is derivable in Scong,, » then there is a
derivation of no greater height of, /' = A. Moreover, the rules of contraction are
rule-preserving admissibile ifScong,., , I-€. the proof of the contracted sequent does
not add any rule application to the initial proof.

Proof. By simultaneous induction on the height of the drivationdédt and right con-
traction. For the base case, [Et- A, I, F' be an axiom. We have the following sub-
cases:
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— Fiseithery > xorx : Pwith P € ATM andF € I':inthis case, we immediately
conclude that als@' - A, F' is an axiom;

— Fisxz > z:again, alsd” - A, F is an instance of AX>) and we are done;

— x: L e I''onceagain, alsd’ - A, Fis an instance ofAX | ).

The other base case, namely the case whefe ' - A is an axiom, is symmetric.
For the inductive step, we consider the last rule applied’'t6- A, F, F' (resp.
I, F, F = A). We distinguish three cases:

— the proof is ended by an application @'Q): in this case, we can conclude since
(EQ) only involves two transition formulas, one on the left haidiesand one

on the right hand side of the sequent. Eveliifs a transition formula: A, y
involved in the application of £Q), as follows:

u:A'Fu: A u:Abru: A

(EQ)

'z S yk Az 25 yz 2y

the rule can be directly applied to the contracted sequadtyee are done:
u:A'Fu: A u:AbFu: A

(EQ)

F',xi»yPA,xi»y

— the applied rule is different froriZ Q) and the contracted formul is not prin-
cipal in the application of the rule: in this case, both ocences off" are in the
premise(s) of the rule, which have a smaller derivation hieiBy the inductive
hypothesis, they can be contracted and the conclusion &nalat by applying the
rule to the contracted premise(s). As an example, consigeoaf ended by an
application of(DT") as follows:

F/,zzy,xﬁyl—A,F,F,z:B F',zzy,xﬁy,xwzl—A,F,F

= DT)
I' z>yx——ykFAFF

We apply the inductive hypothesis on the two premises, thercenclude by an
application of(DT'):

F/,ZZy,xi»yPA,F,z:B F',zZy,xi»y,xwzFA,F

(DT)
F’,zzy,ximy}—A,F

— the applied rule is different froiE'@)) and the contracted formul& is principal
in the application of the rule: we consider all the rules:
o (ATM): the proof is ended as follows:

I''zx:Px:PFAy>zx I x:Pzx:Py:PFA

(ATM)
I'''z:Px:PFA

We apply the inductive hypothesis on the premises, obtgiaiproof of™”, x :
PrHAy>zandofl”, x: Py : PF A, fromwhich we conclude by an
application of(ATM);
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e (INT),(MON), (DT), (ID), (CA), (CA — conv), (C), (C4), (Unit), and
(I): in these cases, the proof is similar to the one proposedeaiooyATM )
and then left to the reader;

e (AL): the proofis ended as follows:

Nz :oa,z:Bx:aANBFA

(AL)
Nx:aNp,x:aNBEA

Since(AL) is height-preserving invertible (Lemma 7), we have a prdadto
most the same height of the premiselofr : a,z : a,2 : 5,2 : 6 F A.
We can apply the inductive hypothesis to obtain a proof (ofreater height)
of Ix : o,z : B, : B B A, to which we can again apply the inductive
hypothesis to obtain a proof @f, z : o,z : § F A, from which we conclude
by an application of AL);

e (AR): the proofis ended as follows:

O I'FAz:a,z:aNf () I'-Ajz:B,z:anp

(AR)
I'FAz:aNB,z:aNp

By Lemma 7 andi), we have a derivation dfi’) I' - A,z : «, 2 : « and of
(" I'F Az : o,z : §of at most the same height 6f). Similarly, we have
proofs of(ii) ' H A,z : B,z : a@and(ii”) I' H A,z : B,x : 5. We apply
the inductive hypothesis t@’) and (i), obtaining proofs o - A,z : «
andl" - A,z : 3, respectively, from which we conclude by an application of
(AR);

e (VR) and(VL): these cases are similar to the ones(foR) and (AL) and
therefore left to the reader;

e (— R): the proofis ended as follows:

Ny>z,y:akAzr:a—B,y:0

(= R)
I'-Az:a—px:a—p0

Since(— R) is height-preserving invertible (Lemma 7), we have a déidva
of at most the same height of the premiselof) > =,z > x,y : a,z : a b
Ay : B,z : .y andz are new labels, not occurring ii and A. By the
height-preserving label substitution (Lemma 6), we replhe occurrences of
z with y to obtain a derivation of,y > z,y > =,y : o,y : a b A,y :
G,y : 5. We apply three times the inductive hypothesis, obtainidgrivation
of Iy > z,y : a = A,y : 8, from which we conclude by an application of
(— R);

e (— L): the proof is ended as follows:

@ Nr:a—pBra—PfFAy>a
(@) Nzx:a—Bx:a—PFAY: «
(@) e:a—Px:a—By:fEA

Nz:a—Bx:a—[BFA

(= L)
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We can apply the inductive hypothesis on the three prenigtaining deriva-
tions (of at most the same heights) @f) Iz : @« — S+ Ay > z,
(W) Nae:a— pFAy:a,and@@id) e : a — By 2 fF A4,
from which we conclude by an application Gf L);

e (saysR) and( saysL): these cases are similar to the ones (fer R) and
(— L), respectively, and left to the reader. g

We conclude this section by listing some lemmas and praggerdlding in Scond,e,
that will be used to prove its soundness and completeness:

Lemma 9. A sequent z : A — B is derivable in Scong,., if and only if the sequent
x: At x: Bisderivable in Scong,g, -

Proof. If z : A+ = : B is derivable, then, by Lemma 5, also> w,z : A+« : B
is derivable. By an application ¢~ R), we obtain a derivation of u : A — B. By
Lemma 6 we conclude with a derivationtefz : A — B.

If -2z : A — Bisderivable, then we have also a derivatiomfor z,u: A+ u: B
since (— R) is invertible (Lemma 7). It can be observed that no ruleS&¥ond,.,
manipulate the labet, therefore the formula > = is useless. This means that there is
a derivation in Scong,, Of w : A F w : B and, by Lemma 6, there is a derivation of
r:AFx: B. O

We can generalize axioms to a generic formktdlahat is to say:
Proposition 4. Given any formuld”’, the sequent’, F' = A, F'is derivable inScond,g, -

Proof. By induction on the complexity of'. For the base case, we have thas either
x : Pwith P € ATM ory > z, then the sequent is an instance(dfX') and we are
done. For the inductive step, we distinguish two subcases:

— F has the form: -2 y: by inductive hypothesis; : A - u : A is derivable, then

we conclude that’, A, yb Az A, y is derivable by an application ¢FQ);

— Fisacomplex formula : A® B, where® stands fo{ —, A, Vv, says}. We only
present the most interesting casessafys and—, the other cases are similar and
left to the reader. Concerningays, there are derivations itfcong,., for (1) w :
At wu:Aand(2) Iz : AsaysB,z A, y,y : B F Ay : B by inductive
hypothesis. We can conclude as follows:

NDu:AFu: A Nu:AFu: A

(EQ)

F,x:AsaySB,xLyFA,y:B,xi»y (Q)F,x:AsaysB,xLy,y:BFA,y:B

= (saysL)
I'z:AsaysB,x — yt A y: B

(saysR)
Iz : AsaysB+ A,z : AsaysB

Concerning—, again we apply the inductive hypothesis to prove that tlaeee
derivationsof(3) Iy > v,2 : A — B,y : A,y : BF Ay : Band(4) Iy >
x,x:A— By: AF Ay: B,y : A. We conclude as follows:
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Ny>z,z:A—B,y: A Ay:By>=x
B)ly>z,x:A—>B,y: Ajy: B-Ay: B
4WIy>z,c:A—-By:ArAy:By: A

(= L)
Ny>z,z:A—B,y: A-Ajy:B

INr:A—BFAxz:A— B

(— R)

O

Lemma 10. Given any formulay € L, the sequeni,y > x,x : v - Ay : v is
derivable in Scond,e, -

Proof. We consider all possible formulase L, starting with atomic ones = P ¢
ATM.The sequeny : P Iy : Pis aninstance ofAX). Since weakening is admis-
sible (Lemma 5), we have thatalgb) I,y > x,x : P,y : P+ A,y : P is derivable.
The same fo(1’) I,y > z,x : P+ A,y : Py > xz,sincey > « - y > xisan
instance of AX ). We conclude by an application of the r{lé 7/ ):

() y>zz:PFAy:Py>zx () Iy>xzx:Py:PHAy:P
y>x,x:PHAy: P

(ATM)

For the complex formulas, we only present the most intergstases off = A — B
and~ = A saysB, the other cases are easy and left to the reader. By Prapo4itive
have derivations fof2) v : A v: A 3)v:BFwv:B,(4) z: BF z: B,and
(5)v>axtwv>a and, by Lemmab, of2’) INv > z,v > y,y > x,2: A — B,v:
Arv:Bow: A @) Tvw>z0>yy>xx:A— Buov:Av:BkFov: B,
4 Iy > z,y A, 2, A, z,x: AsaysB,z : B+ A,z : B,and(5) v >
x>y y>x,x:A— Buo: AFv: B,v > 2. We can conclude as follows:
BYNv>z,v>yy>a,2: A—Bv:AFv:Bov>zx

Yv>z,v>yy>z,t:A—Buv:AkFv:Bv: A
BYnLv>z,v>yy>z,2:A— Bv:Av:BFv:B

(= L)
rv>z,v>yy>z,x:A—-Buv:AkFv:B

(TR)
rv>yy>xz,x:A—Bwv:Akrtv:B

(= R)
y>z,x:A—-BFAy:A— B

2)v:AFv: A 2)v:AFv: A
A A A (EQ) / A A
ry>x,y— z,xv — z,x: AsaysB+ A, z: B,z — z 4HNry>z,y— z,x — z,x: AsaysB,z: B+ A,z: B

~ " (saysL)
y>xz,y—z,x — z,x: AsaysB+ A, z: B

" (INT)
'y>x,y— z,x:AsaysB+F A,z: B

(saysR)
Iy >xz,x: AsaysB+ A,y : AsaysB
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Lemmall. If I,z > = F Ais derivable in Scong,., , then alsol” - A is derivable
with a derivation of at most the same height.

Proof. By induction on the height of the derivation 6Tz > x - A. The base case is
easy, since axioms do not involve formulag x in the left hand side of a sequent, with
the only exception of the case in whieh> = € A: however, in this casd, - A is an
instance of AX>) and we are done. For the inductive step, we have to considéeal
rules of Scong,e, that can be applied to end the derivation/ofc > = - A. To save
space, we only present the most interesting case of a prdefilemith an application of
(T'R) as follows:

I'y>zy>z,c>ck A

(TR)

I''y>z,c>zF A
By inductive hypothesis, there is a derivation of at mostsame height of 7,y >
z,y > v+ A, then, by Lemma8, of’,y > = A, and we are done. The other cases
are similar and left to the reader. O

Lemma 12. If I' = A,z : L is derivable in Scong,, , then alsol” - A is derivable.

Proof. By induction on the height of the derivation 6T+ A,z : 1. The base case is
straighforward, since : L in the right hand side of a sequent is involved in an axiom
only in caser : L € I', however in this case we immediatley conclude that A is

an instance of AX | ). For the inductive step, we just observe that all the rulespi
(EQ) copyx : L in their premise(s), then we can conclude the proof by applyhe
inductive hypothesis to such premise(s) and then reapplyin same rules. In case
the derivation ofl" - A,z : L is ended by an application ¢FQ) the proof is also
straightforward, sincé £Q) is applied to transition formulas belonging foand A,
therefore we have a proof @f - A by an application of EQ). O

5.2 Soundness and Completeness @cond,e,

Let us first prove that the calculuScong,., iS sound with respect to the semantics:

Theorem 8 (Soundness 0fScong,., ). Ifa sequent” - Ais derivable, thed” - Alis
valid in the sense of Definition 7.

Proof. By induction on the height of the derivation 8f - A. The base cases are as
follows:

— I' b Ais an instance of AX), i.e. there is arf’ such thatF" € I' N A. In this
case, given any moddM, if it satifies all the formulas i, then it also satisfies'.
As a consequence, such model also satisfies at least a formdlé&he formular’
itself), and the sequent is valid;

— I' - Aisaninstance ofAX | ), i.e.z : L € I': we immediately conclude that the
sequent is valid, since there is no model satifying | ;

— I' F Alis an instance ofAX>), i.e.z > x € A:in this case, given any model
M and any functior?, since< is reflexive, we have thal(z) < I(x), then the
formulaz > z is satisfied inM via I and the sequent is valid.
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For the inductive step, we have the following cases (thédiskhaustive):

— the derivation ofl”",z : P A ends with an application dfATM), with P €
ATM. By inductive hypothesis, the premis€$xz : P - A,y > zandI”,x :
P,y : P+ Aare valid sequents. By absurd, suppose the conclusion,ishabtis
to say there is a mode¥ and a functiory such thatM =; F for everyF € I,
M Er x: P (i.e. I(x) € h(P)), whereasM F; G for anyG € A. Since
Iz : P+ Ay > zisvalid, we have that =; y > =z, i.e. I(z) < I(y) and,
sincel(x) € h(P)andP € ATM, we have also thal(y) € h(P). Therefore M
satisfies vid all formulas in the left hand side of the premiBe x : P,y : P - A,
howeverM £, G foranyG € A, against its validity;

— the derivation off ”,  : « A 5+ A ends with an application dfAL): by inductive
hypothesis, the sequeht, = : «,z : B+ A is valid. By absurd, the conclusion is
not, i.e. there is a mode! and a functior? such that\M |=; F for everyF € I,
MErz:anp(e.,I(z) € [|a]] N[3]]), whereasM (=, G foranyG € A. It
immediately follows thatM |=; = : a as wellasM =; = : 5, soM =, F for
every F' in the left hand side of the premise, wherees |4, G for anyG € A,
against the validity of the premise itself;

— the derivation o = A’z : a A 8 ends with an application dAR): by inductive
hypothesis, the sequents A’z : « andI’ = A’ x : 3 are valid. By absurd,
suppose that the conclusidh- A’, z : a A §is not valid, i.e. there is a modé
and a functior/ such thatM =, F for everyF € I', whereasM |4, G for any
G e AandM fer x - anp,ie eitherl (x) & [|a]] orI(z) & [|8]). If I(x) & [|c|],
we have thaiM satisfies vial all the formulas in the left hand side of the premise
I' = A’z : o, whereas it falsifies all the formulas in its right hand sidgainst
the validity of such premise. Reasoning in the same way, $e £&) ¢ [|3|] we
contradict the hypothesis that- A’ 2 : 3 is valid;

— the derivation off ',z : « V 5+ A ends with an application dfv/L): by inductive
hypothesis, the sequent8,z : « = AandI”,z : 8 + A are valid. By absurd,
suppose that the conclusionis not, i.e. there is a médaind a function such that
M = FforeveryF € I'"andM =1z : aV j,i.e.I(x) € [|a]] U[|F]], whereas
M £ GforanyG € A. Sincel (z) € [|a|]U]|8]], we have that eithel(x) € [|a]]
or I(z) € [|B]]. In casel(z) € [|a|], we have thatM =; « : «, however, this
contradicts the fact that the premig& = : o = A of (VL) is valid, sinceM |=; F
foreveryF € I but M £; G foranyG € A. In casel(z) € [|3]], we reason in
the same way and we contradict the fact that the preifiise : 5+ A of (VL) is
valid;

— the derivation o = A’z : « VvV 3 ends with an application dfvR): by inductive
hypothesis, the sequent- A’z : o, x : §is valid. By absurd, suppose that the
conclusion is not, i.e. there is a modét and a function/ such that\ =; F
for everyF € I', whereasM [£; G foranyG € A’ and M ¥ z @ a V G,
i.e.I(z) & [|aV ], thatis to sayl (z) ¢ [|«|] andI(z) & [|3]]. This contradicts
the validity of I" - A’z : «,z : 3, since we have a modélt and a function/
such thatM |=; F for everyF € I, whereasM (-, G foranyG € A’ and
Mz aand M fer o : 5,

— the derivation ofl”,z : « — (@ F A ends with an application of— L): by
inductive hypothesis, the premise€s) I,z : « — S+ Ay > «, (2) I,z :
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a— B+ Ay:a,and3) I,z : a — [,y : 3+ A are valid. By absurd, the
conclusion is not, i.e. there is a mode! and a functior! such thatM =; F for
everyF e ' M Ejxz:a— p(i.e,I(z) € [|la— g|]), whereasM -, G for
anyG € A’. By the validity of (1), we can conclude that alsbt =; y > z, i.e.
I(z) < I(y). Similarly, by the validity of(2), we can conclude tha¥! |=; v : «,
i.e.I(y) € [|a]]. Sincel(x) < I(y), I(y) € [|o|], andI(z) € [|a — S]], we have
thatl(y) € [|5]],i.e. M =1 y : 8. Therefore M satisfies, vid, all the formulas
in the left hand side of the premi¢g), whereas it falsifies all the formulas in the
right hand side, against the hypothesis tf3atis valid;

the derivation of[" = A’z : « — (3 ends with an application of— R): by
inductive hypothesis, the premigey > z,y : o = A’y : §is valid. By absurd,
suppose that the conclusion is not, i.e. there is a madednd a function/ such
that M =, F for everyF € I', whereasM [£; G foranyG € A and M
x:a— fBieI(x) ¢ [Ja — 8. This means that there exists a wotidsuch
that7(xz) < w andw € [|a|], whereasv ¢ [|3|]. Let us define a functio’ such
that!’(y) = w, wheread’(k) = I(k) for all labelsk different fromy. Sincey is
a label not occurring in the conclusion, it immediately dals thatM =, F for
everyF € I', whereasM [£;, G foranyG € A’. Furthermore, sincé(z) < w,
we have thaiM =, y > = and, sincev € [|a|], we have that\l =/ y : . From
the fact thatw ¢ [|3]], we also conclude that! (4, y : 3, against the validity of
y>zy:ak A y: S

the derivation ofl”,z : Asaysy + A ends with an application of saysL):
by inductive hypothesis, the premisgs) I,z : Asaysy - A,z A, y and
(5) I'",x : Asaysy,y : v - A are valid. By absurd, the conclusion is not, i.e.
there is a modeM and a function/ such thatM ; F for everyF € I7,
M =z Asaysy (i.e., forallw € Ra(I(z)) we have that € [|v]]), whereas

M [£r G foranyG € A. Since(4) is valid, we have that = A, y, thatis
to sayl(y) € Ra(I(x)). Therefore, since\ |=; = : A saysy, we have that also
I(y) € [|v]]- We can conclude thatt |=; F for everyF € I andM = y : v,
but M 41 G for anyG € A against the validity of5);

the derivation ofl" F A’z : A saysy ends with an application dfsaysR): by

inductive hypothesis, the premidé = A, y = A’y : ~is valid. By absurd,
suppose that the conclusion is not, i.e. there is a madednd a function/ such
that M |=; F for everyF € I', whereasM F; G foranyG € A and M

x : Asaysy,i.e. I(z) ¢ [|A saysy|]. This means that there exists a woddsuch
that/(z)Raw andw ¢ [|v|]. We define a functiod’ such thatl’(y) = w, whereas
I'(k) = I(k) for all labelsk different fromy. Sincey is a label not occurring in
the conclusion, it immediately follows the! =;. F for everyF' € I', whereas

M W G foranyG € A’. Moreover,I(z)Raw means thatM = « A, Y,
as well asw ¢ [|v|] means thatM (. y : v, against the validity of the premise
F,xinyFA’,y:'y;

the derivation ofl”, = A, y Az B, y ends with an application afEQ):

by inductive hypothesis, the premises: A - v : Bandu : B - u : A are
valid sequents. This means that, given any modieand any function/, we have
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thatI(u) € [|A|] if and only if I(u) € [|B]], that is to say|A|] = [|B]]. By the
condition (S-RCEA) in Definition 2, we have that al&y, = Rp. By absurd, the
conclusion is not valid, that is to say there is a madéland a function/ such

that M |=; F foreveryF € I", M Er x Ay (i.e. I(x)Ral(y)), whereas

M s GforanyG € A" and M J4r x Ly (i.e.I(y) ¢ Rp(I(x))). The facts
that!(y) € Ra(I(z)) butl(y) ¢ Rp(I(z)) contradict the fact thaks = Rp;

the derivation ofl”,z > y,y > = + A ends with an application ofTR): by

inductive hypothesis, the premid€. > > y,y > z,z > = + A is valid. By

absurd, the conclusion is not, i.e. there is a motieland a function/ such that
M FforeveryF e I', Mz >y (e I(y) <I(z), M Ery > x(ie.

I(z) < I(y)), whereasM [£; G for anyG € A. Since the relatios is transitive,
it immediately follows thatl/(x) < I(z), thereforeM |=; 2z > z, against the
validity of the premise;

the derivation o,y > z,y A, 2+ Alis ended by an application ¢f NT'): by

inductive hypothesis, the premigé,y > z,y A, Z, T A, 2k Als valid. By
absurd, the conclusion is not, that is to say there is a mbtlahd a function’ such
thatM =y FforeveryF e I'. My >z (i.e.l(z) <I(y), MEry A,
(i.e. I(y)Ral(2)), whereasM [£; G for any G € A. By (S-Int) in Definition
2, fromI(z) < I(y) andI(y)R4l(z) it follows thatI(z)RaI(z), thereforemM
satisfies vial all the formulas in the left hand side of the premise, and rinrlee
right hand side, against its validity;

the derivation ofl”’, = A, y = A ends by an application dff D): by inductive

hypothesis, the premis€’, = A, y,y : A Ais avalid sequent. By absurd, the
conclusion is not, i.e. there is a model and a function/ such thatM |=; F for
everyFF € I'" M =1 x Ay (i.e., I(x)RAaI(y)), whereasM F~; G for any
G € A. By (S-ID) in Definition 2, we have that, sinddxz)R41(y), it holds that
I(y) € [|4]], against the validity of the premise;

the derivation of”’ - A ends by an application ¢f” A): by inductive hypothesis,
the premisesi) I' - A,z 25 y, (i) e -2 y - A and(iii) Iz > y

A are valid sequents. By absurd, the conclusion is not, ieretis a mode/M

and a function/ such thatM |=; F for everyF € I', whereasM [~; G for

anyG € A.Since(i) I' F Az e y is valid, we have thatl =; = AvE

y, i.e. I(x)RavpI(y). By (S-CA) in Definition 2, we have thaRayp(I(x)) =
Ra(I(z)) U Rp(I(x)), thenI(y) € Ra(I(z)) U Rp(I(x)), that is to say either
I(y) € Ra(I(z)) or I(y) € Rp(I(x)). Supposd (y) € Ra(I(x)): in this case,
we have also thatt =, « A, y, against the validity of the premigé) I, « A,

y A.Incasel(y) € Rp(I(x)), we conclude analogously against the validity of
(i) o 25y A;

the derivation ofl”, = A, y F A ends by an application diC A — conv): by
inductive hypothesis, the premigg, x AvE Y, T A, y = Ais valid. By absurd,
the conclusion is not, i.e. there is a model and a functioryY such thatM |=; F

foreveryF € I', M =1 = Ay (i.e., I(z)RAI(y)), whereasM -, G for
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anyG € A. By (S-CA) in Definition 2, we have tha® 4y 5 (I(x)) = Ra(I(x)) U
Rp(I(x)), thenI(y) € Ra(I(z)) impliesI(y) € Ra(I(xz)) U Rp(I(x)), thus
I(y) € Ravp(I(x)). We conclude thaM =, « avg y, against the validity of the
premise;

the derivation of[",z > vy, x A, y F A ends by an application fDT"): by

inductive hypothesis, the premisé$, z > y,x A, ykF Az:Bandl’, z >
Y, T A, Y, T ANE L A are valid sequents. By absurd, the conclusion is not,

i.e. there is a modeM and a function/ such thatM =; F for everyF € I,

M z>y(ely) <I(2), M Er o - y (e, I(x)Ral(y)), whereas
M W GforanyG € A. Sincel”, z > y,x A, y A,z : Bisvalid, it follows

that alsoM |=; = : B, thatis to sayl(z) € [|B]]. By (S-DT) in Definition 2, from
I(x)RaI(y), I(y) < I(z), andI(z) € [|B]], it follows that alsol (z)RarpI(z),

e MErzx g against the validity of the premide, z > y, x A, Y, T AN

z A

the derivation ofl” - A ends by an application ¢f/ON): by inductive hypoth-
esis, the premises - A,z 2% yandlz 2 4,2 2 y - A are valid.
By absurd, the conclusion is not, i.e. there is a mabteland a function/ such

that M =; F for everyF' € I', whereasM 4, G for anyG € A. Since the

premisel’ - A, x ANE y is valid, we have that alsg1 =, = AnE y, that is to

sayI(z)RanrpI(y). By (S-Mon) in Definition 2, we have that(x)R4I(y) and

I(x)RpI(y), thereforeM =1 « A, yandM Erx £, y, against the validity
of the premisd’, = — y,z — y F A.

the derivation ofl”, x A, y F A ends by an application ¢/ nit): by inductive

hypothesis, the premisg’, = A, y,y > x = Ais a valid sequent. By absurd,
the conclusion is not, i.e. there is a modell and a function/ such thatM |=; F

foreveryFF ¢ I", M =1 = 4, y (i.e., I(x)Ral(y)), whereasM (-, G for
anyG € A. By (S-UNIT) in Definition 2, we have that, sindéx)R41(y), also
I(x) < I(y), thenM =1 y > z, against the validity of the premise;

the derivation ofl”, x B, R A, 2 F Aends by an application dff): by

inductive hypothesis, the premigé, x B, Y,y A, zZ,r A, 2 F Alis avalid
sequent. By absurd, the conclusion is not, i.e. there is aembtiand a function

I such thatM =, F foreveryF € I'", M ;1 x N y (i.e., I(x)RpI(y)),

My -5 2 (e, I(y)Ral(2)), whereasM [£; G foranyG € A. By (S-1)in
Definition 3, we have that, sindx)RpI(y) andI(y)Ral(z), alsol(z)RAI(z),

then M =g x 4, z, against the validity of the premise;
the derivation of[",z > y,x A, y F A ends by an application ofC): by

inductive hypothesis, the premide, z > y,2 — y,z —> 2  Ais a valid
sequent. By absurd, the conclusion is not, i.e. there is aembtiand a function
I such thatM =, F foreveryF € I/, M = z > y (i.e., I(y) < I(z)), and

M =r x5 y (e, I(x)Ral(y)), whereasM [, G foranyG € A. By (S-C)in
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Definition 2, we have that, sincdEz)R4I(y) andI(y) < I(z), alsol(z)Ral(z),
thenM =5 2 A, z, against the validity of the premise;

— the derivation ofl”, x 4, y F A ends by an application diC'4): by inductive
hypothesis, the premisg’, = A, Y, T A, Z,2 A, y F Ais a valid sequent.
By absurd, the conclusion is not, i.e. there is a mabteland a function/ such
that M =, F foreveryF € I'', M =1 « 4, y (i.e., I(x)Ral(y)), whereas
M fr G forany G € A. By (S-C4) in Definition 3, sincd (x)R41(y), there
exists a worldv such that/ (x) R 4w andwR 4 I (y). Let us now consider a function
I’ defined as follows?’(z) = w andI’'(k) = I(k) for all labelsk # z. Sincez
is a label not occurring in the conclusion of the rule, it intizely follows that
M =p FforeveryF e I, M =p x A, y (sincel’(z) = I(x),I'(y) = 1(y)
andI(z)Ral(y)), M =1 « L (sincel’(z) = w and, as observed above,
I(z)Raw), M =1 = 5 y (sincewRAI(y)), whereasM 1, G foranyG € A,
against the validity of the premise. O

Completeness is an easy consequence of the admissibititytoBy cut we mean the
following rule:

' AF IFFA
I'-A

(cut)

whereF' is any labelled formula. The standard proof of admissipitif cut proceeds
by a double induction over the complexity éf and the sum of the heights of the
derivations of the two premises ¢fut), in the sense that we replace one cut by one
or several cuts on formulas of smaller complexity, or on sedgi derived by shorter
derivations.

Theorem 9. If I' = A, Fand I, F F A are derivable in Scond,., » SO iSI" F A, i.e.
the rule(cut) is admissible iNScond,c, -

Proof. By double induction on the complexity of the cut formula amdtlee sum of the
heights of the premises of the cut inference. To make thensalué the proof clear, we
define:cr as the complexity of', i.e.cr = cp(F); hy as the height of the derivation

% It is worth noticing that one can give a semantic proof of ctatgness, however as a difference
with modal logics, the proof is considerably more complea seguire nonetheless the cut rule
(see [27] for a semantic completeness proof of a tableaulcslfor the conditional logic CK).
We explain intuitively the difficulty. The usual way to progempleteness semantically is by
contraposition, that is to say to extract a counter modehfeofailed branch of a (suitable)
proof tree. To this purpose one needs to “saturate” a brapdipplying the rules as much
as possible. However the model being constructed musfysétis normality condition, i.e.
if [|A]] = [|A’|] then it must beR4 = R4, or equivalently, the selection function must be
well-defined on arbitrary subsets of worlds. To ensure troperty, a simple branch saturation
is not enough. One has to consider in the saturation protiessformulas not occurring in the
branch and use inevitably the cut rule to make the whole ooctstn work, the latter being a
kind of Henkin construction. For this reason we prefer themsimpler syntactic proof.
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of I' = A, F; hy as the height of the derivation éf F' - A. For the base case of the
induction on the complexity of the cut formula, we conside tases in whichy = 2
(its minimal value), namely the casés= x : P with P € ATM,F =« : 1, and
F = y > z. Then, we fixcp and we prove the base case(s) for the induction on the
sum of the height of the premises, namely we prove the thefoethe cases in which
hy = 0 or ho = 0 (or both), i.e. (at least) one of the two premises is an axiéon.
the inductive steps, we replace the initial cut by one or nam@ications of cut either
(i) on formulasG such thatep(G) < cr, i.e. we apply the inductive hypothesis on
the complexity of the cut formula to prove that,if - A’ G andI”’,G + A’ are
derivable, soid” - A’ or (ii) on the same formul&’ but cutting sequents’ - A’ F
and!”, F + A’ whose derivations have heighits andh), such that) + kY < hy + ha.
We analize each case in detail.
e Base case of the induction on the complexity of the cut formulacr = 2. As
mentioned above, we consider three subcases: 1. the cutlbfris an order formula
y > x; 2. the cut formula is a world formulax : P whereP is an atom P € ATM);
3.the cutformulaFisz : L.

1. We proceed by induction on the sum of the heights of thevdéons of" - A,y >
randl,y >z + Atoshowthat alsd” - A is derivable.
For the base of the induction, suppose that (at least) onleegbrtemises ofcut)
is an instance of an axiom. For instance, assumelthat A,y > z is an axiom
(the other half is symmetric). We distinguish the followsgbcases: (iy : L € I,
and we immediately conclude that also- A is an instance ofAX  ); (i) u >
u € A, then we immediately get that algo - A is an instance of AX); (iii)
F e I'n A, and obviously” - Ais an instance ofAX) too; (iv)y > x € I, i.e.
I' = I'",y > «:in this case, the right premise 0fut) is [,y > z,y > « + A,
and we can conclude that aldd,y > = + A is derivable since contraction is
admissible (Lemma 8).
For the inductive step, let us consider the last rule, saypRlied in the derivation
of '+ A,y > x. We distinguish two subcases:

— the rule Ris(EQ), i.e. the derivation is ended as follows:

u:AbFu: A u:A'Fu:A

(EQ)

/ A / A’
I'v—zFA v—>zy>z

In this case, since order formulas do not play any role in gfiegtion of(EQ)
(only transition formulas are involved), we show that alse A = I, v A,
2 A A, 2 is derivable by means of the following derivation:

u:AbFu: A u:AFu:A

(EQ)

’ A / A’
I'v—zFAv—=z

— the rule R is different from{E£Q): we just observe that no rule aScong,,
has an order formula on the right hand side of a sequent aaeigal formula.
Furthermore, in all the ruleg, > x is copied into the premise(s). Therefore,
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we can apply the inductive hypothesis on the sum of the heiflthe premises
of (cut) to the sequenf,y > = - A and the premise(s) df - A,y > =z,
then we conclude by an application of R. As an example, censite case R
s (ID), the other cases are similar and left to the reader. Theat&nivis as
follows:

W) Iz yy: AR Ay >a

(ID)
F/,xi>yFA,y2x

Since weakening is height-preserving admissible (Lemmaibgel”, x A,
y,y > x - Ais derivable, there is also a derivation, of at most the sasighiy,

of (2) I,z A, y,y: Ay > o A. We can then apply the inductive hypoth-
esis on the sum of the heights to qu and(2), and we obtain a derivation

also forl™, x A, y,y : A A, from which we conclude by an application of
(ID).
2. As in the previous case, we proceed by induction on the dithrecheights of the
derivationsof' - A,z : Pandl,x : P+ A.
For the base case, we have that (at least) one of the two gsgsesm axiom,
suppose’, x : P F A (the other half is symmetric). As in the previous case, the
proof is straightforward incases: L € I', F € I'NnAandu > u € A.In
caser: P € A,i.e.A= A’z : P, we observe that the left premise (@f:t) has
the formI" + A’,z : P,z : P and, by contraction (Lemma 8), we conclude that
I'= A’z : Pisderivable.
We proceed similarly to case 1 also for the inductive stegstBif all, we consider
the rule R ending the derivation éf- A, = : P. We distinguish two cases:
— the rule Ris(EQ), i.e. the derivation is ended as follows:

u:Abu: A u:AFu:A

(EQ)

/ A ’ A’
I'v—zFA v—zz:P

As we have done for the corresponding case in 1, we immegigtsl that

I'A=TI"v Ak Al A, - is derivable by an application ¢f2Q)) to
u: Ak u: A andu: A’ Fu: A, sincer : P does not play any role in the
application of(EQ), which involves only transition formulas;

— the rule R is different fro{ E£Q): as in case 1, we just observe that no rule of
Scondse, has a formular : P, whereP is an atom, on the right hand side of
a sequent as a principal formula. Furthermore, in all thesyul : P is copied
into the premise(s). We conclude exactly as we made in carariely we
apply the inductive hypothesis on the sum of the heights@ptiemises to cut
Iz : P+ A and the premise(s) df - A,z : P, then we conclude by an
application of R. As an example, consider the case ([/isit), the other cases
are similar and left to the reader. The derivation is as Vadlo

(1)F/,y2x,xi>yPA,x:P

(Unit)
F’,xﬁyl—A,x:P
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Since weakening is height-preserving admissible (Lemmaibgel”, x A,
y,z : P+ Ais derivable, we have a derivation of at most the same height
of (2) I,y > z,7 > y,z : P+ A. We apply the inductive hypothesis to

cut (1) and(2), then we obtain a derivation df’,y > =, x 4, y F A, from
which we conclude by an application @ nit).

3. Inthis case, sincE' - A,z : | is derivable, we immediately conclude thHat- A
is derivable from Lemma 12.

e Base case of the induction on the sum of the heights of the ipesnof the cut
inference: (at least) one of the two premises@it) is an axiom. We have several
subcases: 1F' € I'NAorz : L € I':in this case, it immediately follows that also
I' - A is derivable and we are done. 2.+ A, F' is an axiom since’ = =z > z:
consider the other sequehtx > = - A. Since it is derivable, by Lemma 11, also
I' + Ais derivable, and we are done. B.- A, F is an axiom since” € I, that
is to sayl” = I/, F': in this case, the other premise @fut) is I/, F, F - A and, by
Lemma 8, we can conclude that al56, F' - A is derivable, thud” - A is derivable,
and we are done. 4., F' - A is an axiom sincé” = x : L: in this case, the other
premise corresponds 6 - A,z : | and, by Lemma 12, we have that also- A

is derivable. 5I', F + A is an axiom sincd’ € A, i.e. A = A’, F: similarly to case
3, we have that the other premise corresponds te A’, F, F', and we conclude that
I'+ A, F=I' + Ais derivable since contraction is admissible (Lemma 8).

¢ Inductive step: we distinguish the following two cases:

(case 1) the last step oheof the two premises is obtained by a rule in whiEhis
notthe principal formula. We further distinguish two subcagg®ne of the sequents,
sayl, F' - Ais obtained by th¢ £Q) rule, whereF is not principal. The premises of
(EQ) do not contairF’, since this rule only involves two transition formulas beding
to I" andA. Therefore, we have a proof 6+ A by a direct application of EQ) to it;
(i) the sequent wheré&' is not principal is derived by any rule R, except teQ) rule.
This case is standard, we can permute R over the cut, i.e. imbeypremise(s) of R
and then we apply R to the result of cut. We present two exanpamely the case in
which R is(DT) applied to the left premise ¢tut) and the case in which R {@/nit)
applied to the right premise dtut). The other cases are very similar and left to the
reader. Fof DT'), consider a derivation ending as follows:

(3) F’,zzy,xLyFA,F,z:B
(i) I z>yx -y a8 2 - AF

(DT)

F’,zzy,xiy}—A,F (iii)F’,zzy,xLy,Fl—A

(cut)
I'z>yae-ykA

By (i7i) and Lemma 5, we have derivations of no greater heighfgiéf I/, = >
Y, T A, y FHAz:Band(iti") I,z > y,x A, Y, T ANG z,F = A. We can
apply the inductive hypothesis on the sum of the heightseptiemises, namely we cut

() with (i4i") obtaining a derivation ofiv) I'', z > y, « 4, yF A, z: B, and we cut
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(1) with (i#i"") obtaining a derivation ofv) I,z > y, x 4, Y, ANB .+ A. From
(iv) and(v) we conclude by an application 6DT') as follows:

(iv)F’,zEy,xLyFA,z;B (U)F/,Zzy,xﬁyyxﬁzl—A

(DT)
I'z>yr—SykA

Notice that we have applied the inductive hypothesis on #ight since the cut
formula is F' itself. Concerning Unit), consider a derivation ended as follows:

iy >,y FFA
(i) I,y Yy

N = (Unit)
@I x->y-AF I''s Sy, FFA

(cut)
Iz A, ykE A

Since weakening is heigh-preserving admissible (Lemmaé)have a derivation

of () Iy >z, x A, y = A, F. Also in this case, we apply the inductive hypothesis
on the height to cut:’) and(¢i), then we conclude by an application(dfnit):

@) Iy >ze Sy AF (i) y>zz "5y FFA

(cut)
F/,yzx,xﬁy}—A

(Unit)
I'z 2y A

(case 2)F is the principal formula in the last step bbthderivations of the premises
of the cut inference. There are thirteen subcaB&s:introduced a) byAR) - (AL), b)
by (VR) - (VL),c)by(— R) - (— L), d) by( saysR) - ( saysL), ) by(EQ) on the
left and on the right, f) by £Q) on the left and by Unit) on the right, g) by EQ) on
the left and by(ID) on the right, h) by EQ) on the left and by C') on the right, i) by
(EQ) on the left and by DT') on the right, j) by(EQ) on the left and by CA — conv)

on the right, k) by(EQ) on the left and by(C4) on the right, ) by(EQ) on the left
and by(I) on the right, m) by EQ) on the left and by /NT) on the right. The list is
exhaustive. Notice that the rulé§'A) and(MON ) are not involved in any case, since
there is no principal formul& in their conclusions. The same fO¥'R) and(ATM),
since there is no rule having a formuja> x (respectivelyz : P with P € ATM)
on the right hand side of its conclusion as a principal foanWe present each case in
detail:

— a) We have the following derivation:
)Irrdz:a 2 rrAz:p B)lLrz:a,z:0FA
(AR) (AL)
I'FAzx:aNp rx:aNBFA

I'rA

(cut)

Since weakening is admissible (Lemma 5), we have a derivafino greater height

than(1) also for(1') Iz : B+ A,z : a. We conclude by applying two times the
inductive hypothesis, cutting formulas whose complexstjower than the one of

z: aA S, as follows:
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(NMz:pFAz: Bz :a,z:0FA
2)IrrAz:pg Ix:6FA
't A

(cut)

(cut)

— b) We have the following derivation:

) IrrAz:az:p @2 Lz:akA B)rz:pFA
(VR) Y%
I'cAz:avy Nx:aVvVpkA
rrA

(cut)

By weakening (Lemma 5), we have a derivation(®f) I,z : « - A,z : 3 of
no greater height thaf2). As in case a), we conclude by applying two times the
inductive hypothesis on the complexity of the cut formuéplacing the initial cut
as follows:

) IrrAz:az:p QY z:ak Az

(cut)
Ir-Az:p B)Ix:pFA
(cut)
r'rA
¢) We have the following derivation:
2Lz:a—pBFAy>z
B)Lzrz:a—pBFAyYy:a
W Iz>z,z:akAz: 8 @Iz a—-p,y:bEA
(— R) (— L)
BG)I'tAz:a—p Nr:a—pFA
(cut)
r+A

First, observe that the labelin the premise of— R) is new, i.e. it does not occur
in the conclusion of such rule. By Lemma 6, we have a derivatibno greater
height than(1) also of(1') I,y > =,y : a« - A,y : 8. Since weakening is height-
preserving admissibile, we have derivations o) I' - A,z : o — B,y > =,
("It Az:a— fy:aand(5”) INy: B+ Az : o — (3, whose heights
are no greater than the height(@f). By applying the inductive hypothesis on the
height of the derivations, we can o®) and(5’), obtaining a derivation of6) I" -
A,y >z, (3) and(5”), obtaining a derivation of7) I' - A,y : «, (3) and(5"),
obtaining a derivation of8) I,y : 5 + A. By weakening (Lemma 5), we have also
derivations of(7") Iy > o+ Ajy : c«and(®) Iy > x,y : o,y : S+ A We
replace the initial cut with three cuts on formulas whose plaxity is lower than
the one ofr : o — 3, as follows:

(NTMy>xy:akAy:8

@YTy>zy:a,y:BFA

(cut)
(M TLy>zkFAy:a Ny>z,y:ak A

(cut)
6) I'FAy>x y>zkFA

cut
A (cut)
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— d) We have the following derivation:

(1)F,xi>zFA,z:'y (2)F,x:Asay37FA,xi>y (3) Iz : Asaysy,y:vyF A
(saysR) (saysL)
(4) '+ A,z : Asaysy Iz: Asaysy- A

' A

(cut)

First, observe that, since the lalketioes not occur in the conclusion p$aysR),
by Lemma 6 we have a derivation 0f') I, x A, y F Ay : ~. By weaken-

ing (Lemma 5), we have derivations 6f') I' - A,z : A saysy,z A, y and
4" Iy v+ A,z : Asaysy, whose heights are no greater than the ong4or
We apply the inductive hypothesis on the height of the déowa to cut(2) and
(4"), obtaining(5) I' - A,z N y, and to cut(3) with (4”), obtaining(6) I,y :
~v F A. By Lemma 5 we have also a derivation {6¢) I, = A, v,y : v EF A We
conclude as follows by applying two times the inductive hyesis on the com-
plexity of the cut formula:

(f)ﬂxLyFA,y:fy (GI)F,xLy,y:'yPA

(cut)
B) Az -y Iz -2y A
(cut)
I+ A
— e) We have the following derivation:

(DDu:Bru:A 2Qu:AFu:B Bu:AkFu:C BDu:Cru:A

/ B / C A (EQ) / B A / C (EQ)

I's —ykbAz—yx—y ' —yzs—ykAx—y

(cut)

F’,xiy}—A/,xiy

By Lemma 5, from(1) we obtain a proofofl’) u: B+ u: A,u : C, from(2) we
obtain a proof of2") v : A,u : C - u : B, from (3) we obtain a proof of3’) w :
A,u: Bt wu: C,andfrom(4) we obtain a proofofd’)u : CF u: Aju: B.
We replace the initial cut with the following derivation, e#e (cut) is eliminable
by applying the inductive hypothesis on the complexity &f tlut formula:

(I"u:Bru:Au:C 2VYu:Au:Cru:B
BYu:Au:Bru:C 4Yu:Cru:Au:B
(cut) (cut)
u:BFu:C u:Chku:B
(EQ)

F’,xiyl—A/,xiy
— f) The derivation is ended as follows:
u:AkFu: A u:AFu:A (1)F’,xi>y,xi>y,y2xl—A

" ’ (EQ) " " (Unit)
Q) Iz = ykAx-"y I's Sy =y A

- (cut)
I'z A, ykE A
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By Lemma 5, we have a derivation of height no greater tfearof (2') I, = A,

v,y > x kb Ax A, y. We can replace the initial cut by applying the inductive
hypothesis on the height of the derivations to @/} and(1) as follows:

(2/)F/,xi>y,y2x}—A,xi>y (1)F’,xA—/>y,xi>y,y2x}—A

- (cut)
'z yy>erA
- (Unit)
F’,xLyI—A
— g) The derivation we are considering is as follows:
u:AkFu: A Du:AFu:A (2)F’,xi>y,xi>y,y:Al—A
- (EQ) , (ID)
(3)F/,xi>yFA,xi>y F’,xLy,xLyFA

- (cut)
Iz 2 yrF A

First of all, by the height-preserving admissibility of &lsubstitution (Lemma 6),
we have a derivation of no greater height®f for (1') y : A’ + y : A. Moreover,
by weakening (Lemma 5), we have derivations 8f) I,z A, v,y Ay o
A+ Az 4, y of no greater height with respect {8), for (2') I'', z A
Y, T A, v,y Ay + A’ + A of no greater height with respect {@), and of
(I« A, y,y : A’ + Ay : Aof no greater height with respect (o). We
can conclude by replacing the initial cut by the two follogicuts:

3 I x A—/>y,y:A,y:A/|—A,xi>y

2N I, x A—,>y,:c i>y,y:A,y:A' FA

(cut)

(1")F’,xi>y,y:A/}—A,y:A F’,xiy,y:A,y:A/}—A( )
cu

F',xiy,y:A/PA

" (ID)
Iz Zsyk A

The upper cut (betweef3’) and(2)) can be eliminated by applying the inductive
hypothesis on the height of the premises, whereas the laveecan be removed by
applying the inductive hypothesis on the complexity of theformula.

— h) We have the following derivation:

(I)u:A/Pu:A (INwu:AFu:A (1)F/,z2y,xi>y,xi>y,zi>zFA

E C
/ " - (EQ) ; " ’ (©)
I'z>yx—ykAx—y Qr,z>y,x —y,x —yk A

- (cut)
I'z>yr 2yt A
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This case is more complicated: intuitively, we cannot codelas in the previous
case g) by cuttingl) and the conclusion ofEQ) (and using necessary weaken-

ings), because of the presencezofi> z. More precisely, the application of the
inductive hypothesis on the sum of the heights of the dedmatwould lead to a

derivation of [,z > y,x A, Y,z ALk A, from which we are not able to
conclude. )
In order to tackle this problem, we first show that the seq(&ntl™”, z > y, x A,

Y, T A y B Alis derivable, that is to say we repladewith the equivalent formula
A’ in one or more transition formul&sn (2), since(I) and (/1) are derivable.

Given this, we immediately conclude that, z > 4,z A, y A is derivable
since contraction is admissible (Lemma 8). We proceed bydtidn on the height
of the derivation of 2). The base case corresponds to the situation in wiaths
an instance of the axioms: since axioms do not involve ttemsformulas, we can
easily observe that either there is a formGlauchthatG e I"'NAorz>ye A
or, forsomew, w : L € I'" orw > w € A. In all these cases, it inmediately

follows that also(2') I,z > y,x A Y, T 4, y F Ais an axiom and we are
done. For the inductive step, we consider each rule endndehivation of 2). We
distinguish two subcases:

o the derivation of2) is ended by an application ¢EQ) as follows:

(IIT)u:Aru:B (IV)u:BFu:A

EQ)

QI 2>y 2y sy aa Ly

Since weakening is admissible (Lemma 5), frGf) we obtain a derivation of
(I'u:A*Fu:Aw: B, from(II)we obtain a proofofiI’) u: B,u: Al
u: A, from (I1I) we obtain a proof of I1I') u: A,u: A’ + u: B and from
(IV) we obtain a proof of/V') u : B+ u: A,u : A’. We conclude thaf2’)
is derivable as follows:

(INu:A*Fu:Au:B (IVYu:Bru:Au: A
(IIT"Yu:Au:AFu:B (IIw:Bu: Ak u: A
— . (cut) . — (cut)
u:A'Fu:B u:BFu:A
(EQ)

@)V z>yr Sy eyt A Sy

Notice that the two cuts can be eliminated by applying theatide hypothesis
on the complexity of the cut formula: indeed, the cut formigla : A, whose

complexity is lower than the one af 2 Y,
¢ the derivation of2) is ended by an application ¢f D) as follows:

B, z>y 2 yr oy y: AFA

(ID)
@) I, 2> yx 2o yz 2y A

- . A AVB
“In the general case, transition formulas can have the fallgdorms:u — v, u VE v,

ANB
u — v.
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First of all, we apply the inductive hypothesis to replatevith A" in (3),
obtaining a proof of(3’) I'",z > y,x 4, Y, T A, y,y : A F A, then,

’

by Lemma 5, we have a proof also f{@”) "',z > y,y : A',x A Y, T A,
y,y : A+ A. By Lemma 6 and weakening (Lemma5), froM u: A’ Fu: A
we obtain a proofofl’) I,z > y,y : A",z A, Y, T N yFEAy: A We
apply the inductive hypothesis of cut{8”) and(I’), again on the complexity
of the cut formula which ig : A, whose complexity is lower than the one of
x 2. y. We obtain a derivation of ",z > y,y : A,z 2 y,x 2y F A,
from which we conclude by an application @D);

the derivation of2) is ended by an application ¢DT') as follows:

ANB

(S)F/,zzy,xiy,xLyI—A,z:B (4)F’,zzy,xi>y,xi>y,xﬁzl—A

@I z>y0 Ly Ly A

First of all, we showthat : ANBFu: AABandu: A ANBFu:AAB
are derivable. Indeed, by Lemma 5, fr¢i) and(II) we have derivations for
(I"Nu:Au:BrFru:Aand(II')u : Aju : B+ u : A. Moreover,
(5)u: Au:BlFu:Band(6)u: A u: B+ u: B are derivable (they
are instances of the axioff1 X)), from which we can build the following
derivations:

(I w:Au:BFu:A (B)u:Au:BFu:B

(AR)
u:Au:BFu:A AB
(AL)
u:AANBFu:A AB
(INu:Au:BFu:A (6)u:Au:Bru:B
(AR)
u:Au:BFu:AAB
(AL)

uw:AANBFu:ANANB

Therefore, we can apply the inductive hypothesi§3p obtaining a proof of

(3 I, z>y,zi/>y,zi/>yFA z : B, as well as tq4) to obtain a proof

of I, z>y,x A, Y, T A Y, T AAB LA We immediately conclude

by an appllcat|on ofDT) to (3') and(4');
the derivation of2) is ended by an application 6€' A — conv) as follows:

B) I z>yx oy ey E A

- (CA — conv)
@I z>yz Sy ykA

Similarly to the case of DT'), we observe thatalse: AV B+« : A’V B and

u:A'VBFu: AV B are derivable, then we apply the inductive hypothesis

on (3) to obtain a proofofl’, 2z > y,x N Y, T N Y, T AVE A, from
which we conclude by an appllcatlon af' A — conv);

(DT)
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e the last rule in the derivation dR) is different from(EQ), (ID), (DT) and

(CA — conv): in all these cases, the transition formula—L y is copied
into the premise(s). We can immediately conclude by firstyapg the induc-
tive hypothesis, i.e. by replacing with A’, in such premise(s), and then by
applying the same rule. As an example, let us consider a modéd by an
application of(C4) as follows:

B I z>yz Sy Sy ww Sy A

" B (C4)
(Q)F/7Z2y7x—>y7x—>yFA

We can apply the inductive hypothesis@) to obtain a derivationof3’) I/, z >

’ ’ ’ ’

Y, T A, Y, T 4, Y, T A, w, w Ak A, from which we conclude by an
application of(C4).
— i) The derivation is as follows:

F’,zzy,xiy,xﬁyl—A,z:B
Mu:AFu:A Qu:AFu: A I'z>yr oy z-Sys280A
(EQ) (DT)

I z>yz 2oy Ax 2y B I z>yz oy zyk A

- (cut)
F',zZy,xLyFA

Since(l) u: A’ Fu:Aand(2) u: AF u: A" are derivable, we can prove that

also(3) I,z > y,x A, Y, T A y F Ais derivable. The proof is by induction
on the height of the derivation @8), is exactly the same as the one proposed for
case h) and it is therefore omitted. Since contraction isisslble (Lemma 8), we
can immediately conclude fros’).
— j) We have the following derivation:
u:A'Fu: A w:Aku: A F’,xiy,xﬂy,xﬁyl—A
(EQ) (CA — conv)
F/,xA—,>yFA,xi>y (1)F',xi>y,xi>yPA

- (cut)
Iz N yEA

We proceed as in the previous cases h) and i) to prove that veeehderivation of
1) I'x A, Y, T A, y B A. Since contraction is admissible (Lemma 8), we

conclude that als@”, x A, y B Ais derivable.
— k) We are considering the following derivation:

u:AFu:A u:AFu: A F’,xiy,xﬂy,xﬂz,zﬁyl—A
- - (5Q) — (1
Iz S>SykAz—y MMz —yz-"ykFA

- (cut)
Iz A, ykE A
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Also in this case we proceed similarly to what done for cages)tand j): by
induction on the height of the derivation @ff), we prove that there is a derivation

of I, x A, Y, T A, y F A, then we conclude by contraction (Lemma 8) that

I' x A, y F Ais derivable.
— 1) We have the following derivation:

u: A Fu:A u:AbFu: A F/,xiy,xﬁy,y&z,xizFA
(EQ) (1)

F’,xiy,yizl—A,xiy (1)F/7-’Ei>y717i>yvyi’z}_A

- (cut)
F/,xLy,yizFA

As in the previous cases, we first show thid) I, = A Y, T A Y,y LA
is derivable; again, the proof is by induction on the heidtthe derivation of(1)
and it makes use of the inductive hypothesis of cut on the ¢exitp of the cut

formula. We then conclude by contraction (Lemma 8) thatz N Y,y Bk
A is derivable.
— m) We have the following derivation:

u:ArFu: A u:A'Fu:A F’,xzz,xiy,xﬁy,zﬁyl—A
EQ

INT
/ Al A / Al A ( )
I'cs>zz—ykAzx—y I z>zz—yz—ykA

- (cut)
F',sz,xA—>yPA

As in the previous cases, we first show thH) I, 2 > 2,z A, Y, T A, ykE A

is derivable, then we conclude that, z > z, A, y F Alis also derivable since
contraction is admissible (Lemma 8). O

It is worth noticing that in the proof of Theorem 9 above, ises h), i), j), k), 1), and
m), it is needed a property that, giventhat A - u : A’ andu : A’ - u : A are

. . . s A
derivable, allows us to replacé with A’ in one or more transition formulas —

y (resp.x AvE y or x ANG y) in a derivable sequent + A. The proof of such
property in turn requirescut) (see case h) as an example). As an alternative to the
proof presented above, in order to prove the admissibifitgud for Scong,., . We can
proceed as done in [28] to deal with conditional logics cinitgy the axiom (CEM) of

conditional excluded middl&et I'[z; £ yi| F Ay, £, v;] be a sequent containing
anynumber of transitions labelled with the formutg whereF' is eitherA or A A B
or AV B; moreover, ifu : A+ u: A andu : A’ - u : A are derivable, we denote
with I + A* the sequent obtained by replaciagy number of transitions labelled
with either A or A A B or A vV B with the same transitions whergeis replaced byA’

in I'[x; £, yi| F Aly; £, v;]. We can prove that cut is admissible by “splitting” the
notion of cut in two propositions:
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—(A)If 't A Fandl,F + A are derivable, so i§" - A, i.e. the rule(cut) is
admissible iNScondye, ;

— B)if()) Iai -5 g F Aluy; — 0], () u: A u: Aand ()u: A Fu: A
are derivable, thed™ = A* is derivable.

The proof is by mutual induction between (A) and (B). The ictibn on (A) is, as in
the proof of Theorem 9 above, a double induction on the coxitglef the cut formula
and on the sum of the heights of the premise&-at), whereas the induction on (B) is
on the height of the derivation of (). To prove (A) in the abawentioned cases from h)
to m), we need to apply the inductive hypothesis on (B) to drie@premises ofcut),
and this is allowed since the height of such premise (s3ys lower thanh; + hs. To
prove (B), in case the derivation of (IJ[z; £, yil B Alu; £, v;] is ended by an
application of eithe(EQ) or (ID), we need to apply the inductive hypothesis on (A)
on the complexity of the cut formulas, and this is allowedtsithe cut formulas are
subformulas of the initiak: —*— Y.

Now we can prove the completeness of the calcuysng,., :

Theorem 10 (Completeness 0f5¢ong,., ). If asequent” - A is valid in the sense of
Definition 7, then” - A is derivable.

Proof. We have to prove that the axioms are derivable and that thefsigrivable
formulas is closed under (MP), (RCEA), and (RCK).
First, we show a derivation ilScong,., Of the axioms:

— (FALSE)
r>u,x:LbFx:y

(— R)
Fu:l —xy
— (THEN-1): by Lemma 10, we have that, given any formalahere is a derivation
in Scondae, fOr (i) y > z,2 > u,y : B,z : a - y : a. We can conclude as

follows:
@Ay>z,z>uwy:f,z:aky:a
(= R)
r>u,r:akFz:f—«
(= R)
Fu:a— (88— a)
— (THEN-2)
k2>
z:06,...Fz:0,...
S 2 A
.,z z>x, ... 2 2 — L)
syl L ziak oz« ...,z:ﬂﬂv,z:ﬂ,z:oH—...,z:fy(H )
LhzrabF o oz a zZm,...,z:oe,z:ﬂ,x:aH(ﬂ—Vy)F.“,z:fy( )
— L
zzx,zzy,yzx,xzu,x:aﬂ(ﬂﬂfy),y:aﬂﬂ,z:a}—z:fy( )
TR
ZZy7y2x,x2u7x:a—>(ﬁ—w),y:oc—%,Ztanrv( )
N
R
y>zr,x>ur:a— (o), y:a—pPry:a—y
(= R)

r>2uria— B—-7)Fz:(a—p)—(a—7)
Fu:(a—(B—7)— (a—pB)—(a—17))

(— R)
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— (AND-1), (AND-2) (the two cases are symmetric)

r>u,x:o,r:0Fx:a

(AL)
(= R)

r>u,r:aANflFr:a

Fu:raANf—a«a

— (AND-3): by Lemma 10, we have a derivation fgi) y > =, > u,z : o,y : B F
y : «, from which we conclude as follows:

(ii)yzxnyZU’fEia:yiﬁ'_y:a yzx:fEZU’xia:yiﬁ’_yiﬂ

(AR)
y>r,x>u,x:o,y:BFy:ang
(= R)
z>u,x:abxz: 08— (aAp)
Fu:a— (88— (aAp))
— (OR-1), (OR-2) (the two cases are symmetric)
r>u,r:abkz:a,x: 0
(VR)
r>u,x:akFz:aVp
(— R)
Fu:a—aVv
— (OR-3)
.z 2>
LLzralk oz«
.,z PE.. 20
(= IL)
z>r,xia—f0,...,z:abziy,2: 0
(TR)
z>yy>x,x:a—B,...,z:akz:v,z:0 oz ziy, 2 8
z2>Yy,...2>y,z: 0 vy 7 i i (VL)
20k z: 0 z>yy>r,r:a—0,...,z:aVykz:v,z:0
(= L)
c>yy>mr>uria—fyiy—Bziavytz:f
(— R)
yzzzz2uz:a—By:y—pBRyavy—4
(— R)
rZuz:a— B (y—pB) = (aVy—p)
(— R)

Fu:(a— )= ((y—08)— (aVy—p5))

- (K)
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k282> 2
L, ziaklFz Bz«
v:AFv: A (£Q) 20k z: 0 ( )
EQ — L
...,xi>z}—xi>z,z:ﬂ o zra—fBziabkz:p
= = (saysL)
v:iAkFv: A r—z,y>x,y— z,x: Asays(a - ),z :«a,...Fz: 0
A —— (EQ) — (INT)
LYy —zkz:i By — =2 y>z,y— z,x: Asays(a — 03),z:a,...bz:
= (saysL)
y>z,x>uy — zx: Asays(a — ),y : Asaysat z: (3
(saysR)
y>z,x>u,x: Asays(a — ),y : Asaysa by : Asaysg )
— R
x> u,x: Asays(a — )z : Asaysa — A saysf
—
Fu: Asays(a — ) — (A saysa — A saysf)
— (CA): let us first observe that, sinceV B occurs in the left hand side afays in
the initial formula, we have that v B € Lp. We have the following derivation:
v:AFv:Awv: B
v:BFv:Av:B
(VL)
v:AVBFuv:Av:B viAFv: A v:BFwv:B
(VR)  ————(BQ) ——— (5Q)
v:AVBFuv:AVB T —y ey y iy LT — Yy R T A Ve
(EQ) ('saysL) ('saysL
...,azwyl—y:'y,azwy ...,a:i»y,x:AsayS'y)—y:'y ..,,xiy,x:BsayS'yl—y:'y
o (CA)
T >u, T Ve y,x: Asaysy,z : Bsaysybk y: vy
('saysR)
x> u,x: Asaysy,x : Bsaysyt z: AV Bsaysy
(AL)
x> u,x: Asaysy A Bsaysy - x : AV B saysy
(— R)

- w: Asaysy A B saysy — AV B saysy

— (CA-conv): similarly to the case of (CA), we observe that/ B € Lp. We have
the following derivation:

v:AVBFv:AVB

AVE e (EQ)
L, — ykyiy,r — y LYyt y iy
- YAE (saysL)
x>ur—yr— y,x: AV BsaysykFy:vy
= (CA — conv)
r>u,r—yx:AVBsaysykFy:y
(saysR)

x> u,xz: AV Bsaysyt z: Asaysy

— R

Fu: AV Bsaysy — A saysy



48 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

— (Mon): similarly to the cases of (CA) and (CA-conv), we oh&ethatAA B € Lp.
We have the following derivation:

v:Av:BlFwov: A
v:Av:BFv:B

(AR)
v:Av:BFv:AANB v:AFv: A
(AL) y: +— (EQ)
vi:ANBFv:AAB (£Q) LT —yFyry,r —y ...,y:fyl—y:fy(saySL)
“,xALB;yPy:'y,xALB;y .Al,xi>y,xi>y,x:AsaySfyFy:fy
ANB (MON)
x>u,r — y,x:Asaysyky:y
(saysR)

x> u,x: Asaysyk x: AN B saysy

—

Fu: Asaysy — A A B saysy

— (DT): similarly to the case of (Mon), we observe thatn B € Lp. We have the
following derivation:

v:ANBFv:AAB

ANB AAB (EQ)
e, ==z z iy, — 2 o2y ziy
5 (saysL)
., 2:BFz:v,2: B ot — z,x: ANBsaysyF z v

DT)

zzy,xzu,xﬁy,x:A/\BsaySfy,z:B}—zzy

y (— R)
x> u,x—y,x: ANBsaysyry: B — v

(saysR)
x> u,x: AN Bsaysyt x: Asays(B — v)

(— R)
Fu: AN Bsaysy — (Asays(B — 7))

- (ID)

xﬂy,y:A}—y:A

(ID)
xi>y%y t A
—— (saysR)
Fxz: AsaysA

— (UNIT): by Lemma 10 we have a derivation ifcong,,, Of (iii) y > z, 2 > u, x :
v, T A, y F vy : v, from which we conclude as follows:

(iii)yzx,xzu,x:fy,xﬂy}—y:fy

- (Unit)
TZu,Tiy, T —yky:y

(saysR)
x>u,x:ykax: Asaysy

(= R)

Fu:vy— (Asaysy)

-
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v:AFv: A v:AFv: A

(EQ)
ez ybFzoy

5 = = (saysL)
xZu,x—>y,y—>z,x—>z,x:AsaySfsz:'y( )
1

(saysR)

A A
e, x—zklhziyr — 2z

xzu,xiy,yﬂz,x:Asaysy}—zzy

xZu,xiy,x:AsaySfyFy:AsayS’y

( saysR)
x> u,x: Asaysy bk x : B says(A saysy)

— R)
Fu: (Asaysy) — (B saysA saysy)
-(©
v:AFv: A v:AFv: A
—— (EQ)

A
2=zl ziy,z2 — 2

R e Al e

- - (saysL)
Zz2Yy,xr—y,z—— z,z: Asaysyk z: v

(©)
(= R)

zZy,xLy,z:AsaySfsz:'y

oy y: (Asaysy) — v

(saysR)
F o : Asays(A saysy — )

- (C4)

v:AFv: A v:AFv: A

(EQ)
v:AFv: A v:AFv: A

A A
2z —ykyivz—y

sy byy
...,zﬂy,z:Asaysyl—y:y

(EQ)

A A
T —zFyiy,x — 2z

= = = (saysL)
T >u,x —y,x— 2,z —y,x: Asays(Asaysy)Fy:y

= (Cc4)
x> u,x — y,x: Asays(Asaysy)Fy:y
(saysR)

x > u,x: Asays(Asaysy) F x : Asaysy
Fu: (Asays(A saysy)) — (A saysy)

— R

Let us now show that the set of derivable formulas is closeteu(MP), (RCEA),
and (RCK). For (MP), suppose we have a derivation(fo) + z : a and(v) + z :
a — f. Since weakening is admissible, we have that @86 + = : o,z : 8 and

(WYz:abxz:a— G,z : 4 have aderivation inScong,., - Since(cut) is admissible,
we can conclude that x : 3 is derivable as follows:

rz:a—Br:abz:Bz>x
r:a—prx:akxz:fr:«
z:a—fBrx:a,x: Bz

, (= L)
(W)z:akz:a— B,x: 0 rz:a—Br:akbz:

(cut)
(i) Fz:a,z:08 z:abx:p

t
Fx:p (cud)
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For (RCEA), we proceed as follows. As usualA < B is a shorthand for A — B
and- B — A. Suppose we have a derivation fonw : A — B and forkv : B — A.
By Lemma 9, we have also derivations for: A+ v : Bandv : B+ v : A. The
following derivation shows that alse u : (A saysy) — (B saysy) is derivable in
Scondy, (the other half is symmetric):

v:AFwv:B v:BFv: A

5 +— (EQ)
x>u,x: Asaysy, e — yFy:v,x —y Ly y ety
(saysL)

T >uz: Asaysy,r —syky:y

(saysR)
x> u,r: Asaysyt x : B saysy

— R)

Fu: (Asaysy) — (B saysy)
For (RCK), suppose there is a derivation fofy : « — (3. By Lemma 9, there is also a
derivationfor(vi) y : « by : § and, by weakening, divi’) x > u,x : A saysa, x A,
v,y : at y: 3, from which we conclude:

.HxLnyLy,“. (vi/)xZu,x:AsaySa,xLy,y:aFy:ﬁ
(saysL)

xzu,x:AsaySa,xﬂy}—y:ﬁ

(saysR)
x> u,x: Asaysat x: A saysg

— R

Fu: (A saysa) — (A saysf)
O

Completeness 0fScong,., With respect to the models of the respective logic in Defi-
nitions 2 and 3 immediately follows from the completenesthefaxiomatization with
respect to the semantics, shown in Theorems 4, 5, 6, and 7.aWwethat a formula

v € Lis valid if and only if the sequertt u : ¢ has a derivation iNScond,, -

5.3 Decidability and complexity ofCondyS,

In this section we focus on the logieondys, , for which we are able to describe a

decision proceduréCOndkjc(E (starting from SCondk’cﬁf ) and to give an explicit complex-

ity bound for it. For the calculi for the varian®ondy¢, , Cond!, , andCondl, ,
termination is an open problem at present, and we plan ty stirdfuture work.

In general, cut-freeness alone does not ensure the terariradtproof search in a
sequent calculus; the presence of labels and of rules suckegsL), (— L), (Unit),
(ID), ..., which increase the complexity of the sequent in a backwandfpsearch,
are potential causes of a non-terminating proof search.adewy we can prove that
the above mentioned “critical” rules can be applied in a pdlgd way, then the rules
introduce only a finite number of labels.

First of all, by Proposition 3, the condition (S-DT) can b@mssed as

Vt, s € S,if sRat andt € [|B]], thensRanpt (S-DT)
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As a consequence, the calculﬂgm\uc replaces the ruléDT') in Figure 3 with the
ACL
following one:

F,xinA,y:B FJULy,xALB;yPA

(DT)
Iz i>y|—A

whereAA B € Lp.

Let us now consider a first source of non-termination, narttedypossible gener-
ation of an infinite branch due to the generation of infinieigny labels, for instance
introduced by a sequence of applicationgef L), (— R) and(TR). As an exam-
ple, consider the following derivation (in the applicatoof (— L) we only show the
premise in the middle):

(TR)
w>z,z>x,z2>2y,y>x, x> u,x: (A — Az) > Ao,y A1,z As,w:As by : B, z: Az, w : As

(= R)
z>z,z>2y,y>z, x> u,x: (Ag — Az) > Ao,y A1,z Ayuby:B,z: Az, z: Ay — As

(=1L
z>2x,z>2y,y>x,x >u,x: (Ag —> Az) > As,y: Ay1,z: Ay by: B,z: Ag

(TR)
z>2yy>z,z > u,x: (Ag — Az) > As,y: A1,z: Ay b y: B, z: A3

(= R)
y>xz,x>u,x: (Ag — Az) > As,y: A1 Fy:B,y: Ay — Ag

(= L)
y>z,x>u,x: (Ay — Az) > Az, y: A1 Fy: B

(— R)
z>u,x: (Ag — Az) - Ay bz : Ay — B

(= R)
Fu:((Ag — Asz) — As) — (A1 — B)

The problem is exactly the same that affects calculi forifittmistic propositional logic
in [20], as well as labelled calculi for modal logics K4 and i8432], where specific
rules are devoted to capture the transitivity of the ordé&tien < as well as of the
accessibility relatiorR.

In our calculus S, uc , the same problem is extended to the interplay between
ACL

the rules( saysL), ( saysR), (INT) and(Unit), as shown in the following example
(again, we only present one branch of the tree):
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(=1L

ziww,...,:c:ASﬁyS((ASﬁySB)—»L),w:(AsaysB)—»LFy:C,z:B,w:B
('saysL)

:niw,zZx,zZy,yZI,zﬁw,yiz,...,x:AsayS((AsaySB)HJ_)I—y:C,z:B,w:B

(INT)
zzz,zZy,wa,ziww,yiz,...,w:Asays((AsaysB)—>L)Fy:C,z:B,w:B
(TR)

zZy,yZz,zﬁw,yiz,..,,az:Asays((AsaySB)~>J_))—y:C,z:B,w:B
(Unit)

y25;,,2i»w,yinz,...,w:Asays((AsaysB)—>L)Fy:C,z:B,w:B
(saysR)

...,z : Asays((AsaysB) — 1),z: (AsaysB) —» L+ y:C,z: B,z : AsaysB
(=1L

..,z : Asays((AsaysB) — 1),z: (AsaysB) - L +y:C,z: B
('saysL)

yZm,xi»z,xﬁy,yi»z,x:Asays((AsaySB)HL),...)-y:C,z:B
(INT)

y2z,xLy,yﬁz,z:AsayS((AsaySB)HJ_),...I—y:C,z:B
(Unit)

x5y y -2 20 Asays((AsaysB) — L),...Fy:C,z: B
('saysR)

T > u,T A, y,z: Asays((AsaysB) — L),y: (AsaysB) — L+ y:C,y: AsaysB

(— L)
> u,x 5y, x: Asays((AsaysB) — L),y : (AsaysB) — Lty :C

" ('saysL)
z>u,x— y,z: Asays((AsaysB) — L)y : C
(saysR)

x> u,x: Asays((AsaysB) — L)+ z: AsaysC
(= R)

Fu: (Asays((AsaysB) — 1)) — (AsaysC)

In order to tackle this problem, we adopt a standard teclaioased on the observation
that each infinite sequence of labelisriodic that is to say there are two worlds

andy such thaty > « (z A, y, respectively) and, for all formulag, ¢ holds in
the world represented hy if and only if ¢ holds in the world represented hy To
ensure termination, we impose a restriction on the apjicatf the rules— R) and
( saysR). Given a sequenf’ - A and two labels: andy such thaty > = € T,
we define the distancé(y, z) as the length of théongestsequence of formulas ifY
“connecting” the two labels, i.el(y,x) = nif yo 21,210 29,...,2,-1 0oz € I', with
o€ {>, &}8 is the longest path betweenandz in I'. Given a derivation starting
with - u : ¢, let 7 be the height of the parse tree @f We show that we can restrict
the applicationof —» R)to '+ A,z : « — S (of (saysR)toI' - A,z : « saysp,
respectively) to the case in whieliz, u) < 7, that is to say it is useless to introduce a
new label when the distance betweeandu is higher than the height of the parse tree
of the initial formula.

We only sketch the argument that allows us to restrict théieatjpn of (— R) and
( saysR) as stated above. A detailed discussion can be found in [E&4 first prove
that the following rule:

8 In computingd(y, ) we take into account botbrder formulasandtransition formulas As
mentioned, this is due to the presenced &fit), which implies that the former is a superset
of the latter.
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Nr:a—pfFAy>x Ner:a—py:a— Ay« F,x:aﬂﬂ,y:aﬂﬂ,y:ﬂl—A(N)
— L
Ner:a—(fFA

is admissible 'nScOndECCL , that is to say:

Lemma 13. If the following sequents:

1. Iz:a—p0FAy>x

2 INz:a—0y:a—0FAy:«

3 Nr:a—Ly:a—Gy:0FA

are derivable inS__ ,uc , then also the sequeidt z : « — 3+ A is derivable in
ACL

SCondECCL'

Proof. First of all, we prove that the sequefitr : « — S F Az : T — (o — f) is
derivable in S uc . This is shown by the following derivation:
ACL

o,z xk. 2> e ziak ooz« ez 2

(— L)
z>zy>x,z>y,z:a—GBy: T,z:akAz:0

(T'R)
(= R)
(— R)

Ny>x,z>y,z:a—[B,y: T,z:ak A z:03
Ny>z,x:a—0,y: THFAy:a—p3
Ne:a—-prHAz:T—(a—0)

By the admissibility of weakening (Theorem 5), we have awddion in SeongUC for

OlNz:a—FAy:az:T—> (a— p)andfor(ii) Iz : « HB,yAC:LﬂF
Ax:T— (a—F).
Again by weakening, since 1. is derivable, a{36) Iz : « — S,z : T — (a —
Bk Ay :aqy>zand(l”) Nz:a— Gz T o (a—0),y:fFAy>x
are derivable inSCOnd,ngE .Thesamefo(2') Nz :a— fy:a—Gz: T — (o —
B)FAy:aand3)z:a—Fy:a—G,xz:T— (a— f),y: B+ A Since
T is an abbreviation foP — P, itimmediately follows that«) I,z : « — B,z : T —
(a—=B)FAy:ay:Tand(xx) Iz:a— px: T —(a—0),y:bFAy:T
are derivable inSCon 4uc -
ACL
Since(cut) is admissible (Theorem 9), we can prove that the sequent’, z :
a— fF A,y : aisderivable mSCondk,C? :
W hz:ia-Bz:To(a—=BFAyay>z
K Nr:a=px:T—o(a—=pfHFAy:ay:T
CYz:a—=py:a—=Bz:T—o(a=B8)FAy:a

— L
@) Lr:a—=pFAYy:az: T — (a—P) INe:a—Bz:T—(a—= P FAy:«a ( )

t
(a)yz:a—PFAy:« (cut)
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Again, since(cut) is admissible, we prove th&) I',x : « — 8,y : 8+ Ais derivable
in ScOndEéE:
(1" Nzx:a—Bz:T—(a—=0),y:BFAy>z
) Nzx:a—Bx:T—(a—P),y:BFAy:T
BYhzx:a—By:a—=B,rx:T—(a—p)y:8FA
@) Nzx:a—By:bEAZ: T > (a—f) Nz:a—BGz:T—(a—pP),y:bFA

O Lrz:a—pPy:BFA

—

(cut)

From1., (a) and(b) we conclude by an application 6 L). O

Analogously, we show that the following rule is also adnfisin S___ uc :

ACL
F,x:AsaySOcFA,mLy I x: Asaysa,y: Asaysa,y:ak A
(saysL)
Iz : Asaysa k- A

Lemma14.1f (1) Iz : Asaysa F Az —% yand(2) Iz : Asaysa,y :
Asaysa,y : a = A are derivable in S , then alsol,x : Asaysa F Ais
derivable in SCondUC .

ACL

ond,lgjccL

Proof. Letusfirst prove thatthe sequeént I', = : A saysa - A,z : A says(A saysa)
has a derivation inS._ ,uc , as shown by the following derivation:

ACL

A A
ez = 2 o zrakF Az«

" " " (saysL)
Ix:Asayso,z >y, x — z, 0 —y,y —z2FAz:«

(INT)
F,x:AsaySa,y2$,xi>y,yi>zFA,z:a

" " (Unit)
Ix:Asaysa,r — y,y — zF A z: «

(saysR)
Iz: Asaysa,z 5y Ay Asaysa

(saysR)
(1) Iz : Asaysa+ A,z : A says(A saysw)

Since weakening is admissible i condUC (Theorem 5), from(i) we obtain a deriva-

tion also for(ii) I,z : A saysa,y:ab A x: Asays(A saysa).
Again, since weakening is admissible & uc , from (1) we obtain a derivation
ACL

of (1) Iz : Asaysa,x : Asays(Asaysa),y: ab Ax A, y, and from(2) we
obtain a derivation fof2’) I,z : A saysa,y : A saysa,z : A says(A saysa),y :
a  A. Since(cut) is admissible (Theorem 9), we can conclude as follows:

(1) I,z : Asaysa, z: Asays(Asaysa),y:ab Az~ y

N (2') I,z : Asaysa,y: Asaysa,z : Asays(Asaysa),y: a k- A
(#4) I'x : Asaysa,y : o b (saysL)

A,z : Asays(A saysa) Iz : Asaysa,z : Asays(Asaysa),y:atb A

(cut)
(1)F,x:AsaySal—A,xi>y I'z: Asaysa,y :a k- A

('saysL)
Iz : Asaysa - A
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We can now prove the following theorem:

Theorem 11. Lett u : ¢ be a sequent and let be the height of the parse tree of
In order to check whethér « : ¢ is derivable, the rule¢— R) and( saysR) can be
reformulated as follows:

Ny>zy:akAy:p F,xi>yl—A,y:a
(— R) (saysR)
'cAz:a—p I'+ A,z : Asaysa

where the following conditions hold:

1. y is new, that is to say it does not occurihand A;
2. d(z,u) <.

Proof. (Sketch) Let us consider a sequent of the fdfmg : a3 cag o ... 0y, 2 :

B F A, whereo € {—, says}, and suppose that a formuja § occurs negatively i,
that is to say in a way such that the application of the ruleb®fcalculi could lead to
a sequent of the form”, zg : ay oag 0 ... 0,z : B A’, 29 : v 0 . Suppose also
that, for alll such thateg : x1 0o x20...0x; € I', we have that < n. Furthermore, by
Lemmas 13 and 14, we can consider, without loss of generality proofs in which
any application of(oL) is replaced by an application of the corresponcﬂﬁvg). An
application of(oR) to zp : 7 o ¢ introduces (backward) a new labe], as well as a
formulaxz; > xo, either (i) directly, in case =—, or (ii) by an application ofUnit) in
caseo = says and the transition formula, — z; has been introduced (backward)
by the application of saysR). The rule(oL) can be applied to both the principal
formulaszg : a; o 0... 0 ay, @ndxg : B by using the labek;, obtaining a branch
containing a sequent whose left hand side contains thexfisitpformulas:

To:Q]OQ20...00,,T: 3
T1:010Q20...0Qs,T1:020...00,,Tg: 3,x1: 0

Sincey o § occurs negatively i3, a new labelzy can be further introduced by an
application of(oc R) to ;1 : v 04, thus introducing (backward) a formula > xz;, again
either directly by(— R) or by means of an application ¢f/nit) with ( saysR). In
caseo = says, by an application of INT), alsozg 2 2, is added to the branch.
By an application of TR), alsoxy > x is introduced. The ruléoAi) can be further
applied by usinge to both the principal formulasy : oy o g 0 ... 0 v, @ndg : 5.
We obtain a branch containing a sequent whose left hand sidt@ios the following
formulas:

To:Q10OQ20...00,,T: 3
T1:010Q20...0Q,,T1:030...00,,Tg: 3,x1: 0
T2 :Q1OQ20...0Qn, Ty Q20 ...00,,T2:Q30...0Q,,X:0,01:0,2x2:0

And so on, obtaining a branch containing 1 > x,_2,...,T,_1 > Tg, 21 > Xg, the
formulas:
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To: ML OW0...00, Ty 0
T1:00]0Q20...00,, T1:030...00,,Tg:3,x1:0
T2 :Q1OQ20...0 ,,Ta Q20 ...00,,T2:Q30...0Q,,X:0,01:0,2x2:0

Ty 9 :Q10...00, Tn9:Q20...00,, ..., Tp_9:0p_100n,Xo:0,...,Tn_o:0

Ty 1: Q10020 ...00,, Tn1:020...00n,...,Tp_1:0n,2o:0,...,0n_1:0
: o Y Y Y

and, in case = says, the transition formulasy — x1,...,20 — Zp_1,Tp_2 —

x,—1. We can conclude that it is useless to apply again the (vlB$to z,, 1 : v 0 4,
thus generating a new labe}. Indeed, since is the highest such thatz : x1 0 x2 ©
...ox; € I',if z, : a, is needed to close the branch, alsp ; : a,, can be used to
close such branch, becausewould label exactly the same formulasagf_;, namely:

Tp i Q1 OQ20...00n, Ty Q20 ...0 00, .., Ty Qn,To: By .., Ty 0. (I
Furthermore, we need the following lemmas:

Lemma 15. If a sequent” + A,y > z is derivable in SeongVC then eitherl" - A is
ACL
derivableory >z € I ory = .

Proof. (Sketch) Intuitively, in order to prove a sequehit- A,y > x, we observe
thaty > « is introduced (looking forward) either by an application(e$ L) or by
weakening. In the latter case, obviousgly}- A is derivable too. In the former one, the
only way to provey > x in the leftmost premis@ - A,y > zis by (AX>) or (AX).

In the first case, we are done, since= y. In the other one, since—~ R) and(TR)
are the only rules introducing a formuja> =z in the left hand side of a sequent in a
backward proof search, and since such rules are invertibl@aa 7), we can assume,
without loss of generality, that they have been applied tesfe> L), thereforey > «
already belongs té'. The rigorous proof is by induction on the height of the datiom

of ' Ay >x. O

We can reason analogously for the transition formulas,idensg that a formula 4,
y in the right hand side of a sequent can only be proved (backvigran application
of (EQ):

Lemma 16. Ifa sequent” - A, x A, y is derivable in S then eitherl” - A

ConkoC(E !
. . A’
is derivable ore — y € I

The following facts allow to obtain a terminating calculusrh S uc :

ACL

— Therules of S ,uc introduce only a finite number of labels in a backward proof
ACL

search: labels are only introduced by the rules R) and( saysR), restricted as
stated by Theorem 11 above, by formulas occurring negginéhe initial sequent,
which are finite.

— Itis useless to apply the rulé§'R), (INT), (Unit), (ID), (C), (CA), (CA —
conw), (DT), and(MON) more than once on the same principal formula. As an
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example, let us consider the rul&nit): we can restrict its application t, = A,

y B A only to the case in which the rule has not been previouslyieg bz A, y
in that branch, i.e. ify > = ¢ I'. Similarly for the other rules.

— A backward application ofC' A — conv) introduces: AvE y in the premise, where
2B y does not belong to the conclusion, but whdreB is a principal belonging

to Lp. The same fo(C A). The same fo(DT') and(MON ), introducinge ANE Y.
SinceLp is finite, these rules will be applied a finite number of timeshe same
branch.

— The rule(— L), applied to a sequert,z : o — [ + A, leads to a premise
I''z:a— B+ Ay > x, and can thus be reapplied without any control. However,
it is useless to apply— L) on the same formula : & — 3 more than once in
each branch in a backward proof search, introducing the $ammeilay > = in the
leftmost premise. Moreover, by Lemma 15 we can restrict tiredae of the order
formulay > z introduced in a way such that eithgr> = € I" ory = z: this is
explained by the fact that no rule Q$C0ndkjc(f have a formulay > z in the right
hand side of a sequent as a principal formula. Thereforepheway to prove it
in a backward search is either by .X), i.e. by a sequent also havigg> « in its
left hand side (then, we can choose amgng z already inI") or by (AX>), thus
choosingy = x. The same fof ATM).

— Similarly to the previous point, it is useless to appkaysL) on the same formula
x : Asaysy more than once in each branch, introducing (backward) theesa

formulaz -2 y in the leftmost premise. Moreover, by Lemma 16, the choice
of the transitionz —2- y to be used is restricted to formulas such that, for some

formula A’, there existse N y € I'. Intuitively, this follows from the fact that
a transition formula on the right hand side of a sequent céylmmproved by an
application of(EQ). Moreover, sincé £Q) only involves transition formulas, the

. . . A A’ A A
premise introducing: — y can be reducedto — y F =z — y. A similar
restriction applies also ta(M ON) and(C A).

The resulting terminating calcuIL&c:w\uc is shown in Figure 7. It is worth noticing
ACL
that (AX) is restricted to atomic formulas, and thHatX>) is not needed due to the
reformulation of the other rules.
By the above facts, it follows that:

Theorem 12. A sequent” - A is derivable in SCondUC if and only if I" - A'is
ACL
derivable inSCon quc-

—

Theorem 13. The sequent calculuS.  ,uc ensures a terminating proof search, then
ACL

the logicCondys, is decidable.

Proof. Given a formulap, just observe that there is only a finite number of derivation

of the sequerit u : ¢, as both the length of a proof and the number of labelled féamu
which may occur in it is finite. O
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(AX) Tz: P-A,x: P
if Pe ATM

F,yZI,yiz.zizFA

" (INT)
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ifwivz¢l—‘
TFAz:«a FFAz: 8
THEFAz:anB

(AR)

T'FAz:a,z: 0

(VR)
TFAz:aVp

Thy>zy:abAy: 0

F,mLy)—A,y:B

(—R)
TFAz:a—p
Y new
if d(z,u) <7
A
T —yFAy:a
— = (saysR)
T'HA z: Asays a
Y new
if d(z,u) <7
u:Aku:B u:Bru:A
& ! (EQ)
T —>ykFAz—y
U new

F,xﬁy,xﬂ}y)—A

(AX )Tz: LFA Tz:Py:PEA

T,z:PFA
ify:P¢Tl and y>ax €l
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Tz>zz2>yy>azkA
ZT,z22YY (TR)

Fz>yy>zkA
ifz>ax ¢l

Tz:a,z:0FA
Tz:aANfEA
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Tz:aVBEA
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Tz:a—=0FAYy:« Tz:a—By:fFA
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(= 1)
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(says L)

ifziwyef
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—y F,mim,miy)—A

T+A

:r,i»y)—z
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if{ziy,xgy},@l—‘ andzLyEF

F,J:Ly,y:A)—A

" (DT) n (ID)
Iao-SyrFA Tx—ykA
ifgvAL'éyél1 ify:AgD
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e X yre®By TelyrA ToeZoyra Ty>zeby=A
(CA) ————— (Unit)
THA z—y=A
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if{mAy,miy}ﬂF:@ andxiyeF

Fig. 7. The terminating caIcquS@C. In order to prove that a formulais valid inCondzg, |
ACL

the calculus checks whether there is a derivation of: ¢. Thereforeu is the label in the initial
sequent.
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This itself gives the decidability adondyS, . We have also developed a Prolog proto-
type implementing the decision procedtﬂad\uc [17].
ACL

We can give an explicit space complexity bound @ondys, . As usual, a proof
may have an exponential size because of the branching irteatby the rules. However
we can obtain a much sharper space complexity bound sinceowetdheed to store
the whole proof, but only a sequent at a time plus additiarfarimation to carry on the
proof search; this standard technique is similar to the diopted in [19, 26]:

Theorem 14. Let n be the length of the string representing a sequEnt A. The
problem of deciding provability of - A in Condyg, is decidable inO(n* logn)
space.

Proof. First, observe that, in the proof searchtof. : ¢, with | ¢ |= n, new labels are
introduced only by (sub)formulas occurring negativelyir_et r be the height of the
parse tree of. Theorem 11 states that, given a formula (of the form eitherr — 3

or z : A saysy) introducing a new label in the branch, it can be applied dhtize
distance betweer and the label: in the sequent of the root is less or equakto
Obviously,T is bounded by:. Theorefore, each (sub)formula occurring negatively in
¢ generates at most labels, then, since there at¥n) (sub)formulas, the number of
different labels introduced in a branchd¥n?). Suppose also thatCp | is bounded
by O(n). All possible (sub)formulas i are, obviouslyO(n), therefore the number
of different labelled formulas i©(n?). The rules OfS;d\k’cﬁf can be applied to each

labelled formula: at most rules are applied to each formula, then we have that the
length of each branch of a proof tree is boundedigy*).

In searching a proof, there are two kinds of branching to icemsAND-branching
caused by the rules with multiple premises and OR-brandttiagktracking points in
a depth first search) caused by the choice of the rule to apfgystore only one se-
quent at a time and maintain a stack containing informatidficient to reconstruct
the branching points of both types. Each stack entry costhia principal formula, the
name of the rule applied and an index which allows to recansthe other branches
on return to the branching points. The stack entries reptekas backtracking points
and the index within the entry allows one to reconstruct bla¢hAND branching and to
check whether there are alternatives to explore (OR bragghiThe working sequent
on areturn point is recreated by replaying the stack erfitdes the bottom of the stack
using the information in the index (for instance, in the caésaysL) applied to the
principal formulaz : A says+y, the index will indicate which premise-first or second-we

have to expand and the lahginvolved in the formula: A, ).

A proof begins with the end sequéntu : ¢ and the empty stack. Each rule appli-
cation generates a new sequent and extends the stack. ifrileatsequent is an axiom
we pop the stack until we find an AND branching point to be exieahIf there are not,
the end sequeiit u : ¢ is derivable and we have finished. If the current sequenttis no
an axiom and no rule can be applied to it, we pop the stackesnand we continue at
the first available entry with some alternative left (a baatiking point). If there are no
such entries, the end sequent is not derivable.
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The entire process must terminate since: (i) the depth oftdek is bounded by the
length of a branch proof, thus it@(n*), (i) the branching is bounded by the number of
rules, the number of premises of any rule and the number efiEabformulas occurring
in one sequent, the last beiayn?).

To evaluate the space requirement, we have that each sulléoaithe initial la-
belled formula can be represented by a positional indextirganitial labelled formula,
which require®)(log n) bits. Moreover, also each label can be represented(yg )
bits. Thus, to store the working sequent we néxa?> logn) space, since there may
occurO(n?) labelled subformulas. Similarly, each stack entry requidélog n) bits,
as the name of the rule requires constant space and the indexn) bits. Having
depthO(n?), to store the whole stack requir@$n* logn) space. Thus we obtain that
provability in Condy&, is decidable irO(n* logn) space. O

Given a formulap € L, sinceé‘;d\uc is sound and complete with respect to the
ACL
semantics of the logi€ondyS, , in order to check whethef is valid in Condys, we

_—

can check whether v : ¢ is derivable inS__ ,uc. Itimmediately follows that:
ACL

Theorem 15. Given a formulap € L, letn be the length of the string representing
The problem of deciding validity @fin Condys, is decidable inO(n* logn) space.

6 Related work and Conclusions

Related Work. Many formal frameworks have been proposed to specify ansbrea
about access control systems [4, 6,18, 22, 23]. Recenthgpasted in [14], construc-
tive logics have been recognized to be well suited for reilagpabout authorization,
because constructive proofs preserve the justificatiortatéments during reasoning
and, therefore, information about accountability is natt.IdClassical logics, instead,
allow proofs that discard evidence.

Abadi in [2] presents a formal study about connections behaaany possible ax-
iomatizations of the “says” operator, as well as higheelg@olicy constructs such as
delegation Epeaks fgrand control. Abadi provides a strong argument to use coastr
tivism in logic for access control, in fact he shows that frarwell-known axiom like
(UNIT) in a classical logic we can deducksaysy — (¢ V A saysy). The axiom
above is calledEscalationand it represents a rather degenerate interpretaticzags,
i.e., if a principal say then, eitherp holds or the principal can sanything On the
contrary, if we interpret thesays within an intuitionistic logic we can avoilscalation

Although several authorization logics employ the says rigydla limited amount
of work has been done to study the formal logical propertfesays, Speaks foand
other constructs.

Garg and Abadi [13] study a class of access control lodiek,(ICL= andICL?)
via a sound and complete translation into modal logic S4 byirmg on a slight sim-
plification of Godel’s translation from intuitionistic ¢pc to S4, and by extending it to
formulas of the formA saysy. The translation to S4 provides decidability and com-
plexity results for this class of logics of access contrah@ng the conditional access
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control logics we have presented, the lo@iondli;, contains the characterizing ac-
cess control axioms dfcL, namely (UNIT), (K) and (C4)Cond., derives all the
axioms ofICL and is srictly stronger thal€CL. As we have seen in Section 2.3, there
are formulas of CL™ that are derivable i€ondx., , but notinICL=. Concerning the
treatment of boolean principals, we have discussed in@e2tP the differences among
our definition and the one in [13].

Garg [12] adopts an ad-hoc version of constructive S4 c&lied, and embeds ex-
isting approaches into it. Constructive S4 has been choseause of its intuitionistic
Kripke semantics which DT§.extends by adding the notion gfew, i.e., a mapping
from principals to sets of worlds. DTlLcontains, as characterizing axioms, (K), (4) and
(C). The axioms (K), (4) and (C) are derivabledond), . In particular, (4) is weaker
than (1) and derivable from it. The preorderamong atomic principals can be captured
in Cond<, through the “speaks for” relation (which is reflexive andnsiive), and
satisfies axiom (S) (corresponding to the (Speaks For) gxibhe semantics of DT
has strong similarities with the semantics@dnd,, , although it does not deal with
boolean principals. It can be observed that the Kripke nmoftel DTL, include the
semantic conditions of axioms (ID) and (MP), However, as¢haxioms are not ex-
pressible in the language of D§Lthey are not derivable from the axiomatization. As a
difference, the aim of our proposal is to provide a modulgrapch to the definition of
access control logics and their semantics, in which thea®ize to one correspondence
among semantic properties and characterizing axioms.

It has to be observed that, adopting a fixed semantics liked®4 dot permit to
study the correspondence between axioms of access camgio land Kripke struc-
tures. Suppose we look aays as a principal indexed modality 4, if we rely on S4
we would have as an axiom 4o — ¢, which meanseverythingthat A says holds.
To overcome this problem, both in [12,13], Kripke semanticsveakened with the
addition ofviewswhich relativize the reasoning to a subset of worlds. Altjiothis
approach provides sound and complete semantics for arcedaibination of axioms
(those included inCL), it breaks the useful bound between modality axioms arad rel
tions of Kripke structures.

Boella et al. [7] define a logical framework called FSL (Fidb&®ecurity Language),
based on fibring semantics [11] by looking at “says” as a (flbpreodal operatoi=SL
is, in general, not decidable and its formalization is ledito Kripke-style semantics.
In fact, no proof method for FSL has been provided. Moredherrepresentation of the
speaks for in FSL is limited to the definition of axiom scherobthe typeA saysy —

B saysyp, which means that, given a reference monitor modeled with, kSs not
possible to introduce new speaks for relationships at ime-t

Conclusions.We have defined four intuitionistic conditional logics focéess Control
called CondRg, , Condy¢, , Cond,, andCondj, . We have presented a sound,
complete and cut-free sequent calculus for such logice,Ale have shown that prov-
ability in CondRS, is decidable irO(n*logn) space, in agreement with the PSPACE
results given in [13] for the logitCL. With respect to the work in [12,13], we iden-
tify canonical properties for axioms of the logic, i.e., fimder conditions on Kripke
structures that aneecessarandsufficientfor the corresponding axiom to hold.
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We believe that this methodology has several advantagest, Eonditional log-
ics allow a natural formalization of theays modality including the specification of
boolean principals as formulas as well as a natural treatofe8peaks far Second,
the identification of canonical properties for access ararioms provides a natural
deconstruction of access control logics. By deconstraatie mean the possibility to
craft access control logics that ad@wty combination of axioms for which canonical
properties exist. For instance, not all access controésystadopt (UNIT) as an axiom
[22,5, 18], but the translation in [13] does not provide arbedding in S4 for a logic
without (UNIT). In general, the approach in [13] does notyide a methodology to de-
construct access control logics. In our approach, instead;an formalize a logic and
a calculus without (UNIT) which is still sound and compldig,dropping the semantic
condition (S-UNIT) and the corresponding rdl€nit) in the calculus, as shown for the
logicsCond!., andCondj, and the respective calcu | ey and S, g4 -

We believe that choosing axioms for access control logipedds on the needs of
security practitioners. By looking asays as a conditional modality, we can offer a
formal framework to study the axioms of access control vizocécal properties on the
semantics, and to build calculi to carry out automated diolucOf course, for each
combination of axioms, the decidability and the complexifythe resulting logic as
well as the termination of the calculus have to be determined
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